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Scalar-tensor theory offers the possibility of a modification of Newtonian gravity due to the presence

of a 4d scalar dilaton field. The prototypical version of such a theory, massless Brans-Dicke theory, is

considered here in the Einstein frame representation. The acceleration of a test mass is obtained from

the exact 4d Xanthopoulos-Zannias solutions with spherical symmetry. The deviation of this accelera-

tion from the pure Newtonian gravitational acceleration is examined to see if it can account for the

anomalous Pioneer acceleration, while satisfying solar system constraints. Theoretical considerations,

along with limits inferred from Pioneer 10 data, suggest that Brans-Dicke gravity could account for no

more than a small fraction of the Pioneer anomaly, so that a complete explanation of the anomaly must

lie elsewhere.
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I. INTRODUCTION

It is possible that some extension or generalization of
general relativity (GR), such as scalar-tensor theory, may
give rise to a modified form of gravity with observable
consequences, while satisfying existing solar system con-
straints. A prototypical theory of this type is the massless
Brans-Dicke (BD) theory[1]. An extended form of gravi-
tation theory, in a weak field, nonrelativistic limit, can
exhibit observable deviations from Newtonian gravity,
which could provide guidance toward a more complete
understanding of gravity. One such possible deviation
from Newtonian gravity may reside in the Pioneer anom-
aly [2–4].

The Pioneer anomaly is a small anomalous, i.e., unmod-
eled, acceleration of the Pioneer 10 and 11 spacecraft that
has been measured for large heliocentric distances of
�20–70 AU. This anomalous acceleration is inferred
from an anomalous Doppler shift [2–4]. It is possible that
this small anomalous Pioneer acceleration ~aP may indicate
a deviation from the Newtonian acceleration ~aN, and it
had previously been taken to have been an essentially
constant acceleration with a magnitude of aP ¼
8:74� 1:33� 10�10 m=s2. Recently, however, the analy-
sis of larger data sets has supported the conclusion that the
anomalous Pioneer acceleration ~aP actually decreases with
time with a temporal decay rate (jerk term) of magnitude
_aP � 1:7� 10�11 m=s2=yr [5]. (This point of view has
recently been challenged, however, see Refs. [6,7], for
example.) This anomalous acceleration is seen to act on
both the Pioneer 10 and 11 spacecraft, directed approxi-

mately sunward. In contrast, there appear to be no such
anomalous accelerations exhibited by planetary motions.
In Refs. [8,9] the acceleration of a test mass in a spheri-

cally symmetric, static, weak field due to a source was
examined in the Einstein frame representation of massless
BD theory, making use of the exact Xanthopoulos-Zannias
(X-Z) solutions [10] for a massless scalar field minimally
coupled to the (Einstein frame) gravitational metric field.
The acceleration of a test mass in the BD theory differs
from the Newtonian acceleration, and depends upon the
parameters of the BD theory and therefore the parameters
of the X-Z solutions. We examine the possibility of
whether this ‘‘anomalous’’ acceleration can account for
the observed Pioneer anomaly, while satisfying existing
solar system constraints on the BD theory, namely the
constraint on the BD parameter !BD, where !BD >
40; 000 at the 2� confidence level, and !BD > 21; 000 at
the 3� confidence level according to Ref. [11], and!BD >
9; 000 at the 95% confidence level according to Ref. [12].
A brief presentation of the Einstein frame representation

of BD theory, along with the acceleration ~a of a test mass in
the Newtonian limit, is presented in Sec. II. The results
obtained here for ~a agree with those of Ref. [8], and are
then used in Sec. III to establish a constraint equation for
the X-Z parameters. It is concluded that this constraint,
along with the constraint on !BD, cannot be satisfied
simultaneously when the deviation � ~a ¼ ~a� ~aN is iden-
tified with ~aP, and that the anomalous BD acceleration � ~a
can account for, at most, only a few percent of the anoma-
lous Pioneer acceleration ~aP. On the other hand, in Sec. IV
inferences made from Pioneer 10 data in conjunction with
Cassini constraints on the Post-Newtonian parameter �PPN

suggest even stronger constraints on a possible contribu-
tion to aP due to Brans-Dicke gravity. A brief summary is
presented in Sec. V.
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II. ACCELERATION OF ATEST MASS

The Jordan frame action for massless BD theory is given
by Ref. [1] (G ¼ 1)

S ¼ 1

16�

Z
d4x

ffiffiffi
~g

p �
~� ~Rþ!BD

~�
~g��@� ~�@� ~�

�
þ Smð~g��Þ:

(2.1)

A metric with signature ðþ;�;�;�Þ is used and � ¼ffiffiffiffiffiffiffiffiffiffi
8�G

p ¼ 1=M0, where M0 is the reduced Planck mass. A
conformal transformation to the Einstein frame is given by
Ref. [13]

g�� ¼ ~�~g��; g�� ¼ ~��1~g��;
ffiffiffi
g

p ¼ ~�2
ffiffiffi
~g

p
;

�¼ ffiffiffiffiffiffiffiffi
2a0

p
ln ~�; a0 ¼!BD þ 3

2
;

(2.2)

and the action in the Einstein frame then takes the form

S ¼ 1

16�

Z
d4x

ffiffiffi
g

p �
Rþ 1

2
g��@��@��

�
þ Smð ~��1g��Þ:

(2.3)

(Here, � is the scalar field used with the action and
conventions used by Cai and Myung [13] differing by a
factor of 1=2k, k ¼ �2 ¼ 8�G from the scalar field used
by Xanthopoulos and Zannias. I.e., �X-Z ¼ 1ffiffiffiffi

2k
p �C-M ¼

1ffiffi
2

p
�
�C-M. See, for example, Refs. [8–10,13].)

A classical test particle of mass m in the Einstein frame
(EF) representation, described by the action

Sm ¼ �
Z

mðg��u
�u�Þ1=2ds

�
u� ¼ dx�

ds

�
; (2.4)

is related to the corresponding (constant) mass m0 in the
Jordan frame (JF) by Ref. [8,14],

m ¼ Að�Þm0 ¼ ~��1=2m0;

Að�Þ ¼ ~��1=2ð�Þ ¼ e��=ð2
ffiffiffiffiffiffi
2a0

p
Þ;

(2.5)

where Að�Þ connects the EF and JF metrics by ~g�� ¼
~��1g�� � A2ð�Þg��. Therefore the EF mass m will gen-

erally have a spacetime dependence, since � ¼ �ðx�Þ.
The ‘‘geodesic’’ equation for the test mass m in the EF

representation can be written in the form[8]

du�

ds
þ ��

�	u
�u	 � 1

m
@�m½g�� � u�u�� ¼ 0; (2.6)

and from (2.5) there is a term involving @�ðlnmÞ ¼
@�ðlnAÞ which causes the particle to deviate from true

geodesic motion in the EF when A � const. In the
Newtonian limit (weak field, static limit, with nonrelativ-
istic particle motion) (2.6) reduces to

d2 ~x

dt2
¼ � 1

2
rh00 �rðlnAÞ; (2.7)

where g�� ¼ 
�� þ h�� contains a small correction h��

to flat spacetime. We now consider� ¼ �ðrÞ to be a static,
weak field with a dependence upon the radial distance from
some source mass M located at ~x ¼ 0, which generates a
static, spherically symmetric metrical gravity field g��ðrÞ,
so that h00 ¼ h00ðrÞ.
The acceleration ~a ¼ d2 ~x=dt2 has two contributions,

one from the metric field g��, i.e., an acceleration ~ag ¼
�rð12h00Þ, and another from the EF scalar dilaton field,

~a� ¼ �rðlnAÞ. The total acceleration of a test mass is

therefore ~a ¼ ~ag þ ~a�, where

~ag ¼ �r
�
1

2
h00

�
¼ �r̂@r

�
1

2
h00

�
;

~a� ¼ �rðlnAÞ ¼ �r̂@rðlnAÞ:
(2.8)

An ‘‘anomalous’’ acceleration � ~a of a nonrelativistic
test mass is interpreted as the deviation from the usual
Newtonian acceleration ~aN , i.e., � ~a ¼ ~a� ~aN ¼
ð ~ag þ ~a�Þ � ~aN . This anomalous acceleration can receive

contributions from both the metric part ~ag (when the metric

is not the Schwarzschild metric) and the dilaton part ~a�.

III. APPLICATION TO BRANS-DICKE THEORY

Let us now consider the motion of a test mass in the
background of a static, spherically symmetric spacetime of
massless BD theory. The vacuum solutions of the BD
theory, due to a central mass M, in the Einstein frame
representation, are provided by the Xanthopoulos-
Zannias (X-Z) solutions [10], which were also studied by
Cai and Myung [13]. These solutions describe the region
exterior to some neutral, nonrotating astrophysical object
of BD theory, and we want to look at the asymptotic limit,
far away from the location of the central mass, i.e., regions
where r � r0, where r0 is a constant. (For the case of a
point mass M, the point r ¼ r0 is a naked singularity,
except in the case of the Schwarzschild limit, where the
solution coincides with the Schwarzschild solution [10,13].
However, the solution inside an astrophysical object will
not be a vacuum solution, so that there is no physical
singularity.) For an astrophysical object like a star, we
have r=r0 � 1 for all regions outside the surface where
the X-Z solutions apply.
The static neutral solutions, with isotropic coordinates,

are discussed in Ref. [13], and are presented here for the
special 4d case:

ds2 ¼ efdt2 � e�hðdr2 þ r2d�2Þ; (3.1)

ef ¼ g00 ¼ �2�; � ¼
�
r� r0
rþ r0

�
; (3.2)

e�h ¼ jgrrj ¼
�
1� r20

r2

�
2
��2� ¼ e�f

�
1� r20

r2

�
2
; (3.3)
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�¼�~� ln�¼ ffiffiffiffiffiffiffiffi
2a0

p
ln ~�; ~�¼½4ð1��2Þ�1=2; (3.4)

Að�Þ ¼ ~��1=2 ¼ e��=ð2
ffiffiffiffiffiffi
2a0

p
Þ ¼ ���=2; (3.5)

where r0 and � are integration constants (r0 > 0), the
constant a0 is related to the Brans-Dicke parameter !BD

by (2.2), a0 ¼ !BD þ 3
2 , with Að�Þ ¼ ~��1=2 ¼ ���=2, and

we have defined

� ¼
�
r� r0
rþ r0

�
	 1; ~� ¼ ½4ð1� �2Þ�1=2;

� ¼ �j�j ¼ � ~�ffiffiffiffiffiffiffiffi
2a0

p ¼ �
�
2

a0
ð1� �2Þ

�
1=2

:
(3.6)

These are the Einstein frame fields and solutions, with
0 	 � 	 1 for the description of physical (nonegative
ADM mass) solutions.

Note: In the set of solutions presented in Ref. [10], only
the solution with the þ sign in (3.4), i.e., � ¼ þ~� ln�, is
presented. However, the second solution � ¼ �~� ln� is
seen to exist from the invariance of the action and equa-
tions of motion under the transformations g�� ! g��,

� ! ��. Therefore, if � is a solution to the equations
of motion, then so is�� (see, for example, Refs. [13,15]).
Therefore, � can be either positive or negative, and the

Brans-Dicke scalar ~� ¼ A�2 ¼ �� ¼ ��j�j can be either a
decreasing or an increasing function of r and �. The
Einstein frame mass m of a test particle is given by (3.5),

m ¼ Að�Þm0 ¼ m0�
��=2; (3.7)

where m0 is the (constant) Jordan frame mass.
We now consider the asymptotic forms of these solu-

tions for which r0=r 
 1. In this case we have the follow-
ing approximations to Oðr0=rÞ:
� � 1� 2

r0
r
; g00 � 1� 4�

r0
r
; jgrrj � 1=g00;

m2

m2
0

¼ A2ð�ðrÞÞ �
�
1þ 2�

r0
r

�
; A �

�
1þ �

r0
r

�
:

(3.8)

These were applied to the X-Z solutions in Ref. [8] to
obtain the acceleration ~a for a test mass in pure radial
motion, with the result

d2r

dt2
� �

�
�� 1

2
�

�
2r0
r2

¼ �
�
�� 1

2
�

�
GM

r2
: (3.9)

(The Schwarzschild radial coordinate R is related to
the isotropic radial coordinate r by Refs. [10,16] R ¼
rð1þ r0=rÞ2, with R ! r asymptotically.) The
Schwarzschild case is obtained for � ¼ 1, � ¼ 0, and
the identification r0 ¼ GM=2, where M is the mass of
the gravitating object [10,16].

We can apply (3.8) to the acceleration equations
of (2.7) and (2.8), where ~a ¼ ~ag þ ~a�, with � ~a ¼ ~a�
~aN to compute the anomalous acceleration � ~a. From (3.8),

to Oðr0=rÞ, we have 1
2 h00 ¼ �2� r0

r , A ¼ ð1þ � r0
r Þ,

A�1@rA ¼ �� r0
r2
. Therefore

~ag ¼ �r
�
1

2
h00

�
¼ �2�

r0
r2

r̂; ~a� ¼ �
r0
r2
r̂;

~a ¼ �r̂

�
�� 1

2
�

�
2r0
r2

¼ �r̂

�
�� 1

2
�

�
GM

r2
:

(3.10)

Equations (3.9) and (3.10) yield the same result, and (3.10)
shows the origin of each piece of the total acceleration ~a.
The anomalous acceleration is then

� ~a¼ ~a� ~aN ¼ ~a�
�
�r̂

GM

r2

�
¼
�
ð1��Þ�1

2
�

�
GM

r2
r̂:

(3.11)

Now, denote the radial component of acceleration by
A ¼ r̂ � ~a. Then the acceleration in (3.10) indicates

A ¼
�
�� 1

2
�

�
AN; (3.12)

where AN ¼ �GM=r2 is the Newtonian acceleration.
The anomalous radial acceleration is then

�A ¼ A�AN ¼
�
�� 1� 1

2
�

�
AN;

�A
AN

¼ �
�
ð1� �Þ þ 1

2
�

�
� K:

(3.13)

The value of K depends upon the value of the parameter �.
To ascribe an extra radial inward acceleration to the

Pioneer effect, we want A to be more negative than
AN , and therefore, we want �A=AN ¼ K > 0, and
therefore require ðð1� �Þ þ 1

2 �Þ< 0. This implies that

� ¼ �j�j, since ð1� �Þ � 0. We therefore arrive at an
algebraic equation to describe a portion of the anomalous
Pioneer acceleration to the X-Z solution of BD theory,

ð1� �Þ � 1

2
j�j þ K ¼ 0; (3.14)

with � ¼ �j�j ¼ �½ 2a0 ð1� �2Þ�1=2, � 2 ½0; 1�. In order to
satisfy the solar system constraints on the BD theory, we
require that a0 � !BD * 4� 104 at the 2� confidence
level [11], and therefore j�j & 1ffiffi

2
p � 10�2. Now, let us

approximate a space averaged value of �A to be less
than or comparable to the anomalous Pioneer acceleration
AP ¼ �8:74� 10�10 m=s2, i.e., K � h�Ai=hANi &
AP=hANi, where hANi ¼ 1

�r

R
r2
r1
ANdr ¼ �GM=r1r2,

with r1 � 20 AU and r2 ¼ 70 AU and M ¼ M
. This
implies that K must take a value K & 2� 10�4. We there-
fore find that both j�j and K are very small compared to
unity, which by (3.14) implies that ð1� �Þ 
 1. We can
therefore define the small parameter " ¼ ð1� �Þ 
 1,

with ð1� �2Þ1=2 � ffiffiffiffiffiffi
2"

p
, and the algebraic equation

(3.14) for the anomalous acceleration takes the form
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"� 1ffiffiffiffiffi
a0

p ffiffiffi
"

p þ K ¼ 0; ð0< " 
 1Þ: (3.15)

This serves to define the function Kð"Þ ¼ �"þ ffiffiffi
"

p
=

ffiffiffiffiffi
a0

p
.

From (3.13) we see that a maximum value of the function
Kð"Þwill define a maximum anomalous radial acceleration
Amax=AN . The maximum value of K, denoted Kmax, is
found by determining the value of " ¼ "0 locating the
local maximum of Kð"Þ and then evaluating Kð"Þ at "0
to obtain Kmax ¼ Kð"0Þ. Setting dK=d"j"0 ¼ 0 yields

"0 ¼ 6:25� 10�6, and we find that d2K=d"2j"0 < 0 show-

ing that "0 does indeed locate the local maximum of Kð"Þ.
Evaluating K at " ¼ "0 gives

Kmax ¼ Kð"0Þ ¼ 6:25� 10�6: (3.16)

So we find that ð�A=ANÞmax � 6:25� 10�6. Setting
ð�A=ANÞmax � ðh�Ai=hANiÞmax and using
AP=hANi � 2� 10�4, yields the estimate

jh�Aijmax

aP
� 6:25� 10�6

2� 10�4
¼ 3:12� 10�2; (3.17)

at the 2� confidence level, so that the anomalous accel-
eration provided by the X-Z solutions for BD theory can
account for no more than a few percent of the anomalous
Pioneer acceleration.

IV. EXPERIMENTAL LIMITS ON A POSSIBLE
SCALAR-TENSOR COMPONENT IN THE

APPARENTACCELERATION OF PIONEER 10

For purposes of solar-system tests (weak-field limit),
alternative theories of gravitation are usually expressed in
terms of a set of post-Newtonian PPN parameters [17–19].
The Brans-Dicke coupling constant !BD is related to a
single PPN parameter �PPN, which describes the effect of
solar gravity on photon trajectories, causing both a bending
and a group delay of an electromagnetic wave. The two
parameters are related by,

!BD ¼ 1� 2�PPN

�PPN � 1
: (4.1)

A limit on �PPN inferred from radio Doppler data, between
Earth and the Cassini spacecraft, implies that !BD is
greater than 9000 at a 95% confidence level [12]. When
viewed as a measurement of possible scalar-tensor cou-
pling, the value of �PPN is restricted to an interval less than
or equal to one, the latter value in agreement with general
relativity and no scalar field. The determination of �PPN

from the Cassini data by Bertotti et al. [11] is �PPN ¼
1þ ð2:1� 2:3Þ � 10�5, which yields a three-sigma lower
bound on !BD of 21,000.

When expressed in solar-system barycenter SSB iso-
tropic coordinates (x, y, z, t), used by JPL for solar-system
dynamics, the expression for the Shapiro time delay [20]
becomes [12],

�r12¼1

2
ð1þ�PPNÞRg ln

�
r1þr2þr12þð1þ�PPNÞRg

r1þr2�r12þð1þ�PPNÞRg

�
;

(4.2)

where Rg is the solar Schwarzschild radius given by

2GM
=c2 and equal to 2953.25 m. The radius r1 is the
magnitude of the position vector r1 between the SSB and
transmitting station at t1, r2 is the magnitude of the position
vector r2 between the SSB and a spacecraft at t2, and r12 is
the magnitude of the vector r2 � r1. The light time t2 � t1
can be found iteratively as r12=c. As this is a post-
Newtonian correction, all the distances inside the log
term can be taken as Euclidian distances. The small term
ð1þ �PPNÞRg inside the log is a correction for the bending

of the photon trajectory by solar gravity. It is important
only for ray paths that approach closely to the solar limb,
where there is a relatively large bending. For purposes of
calculating the total light time between transmission from
Earth to the spacecraft (uplink) and the return from space-
craft to Earth (downlink), the Shapiro delay on the down-
link is given by Eq. (4.2) with 1 replaced by 2 and 2
replaced by 3.
In order to model ranging and Doppler data accurately

enough, additional terms are needed for the Lorentz

factors
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2i =c

2
q

and some book keeping terms, as de-

scribed by Moyer [21] with the aid of Eq. 11-7 and
Eq. 13-47. For purposes of evaluating the contribution
of a possible Brans-Dicke scalar coupling, we evaluate
Eq. (4.2) for uplink and downlink, add the two together,
and numerically differentiate twice to obtain an apparent
acceleration imposed on the Doppler data. The effect is
maximum near solar conjunction where the Pioneer 10 ray
path approaches the Sun within 3 degrees of arc. The
Pioneer 11 trajectory is highly inclined to the ecliptic,
and the Shapiro time delay is significantly smaller. Also,
there is no concern about trajectory perturbations from a
weak scalar coupling, given that !BD is greater than 9000.
This essentially solves the problem. If a scalar field is
going to manifest itself by biasing the Pioneer Doppler
data and producing an apparent acceleration, it must do so
near solar conjunction. However, if a scalar field can be
detected by Pioneer 10, it would more easily be detected by
Cassini, with its dual-frequency radio data at X-Band and
Ka-Band. Further, if a scalar field is just barely detected by
Pioneer 10, there would be no evidence of a scalar field
affecting the Pioneer 11 data. In order to illustrate the
effect, we plot the acceleration in Fig. 1 over the last solar
conjunction for Pioneer 10 in June 2001, even though no
data were obtained at the 2001 conjunction. The signal
from the spacecraft was too weak. Data are available
however for the solar oppositions of March 2000 and
March 2002, after which no more data are available.
Data are available for earlier conjunctions [3], but exces-
sive noise introduced by the solar corona into the S-Band
carrier wave make any data inside 10 deg from the Sun
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useless [3], or within a time interval of plus and minus
10 days on either side of conjunction.

Based on Fig. 1, we conclude that Cassini limits on
scalar coupling limit the possible effect on an apparent
Pioneer 10 acceleration to at most 0.03% of the entire
Pioneer anomaly aP.

V. SUMMARY

Massless Brans-Dicke theory has been considered in the
Einstein frame representation, where exact, spherically
symmetric solutions are provided by the Xanthopoulos-
Zannias solutions of a scalar field � minimally coupled to
Einstein gravity. These X-Z solutions are characterized

by the parameters � 2 ½0; 1� and � ¼ �½ 2a0 ð1� �Þ2�1=2,
where the constant a0 is related to the BD parameter
!BD by a0 ¼ !BD þ 3=2. We then consider the
Newtonian limit for the acceleration of a test mass,
finding that the net acceleration ~a ¼ ~ag þ ~a� gets contri-

butions from both the metric field g�� and the dilaton

field �.
An anomalous radial acceleration �A, i.e., one deviat-

ing from the Newtonian gravitational field AN , is identi-

fied, with �A
AN

¼ �ðð1� �Þ þ 1
2 �Þ. When the X-Z solution

parameters are constrained by existing solar system obser-
vations (constraints on !BD), we find that at the 2� con-
fidence level�A can be, at most, only a few percent of the
anomalous Pioneer acceleration AP.
Finally, using Pioneer 10 data in combination with

the Cassini limits on the PPN parameter �PPN, we
argue that a maximum apparent acceleration ar, occurring
near solar conjunction, contributes no more than .03%
of the entire Pioneer anomaly aP at the 3� confidence
level.
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FIG. 1. Maximum three-sigma effect of a scalar coupling on
Pioneer S-Band radio Doppler data, expressed as a fraction
of the entire Pioneer anomaly at a magnitude of
8:74� 10�10 m s�2. The vertical dashed lines at plus and minus
10 days indicate the region around solar conjunction where noise
from the solar corona make the data useless. The horizontal
dashed line indicates the limit of a maximum effect on the
Pioneer acceleration.
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