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The features of the scattering of massive neutral particles propagating in the field of a gravitational plane

wave are compared with those characterizing their interaction with an electromagnetic radiation field. The

motion is geodesic in the former case, whereas in the case of an electromagnetic pulse it is accelerated by the

radiation field filling the associated spacetime region. The interaction with the radiation field is modeled by a

force term entering the equations of motion proportional to the 4-momentum density of radiation observed

in the particle’s rest frame. The corresponding classical scattering cross sections are evaluated too.
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I. INTRODUCTION

The production of gravitational waves as well as elec-
tromagnetic pulses is expected to occur in many violent
astrophysical processes, like the merging of compact bi-
naries and high energy phenomena involving strong mag-
netic fields and accelerating sources of the electromagnetic
field. Gravitational and electromagnetic waves are also
believed to interact in a variety of ways. There are many
exact solutions of Einstein’s field equations that describe
colliding plane gravitational and electromagnetic waves on
a flat Minkowski background [1]. Furthermore, several
studies in the literature have shown how gravitational
radiation affects the propagation of electromagnetic sig-
nals by modifying their direction, amplitude, wavelength
and polarization either in vacuum or in the presence of
conductive plasmas, leading also to the possibility of reso-
nances between gravitational and electromagnetic sources
which could be used either as more efficient gravity-wave
detection methods or as a general relativistic mechanism of
amplifying large-scale magnetic fields (see, e.g., Ref. [2]
and references therein).

The scattering of massive and massless neutral scalar
particles by plane gravitational waves has been investi-
gated both in the classical and quantum regime by
Garriga and Verdaguer [3]. They also defined the classical
cross section for scattering of geodesic particles in the case
in which the wave region is sandwiched between two flat
spacetime regions. The propagation of a test electromag-
netic field on the background of an exact gravitational
plane wave with single polarization has been recently
investigated in Ref. [4]. It has been shown there that
the physical effects due to the exact gravitational wave
on the electromagnetic field, i.e., phase shift, change of the
polarization vector, angular deflection and delay of photon
beams in a Michelson interferometer, could be measured
by various detection methods.

An electromagnetic wave propagating over a spacetime
region makes it not empty and not flat. Therefore, the

spacetime curvature associated with an electromagnetic
pulse, namely the associated gravitational field, induces
observable effects on test particle motion. Unlike the case
of a plane gravitational wave the resulting motion will no
longer be geodesic, but massive particles will be acceler-
ated by the radiation field filling the associated spacetime
region. The features of test particle motion in the gravita-
tional field associated with an electromagnetic plane wave
have been recently investigated in Ref. [5]. The interaction
with the radiation field has been modeled there by a force
term entering the equations of motion given by the 4-
momentum density of radiation observed in the particle’s
rest frame with a multiplicative constant factor expressing
the strength of the interaction itself. This approach dates
back to the pioneering works of Poynting [6] and
Robertson [7], who derived the corrections to the motion
of planets in the Solar System due to the scattering of the
solar radiation in the context of Newtonian gravity and in
the weak field approximation, respectively. Particles are
assumed to interact with the radiation field of an emitting
source superimposed on the background by adsorbing and
reemitting radiation, causing a drag force responsible for
deviation from geodesic motion, known as the Poynting-
Robertson effect. The generalization to the framework of
general relativity has been developed in Refs. [8,9], where
this effect on test particles orbiting in the equatorial plane
of a Schwarzschild or Kerr spacetime has been considered,
and in Ref. [10], where a self-consistent radiation flux was
instead used to investigate such a kind of interaction in the
Vaidya spherically symmetric spacetime [11].
In the present paper we consider the scattering of massive

particles propagating in the field of a gravitational plane
wave and of an electromagnetic wave. In both cases the
wave is sandwiched between two flat Minkowski regions,
so that the ‘‘in’’ and ‘‘out’’ regions are unambiguously
determined. The particles will interact differently with the
gravitational wave background and the electromagnetic
radiation field, so that they will emerge in the outer flat
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region with different 4-momenta. The different nature of
the host environment will also be evident by comparing the
corresponding classical scattering cross sections.

II. SCATTERINGOF PARTICLES BYARADIATION
FIELD IN A FLAT SPACETIME

Let us consider a Minkowski spacetime with metric
written in either Cartesian or related null coordinates as

ds2 ¼ �dt2 þ dx2 þ dy2 þ dz2 ¼ �2dudvþ dx2 þ dy2;

(1)

where u ¼ ðt� zÞ= ffiffiffi
2

p
, v ¼ ðtþ zÞ= ffiffiffi

2
p

. The latter form
privileges the three Killing vectors @v, @x, @y which will

remain when a wave zone is introduced later where the
metric will depend on u. Figure 1 illustrates the relation-
ships between the coordinates for the case of an interaction
strip corresponding to a u coordinate interval ½0; u1�.

It is also useful to introduce a family of ‘‘static’’ fiducial
observers which are at rest with respect to the spatial
coordinates ðx; y; zÞ and characterized by the 4-velocity
vector m ¼ @t with the associated adapted orthonormal
spatial triad ex̂ ¼ @x, eŷ ¼ @y, eẑ ¼ @z.

A test particle with rest mass � and 4-velocity U� ¼
dx�=d� (so U � U ¼ �1) has 4-momentum P ¼ �U,
but we will use the specific 4-momentum, namely the
4-velocity itself: ~P ¼ P=� ¼ U; we drop the tilde notation
below and the modifier ‘‘specific.’’ The observer decom-
position of U is then (let a, b, c ¼ 1, 2, 3)

U ¼ U�@� ¼ �ðmþ �âeâÞ;
� ¼ ð1� �â b̂�

â�b̂Þ�1=2:
(2)

For geodesic motion, the constant 4-velocity U ¼ Uð0Þ can
be parametrized in terms of the conserved specific mo-
menta pv, px and py (introducing as well p2

? ¼ p2
x þ p2

y)

associated with the three Killing vectors mentioned
above as

Uð0Þ ¼ �pv

�
@u þ

1þ p2
?

2p2
v

@v

�
þ px@x þ py@y

¼ � 1ffiffiffi
2

p pv

�
1þ 1þ p2

?
2p2

v

�
@t þ px@x þ py@y

� pvffiffiffi
2

p
�
�1þ 1þ p2

?
2p2

v

�
@z; (3)

where pv < 0 forU to be future pointing. Then the velocity
decomposition is

�ð0Þ ¼ � pvffiffiffi
2

p
�
1þ 1þ p2

?
2p2

v

�
; �x̂

ð0Þ ¼
px

�ð0Þ
;

�ŷ
ð0Þ ¼

py

�ð0Þ
; �ẑ

ð0Þ ¼ � pvffiffiffi
2

p
�ð0Þ

�
�1þ 1þ p2

?
2p2

v

�
;

(4)

which can be easily inverted to yield

pv¼��ð0Þffiffiffi
2

p ð1��ẑ
ð0ÞÞ; px¼�ð0Þ�x̂

ð0Þ; py¼�ð0Þ�
ŷ
ð0Þ: (5)

Choosing the zero of proper time at the u ¼ 0 hyper-
plane, the corresponding parametric equations of the par-
ticle’s straight line trajectory are then

u ¼ �pv�; v ¼ 1þ p2
?

2p2
v

uþ v0;

x ¼ � px

pv

uþ x0; y ¼ � py

pv

uþ y0;

(6)

so that x0 ¼ y0 ¼ z0 ¼ 0 puts the initial position at the
origin of coordinates and

t ¼ 1ffiffiffi
2

p
��

1þ p2
?

2p2
v

þ 1

�
uþ v0

�
;

z ¼ 1ffiffiffi
2

p
��

1þ p2
?

2p2
v

� 1

�
uþ v0

�
:

(7)

Correspondingly, a photon following a null geodesic
path has 4-momentum

K ¼ �Kv@u � Ku@v þ Kx@x þ Ky@y; (8)

where the null condition is 2KuKv ¼ K2
? � K2

x þ K2
y . For

the special case of photons traveling along the positive z
direction, one has Kx ¼ Ky ¼ Kv ¼ 0 and K ¼ �Ku@v,

useful for comparison with the nonflat case below.

FIG. 1. The null coordinate relationships in the t -z plane
(orthogonal to the plane wave fronts aligned with the x-y planes)
for a sandwich spacetime divided into three zones by the null
hypersurfaces u ¼ 0 and u ¼ u1 > 0. Shown also is a suggestive
world line of a particle (entering zone II at the origin of
coordinates) which is deflected by the radiation field in zone II
from its geodesic motion in zones I and III.
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The observer decomposition is

K¼!Kðmþ �̂KÞ; �̂K¼ �̂a
K@a; �̂K � �̂K¼1; (9)

where !K ¼ Kt ¼ �Kt ¼ �ðKu þ KvÞ=
ffiffiffi
2

p
is the relative

energy and the unit vector �̂a
K ¼ Ka=Kt gives the relative

direction of propagation with respect to the static
observers.

Suppose now that a test radiation field representing a
coherent beam of a given frequency fills a certain space-
time region confined to the region between two null hyper-
surfaces u ¼ 0 and u ¼ u1 as in Fig. 1. The associated
energy-momentum tensor is assumed to be of the form

T ¼ �0K � K; (10)

whereK is the geodesic null vector given by Eq. (8) and�0

is a constant representing the associated energy flux. The
geodesic property of K makes T divergence free, i.e.,
r�T

�� ¼ 0.
A neutral massive particle moving through the space-

time region occupied by such a radiation field will be
scattered in a way which depends on the interaction. The
simplest way to model this interaction is through the
introduction of a ‘‘radiation force,’’ which is constructed
from the energy-momentum tensor introduced in Eq. (10)
and is orthogonal to the particle’s 4-velocity U ( just as the
4-acceleration vector), so that

fðradÞðUÞ� ¼ �	PðUÞ��T�
�U�; (11)

where PðUÞ ¼ gþU �U is the orthogonal projector to U
and 	 models the absorption and reemission of radiation
by the test particle. This force is just proportional to the
momentum of the field as observed in the rest frame of the
particle. The equations of motion of the particle thus
become

�aðUÞ� ¼ fðradÞðUÞ�; aðUÞ� ¼ rUU
�; (12)

or explicitly

dU�

d�
¼ �A½K� þU�ðU � KÞ�ðU � KÞ;

A ¼ 	�0=� � ~	�0:
(13)

In the case of a particle orbiting a massive source in the
presence of a superimposed radiation field, an interaction
of this kind leads to a drag force causing deviation from
geodesic motion. This is the so called Poynting-Robertson
effect (see Refs. [6–9] and references therein).

The equations of motion (13) then become

d�â

d�
¼ �A!2

Kð�â � �â
KÞð1� �K̂b�

b̂Þ; (14)

whose solution is straightforward assuming � ¼ 0 at the
initial null hyperplane u ¼ 0 where �â ¼ �â

ð0Þ,

�â ¼ �â
K þ �â

ð0Þ � �â
K

½1þ �A!2
Kð1� �K̂c�

ĉ
ð0ÞÞ�

; (15)

which can be simplified by introducing the parameter
1=�� ¼ A!2

Kð1� �K̂c�
ĉ
ð0ÞÞ to yield

�â ¼ �â
K þ �â

ð0Þ � �â
K

1þ �=��
;

� ¼ �ð0Þ
1þ �=��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2�2
ð0Þð1� �K̂c�

ĉ
ð0ÞÞ�=��

q :

(16)

The parametric equations for the test particle’s trajectory
during the interaction with the radiation field are then
obtained by integrating the equations dx�=d� ¼ U�, i.e.,

dt

d�
¼ �;

dxâ

d�
¼ ��â: (17)

By introducing the notation

Iða;b;c;d;
Þ�
Z 


0

aþb
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþd
0p d
0

¼ 2

3d2
ð3ad�2bcþdb
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cþd
0p

j
0 ; (18)

the corresponding solution can be explicitly written in the
form

t� t0 ¼ �ð0ÞIð1; 1=��; 1; 2�2
ð0Þð1� �K̂c�

ĉ
ð0ÞÞ=��; �Þ;

xa � xa0 ¼ �ð0ÞIð�â
ð0Þ; �

â
K=��; 1; 2�2

ð0Þð1� �K̂c�
ĉ
ð0ÞÞ=��; �Þ;

(19)

where the quantities �ð0Þ, �â
ð0Þ and x

�
0 refer to the (constant)

frame components of the particle 4-velocity at the start of
the interaction and the initial position there.
In the simplest case of a radiation field composed of

photons all propagating along the z direction, i.e., with

�̂a
K ¼ �a

z and K ¼ ffiffiffi
2

p
!K@v, the radiation force is

1

�
fðradÞðUÞ ¼ �A!2

K�ð1� �ẑÞf½�2ð1� �ẑÞ � 1�m
þ �2ð1� �ẑÞð�x̂ex̂ þ �ŷeŷÞ
� ½�2�ẑð�ẑ � 1Þ þ 1�eẑg; (20)

and the general solution (16) becomes

� ¼ �ð0Þ
�

½1þ A!2
Kð1� �ẑ

ð0ÞÞ��;

½�x̂; �ŷ; 1� �ẑ� ¼ �ð0Þ
��

½�x̂
ð0Þ; �

ŷ
ð0Þ; 1� �ẑ

ð0Þ�;
(21)

where � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A!2

K�
2
ð0Þð1� �ẑ

ð0ÞÞ2�
q

. The parametric

equations (19) of the accelerated orbit then simplify to
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t� t0¼ 1

3�ð0Þð1��ẑ
ð0ÞÞ

�
��� ��1

A!2
K�

2
ð0Þð1��ẑ

ð0ÞÞ2
ð1�3�2

ð0Þð1��ẑ
ð0ÞÞÞ

�
;

x�x0¼�x̂
ð0Þ

��1

A!2
K�ð0Þð1��ẑ

ð0ÞÞ2
;

y�y0¼�ŷ
ð0Þ

��1

A!2
K�ð0Þð1��ẑ

ð0ÞÞ2
;

z�z0¼ 1

3�ð0Þð1��ẑ
ð0ÞÞ

�
��� ��1

A!2
K�

2
ð0Þð1��ẑ

ð0ÞÞ2
ð1�3�2

ð0Þð1��ẑ
ð0ÞÞ�ẑ

ð0ÞÞ
�
:

(22)

The corresponding solutions for u and v are given by

u ¼ �� 1ffiffiffi
2

p
A!2

K�ð0Þð1� �ẑ
ð0ÞÞ

;

v� v0 ¼
ffiffiffi
2

p

3�ð0Þð1� �ẑ
ð0ÞÞ

�
��� �� 1

A!2
K�

2
ð0Þð1� �ẑ

ð0ÞÞ2

�
�
1� 3

2
�2
ð0Þð1� �ẑ2

ð0ÞÞ
��

: (23)

The parametric equations for the orbit using u as pa-
rameter and reexpressing the initial 3-velocity quantities in
terms of the initial momenta are then given by

u ¼ 1

2pvA!
2
K

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2

vA!
2
K�

q
Þ;

v� v0 ¼ u

2p2
v

ð1þ p2
?Þ �

A!2
Ku

2

pv

�
1� 2

3
pvA!

2
Ku

�
;

x� x0 ¼ � px

pv

u; y� y0 ¼ � py

pv

u; (24)

where

�1 ¼ � u1
pv

ð1� pvA!
2
KuÞ (25)

relates the proper time interval of the interaction to the
interval u1. The associated 4-velocity is

U ¼ e��ðtfÞðuÞ
�
�pv@u � 1

2pv

ðe2�ðtfÞðuÞ þ p2
?Þ@v

þ px@x þ py@y

�
; (26)

where we have introduced the notation (‘‘tf’’ for test field)

e�ðtfÞðuÞ ¼ 1� 2pvA!
2
Ku: (27)

This quantity, evaluated at u ¼ u1 (� ¼ �1) where the
interaction with the wave ends, should be compared with
the initial 4-velocity Uð0Þ, at u ¼ 0 (� ¼ 0), given in

Eq. (3). In this case, since the spacetime is flat everywhere,
we can image Uð0Þ (trivially) parallely transported along

the particle trajectory up to the same spacetime point
where U is located, at the end of the interaction. The
comparison then results in a boost relating these two
vectors; namely

U ¼ �ðU;Uð0ÞÞ½Uð0Þ þ jj�ðU;Uð0ÞÞjj�̂ðU;Uð0ÞÞ�; (28)

with the spacelike unit direction vector of the relative
velocity (notation: U with respect to Uð0Þ) given by

�̂ðU;Uð0ÞÞ ¼ �PðUð0ÞÞ@v
pv

¼ � 1

pv

@v �Uð0Þ

¼ � 1ffiffiffi
2

p
!Kpv

K �Uð0Þ;
(29)

where PðUð0ÞÞ projects orthogonally to Uð0Þ and K ¼
!Kð@t þ @zÞ ¼

ffiffiffi
2

p
!K@v is the photon field. The relative

speed is instead

jj�ðU;Uð0ÞÞjj ¼ tanhð�ðtfÞðu1ÞÞ; (30)

demonstrating that �ðtfÞðuÞ can be interpreted as the rapidity
boost parameter for the 4-velocity relative to the initial
4-velocity. Note that this shows that U lies in the plane of
Uð0Þ and K. In other words, the final specific momentum

U is just the result of a boost of the initial specific mo-
mentum Uð0Þ along the direction of the relative velocity of

the wave vector of the radiation field with respect to it.
This simple analysis can be easily generalized to a

sandwich spacetime in which the plane wave zone is a
portion of an electrovac plane wave spacetime in between
two flat spacetime regions as above, either representing the
exact gravitational field due to an electromagnetic plane
wave or to a gravitational plane wave. The resulting change
in 4-momentum or 4-velocity of the test particle from u ¼
0 to u ¼ u1 can then be compared with the flat spacetime
case with either no interaction or an interaction with a test
electromagnetic field as just evaluated. While the scatter-
ing by a gravitational plane wave is well known, the
electrovac case is not, nor has any comparison been
made with the Poynting-Robertson-like interaction, as we
will do below.

III. SCATTERING OF PARTICLES BYA
GRAVITATIONAL PLANE WAVE

Consider the interaction of a test particle with a gravi-
tational radiation field described by the spacetime metric of
an exact gravitational plane wave with a single polarization
state (þ state) [12] traveling in the positive z direction
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orthogonal to the symmetry planes (with the same rela-
tionship between the coordinates as above)

ds2 ¼ �dt2 þ FðuÞ2dx2 þGðuÞ2dy2 þ dz2

¼ �2dudvþ FðuÞ2dx2 þGðuÞ2dy2; (31)

with

FðuÞ ¼ cosðbðgwÞuÞ; GðuÞ ¼ coshðbðgwÞuÞ; (32)

where !ðgwÞ ¼ bðgwÞ=
ffiffiffi
2

p
is the frequency of the gravita-

tional wave under consideration, and s ¼ bðgwÞu ¼
!ðgwÞðt� zÞ is a convenient combination used below. We

continue to use the same static frame as in the flat case.
The gravitational wave is sandwiched between two

Minkowskian regions u 2 ð�1; 0Þ [ ðu1;1Þ, and the met-
ric would have a coordinate horizon at bðgwÞu ¼ �

2 where

the metric is degenerate but this is avoided by restricting
the coordinate u to the interval ½0; u1� with bðgwÞu1 < �

2 .

The matching conditions impose restrictions on the metric
functions F and G before and after the passage of the wave
where the spacetime is Minkowskian. As discussed in de-
tail by Rindler in Ref. [13] (see this reference for a more
detailed account of exact plane gravitational waves), a
possible choice to extend the metric for all values of u is
the following:

F G
ðIÞ 1 1
ðIIÞ cosðbðgwÞuÞ coshðbðgwÞuÞ
ðIIIÞ ð�þ �uÞ ð�þ �uÞ

(33)

where labels I, II and III refer to the in zone (u � 0), the
wave zone (0< u< u1) and the out zone ðu 	 u1Þ, re-
spectively. Values of the constants �, �, � and � can be
completely determined by requiring C1 regularity condi-
tions at the boundaries u ¼ 0 and u ¼ u1 of the sandwich;
that is,

Fð0Þ ¼ 1 ¼ Gð0Þ; F0ð0Þ ¼ 0 ¼ G0ð0Þ;
Fðu1Þ ¼ �þ �u1; Gðu1Þ ¼ �þ �u1;

F0ðu1Þ ¼ �; G0ðu1Þ ¼ �;

(34)

which in this case imply

� ¼ cosðbðgwÞu1Þ þ bðgwÞu1 sinðbðgwÞu1Þ;
� ¼ �bðgwÞ sinðbðgwÞu1Þ;
� ¼ coshðbðgwÞu1Þ � bðgwÞu1 sinhðbðgwÞu1Þ;
� ¼ bðgwÞ sinhðbðgwÞu1Þ:

(35)

Let us consider the wave region (II), with functions F
and G given by Eq. (32). As in the flat spacetime case,
a test particle with mass � entering the wave region
follows a geodesic path with 4-velocity U and associated
4-momentum P ¼ �U given by (see, e.g., Ref. [14])

U ¼ �pv@u � 1

2pv

�
1þ p2

x

FðuÞ2 þ
p2
y

GðuÞ2
�
@v

þ px

FðuÞ2 @x þ
py

GðuÞ2 @y; (36)

where the conserved specific momenta pv, px and py still

allow the complete integration of the geodesic equations.
Using the explicit form of the metric functions F and G
valid in the wave zone and imposing the matching at the
boundary I–II where the geodesics join at the spacetime
point with coordinates ð0; v0; x0; y0Þ then gives

u¼�pv�;

v¼ 1

2p2
v

�
uþ p2

x

bðgwÞ
tanðbðgwÞuÞ þ

p2
y

bðgwÞ
tanhðbðgwÞuÞ

�
þv0;

x¼� px

bðgwÞpv

tanðbðgwÞuÞ þ x0;

y¼� py

bðgwÞpv

tanhðbðgwÞuÞ þ y0: (37)

Clearly, these geodesic world lines should be matched with
the straight lines of the in zone at u ¼ 0.
The geodesic 4-velocity in the inertial coordinates and

with the metric functions conveniently reexpressed in
terms of s ¼ !ðgwÞðt� zÞ is

U ¼ � pvffiffiffi
2

p
�
1þ 1

2p2
v

�
1þ p2

x

cos2s
þ p2

y

cosh2s

��
@t

þ px

cos2s
@x þ

py

cosh2s
@y

� pvffiffiffi
2

p
�
�1þ 1

2p2
v

�
1þ p2

x

cos2s
þ p2

y

cosh2s

��
@z: (38)

Coordinate and frame components of the 4-velocity are
now related by

Ut¼�;
Ux

Ut ¼
�x̂

coss
;

Uy

Ut ¼
�ŷ

coshs
;

Uz

Ut ¼�ẑ: (39)

Using the relations Eq. (5) at s ¼ 0 to express the Killing
constants ðpv; px; pyÞ in terms of the initial values �â

ð0Þ �
�âð0Þ at the start of the interaction, one finds with some
manipulation

� ¼ �ð0Þ
2ð1� �ẑ

ð0ÞÞ
VðsÞ

cos2scosh2s
;

½�x̂; �ŷ; 1� �ẑ� ¼ 2ð1� �ẑ
ð0ÞÞ

coss coshs

VðsÞ
� ½�x̂

ð0Þ coshs; �
ŷ
ð0Þ coss; ð1� �ẑ

ð0ÞÞ
� coss coshs�; (40)

where

VðsÞ ¼ ½2ð1� �ẑ
ð0ÞÞcos2sþ �x̂2

ð0Þsin
2s�

� cosh2s� �ŷ2
ð0Þcos

2ssinh2s: (41)
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Finally, the parametric equations for the particle’s geodesic orbit are

t� t0 ¼ 1

!ðgwÞð1� �ẑ
ð0ÞÞ

��
1� �x̂2

ð0Þ þ �ŷ2
ð0Þ

2ð1� �ẑ
ð0ÞÞ

�
sþ �x̂2

ð0Þ tansþ �ŷ2
ð0Þ tanhs

2ð1� �ẑ
ð0ÞÞ

�
;

z� z0 ¼ 1

!ðgwÞð1� �ẑ
ð0ÞÞ

��
�ẑ
ð0Þ �

�x̂2
ð0Þ þ �ŷ2

ð0Þ
2ð1� �ẑ

ð0ÞÞ
�
sþ �x̂2

ð0Þ tansþ �ŷ2
ð0Þ tanhs

2ð1� �ẑ
ð0ÞÞ

�
;

x� x0 ¼
�x̂
ð0Þ tans

!ðgwÞð1� �ẑ
ð0ÞÞ

;

y� y0 ¼
�ŷ
ð0Þ tanhs

!ðgwÞð1� �ẑ
ð0ÞÞ

;

s ¼ !ðgwÞ�ð0Þð1� �ẑ
ð0ÞÞ�;

(42)

where ðt0; x0; y0; z0Þ denote the coordinates of the space-
time point where the interaction between the test particle
and the gravitational wave starts.

IV. SCATTERING OF PARTICLES BYAN
ELECTROMAGNETIC PLANE WAVE

Now instead let the test particle interact with a photon
radiation field in the gravitational field generated by an
electromagnetic plane wave propagating along the positive
z axis exactly as in the flat spacetime case in Sec. II. The
corresponding conformally flat line element found by
Griffiths [15] is given by Eq. (31) with functions

F ¼ cosðbðemÞuÞ ¼ G; (43)

differing from the corresponding gravitational wave case
only by a trigonometric rather than hyperbolic cosine
appearing in G, so that the above analysis with the addi-
tional interaction with the radiation field is easily repeated
as done in Ref. [5], allowing a comparison between these
two cases as well as with the flat one. However, the present
case corresponds to a nonvacuum spacetime which is a
solution of the Einstein equations with energy-momentum
tensor

T ¼ �0K � K; K ¼ bðemÞ@v ¼ ffiffiffi
2

p
!ðemÞ@v; (44)

where �0 ¼ 1=4� and !ðemÞ is the frequency of the wave.

This corresponds to the flat case of Sec. II with Ku < 0 and
Kx ¼ Ky ¼ Kv ¼ 0 and !ðemÞ ¼ !K, which makes the

energy-momentum tensors agree. For convenience we in-
troduce the parameter s ¼ bðemÞu ¼ !ðemÞðt� zÞ.

As in the previous section, the metric would have a
coordinate horizon at bðemÞu ¼ �=2 but this is avoided

by restricting the coordinate u to the interval ½0; u1� with
u1 <�=ð2bðemÞÞ. Similarly let the electromagnetic wave

spacetime be sandwiched between two Minkowskian re-
gions u 2 ð�1; 0Þ [ ðu1;1Þ, again as in Fig. 1. The
matching conditions (34) at the two null hypersurface
boundaries now imply

� ¼ cosðbðemÞu1Þ þ bðemÞu1 sinðbðemÞu1Þ ¼ �;

� ¼ �bðemÞ sinðbðemÞu1Þ ¼ �:
(45)

Again consider the behavior of neutral test particles in
such a spacetime with the additional interaction with the
radiation field deflecting them from geodesic motion.
However, now the radiation field is not a test field super-
imposed on a given gravitational background, so that the
treatment is self-consistent.
The observer decomposition of the radiation force of

Eqs. (11) and (12) is formally the same as in Eq. (20), with
!K replaced by !ðemÞ and the parameter A defined as in

Eq. (13). The flat spacetime equations of motion (14) with
�â
K ¼ �â

z acquire an extra term proportional to!ðemÞ which
explicitly depends on the coordinate u through s,

d�x̂

d�
¼ �A!2

ðemÞð1� �ẑÞ�x̂ �!ðemÞ��x̂ tans

� ð�x̂2 þ �ŷ2 þ �ẑ � 1Þ;
d�ŷ

d�
¼ �A!2

ðemÞð1� �ẑÞ�ŷ �!ðemÞ��ŷ tans

� ð�x̂2 þ �ŷ2 þ �ẑ � 1Þ;
d�ẑ

d�
¼ A!2

ðemÞð1� �ẑÞ2 þ!ðemÞ� tansð�ŷ2 þ �x̂2Þð1� �ẑÞ:
(46)

These must be completed with the evolution equations for
t, x, y and z [see Eq. (39)], i.e.,

dt

d�
¼�;

dx

d�
¼ ��x̂

coss
;

dy

d�
¼ ��ŷ

coss
;

dz

d�
¼��ẑ; (47)

which can be integrated exactly, first reexpressing the
derivatives in terms of s through ds=d�¼!ðemÞ�ð1��ẑÞ.
This simplifies the velocity equations to

D. BINI et al. PHYSICAL REVIEW D 86, 064016 (2012)

064016-6



d�x̂

ds
¼ �A

�
!ðemÞ�x̂ � �x̂

1� �ẑ
ð�x̂2 þ �ŷ2 þ �ẑ � 1Þ tans;

d�ŷ

ds
¼ �A

�
!ðemÞ�ŷ � �ŷ

1� �ẑ
ð�x̂2 þ �ŷ2 þ �ẑ � 1Þ tans;

d�ẑ

ds
¼ A

�
!ðemÞð1� �ẑÞ þ ð�ŷ2 þ �x̂2Þ tans: (48)

The corresponding solutions are then easily obtained:

�¼ �ð0Þ
cos2s

1þð1��ẑ
ð0ÞÞðWðsÞcos2s�Wð0ÞÞ

1þA�ð0Þð1��ẑ
ð0ÞÞ!ðemÞs

;

½�x̂;�ŷ;1��ẑ�¼ coss

1þð1��ẑ
ð0ÞÞðWðsÞcos2s�Wð0ÞÞ

�½�x̂
ð0Þ;�

ŷ
ð0Þ;ð1��ẑ

ð0ÞÞcoss�; (49)

where �â
ð0Þ � �âð0Þ and

WðsÞ ¼ 1

2
þ 1

2

ð1þ A�ð0Þð1� �ẑ
ð0ÞÞ!ðemÞsÞ2

�2
ð0Þð1� �ẑ

ð0ÞÞ2
: (50)

When A ¼ 0 (geodesic case) the solution is still given by
Eq. (49) with WðsÞ ¼ Wð0Þ. As in the previous section the
integration of the equations of motion has been carried out
by assuming that the interaction starts at a proper time
� ¼ 0 associated with s ¼ 0, and that before the interac-
tion the test particle moves along geodesic lines described
by Eqs. (6) and (7). Again the values �â

ð0Þ refer to the

particle’s initial spatial velocity at the start of the interac-
tion, whose relation with the Killing constants ðpv; px; pyÞ
is still given by Eq. (5).

Using Eq. (49), the equation for s then becomes

ds

d�
¼ �ð0Þð1� �ẑ

ð0ÞÞ!ðemÞ
1þ A�ð0Þð1� �ẑ

ð0ÞÞ!ðemÞs
; (51)

whose solution is

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2A!2

ðemÞ�
2
ð0Þð1� �ẑ

ð0ÞÞ2�
q

� 1

A!ðemÞ�ð0Þð1� �ẑ
ð0ÞÞ

: (52)

Equation (47) can then be integrated to obtain the solu-
tion for the accelerated orbit (see Ref. [5] for details)
leading finally to the parametric equations for the orbit in
terms of the coordinates ðu; v; y; zÞ with u as the parameter

u ¼ s

bðemÞ
¼ 1

Apvb
2
ðemÞ

ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2Ap2

vb
2
ðemÞ�

q
Þ;

v� v0 ¼ 1

2p2
v

�
uþ p2

?
bðemÞ

tanðbðemÞuÞ
�

� Ab2ðemÞu
2

2pv

�
1� A

3
pvb

2
ðemÞu

�
;

x� x0 ¼ � px

bðemÞpv

tanðbðemÞuÞ;

y� y0 ¼ � py

bðemÞpv

tanðbðemÞuÞ; (53)

with associated 4-velocity

U ¼ e��ðemÞðuÞ
�
�pv@u � 1

2pv

�
e2�ðemÞðuÞ þ p2

?
cos2ðbðemÞuÞ

�
@v

þ px

cos2ðbðemÞuÞ
@x þ

py

cos2ðbðemÞuÞ
@y

�
; (54)

where we have introduced the notation

e�ðemÞðuÞ ¼ 1� Apvb
2
ðemÞu: (55)

V. TEST PARTICLE MOTION AFTER THE
INTERACTION WITH A RADIATION FIELD

Let us now consider a test particle emerging from its
interaction in region II with a yet unspecified radiation field
(including the flat case with a test radiation field) entering
the flat spacetime region III [see Eq. (33)] at the point P1

with coordinates ðu1; v1; x1; y1Þ associated with a proper
time value �1. Although the spacetime in region III is flat,
the metric functions FðuÞ and GðuÞ for both the case of
electromagnetic and gravitational wave do not have the
value 1 associated with flat coordinates. In fact, they can be
represented by

FðuÞ ¼ �þ �u; GðuÞ ¼ �þ �u: (56)

Clearly, this representation also holds in the flat case with
� ¼ 1 ¼ � and � ¼ 0 ¼ �. Standard Cartesian coordi-
nates must be obtained by two successive coordinate trans-
formations, namely ðu; v; x; yÞ ! ðU; V; X; YÞ,
U ¼ u; X ¼ FðuÞx; Y ¼ GðuÞy;
V ¼ vþ 1

2
FðuÞF0ðuÞx2 þ 1

2
GðuÞG0ðuÞy2; (57)

for which @V ¼ @v and then ðU; V; X; YÞ ! ðT; X; Y; ZÞ,

T¼UþVffiffiffi
2

p ; Z¼V�Uffiffiffi
2

p ; X¼X; Y¼Y: (58)

Let us denote the specific 4-momentum in region III and
in ðU; V; X; YÞ coordinates by

U ¼ �QV

�
@U þ 1þQ2

?
2Q2

V

@V

�
þQX@X þQY@Y; (59)
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where QV , QX, QY are constant. The emerging particle
4-velocity and the parametric equations for its trajectory
are then explicitly obtained (in both coordinate systems) by
imposing matching conditions at the boundary II–III where
� ¼ �1, and will be discussed below in the three different
cases.

Finally consider a collection of particles labeled by their
initial coordinates x0 and y0 along the transverse directions
x and y to the wave propagation. Particles scattered by the
wave pulse will have different outgoing momentum
4-vectors, depending on their initial data. The matching
at the boundary II–III of the wave-zone and out-zone
4-momenta provide a map between the transverse compo-
nents of the 4-momentum in any spacelike plane associated
with the static observer’s rest space in the final Minkowski
region and the initial location of those particles in a similar
plane in the initial Minkowski region. Therefore, one can
define a classical differential scattering cross section asso-
ciated with this transverse scattering map in terms of the
outgoing momentum components as follows [3]:

d	class ¼ dx0dy0 ¼ jJjdQXdQY; (60)

where J denotes the Jacobian of the transformation be-
tween ðQX;QYÞ and ðx0; y0Þ.

A. Flat spacetime with test radiation field

In the simplest case of a test radiation field superim-
posed on a flat spacetime we find [see Eq. (26)]

QV ¼pve
��ðtfÞðu1Þ; QX¼pxe

��ðtfÞðu1Þ; QY ¼pye
��ðtfÞðu1Þ:

(61)

Thus the transverse differential scattering cross section
vanishes in this case. The effect of the test field on the
particle’s 4-velocity has been examined in Sec. II, consid-
ering the initial and final 4-velocity vectors, as given by
Eqs. (3) and (26), in flat spacetime. In the case of a test
radiation field the vectors are related by a boost,

U�Uð0Þ ��UðtfÞ ¼ ðe��ðtfÞðu1Þ �1Þ
�
�
�pv@u� 1

2pv

ð�e�ðtfÞðu1Þþp2
?Þ@v

þpx@xþpy@y

�
: (62)

The effect of the wave on the particle’s 4-velocity can be
also summarized by a boost if one considers both the initial
and the final 4-velocity vectors in the same flat spacetime.
We can write

U ¼ �ðU;Uð0ÞÞ½Uð0Þ þ �ðU;Uð0ÞÞ� (63)

with

�ðU;Uð0ÞÞ ¼ 1�Uð0Þ ��UðtfÞ;

�ðU;Uð0ÞÞ ¼
PðUð0ÞÞ�UðtfÞ

1�Uð0Þ ��UðtfÞ
;

(64)

where PðUð0ÞÞ projects orthogonally to Uð0Þ and the scalar

product here refers to the flat spacetime metric.

B. Gravitational wave radiation field

In order to obtain the values of the constant components
of the emerging 4-momentum, we first apply the inverse
coordinate transformation (57) to the 4-velocity (59). Next
we require the latter to match at the boundary II–III where
� ¼ �1 ¼ �u1=pv, i.e., at the spacetime point P1 with
coordinates ðu1; v1; x1; y1Þ, with the wave-zone 4-velocity
(36) with functions F and G given by Eq. (32). By iden-
tifying the components there we finally get the result

QV ¼ pv;

QX ¼ pv sinðbðgwÞu1ÞbðgwÞx0 þ px cosðbðgwÞu1Þ;
QY ¼ �pv sinhðbðgwÞu1ÞbðgwÞy0 þ py coshðbðgwÞu1Þ;

(65)

where the following relations have been used,

v1 ¼ 1

2p2
v

�
u1 þ p2

x

bðgwÞ
tanðbðgwÞu1Þ þ

p2
y

bðgwÞ
tanhðbðgwÞu1Þ

�

þ v0;

x1 ¼ � px

bðgwÞpv

tanðbðgwÞu1Þ þ x0;

y1 ¼ � py

bðgwÞpv

tanhðbðgwÞu1Þ þ y0; (66)

to reexpress the coordinates at the boundary P1 in terms of
those of P0 associated with � ¼ 0, where the interaction
between the test particle and the gravitational wave starts.
Note that also the flat spacetime coordinate frames
f@U; @V; @X; @Yg and f@u; @v; @x; @yg have been identified

to make the comparison and that the momentum pv is
conserved here.
The differential (transverse) scattering cross section (60)

is then given by

d	ðgwÞ
class ¼

dQXdQY

p2
vb

2
ðgwÞ sinðbðgwÞu1Þ sinhðbðgwÞu1Þ

: (67)

The effect of the wave on the particle’s 4-velocity can be
also summarized by a boost if one considers both the initial
and the final 4-velocity vectors in the same flat spacetime.
In this sense, by using Eq. (59) and its analogous for Uð0Þ
before the passage of the wave (i.e., with QV , QX, QY

replaced by pv, px, py), we can write
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U�Uð0Þ � �UðgwÞ

¼ � 1

2pv

ðQ2
? � p2

?Þ@v þ ðQX � pxÞ@x
þ ðQY � pyÞ@y; (68)

as in Eq. (62), so that the relative decomposition U ¼
�ðU;Uð0ÞÞðUð0Þ þ �ðU;Uð0ÞÞ is accomplished with

�ðU;Uð0ÞÞ ¼ 1�Uð0Þ � �UðgwÞ;

�ðU;Uð0ÞÞ ¼
PðUð0ÞÞ�UðgwÞ

1�Uð0Þ � �UðgwÞ
;

(69)

as in Eq. (64), where PðUð0ÞÞ projects orthogonally to Uð0Þ
and the scalar product here refers to the flat spacetime
metric. The direct evaluation of the relative velocity
�ðU;Uð0ÞÞ follows straightforwardly from Eq. (65). Note

that Eq. (69) is the curved spacetime counterpart of
Eq. (29) of the flat case examined previously. For instance,
assuming x0 ¼ 0 ¼ y0, from Eq. (65) we have

QX ¼ px cosðbðgwÞu1Þ; QY ¼ py coshðbðgwÞu1Þ; (70)

and hence �UðgwÞ becomes

�UðgwÞ ¼� 1

2pv

½�p2
xsin

2ðbðgwÞu1Þþp2
ysinh

2ðbðgwÞu1Þ�@v
þpx½cosðbðgwÞu1Þ�1�@x
þpy½coshðbðgwÞu1Þ�1�@y: (71)

C. Electromagnetic wave radiation field

In the case of the spacetime of an electromagnetic wave,
the matching conditions at P1 with coordinates
ðu1; v1; x1; y1Þ give the following value of the proper time:

�1 ¼ � u1
pv

�
1� 1

2
Apvb

2
ðemÞu1

�
: (72)

The relation between ‘‘in’’ and ‘‘out’’ momenta in this case
is

QV ¼ pve
��ðemÞðu1Þ;

QX ¼ ½pv sinðbðemÞu1ÞbðemÞx0 þ px cosðbðemÞu1Þ�e��ðemÞðu1Þ;

QY ¼ ½pv sinðbðemÞu1ÞbðemÞy0 þ py cosðbðemÞu1Þ�e��ðemÞðu1Þ;
(73)

where the following relations have been used:

v1 ¼ 1

2p2
v

�
u1 þ

p2
?

bðemÞ
tanðbðemÞu1Þ

�

�
1
2Ab

2
ðemÞu

2
1

pv

�
1� 1

3
Apvb

2
ðemÞu1

�
þ v0;

x1 ¼ � px

bðemÞpv

tanðbðemÞu1Þ þ x0;

y1 ¼ � py

bðemÞpv

tanðbðemÞu1Þ þ y0: (74)

The differential scattering cross section (60) is then
given by

d	ðemÞ
class ¼

e2�ðemÞðu1ÞdQXdQY

p2
vb

2
ðemÞsin

2ðbðemÞu1Þ
: (75)

The effect of the wave on the particle’s 4-velocity can
be similarly summarized by a boost if one considers
both the initial and the final 4-velocity vectors in the
same flat spacetime, identifying f@U; @V; @X; @Yg with
f@u; @v; @x; @yg in order to make the comparison.

Expressing U in region III the same form as Eq. (59)
[but now taking into account Eq. (73)] and comparing it
with the original Uð0Þ before the passage of the electro-

magnetic wave, we can now write the final difference as
U�Uð0Þ � �UðemÞ with

�UðemÞ ¼�ðQV�pvÞ@uþ 1

2QVpv

½ð1þp2
?ÞQV

�ð1þQ2
?Þpv�@vþðQX�pxÞ@xþðQY�pyÞ@y:

(76)

Similarly, the relative decomposition U ¼ �ðU;Uð0ÞÞ�
ðUð0Þ þ �ðU;Uð0ÞÞÞ is accomplished with the equivalent of

Eq. (69). Here, the direct evaluation of the relative velocity
�ðU;Uð0ÞÞ follows straightforwardly from Eq. (73). For

instance, for x0 ¼ 0 ¼ y0 the difference �UðemÞ becomes

�UðemÞ ¼ �pvðe��ðemÞðu1Þ � 1Þ@u � 1

2pv

½ðe�ðemÞðu1Þ � 1Þ

þ p2
?ðcos2ðbðemÞuÞe��ðemÞðu1Þ � 1Þ�@v

þ ðe��ðemÞðu1Þ cosðbðemÞu1Þ � 1Þðpx@x þ py@yÞ:
(77)

VI. DISCUSSION

Let a massive test particle be scattered by a radiation
field filling a spacetime region and imagine that the source
of radiation is unknown. For the purpose of the present
investigation we have considered three different kinds of
radiation: a photon test field in a flat spacetime back-
ground, an exact solution of the Einstein field equations
for a strong plane gravitational wave (with single polariza-
tion state for simplicity), and an exact solution of the
Einstein-Maxwell equations representing the curved
spacetime associated with a plane electromagnetic wave.
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The effect of the interaction in all cases is a change in the
linear momentum of the particle from its initial state before
the scattering and the final state transferred to the particle
by the radiation itself. We have considered the comparative
scenario in which the interaction has a finite duration; i.e.,
the spacetime region containing the radiation field is sand-
wiched between two Minkowskian zones, so that the initial
state of the particle is assumed to be the same in all cases.
The final one depends instead on the properties of the
different radiation fields. In the case in which the radiation
field is represented by either a photon test field in a flat
spacetime or the self-consistent field of the exact electro-
magnetic wave, the interaction has been modeled by in-
cluding a force term à la Poynting-Robertson into the
equations of motion given by the 4-momentum density of
radiation observed in the particle’s rest frame with a multi-
plicative constant factor expressing the strength of the
interaction itself. The resulting motion is therefore not
geodesic in both cases. On the contrary, in the case in

which the radiation field is represented by the gravitational
field of a single plane gravitational wave, particles propa-
gate along geodesics.
We have computed the boost (related to the simpler

specific 4-momentum difference �U) relating the initial
and final 4-momentum of the particle, Uð0Þ and U, both

understood in the context of the flat spacetime zones which
sandwich the interaction region in between. For the various
cases and with the notation considered above, we have
found for the projection of �U on the transverse x-y plane

�U?
ðtfÞ ¼ ðe��ðtfÞðu1Þ�1Þðpx@xþpy@yÞ;

�U?
ðgwÞ ¼px½cosðbðgwÞu1Þ�1�@x

þpy½coshðbðgwÞu1Þ�1�@y;
�U?

ðemÞ ¼ ðe��ðemÞðu1ÞcosðbðemÞu1Þ�1Þðpx@xþpy@yÞ; (78)

whereas for the projection on the transverse u-v plane

�Uk
ðtfÞ ¼ � 1

2pv

½ðe�ðtfÞðu1Þ � 1Þ þ p2
?ðe��ðtfÞðu1Þ � 1Þ�@v � pvðe��ðtfÞðu1Þ � 1Þ@u;

�Uk
ðgwÞ ¼ � 1

2pv

½�p2
xsin

2ðbðgwÞu1Þ þ p2
ysinh

2ðbðgwÞu1Þ�@v;

�Uk
ðemÞ ¼ � 1

2pv

½ðe�ðemÞðu1Þ � 1Þ þ p2
?ðcos2ðbðemÞuÞe��ðemÞðu1Þ � 1Þ�@v � pvðe��ðemÞðu1Þ � 1Þ@u:

(79)

In the limit of small electromagnetic field compared to the
duration of the wave jbðemÞju1 ¼

ffiffiffi
2

p j!ðemÞju1 
 1 in the
final case of the exact electrovac solution field, one obtains
the same result as in the first case of a test field with the
same frequency !K ¼ !ðemÞ and therefore the same radia-
tion field energy-momentum tensor. In the gravitational
case the transverse change in the momentum involves a
rotation due to the deformation of the plane wave direc-
tions by the wave, while in the electromagnetic cases only
an overall scaling is involved. For the longitudinal changes,
the gravitational case lacks a component along @u because
the motion is geodesic and @v is a Killing vector field,

while in the other cases the force responsible for the
change in momentum itself has a covariant component
along @v.
This comparative analysis shows how the nature of

the interaction of massive particles with radiation fields
of different kinds strongly influences the scattering
process, in principle leading to detectable observational
consequences.
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