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Current searches for compact binary mergers by ground-based gravitational-wave detectors assume for

simplicity the two bodies are not spinning. If the binary contains compact objects with significant spin,

then this can reduce the sensitivity of these searches, particularly for black hole-neutron star binaries. In

this paper we investigate the effect of neglecting precession on the sensitivity of searches for spinning

binaries using nonspinning waveform models. We demonstrate that in the sensitive band of Advanced

LIGO, the angle between the binary’s orbital angular momentum and its total angular momentum is

approximately constant. Under this constant precession cone approximation, we show that the

gravitational-wave phasing is modulated in two ways: a secular increase of the gravitational-wave phase

due to precession and an oscillation around this secular increase. We show that this secular evolution

occurs in precisely three ways, corresponding to physically different apparent evolutions of the binary’s

precession about the line of sight. We estimate the best possible fitting factor between any nonprecessing

template model and a single precessing signal, in the limit of a constant precession cone. Our closed-form

estimate of the fitting factor depends only the geometry of the in-band precession cone; it does not depend

explicitly on binary parameters, detector response, or details of either signal model. The precessing black

hole-neutron star waveforms least accurately matched by nonspinning waveforms correspond to viewing

geometries where the precession cone sweeps the orbital plane repeatedly across the line of sight, in an

unfavorable polarization alignment.
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I. INTRODUCTION

Ground-based gravitational-wave detector networks (no-
tably LIGO [1–3] and Virgo [4,5]) have performed several
searches for the inspiral and merger of binaries containing
black holes (BH) and neutron stars (NS) [6–15]. The co-
alescence of NS-NS, BH-NS, and BH-BH binaries are the
most promising sources of gravitational waves for these
networks [16]. For the lowest-mass compact binaries M ¼
m1 þm2 & 15M�, the response of the detector to a binary
merger with arbitrary masses and spins is well understood
[17–23]. To identify the presence and properties of a signal,
the classic approach to data analysis on nonspinning bi-
naries has been matched filtering, linearly projecting the
data against each member of a template bank: a discrete
array of signal models, spaced to cover all possibilities with
minimal intertemplate and template-signal mismatch
[24–28]. For nonspinning binaries, the templates needed
lie in the two-dimensional signal manifold itself (i.e., inm1,

m2 or more naturally in the chirp mass Mc¼M�3=5 and
symmetric mass ratio� ¼ m1m2=M

2) [24,25,27]. For spin-
ning binaries with more physical degrees of freedom, the
added physical parameters require either (i) exact template
banks that are impractically large, with a significant in-
crease in computational burden and false alarm rate; or
(ii) the use of an approximate detection template family,

whose waveforms usually at best imperfectly approximate
the target waveforms [18–21,29] but whose template banks
are smaller and better understood. Though the more generic
BCV detection template family [20] has been applied in
previous searches for spinning systems [10,30], recent
studies suggest that it is no more effective than the non-
spinning template bank for low-mass single-spin binaries
[26]. Current templated searches for the gravitational-wave
signature of low-mass merging binaries are performed us-
ing this simple nonspinning bank [12,13,15]. However,
these results show that searching for generic spinning bi-
naries with a nonspinning search is suboptimal and further
work is needed to construct an optimal search for spinning
binaries in Advanced LIGO and Advanced Virgo. Such a
search may involve, e.g., a hierarchical combination of a
nonspinning search and a search using spinning templates,
or a nonspinning search in some regions of the parameter
space, with targeted spinning searches in others. To devise
the correct strategy, it is essential to understand where and
why advanced-detector searches will lose signal-to-noise
ratio when searching for spinning binaries using nonspin-
ning waveforms; this is the goal of this paper.
Recent work on binaries where the spin is aligned with

the orbital angular momentum has demonstrated that ad-
vanced detectors are more sensitive to the effects of spin on
the orbital phase than first generation detectors [31].
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However, it has been shown that a slightly more generic
search would recover all nonprecessing signals well by
capturing the phase evolution of generic nonprecessing
sources [31]. Nonetheless, a noticeable fraction of these
spinning binary mass, spin, and orientation parameters �
are at best poorly matched with nonspinning and even
generic nonprecessing templates, some with match lower
than ’ 0:6. These large mismatches occur because non-
spinning templates cannot capture the effects of spin.

This paper is concerned with binaries where the spin and
angular momentum of the binary are not aligned. This in-
duces precession, causing the orbital angular momentum

direction L̂ to change with time. Because the instantaneous
beam pattern of the gravitational-wave emission is oriented

along L̂, the changing angle between L̂ and the line of sight n̂
produces large amplitude and phase modulations that are
absent in nonprecessing signals. Poor matches with nonspin-
ning templates are disproportionately concentrated in systems
that exhibit precession: systems with significant spin-orbit
misalignment and asymmetric mass ratio. Conversely, bi-
naries with tight spin-orbit alignment or simply limited varia-

tion in L̂ � n̂ are well matched by nonprecessing templates
that capture the effects of aligned spin1 on the gravitational-
wave phase [32–34]. Understanding the effect of precession
is key to developing an optimal search for spinning binaries in
second-generation gravitational-wave detectors.

In this paper, we investigate the gravitational-wave signal
from precessing black hole-neutron star binaries. Except for
a short epoch of transitional precession (typically when

j ~Lj ’ j ~Sj; see Ref. [35]), these binaries usually undergo
simple precession, where the orbital angular momentum
precesses around the total angular momentum with an
ever-increasing opening angle [35]. By investigating the
spin evolution equations of Apostolatos et al. [35], we find
that the opening angle of the precession cone (i.e., the angle

between the total angular momentum ~J and the orbital

angular momentum ~L) does not expand significantly while
the binary’s signal is in the detector’s sensitive band. We
perform analytic studies under the assumption that this
opening angle is exactly constant; we call this the constant
precession cone approximation. We find the gravitational-
wave phasing is modulated in two ways. The first way that
precession modifies the signal is via a secular change of the
gravitational-wave phase. In addition to the effect of orbital
dynamics, the gravitational-wave signal also accumulates a

geometrical phase, a fraction of the ‘‘precession phase’’ of ~L

about ~J. Previous work has demonstrated that precession
induces a secular change in the phase accumulating over
each precession cycle, both in post-Newtonian (PN) studies
[19,35] and in numerical simulations of general relativity
[36]. Though long recognized, this factor is not included in

standard analytic nonprecessing template models [32–34].2

We furthermore find this secular evolution occurs in three
different ways, corresponding to physically different appar-
ent evolutions of the precession about the line of sight. These
three ways correspond precisely to whether the cone swept

out by ~L encloses zero, one, or two of the ‘‘null lines,’’ which
are the directions that produce exactly zero instantaneous
response in the detector. The three regions correspond to
whether zero, one, or both directions are enclosed by the path

swept out by ~L—henceforth, the ‘‘precession cone.’’ Each
type of configuration leads to a unique effect on the phasing
of the binary. If you are within one of the regions, you
accumulate secular phase at the same rate.
The second way that precession modifies the signal is by

introducing phase (and amplitude) modulations, on top of
secular evolution. These modulations cannot be captured by
a nonprecessing template. A nonprecessing signal model will
therefore not match a precessing signal optimally. Moreover,
thehighest possiblemismatchbetweenaprecessing signal and
nonprecessingmodel can be estimated geometrically. In other
words, our calculation tells us how easily a nonprecessing
search can find each particular precessing signal. For simplic-
ity, we performour analytic studies assuming a source directly
overhead a single detector. Our results will be generalized to a
full network in a future analysis. Though simplified, our study
is nonetheless directly applicable to real searches.3 Moreover,
given the complexity of realistic searches, special caseswhere
searches have well-understood performance provide invalu-
able tools for code validation and search calibration. Past,
present, and future searches therefore benefit from the goal
of this paper: a simple model for how well nonspinning
searches recovermost spinning, precessing low-mass binaries.
We will perform a detailed point-by-point numerical com-

parison of this expression to a large-scale Monte Carlo study
of synthetic searches in a subsequent publication. To compare
with existing results in the literature, however, we apply our
purely analytic results to randomly selected binary parame-
ters. We find our expressions quantitatively agree with pre-
vious Monte Carlo studies of nonprecessing searches [20,37],
including recent investigations that include both mass and
aligned spin as parameters [31]. For instance, adopting the
same spin distribution as Ref. [31], we reproduce a similar
distribution of fitting factors. Unlike previous purely
Monte Carlo studies, however, our analytic approach allows
us to quantitatively predict precisely which systems are not

1Aligned spin means that the spins of the compact objects are
aligned with the orbital angular momentum. In this case there is
no precession.

2The full effects of precession are of course captured in full
time-domain calculations of orbit dynamics and precession.
These direct simulations, however, are presently too slow to be
used in a search. Additionally, no one has constructed a complete
template bank (a discrete set of reference signals) that ade-
quately but minimally covers all possible signal options.

3For example, the two-detector LIGO network is nearly
aligned and approximately sensitive to one polarization at a
time. In a subsequent paper we will address explicitly how to
rescale our results to the two-detector LIGO network.
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well fit with nonprecessing templates. The performance of a
nonprecessing search on BH-NS systems with any mass and
spin distribution can be easily predicted using our amplitude
and mismatch predictions, and the simple predictions for the
parameters that cause bad matches point the way toward
improved searches.

In Sec. II we demonstrate that BH-NS binaries seen by
gravitational-wave detectors will often evolve on a constant
precession cone. InSec. IIIwe parameterize theways inwhich
the binary’s precession cone canbeoriented relative to a single
detector and its lineof sight to the source.Wefind that there are
three distinct regions in this configuration space. In Sec. IVwe
review the leading-order gravitational-wave emission from a
precessing binary, decomposing it into secular andmodulated
factors.We showhow the gravitational-wave signal fromeach
region has a distinctive secular dependence. Finally, in Sec. V
we average the amplitude over the precession cone, relating
the mean power seen along the line of sight to the power
expected from an optimally oriented source. Additionally, we
argue that nonprecessing signal templates necessarily cannot
reproduce oscillations in the precessing signal model. Using a
similar average and assuming a generic signal model repro-
duces the secular phase, we find an expression for the mis-
match between nonprecessing and precessing signals.

II. ORBIT DYNAMICS AND THE CONSTANT
PRECESSION CONE LIMIT

We consider a binary of two compact objects with masses

m1 and m2, with m1 � m2, and intrinsic spins ~S1 and ~S2.
From the coordinate separation ~r and the velocity ~v ¼ @t ~r,
we can define the coordinate Newtonian angular momentum
~L ¼ �~r� ~v, where � ¼ m1m2

m1þm2
is the reduced mass.

For generic binaries, the orbit and spins evolve accord-
ing to complicated position-, spin-, and velocity-dependent
expressions [32,38,39]. Averaging these PN spin evolution
equations over a few orbital periods leads to adiabatic
expressions for the evolution of spin and orbital frequency
(see, e.g., Ref. [35] (henceforth ACST), Schnittman [39]:

@tL̂ ¼ ~�L � L̂; (1a)

@t ~S1 ¼ ~�S1 � ~S1; (1b)

@t ~S2 ¼ ~�S2 � ~S2; (1c)

~�L ¼ 1

r3

��
2þ 3m2

2m1

�
~S1 þ

�
2þ 3m1

2m2

�
~S2

� 3

2jLj ½ð
~S2 � L̂Þ ~S1 þ ð ~S1 � L̂Þ ~S2�

�
; (1d)

~�S1 ¼
1

r3

��
2þ 3m2

2m1

�
~Lþ

~S2 � 3L̂ð ~S2 � L̂Þ
2

�
; (1e)

~�S2 ¼
1

r3

��
2þ 3m1

2m2

�
~Lþ

~S1 � 3L̂ð ~S1 � L̂Þ
2

�
: (1f)

In this expression we have omitted the quadrupole-
monopole term described in Ref. [39] to more clearly
correspond with the expressions from ACST on which we
rely. We have included the spin-spin terms (containing both
~S1 and ~S2) for reference but we will soon assume that only

one body is spinning. These evolution equations cause ~S1
and ~S2 to precess but leave their magnitude constant. The

direction L̂ of the orbital angular momentum also precesses

and gravitational-wave emission causes the length of ~L to
shrink as the binary evolves.
As described in ACST, when either one mass is non-

spinning (e.g., ~S2 ’ 0), the component masses are compa-
rable (m1 ’ m2), or the smaller mass has a miniscule mass
and necessarily spin (m1 � m2), these expressions reduce
to effectively single-spin evolution, meaning equations of

motion are equivalent to the dynamics of ~L and a single
(effective) spin. For single-spin binaries, spin-orbit evolu-
tion can occur in effectively two phases: (i) rare transi-

tional precession when ~J ¼ ~Lþ ~S ’ 0, the relative change

in ~J is large, and ~J can change direction; and (ii) simple

precession, when the vectors ~L and ~S precess roughly

steadily around ~J.
Single-spin evolution is particularly appropriate for BH-

NS binaries. Neutron stars likely do not spin rapidly

( ~S2 � 0)—observations suggest spin periods of no less
than a few milliseconds [40]. Observations and theoretical
considerations constrain plausible NS masses to 1–3M�,
ensuring the second object’s minimal spin has little impact
on the orbit about an a priori higher-mass companion.
Albeit with less accuracy, BH-BH systems also often ap-
proximately satisfy the single-spin condition, as binaries
that are either comparable mass or dominated by a single

spinning body occupy most of them1,m2, ~S1, ~S2 parameter
space; see, e.g., the discussion in Ref. [18].

A. Simple precession

For the circular orbits expected in astrophysical scenar-
ios, the spin evolution equations usually imply simple
precession: the orbital and spin angular momenta precess
about the total angular momentum, which is fixed, except
for negligible precession of its own about its average

direction (ACST). Assuming ~S2 ¼ 0, the system evolves

with � ¼ L̂ � Ŝ1 and jS1j both constant. At early times, the

total angular momentum ~J is dominated by and closely

aligned with ~L; as radiation carries away orbital angular

momentum, eventually ~J is dominated by and closely

aligned with ~S. As the direction of the total angular mo-
mentum is nearly conserved, this process involves substan-
tial changes in the spin and orbital angular momentum
directions. Following ACST, we will employ the ratio of
~S1 to the Newtonian angular momentum ~L ¼ �~r� ~v as a
parameter:
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�ðtÞ 	 j ~S1j=j ~LðtÞj ¼ �1m
2
1

�M
ffiffiffiffiffiffiffiffiffiffiffiffi
MrðtÞp : (2)

Using this parameter, the opening angle � of the preces-
sion cone (denoted �L in ACST) can be expressed trigono-
metrically as

�ðtÞ 	 arccosĴ � L̂ ¼ arccos
1þ ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2��þ �2
p : (3)

Note that for a spin dominated binary (� � 1) � ¼ cos�;
for an angular momentum dominated binary (� ’ 0) � ’ 0;
and for a spin-orbit aligned binary (� ¼ 1) all three of the
spin, orbit, and total angular momenta are aligned (� ¼ 0).
At the level of accuracy of interest here,4 the opening angle
�ðfÞ at a given gravitational frequency f can be estimated
by the above expression, combined with the leading-order

Newtonian expression rðfÞ ¼ MðM�fÞ�2=3:

� ’ �1

ðm1=MÞ2
�

ðM�fÞ1=3

� 2:5�1ðm1=10m2Þ
�

fM

100 Hz 10M�

�
1=3

: (4)

Figure 1 shows an example of �ðfÞ deduced from this
expression.

During simple precession over longer time scales, the
width of the precession cone increases on the gravitational-
radiation time scale (	gw ’ ½r4=ð�M3Þ�ð5=64Þ). During

this slow increase, the orbital angular momentum traces
out an ever-widening spiral at the precession frequency:

@tL̂ ¼
�
2þ 3m2

2m1

� ~J

r3
� L̂; (5)

~� p ¼
�
2þ 3m2

2m1

� ~J

r3
; (6)

j�pj ¼
�
2þ 3m2

2m1

�8<
:

�
M2 ðM�fÞ5=3 j ~Lj � j ~Sj;
�1

m2
1

M3 ðM�fÞ2 j ~Lj 
 j ~Sj;
(7)

where we have replaced r by the leading-order PN expres-

sion v2 ¼ ðM=rÞ ¼ ðM�fÞ�2=3 and LN¼�MðM�fÞ�1=3.
ACST provide an explicit, algebraic solution for the spins
as a function of time [their Eqs. (59–63)].

B. Regions of parameter space I: L, S,
dominated or intermediate

Single-spin binaries can be loosely subdivided into rare
transitional precession and ubiquitous simple precession
(ACST). In band, simple precessing binaries can be either
~L or ~S dominated. A spin dominated binary can have an

arbitrary opening angle. An ~L dominated binary, by con-
trast, has a precession cone opening angle necessarily
smaller than �=2, and bounded above by

�max 	 sin�1�: (8)

In the neighborhood of this extreme misalignment, at
� ¼ ��, the opening angle is nearly stationary with
spin-orbit misalignment (i.e., d cos�=d� ’ 0) (see, e.g.,

Fig. 2). In short, a distribution of ~L dominated binaries
has two choices for spin-orbit misalignment (i.e., two
values of �) consistent with each realized opening angle.
Additionally, because of the local maximum in � as a
function of �, a randomly oriented distribution of spins
will have opening angles � that cluster near that maximum

(i.e., � ’ �max). To illustrate which regions are ~L and ~S
dominated, Fig. 3 shows contours of constant �, assuming
m2 ¼ 1:4M�.

C. Regions of parameter space II:
Steady precession and geometry

Unless transitional precession happens in band, ground-
based gravitational-wave detectors are sensitive to emis-
sion from a relatively well-defined epoch: the precession
cone has a relatively constant opening angle (Fig. 1).

5020 3015 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

f

FIG. 1. Constant precession cone approximation works:
Opening angle �ðfÞ versus frequency for a 10M� þ 1:4M�
binary with �1 ¼ 1 and arccos� ¼ 0; �=10; . . . (bottom curves)
up to arccos� � � (top, rapidly changing curve). We estimate
�ðfÞ using Eqs. (3) and (4). This plot shows that except for
highly misaligned binaries ( arccos� large), �ðfÞ is nearly con-
stant, changing at most a fraction of a radian across the sensitive
band of present and future detectors. In general, only a small
subset of masses and highly misaligned spins are finely tuned
enough to produce significant � evolution in band.

4As described at greater length in a subsequent publication,
our constant precession cone approximation is designed to be
accurate to of order several percent in power and mismatch.
Quantitative comparisons of our approximation to numerical
simulations will be provided in that publication.
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Quantitatively, we define a reference frequency fpeak
corresponding to the frequency up to which half of the
signal power has been accumulated. The specific reference
frequency depends on the noise curve adopted.5 For this
paper, we adopt the fiducial advanced LIGO noise curve
with zero-detuned signal recycling; see Ref. [41]. This
includes a low-power mode for which fpeak ’ 40 Hz and

high-power mode for which fpeak ’ 60 Hz. However, all

planned noise curves we have examined have a reference
frequency in the neighborhood of which a constant pre-
cession cone is a good approximation. Henceforth the ratio

� ¼ jS1j=jLj and opening angle � between L̂ and Ĵ will
refer to quantities predicted at this frequency by the simple
precession expressions [Eqs. (4) and (3)].6

Second, not only is the precession cone nearly fixed, but
as shown in Fig. 4 at least a few complete precession cycles
occur between 20–100 Hz, where most of the signal to
noise accumulates. For example, for an angular momentum
dominated binary (� 
 1), the number of precession
cycles for a single-spin binary can be approximated by
the spin-independent expression

NP ’
Z �fmax

�fmin

dforb
dt

dforb
�p

¼ 5

96

�
2þ 1:5

m2

m1

�
½ðM�fminÞ�1 � ðM�fmaxÞ�1�

� 27ð1þ 0:75m2=m1Þ
M=10M�

(9)

with a comparable but spin-dependent number for an S
dominated binary (� � 1); see ACST Eqs. (45, 63) for a
general solution. As indicated by Fig. 4, each precession
cycle usually accumulates a comparable proportion of
detectable power (i.e., each pair of peaks is a similar order
of magnitude in area). More critically, the figure indicates
that at least one and often several precession cycles con-
tribute to the total signal to noise. With many precession
cycles, a gravitational-wave detector should be relatively
insensitive to the initial value of the precession phase.

FIG. 2 (color online). Precession opening angle versus spin-
orbit misalignment: Relation between � ¼ L:S and � ¼
cos�1L:J for � ¼ jSj=jLj ¼ 0:5; 0:6 . . . 1:5. Binaries that are
angular momentum dominated (� < 1) can have only a small

range of precession cone opening angles, bounded by �max ¼
cos�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
. Binaries that are spin dominated (� > 1) can

have all possible precession cone opening angles. For extremely
spin dominated binaries � ¼ cos�.

4 6 8 10 12 14
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 3. Angular momentum dominated versus spin dominated
binaries: In terms of the mass and spin of the black hole, contours

of the ratio � ¼ j ~Sj=j ~Lj evaluated at 40 Hz. The bottom left

region is angular momentum dominated (j ~Lj � j ~Sj); the top right
region of large black hole mass and spin is strongly spin domi-

nated (j ~Sj � j ~Lj). Contours show the ratio j ~Sj=j ~Lj 	 � ¼ 1
(thick curve), sin�=4 ¼ 1=

ffiffiffi
2

p
, sin�=6 ¼ 1=2 and sin�=8, eval-

uated with a 1:4M� NS companion, versus the black hole mass
and spin parameters mBH; �BH. Above (below) the thick curve,
BH-NS binaries’ total angular momenta are spin (orbit) dominated
in band. If spin and orbital angular momenta are nearly anti-
aligned, these binaries have undergone transitional precession at
lower frequencies, typically not in band. Conversely, for orbital-
angular momentum dominated binaries (� < 1), transitional pre-
cession has not occurred in the past at lower frequencies and may,
if antialigned and � near 1, occur in band in the immediate future.
Finally, below the bottom curve, BH-NS binaries’ waveforms are
modulated little by precession in band.

5In the text we choose the reference frequency as the
half-power point, where

R
f�7=3=ShðfÞdf reaches half of its

total value. Alternatively, the reference frequency can be set
by maximizing d
=d lnf ¼ 4fj~hðfÞj2=Sh, or even phenomeno-
logically, in whatever manner is needed for numerically calcu-
lated amplitude and match to reproduce our expressions. For the
noise curves considered in this paper, all approaches nearly
agree.

6For simplicity, we adopt the leading-order (Newtonian) ex-
pression for rðfÞ. Higher order corrections are small.
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For our purposes, then, the binary undergoes nearly steady
simple precession in band. The instantaneous beampattern of

the binary is alignedwith the instantaneous L̂, and is the same
beam pattern as a nonspinning binary [42]. Along the axis

aligned with�L̂, the radiation is circularly polarized and in
the orbital plane, the radiation is linearly polarized. Over a

longer time scale, L̂ precesses around Ĵ, sweeping the beam
pattern around the precession cone. Any given line of sight
therefore can be characterized with its proximity to the
orbital plane (an amplitude minimum and specific, linear

polarization) and �L̂ (an amplitude maximum and specific
circular polarizations).

D. Constant precession cone coordinates

In steady precession the unit vector L̂ rotates regularly

about Ĵ. In practice, however, we interpret the
gravitational-wave strain relative to a frame associated
with our line of sight�n̂, where n̂ is the emission direction
from the binary. To simplify calculations, we adopt a frame
defined by this direction: ẑ ¼ n̂, along with two perpen-
dicular directions x̂, ŷ. Adopting an initial phase so the
projection of L into the plane of the sky (i.e., perpendicular

to n) is along Ĵ, the unit vectors needed to describe the
steady precession approximation are

Ĵ ¼ sin�J½cosc Jx̂þ sinc Jŷ� þ cos�Jn̂; (10a)

p̂ ¼ Ĵ � ðĴ � nÞ
jĴ � ðĴ � nÞj ¼ cos�J½cosc Jx̂þ sinc Jŷ� � sin�Jn̂:

(10b)

FIG. 4. Several precession cycles contribute comparably to the
signal: Power (j~h�j2=ShðfÞ) versus frequency for a spinning binary
viewed edge on the� polarization, computed directly fromaFourier
transformof thegravitational-wave signal. In this figure, the binary is
a 10þ 1:4M� BH-NS binary with �1 ¼ 1 and �� � �=3 (solid
line).Eachpair ofpeakscorresponds toa singleprecessioncycle.The
signal is divided by the high-power zero-detune advanced LIGO
noise power spectral density [41].

FIG. 5 (color online). Coordinates for steady precession: View
from the side (top panel) and along the line of sight (bottom
panel) of the geometry of a typical precessing BH-NS orbit, on
time scales t long compared with precession but short compared
to gravitational-wave decay (�pt � 1 � t=	gw). The light

shaded region indicates the cone swept out around the axis by
the orbital angular momentum (the direction of strong, circularly
polarized gravitational-wave emission from each orbit). In both
panels, the thin diagonal line indicates a direction perpendicular
to L̂. The dark shaded region indicates the corresponding region
swept out by the orbital plane (the direction of weakest, linearly
polarized emission); observers along these lines of sight see
strong amplitude modulation. The angle � between the total
angular momentum ~J and ~L is nearly constant on precession time
scales. On longer time scales, as � increases, the line of sight to
the observer is often enclosed in one of the two shaded regions.
On the bottom panel, the x̂ and ŷ axes correspond to the arms of
the detector, projected into the plane of the sky. The dotted lines
correspond to ‘‘null lines,’’ the directions that, when L̂ is parallel
to them, produce zero amplitude in our detector; these lines lie
in the plane of the sky, perpendicular to our line of sight.
(To distinguish ~J and ~L in the plane of the sky, the two panels
adopt different reference times.)
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Here c J is the orientation of Ĵ projected into the plane of
the sky and �J is the angle between J and n̂; see Fig. 5. In
terms of these vectors, the precession of the orbital angular

momentum about Ĵ can be described as

L̂ ¼ cos�Ĵ þ sin�RĴð�Þp̂; (10c)

where RĴð�Þ is a rotation operator about Ĵ and � ¼ R
�pdt

is the precession phase of ~L around that axis [35]. The
gravitational-wave strain recovered by a detector depends

on the orientation of L̂ relative to the radiation frame. In
terms of the coordinates above, the inner products needed are

L̂ � n̂ ¼ cos� cos�J � sin� sin�J cos�; (10d)

L̂ � x̂þ iL̂ � ŷ¼eic J½sin�ðcos�cos�Jþ isin�Þ
þcos�sin�J�; (10e)

¼ eicL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðL̂ � n̂Þ2

q
; (10f)

where c L is shorthand for the instantaneous orientation of L̂
on the plane of the sky.

For convenience and without loss of generality, in
what follows we will assume the binary is directly over-
head a single interferometer, with arms along x̂ and ŷ.
For this orientation, the detector response functions are
Fþ ¼ cos2c J, F� ¼ sin2c J. If the source is not directly
overhead, the single-detector response functions

Fþ ¼ 1

2
ð1þ cos2�Þ cos2
 cos2c � cos� sin2
 sin2c ;

(11a)

F� ¼ cos� sin2
 cos2c þ 1

2
ð1þ cos2�Þ cos2
 sin2c ;

(11b)

can be rewritten as an overall scaling and a polarization
shift

Fþ ¼ F0 cos2ðc þ c 0Þ; (11c)

F� ¼ F0 sin2ðc þ c 0Þ; (11d)

with

F0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðð1þ cos2�Þ=2Þ2cos22
þ cos2�sin22


q
(11e)

tan2c 0 ¼ cos�

ð1þ cos2�Þ=2 tan2
: (11f)

III. CRITICALVIEWING ORIENTATIONS
AND DOMAINS

The instantaneous emission pattern of gravitational ra-
diation is aligned with the instantaneous orbital angular
momentum L and is the same as the beam pattern of a
nonspinning binary i.e., an l ¼ jmj ¼ 2 quadrupolar con-
figuration. The radiation is circularly polarized along L and
�L and linearly polarized in the plane perpendicular to L.
In particular, when the orbital angular momentum is
instantaneously perpendicular to the line of sight, one
(linear) polarization of the gravitational-wave signal is
instantaneously zero. The condition that one polarization
be zero at some instant defines a two-dimensional surface
in the three-dimensional space (�J, c J, �) of all possible
precession cone geometries. As we show below, this sur-
face decomposes the three-dimensional space into three
distinct regions, corresponding to different ways the orbital
plane crosses the line of sight or, equivalently, different
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FIG. 6 (color online). Three regions have three types of precession cones: Shown is the precession cone for three fiducial binaries,
characterized by the angles ð�J; �; c JÞ ¼ ð�=4; �=6; 0Þ, ð�=2; �=4; �=4Þ, and ð�=2; �=3; 0Þ. Each figure shows the precession-
induced path of L̂ðtÞ (colored circles), the total angular momentum direction (arrow), and an example of an instantaneous L direction
(arrow). As these three examples demonstrate, each region corresponds to a different way the precession cone wraps around the two
dotted lines. These two lines correspond to orientations of L̂ such that the detector would instantaneously see exactly zero amplitude.
We will henceforth denote them as ‘‘null lines.’’ These three precession cones are representative examples of the three regions
discussed in the text: R1 (left panel), R2 (middle panel), and R3 (right panel)
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ways the orbital angular momentum wraps around two null
lines.

The detector is not sensitive to (leading-order) gravita-
tional radiation emitted from the binary when the orbital
angular momentum simultaneously satisfies the following
two conditions:

0 ¼ L̂ � n̂ ¼ 0; (12a)

0 ¼ ðL̂ � x̂Þ2 � ðL̂ � ŷÞ2: (12b)

Solutions to this expressions exist if and only if the angle

between ~J and one of the four critical directions indicated

in Fig. 6 is equal to the angle � between ~J and ~L, or
equivalently if the following expression is zero:

dnull 	 ðĴ � v1 � cos�ÞðĴ � v1

þ cos�ÞðĴ � v2 � cos�ÞðĴ � v2 þ cos�Þ (13)

¼ ½ðĴ � v1Þ2 � cos2��½ðĴ � v2Þ2 � cos2��; (14)

where v1 ¼ ðx̂þ ŷÞ= ffiffiffi
2

p
and v2 ¼ ðx̂� ŷÞ= ffiffiffi

2
p

.

Substituting in the coordinate form for Ĵ given above and
solving dnull ¼ 0 for cos22c leads to an expression for the
boundary polarization angle c J;crit between different re-

gions:

cos 2ð2c J;critÞ ¼ 4cos2�ðcos2�� 1Þ
sin4�

¼ �ð1þ cos2�Þðcos2�þ cos2�Þ
sin4�

: (15)

These configurations defined above divide the space of
orientations ð�J; �; c JÞ into five regions, henceforth de-
noted R1�, R2�, and R3 (Fig. 7). As our notation suggests,
using symmetry we can relate two pairs of regions by
reflection symmetry � ! �� �. The region R1 (the
union of R1þ and R1�) corresponds to all configurations
such that the orbital angular momentum does not wind
around either null line. It includes all points where the
orbital plane does not cross the line of sight, plus those
connected orientations that never have a null in the wave-
form amplitude. Because of a coordinate degeneracy in
Fig. 7, the region shown corresponding to R1 consists of
two disjoint mirror-image copies R1�, related by � !
�� �. These two regions include the special cases of
spins aligned or antialigned with the total angular momen-
tum, viewed along or opposite to the total angular momen-
tum. Conversely, the region R3 corresponds to binaries and
viewing geometries so Lwinds around both null lines. The
region R3 includes the special case of a precession disk
((� ¼ �=2), viewed favorably edge on (�J ¼ �=2, c J¼
0), plus those connected orientations free from amplitude
zeros. The two regions R2� correspond to the ways L can
wind around one or the other null line. At every polariza-
tion except c J ¼ 0, the regions R1 and R3 are separated
by R2. For c J ¼ 0, the three regions overlap at the zeros of

cos2�J þ 2 cos2�þ 1 ¼ 2½sin2�þ cos2��: (16)

IV. WAVEFORMS IN CONSTANT
PRECESSION CONE LIMIT

In this section we review how precession modulates the
amplitude and phase of the binary’s gravitational-wave
signal. We express precession-induced amplitude and
phase modulations in terms of a complex factor z. We
show the gravitational-wave phase has both oscillating
and secularly increasing contributions from precession.
The secular effect arises as a fraction of the precession
phase is imprinted on the signal. We demonstrate that each
of the previously identified regions corresponds to a differ-
ent amount of secular precession contribution. To leading
order, gravitational-wave detection with nonprecessing
templates works by matching a signal with similar phase
evolution. In this sense, gravitational-wave signals from
each of the three regions are phenomenologically similar
(and can be phenomenologically distinguished from one
another), as each region has a characteristic secular phase
evolution change from precession.
Explicit expressions for the leading-order gravitational

waveforms produced by instantaneously stationary orbits
are available in the literature; see, e.g., Eqs. (31)–(37) and
Fig. 1 from Buonanno et al. [20]. Additionally, though
these expressions can be evaluated in any coordinate sys-
tem (see, e.g., Fig. 1 in Buonanno et al. [20]), we adopt a
specific coordinate system aligned with the total angular

FIG. 7 (color online). Region divisions in coordinate form:
The three ways the binary’s orbital angular momentum can
wind around the two null lines are separated by cases where
the cone is tangent to one or the other axis. In this figure we
express this dividing surface using explicit coordinates for the 3d
configuration space: z ¼ cos22c J, x ¼ cos2�J , y ¼ cos2�.
Points on this surface are simultaneous solutions to Eq. (12),
as calculated by Eq. (15). In this figure, the R1 region is the
largest, farthest from the viewer; the region R3 is the region
above the surface, closest to the viewer; and the region R2 is
below the surface.
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momentum. [These coordinates are different from the
frame adopted in Eq. (10).] In our coordinate system, the
expressions provided in Buonanno et al. [20] correspond to
the expressions below, with their � corresponding to our �
and their � corresponding to our �J. In these expressions,

the angle � is the accumulated precession phase
R
�pdt of

the orbital angular momentum around Ĵ. The reference

phase �S used in BCV is given by 
orb � � cos� for


orb the orbital phase:

h / ðCþFþ þ C�F�Þ cosð2
orb � 2� cos�Þ þ ðSþFþ þ S�F�Þ sinð2
orb � 2� cos�Þ (17a)

/ Re½ðCþF� þ C�F�Þ � iðSþFþ þ S�F�Þ� � e2ið
orb�� cos�Þ; (17b)

Cþ 	 1

2
cos2�J½sin2�� cos2�cos2�� þ 1

2
ðcos2�sin2�� cos2�Þ � 1

2
sin2�Jsin

2�� 1

4
sin2�J sin2� cos�; (17c)

Sþ 	 1

2
ð1þ cos2�JÞ cos� sin2�þ 1

2
sin2�J sin� sin�; (17d)

C� 	 � 1

2
cos�ð1þ cos2�Þ sin2�� 1

2
sin�J sin2� sin�; (17e)

S� 	 � cos�J cos� cos2�� sin�J sin� cos�; (17f)

with a corresponding expression for the orthogonal polar-
ization. For the calculations needed here, however, the
waveform is most usefully expressed as amplitude and
phase modulation of a sinusoid:

h / Re½Ae2i�wave� ¼ Re½ze2ið
orb�� cos�Þ�; (18)

�wave ¼ 
orb � � cos�þ 1

2
argz; (19)

z 	 ðCþFþ þ C�F�Þ � iðSþFþ þ S�F�Þ: (20)

Practically speaking, the phase increases and oscillates
with time. The gravitational-wave phase �wave can be
decomposed into three parts:

�wave 	 
orb þW�þ �
prec: (21)

These three parts are (a) orbital modulation 
orb, (b) a
precession-induced secular increase in phase imposed by
geometric effects associated with precession (W�), and
(c) residual modulations in phase caused by precession
(�
prec). Both the secular evolution factorW andmodulations
depend on the line of sight; see Fig. 8 for three examples.

The secular phase evolution W is particularly simple.
For example, for binaries and viewing orientations where
the orbital plane never crosses the line of sight, correspond-
ing to a single helicity being present along the line of sight,
the secular phase must accumulate steadily in proportion to
this helicity. Using the special case � ¼ 0, � to determine
suitable coefficients, one can show that

W ¼ ðsignðcos�Þ � cos�Þ: (22)

More generally, the secular phase factor 2W is �2 cos�
plus an integer, related to the number of times the complex
number z winds around the point z ¼ 0 in a precession
cycle (i.e., versus �):

W ¼ 1

2
nwind � cos� ¼ � cos�þ 1

4�i

Z dz

z
; (23)

where this integral follows a contour in z corresponding to
� evolving from 0 to 2� (i.e., one precession cycle).
Figure 9 show examples of different trajectories for the

complex amplitude zðtÞ. Depending on how the angular
momentum winds around the two ‘‘null lines’’ (Fig. 6), the
complex number z derived from the angular momentum
and the detector orientation can wind around the origin (the

point corresponding to L̂ along those null lines). This
integral can be explicitly evaluated, for example, by sub-
stituting u ¼ ei� and performing a contour integral. Since
by construction the complex number z is exactly zero at

FIG. 8 (color online). Phase evolution versus time: For three
selected viewing geometries of a single binary with� ¼ 60o, a plot
of ���SðtÞ ¼ argðzÞ versus �, the precession phase. This plot
shows how much of the precession phase is accumulated in the
gravitational-wave signal due to precession [Eq. (21)]. These three
phase evolutions are generated from Eqs. (17). The dotted line
corresponds to W�, where W corresponds to the rate of secular
phase increase appropriate to that line of sight. The three viewing
geometries lie in the three regions R1, R2, R3 described in the text.
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some point on its cycle if and only if Eq. (12) holds, the
connected subsets of R1, R2, and R3 are also regions of
constant winding number nwind. Keeping in mind the re-
gions have different connected subsets depending on the
sign of cos�, we evaluate W and find

W 	 � cos�þ
8><
>:
signðcos�Þ R1
1
2 signðcos�Þ R2

0 R3

: (24)

ACST find an approximately comparable result (their
Eq. (65); see also Ref. [37]) by integrating an ordinary
differential equation for the phase perturbation due to
precession. That expression does not include the region
R2 or correctly identify the conditions that cause transition
from one secular phase to another.

The complex amplitude zðtÞ also encodes the way that
the gravitational-wave phase and amplitude ‘‘oscillate’’
about their representative values. Binaries whose angular
momenta are aligned with their orbit do not precess, so
they do not accumulate secular precession phase (W ¼ 0,
as z / ei2�) and their phase does not oscillate. As is ap-
parent from the zðtÞ trajectories in Fig. 9, any oscillations in
amplitude and phase are more extreme for trajectories
passing closer to z ’ 0. These extreme oscillations cannot
be well fit by a nonprecessing template. We will show
below that the best fitting factor between a precessing
signal and a nonprecessing template family correlates di-
rectly with the amount of phase and amplitude oscillation
that a signal exhibits.

By way of example, Fig. 8 shows how precession intro-
duces additional secular and oscillating contributions to the
gravitational-wave phase of the same binary, seen along
different lines of sight. The three curves in this figure show
argðzÞ versus �, as extracted from zð�Þ (Fig. 9). We can
clearly see the distinct secular phase trajectories, correspond-

ing to each of the three ways ~L can wind around the ‘‘null
lines’’ [equivalently, how zðtÞ can wind around the origin].

V. AVERAGING AMPLITUDE AND MISMATCH
WITH THE PRECESSION CONE

In this section we estimate the response of gravitational-
wave detectors and nonprecessing data analysis strategies
to a precessing signal. Using a separation of time scales
argument, we show that precession-induced modulations
decouple from the orbital phase, allowing key expressions
like the signal amplitude and mismatch against proposed
signal templates to be computed by an average over the
precession cone. We apply this idea to compute how pre-
cession modifies two quantities: the signal strength and the
mismatch of a nonprecessing template with a precessing
signal. Combined, these expressions tell us the relative
signal strength a data analysis pipeline would recover
from a precessing binary, given we know how well it
performs for a nonprecessing counterpart (i.e., one with
similar masses but aligned spins).
The signal-to-noise ratio for the detection of an exact

template waveform he using an optimal filter constructed
from a model waveform hm used as a template is given by


m ¼ hhejĥmi ¼ hhejhmi
hhmjhmi1=2

; (25)

where the noise-weighted inner product hhejhmi is given by

hhejhmi ¼ 2
Z 1

�1
df

~heðfÞ~h�mðfÞ
SnðjfjÞ : (26)

Here SnðjfjÞ is the one-sided power spectral density of the
detector strain noise nðtÞ, defined by

h~nðfÞ~n�ðf0Þi ¼ 1

2
�ðf� f0ÞSnðjfjÞ; (27)

and ~hðfÞ is the frequency-domain representation of the
waveform, given by

~hðfÞ ¼
Z 1

�1
hðtÞe�2�iftdt: (28)

FIG. 9 (color online). Complex amplitude contours: Three examples of the complex amplitude zð�Þ over a precession cycle, in the
constant precession cone approximation. The three configurations shown correspond to the three fiducial precession cones shown in Fig. 6.
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If we know the exact waveform, the strength of the
signal is given by 
2 ¼ hhejhei. However, if there is an
error in the waveform model hm, then the signal-to-noise
ratio is reduced by a factor


m ¼ M
; (29)

where 0 
 M 
 1 is the match of the model signal. The

model waveform hm ¼ hmð ~�Þ is a function of the model’s

intrinsic parameters ~� (e.g., masses, spins, etc.) and extrinsic

parameters ~�e (e.g., time of arrival, coalescence phase, sky
location, etc.). The model waveform having the same physi-
cal parameters as the exact waveform hm might not have the
highest match, and so we define the fitting factor F as

F ¼ max
~�; ~�e

hĥejĥmð ~�; ~�eÞi: (30)

For the best-fit parameters, the signal-to-noise ratio will be
reduced by a factor of 
m ¼ F
.

In this section we use the constant precession cone ap-
proximation to derive closed-form expressions for the fitting
factor F and the geometrical factors in the signal amplitude

2. Formally, our approximation arises through separation of
time scales. At each instant, the gravitational-wave emission
is instantaneously quadrupolar. Expanding in powers of
�p=�f, the time-domain amplitudemodulationAðtÞ implied

by the beam pattern translates directly to frequency-domain
modulation AðtðfÞÞ [ACST Eqs. (36) and (37)]; see, e.g.,
Fig. 4. Each frequency identifies an orientation of the angular

momentum vector L̂ðfÞ and thus precession phase�. So long
as a few precession cycles dominate peak emission, a single
(effectively ‘‘constant’’) precession cone dominates as well.
Adopting this precession cone as fiducial, we can transform

the inner products involving AðtðfÞÞ ¼ AoðfÞBðL̂ðtÞÞ into
inner products involving the ‘‘slow’’ degrees of freedom
[i.e., just AðfÞ] and averages over the ‘‘fast’’ (precession)

degrees of freedom [BðL̂Þ]. The averages over slow degrees
of freedom do not explicitly depend on precession geometry,
detector noise, or component masses. The expression factors.
We therefore arrive at expressions for 
2 and F in terms of
averages. As these averages encode all orientation-dependent
effects, we emphasize the averages below, keeping in mind
that their prefactors (if needed) can be easily computed once
and for all, using a face-on binary.

A. Averaged amplitude

The precession of the beam across the line of sight
modulates the amplitude seen at a single detector, in both
sin and cos quadratures. We estimate the signal power by
adding each quadrature’s contribution independently, in-
cluding the prefactor implied by the orientation of L rela-
tive to the line of sight and detector. We then average the
resulting expression over the entire precession cone.
Compared to the geometrical factor for an optimally ori-
ented nonprecessing source, the amplitude 
2 is smaller by
a factor s2:

s2ð�J; �; c JÞ

¼
�ð1þ ðL̂ � nÞ2Þ2

4
cos22c LðtÞ þ ðL̂ � nÞ2sin22c LðtÞ

�

¼
�ð1þ ðL̂ � nÞ2Þ2

4
� ð1� ðL̂ � nÞ2Þ2

4
sin22c LðtÞ

�

¼
�ð1þ ðL̂ � nÞ2Þ2

4

�
� hðL̂ � x̂Þ2ðL̂ � ŷÞ2i (31)

¼ 1

1024
½fcpðx� 1Þ2 þ x2gð35y2 þ 10y� 13Þ

þ 2xð5y2 þ 166yþ 53Þ � 13y2 þ 106yþ 451�; (32)

where x ¼ cos2�J, y ¼ cos2�, and cp ¼ cos4c J. Note

that all polarization dependence enters through a term
/ cpð1� xÞ2 þ x2; the average amplitude is almost polar-

ization independent near �J ’ 0.
Figure 10 shows how the relative amplitude of a BH-NS

binary seen directly overhead a single detector should
change, versus the purely geometrical orientation parame-
ters �, �, c J describing the constant precession cone.

B. Averaging and fitting factor

The phase evolution is more subtle. As simple preces-
sion parallel-transports the orbit along a precessing path,
the gravitational-wave phase 
wave of the single polariza-
tion to which our detector is sensitive oscillates about a
combination of the orbital phase and a secularly accumu-
lating proportion of the precession phase �:

2
wave ¼ 2
orb þ 2�
precð�Þ þ 2W�; (33)

as described above. Finally, the spin also influences the

accumulation of orbital phase 
orb: the projection of ~S1
along ~L produces a ‘‘gravitomagnetic repulsion,’’ changing
the orbital evolution
orb by slowing the rate of increase in
frequency; see, e.g., Eq. (6) in Ref. [19].
For detectors like LIGO, which are sensitive to an epoch

where the binary’s opening angle is nearly constant, the
secular phase changes (
orb and W�) can be well fit by a
sufficiently generic nonprecessing waveform.7 For

7Roughly speaking this ansatz requires a large enough binary
model space and small enough time range that the equation

orbð�; fÞ þWð�Þ�ðfÞ ’ 
orbð�0; fÞ can be solved for one
single set of parameters �0, for all f in band, and for each �.
Empirically, this ansatz works well, even when the nonprecess-
ing templates have no spin. To be concrete, we performed
Monte Carlo studies described in Fig. 13 using a nonspinning
template bank. So long as the template bank allowed the mass
ratio parameter � to be greater than 1/4, all aligned spins could
be well fit in the mass and mass ratio range of interest. Moreover,
by explicitly constructing a waveform without geometrically
induced modulations, we have confirmed a good fit between
the secular evolution and nonprecessing signals.
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example, the secular phase evolution of many precessing
waveforms can be well fit by a nonprecessing waveform
with different chirp mass and mass ratio (Mc, �). On the
other hand, amplitude and phase oscillations in AðtÞ and
�
prec cannot be fit with nonprecessing templates.

Using the ansatz that the best nonprecessing template
hm will perfectly reproduce the secular phase, the time-
averaged overlap between the spinning waveform he and
the best nonspinning template must be proportional to the
best nonspinning fitting factor. We therefore define ap-
proximation to the fitting factor F that captures the effects
of precession by

sF 	
Z dt

T
hheðtÞjhmðtÞi; (34)

where s is the average amplitude from Eq. (31) and where

the average is over a single precession cycle of L̂ in he, and
where hm is the best-fitting nonspinning template to the
entire cycle. Replacing a time average by an average over
the precession phase � and the true signal heðtÞ with the
nonspinning template times the amplitude and (Fourier
domain) precession phase terms A and �
 described
above, this expression reduces to an average of the oscil-
lating amplitude and phase over the cycle:

sF ¼ max
0

Z
A cosð2�
þ
oÞd�=ð2�Þ: (35)

We will provide a closed-form expression in the next
section. However, to understand that result, it is helpful

to think directly in terms of this integral. For example, in
the limit of small amplitude and phase modulations occur-
ring periodically on the precession cone, a nonprecessing
template model should fit them to no better than

F ’ 1� 1

2
½hð2�
Þ2i þ hð�A=AÞ2i � h�A=Ai2�: (36)

(This expression can be rederived directly from the original
integral.) In particular, the amplitude and phase modula-
tions introduced by precession inevitably diminish the
ability of a nonprecessing template to match them, by an
amount proportional to the standard deviation of oscilla-
tions in time and phase about the reference model.
Oscillations in phase and amplitude are most extreme

for binary geometries near the boundaries between regions.
A nonprecessing signal should be maximally unable to
match the large phase and amplitude variations near this
surface. For example, a signal on the surface has different
epochs, separated by zeros of the (complex) amplitude. A
nonprecessing signal can coherently reproduce the phase
trend in one portion of the signal or the other, but not both.

C. Constant Precession Cone

In the limit of a constant precession cone, the integral
can be performed analytically. Replacing a time average by
an average over the precession phase � and the true signal

hðL̂Þ with the nonspinning template times the amplitude
and (Fourier domain) precession phase terms A and �

described above, the angle-averaged expression reduces to

sF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsF sÞ2 þ ðsF cÞ2

q
; (37)

where in the second line we convert maximization of the
integrand over 
o into two integrals:

sF c 	
Z

Atot cos2�

d�

2�
; (38)

sF s 	
Z

Atot sin2�

d�

2�
: (39)

This expression reduces to a simple contour integral:

sF c 	
Z ðz=Zþ ðz=ZÞ�Þ

2

d�

2�
; (40)

sF s 	
Z ððz=ZÞ � ðz=ZÞ�Þ

2i

d�

2�
; (41)

zð�Þ 	 Atote
i2ð��þ�WÞ; (42)

Zð�Þ ¼ ei2W�; (43)

where z is the complex representation of the waveform
amplitude and phase given in Eq. (20), while dividing by Z
is equivalent to subtracting the secular phase. Using the
complex variable u ¼ ei� to represent Z ¼ u2W ¼ unwind

and the sinusoids in Cþ;� and Sþ;� analytically via

FIG. 10 (color online). Amplitude ratio model: For spinning
precessing binaries, the function sð�J; �; c J ¼ 0Þ describing the
average amplitude along a given line of sight, assuming a
steadily precessing binary with precession cone opening angle
�. The function sð�J; �; c JÞ [Eq. (31)] is approximately the
ratio 
=
ns between the amplitude 
 of a spinning, precessing
binary seen in band in a configuration and line of sight specified
by ð�J; �; c JÞ and the amplitude 
ns of a nonspinning binary of
comparable masses.
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cos� ¼ ðuþ 1=uÞ=2, we find the fitting factor predicted
can be calculated using the contour integral

sF ¼ jIj (44)

I 	
Z z=Zd�

2�
¼

Z z=unwinddu

2�iu
: (45)

This trivial contour integral corresponds to identifying

terms / un in z for different n. The value of this contour

integral depends discontinuously on the winding number

nwind. Using the definitions of C, S to perform this integral,

we find

I 	

8>>><
>>>:

� 3
4 cos2c Jsin

2�sin2� nwind ¼ 0

� ð2 sin��sin2�Þðcos2c J sin2��2i sin� sin2c JÞ
8 nwind ¼ �1

� ð1�cos�Þ2
8 ½cos2c Jð1þ cos2�Þ � 2i cos� sin2c J� nwind ¼ �2

: (46a)

Finally, we estimate the fitting factor for all angles by
dividing this closed-form expression by the closed-form
expression for s:

F ð�J; �; c JÞ 	 jIð�J; �; c JÞj=sð�J; �; c JÞ: (46b)

This ratio varies strongly in all three parameters and is
best summarized by the explicit expression above. Though
complicated, some important physical lessons can be
drawn. First and foremost, for nonprecessing signals the
predicted fitting factor is F ¼ 1. Second and most criti-
cally, while the predicted fitting factor has a local extre-
mum withF ’ 1 in each of the three regions, the predicted
fitting factor drops rapidly as we approach the surface
dividing them: at the surface defined by Eq. (15) and shown
in Fig. 7. In other words, this expression suggests the worst
possible matches will occur when the angular momentum
at some point in the precession cycle is along one of the
two null lines. As noted above, the low fitting factor in this
region occurs because the signal consists of comparable
amounts of power with two competing and incompatible
secular phase trends. Finally, under special conditions such
as � ’ 0 in R2 and R3, this expression predicts pathologi-
cally low matches P ’ 0. As we will discuss at greater
length in a forthcoming publication, an empirically more
successful approximation replaces the options in I by the
maximum over the three options.

Though derived under the seemingly strong expression
of a constant precession cone, we have verified this ex-
pression applies to a broad family of real BH-NS inspirals,
by calculating the overlap between the gravitational radia-
tion emitted from nonprecessing and precessing binaries
and maximizing over the nonprecessing signal’s parame-
ters. We will describe these Monte Carlo studies in more
detail in a subsequent publication. In brief, these studies
corroborate many earlier studies that examined how well
nonprecessing signals recover precessing waveforms
[20,31,37]. First, in special but not uncommon circum-
stances, fitting factors as low as 0.6 occur. Second, small
fitting factors (i.e., large mismatches) can occur even with
small amounts of spin-orbit misalignment, though they
become more common as misalignment increases. For
nearly aligned binaries, signals with the lowest match

correspond to directions with low signal power. Contrary
to previous claims, however, we identify some configura-
tions with both a low fitting factor and a significant signal
power along the line of sight.
This analytic study differs from all previous investiga-

tions in that we assume a nonprecessing signal model can
always match any secular phase evolution, identify which
precessing configurations lead to large modulations, and
quantify the expected purely geometrical effect these mod-
ulations have on the fitting factor. As an example, in Fig. 11
we predict the distribution of fitting factors expected when
a nonprecessing search is applied to a randomly oriented
BH-NS binary. Despite the simplicity of our model, we
recover quantitatively similar results to previous studies
[31]. Unlike earlier studies, however, our expressions allow
us both to identify precisely which binaries are least well fit
and to understand precisely why.

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1.
0.2

0.4

0.6

0.8

1.0

FIG. 11 (color online). Distribution of fitting factors for single-
spin BH-NS: Using only the analytic expressions provided in
this paper, the predicted fraction Pð>F Þ of fitting factors
greater than F for a randomly oriented BH-NS binary with
m1 ¼ 10M�, m2 ¼ 1:4M�, with the dimensionless black hole
spin ~�1 randomly oriented and with magnitude uniformly dis-
tributed between 0 and 0.98. Compare to the solid line in the
bottom right panel of Fig. 9 in Ref. [31], although there the
neutron star also has a spin up to 0.3.
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D. Validating our approximations with Monte Carlo

To demonstrate that our approximation works, we have
compared randomly chosen BH-NS binaries with a stan-
dard nonprecessing template bank: Taylor F2 templates
with physical parameters, a hexagonal template bank
chosen for 97% minimal match, and a likely early ad-
vanced LIGO noise curve, the low-power zero-detune
power spectral density [41] such that fpeak ’ 40 Hz.

For example, Fig. 12 shows the results for 30 000 BH-
NS binaries (10M� þ 1:4M�) with random orientations for

� ¼ L̂ � Ŝ >�1=2 and spin magnitudes a1 2 ½0; 1�. The
limit on � removes some systems with transitional preces-
sion for clarity; in the next figure, we allow nearly the full
range of �. The bottom panel shows the configurations of
the worst-fit sources for two polarizations (J nearly aligned
with the detector on the plane of the sky and 45o off the
detector arms). Both cluster near the predictions of our
model (dotted lines): our approximation correctly identi-
fies the worst-fit locations. More generally, the top panel
shows our estimate works (nearly) everywhere: it compares
our fitting factor estimate F to the fitting factor F calcu-
lated by comparing that signal to the template bank.
Despite known systematic differences between the signal
and template model even for aligned systems, our match
prediction works well almost everywhere. For comparison,
the vertical dotted line at �0:03 shows the typical mis-
match expected from template bank discreteness.

In this comparison, we have artificially eliminated the
small fraction of worst-performing configurations, corre-
sponding to sources recovered with templates near the edge
of the template bank where � ¼ 1=4. The secular phasing
due to the aligned component of the spin is best fit by
templates with � biased to larger than its true value.
Because of the finite parameter extent in � of physical
Taylor F2 templates, the conventional signal model fails to
capture even the secular effects of large aligned spins. An
aligned but nonprecessing template bank would, however,
be able to capture these signals. To faithfully reproduce
signals with aligned spins using standard template banks,
we must extend the bank into �> 1=4. This nearly cap-
tures the secular effect of aligned spins and is a reasonably
good substitute for a true aligned-spin template bank.
Figure 13 shows the results of this extended-� bank,
compared to a much larger set of BH-NS binaries. The
top panel shows that our approximation continues to work
well for generic sources, even given systematic differences
between signal and template and the absence of spin. In
particular, the bottom panel demonstrates that except for
rare outliers, our approximation correctly identifies the
worst-fit sources.

E. Beyond the constant precession cone

Though we emphasize the value of a (nearly) constant
precession cone in approximating binary inspiral, the con-
cepts and expressions we provide apply equally well to many

FIG. 12 (color online). Comparison of the analytic prediction
of Sec. VC with numerical results I: Single binary masses and
spin magnitude Top panel: For 30 000 BH-NS binaries (10M� þ
1:4M� with a1 2 ½0; 1�) with random orientations for L̂ � Ŝ >
�1=2, a comparison between our estimate F and the fitting
factor F calculated by comparing that signal with a standard
single-detector template family (Taylor F2 templates with physi-
cal parameters; hexagonal template bank chosen for 97% mini-
mal match; early-stage advanced LIGO noise curve such that
fpeak ’ 40 Hz [41]). For comparison, the vertical dotted line at

�0:03 shows the typical mismatch expected from template bank
discreteness. Despite known systematic differences between the
signal and template model even for aligned systems, our match
prediction works well almost everywhere. To highlight its effec-
tiveness, we have eliminated the small fraction of worst-
performing configurations, corresponding to sources recovered
with templates with 0:24<� 
 1=4. Because of the finite
parameter extent of physical Taylor F2 templates, the conven-
tional signal model cannot reproduce large aligned spins. Bottom
panel: For the same comparison of template bank against signals
as above, the configurations of the worst-fit sources (F < 0:7)
with cos4c > 0:9 (black or blue; J nearly aligned with the
detector on the plane of the sky) and cos4c <�0:9 (dark
gray or red; J nearly 45o off the detector arms, in the plane of
the sky). For comparison, the black or blue and dark gray or red
solid lines are the surfaces cos2�þ cos2� ¼ 0 (black or blue)
and cos2�J þ 2 cos2� (dark gray or red) [Eq. (16)]. These lines
are two one-dimensional cuts through the surface separating R1
and R2, where our expression predicts the worst single-detector
matches will occur.
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simply precessing binaries. As an example, in Fig. 14 we
show the precession-induced phase evolution for two systems
with slightly different �, such that they are near a transition
between regions. One is in R1 and the other in R2. The
nearness to the transition surface causes large oscillations

around the secular increase in phase. Binaries whose opening
angles �ðfÞ evolve across these boundaries and particularly
across �=2 in band can undergo dramatic transitions in the
properties of their observable waveform, accumulating only
one helicity early on and another helicity later.

VI. CONCLUSIONS

In this paper we have explored two features of the
gravitational-wave signal seen by ground-based detectors
in a ‘‘constant precession cone’’ limit. We compare their
amplitude to a similar face-on nonprecessing binary; we
compare their waveform to the best-fitting nonprecessing
signal. We find closed-form expressions for both quanti-
ties. Our expressions involve only geometrical parame-
ters—the orientation of the precession cone relative to
the line of sight—with no explicit reference to the (PN)
phase model, detector noise curve, or binary parameters. In
a subsequent paper we will use these factors to interpret the
selection biases of optimal and nonprecessing searches for
precessing binaries. This publication will provide explicit
Monte Carlo simulation over all possible source parame-
ters and sky locations and calculate overlaps using state-of-
the-art signal models.
In this paper we provide only the leading-order geomet-

ric influence that the precession cone has on a signal
amplitude. Additionally, the same spin misalignments
that allow the binary’s orbit to precess also diminish the
binary’s inspiral time, compared to an aligned nonprecess-
ing signal. We will describe a more complete model for the
spin-dependent signal amplitude 
2 in a future paper.
Finally, in this paper we point out that nonpreces-

sing signals often fit precessing signals’ secular phase
evolution. The secular evolution of a (single-detector)
gravitational-wave phase depends on the line of sight to
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FIG. 13 (color online). Comparison of the analytic prediction
of Sec. VC with numerical results II: Monte Carlo. As Fig. 12,
except (a) the injected signal can have generic BH-NS-like
masses m1 2 ½3; 15�M�, m2 2 ½1; 5�M�, dimensionless spin
magnitudes � 2 ½0; 1�, and spin-orbit misalignments L̂ � Ŝ >
�0:9; (b) to better recover aligned-spin signals, the template
family includes Taylor F2 waveforms with �> 1=4, spaced in
chirp mass and � according to the 2PN hexagonal template bank.
Top panel: Our match prediction works for generic sources.
[Because the mass and spin distribution used in this analysis
favors low � and thus binaries nearly aligned in band, this
distribution partially reflects our ability to recover nearly
aligned-spin binaries with an extended � Taylor F2 bank. That
said, subsets of the sample bounded below in � also demonstrate
our prediction works well for generic binaries with significant in-
band misalignment. Bottom panel: Our expression identifies the
dominant physical mechanisms that produce a poor fit between a
spinning binary and a candidate nonprecessing waveform. Like
Fig. 12, the dotted lines show the separatrices between regions.
The solid lines show the contours predicted from our expression
for F ¼ 0:75 and c ¼ 0 (blue) or c ¼ �=4 (red). For com-
parison, the points indicate all signal versus bank fitting factors
F < 0:66 for cos4c > 0:975 (blue) or F < 0:7 for cos4c <
�0:975.

FIG. 14 (color online). Discrete phase change: With a fixed
viewing geometry, the geometrical phase difference argðzÞ on
either side of a transition surface (here, R1 to R2). As in Fig. 8,
an entire precession cycle is shown.
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the source and orientation of the detector (W). As a result,
two independent detectors running two independent
searches may identify two very different best-fitting (non-
precessing) signals, due only to the detectors’ orientations.
These biases in recovered parameters must be taken into
careful account when constructing coincidence-based
search algorithms. We will also address biases in recovered
parameters in a future paper.
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