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Bose-Einstein condensate general relativistic stars
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We analyze the possibility that due to their superfluid properties some compact astrophysical objects
may contain a significant part of their matter in the form of a Bose-Einstein condensate. To study the
condensate we use the Gross-Pitaevskii equation with arbitrary nonlinearity. By introducing the Madelung
representation of the wave function, we formulate the dynamics of the system in terms of the continuity
and hydrodynamic Euler equations. The nonrelativistic and Newtonian Bose-Einstein gravitational
condensate can be described as a gas, whose density and pressure are related by a barotropic equation
of state. In the case of a condensate with quartic nonlinearity, the equation of state is polytropic with index
one. In the framework of the Thomas-Fermi approximation the structure of the Newtonian gravitational
condensate is described by the Lane-Emden equation, which can be exactly solved. The case of the
rotating condensate is briefly discussed. General relativistic configurations with quartic nonlinearity are
studied numerically with both nonrelativistic and relativistic equations of state, and the maximum mass of
the stable configuration is determined. Condensates with particle masses of the order of two neutron
masses (Cooper pair) and scattering length of the order of 10-20 fm have maximum masses of the order of
2 M, maximum central density of the order of 0.1-0.3 X 10'6 g/cm?® and minimum radii in the range of
10-20 km. In this way we obtain a large class of stable astrophysical objects, whose basic astrophysical
parameters (mass and radius) sensitively depend on the mass of the condensed particle, and on the
scattering length. We also propose that the recently observed neutron stars with masses in the range of
2-2.4 M, are Bose-Einstein condensate stars. We discuss the connection of our results with previous

boson star models based on scalar field theory.
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I. INTRODUCTION

At very low temperatures, particles in a dilute Bose gas
can occupy the same quantum ground state, forming a
Bose-Einstein condensate (BEC), which appears as a sharp
peak over a broader distribution in both coordinate space
and momentum space. The possibility to obtain quantum
degenerate gases by a combination of laser and evaporative
cooling techniques has opened several new lines of re-
search, at the border of atomic, statistical and condensed
matter physics (for recent reviews see Refs. [1,2]).

To say that so many particles are in the same quantum
state is equivalent to saying that these particles display the
state coherence. That is, BEC is a particular case of coher-
ence phenomena. As the gas is cooled, the condensation of
a large fraction of the particles in a gas occurs via a phase
transition taking place when the wavelengths of individual
particles overlap and behave identically. For the transition
to take place, particles have to be strongly correlated with
each other [1,2].

For an ensemble of particles in thermodynamic equilib-
rium at temperature 7, the thermal energy of a particle
is given by kgT, where kg is Boltzmann’s constant. For

a particle of mass m, the thermal wavelength is Ay =
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N2mh?*/mkyT. Particles become correlated with each
other when their wavelengths overlap, that is, when the
thermal wavelength is greater than the mean inter-particles
distance I/, Ay > [. The average particle number n for N
particles in a volume V, n = N/V, is related to the
distance [ through the relation n/> = 1. Hence the condi-
tion A7 > [ can be rewritten as nA3 > 1, which yields the
inequality [3]:

27h?
ka

T<

n*s3. (1

Hence a coherent state may develop if the particle
density is high enough or the temperature is sufficiently
low. An accurate description of the BEC for an ideal
gas is based on the Bose-Einstein distribution f(p) =
{expl(e, — m)/kpT] — 1}, for particles with momentum
p, energy g, = p?/2m and chemical potential . In the
thermodynamic limit N — oo, V — oo, N/V — constant,
the fraction of particles condensing to the state with
p = 0 below the condensation temperature 7, is ny =
1 —(T/T.)*?, while ny =0 above the condensation
temperature. The condensation temperature is 7, =
2ah2n?3 /mky 3, where ¢ = 2.612 [3]. The dynamical
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process of Bose-Einstein condensation in the canonical
ensemble (fixed temperature 7) has been studied in
Ref. [4].

A nonideal, weakly interacting, Bose gas also displays
Bose-Einstein condensation though particles interactions
deplete the condensate, so that at zero temperature the
condensate fraction is smaller than unity, ny < 1. A system
is called weakly interacting if the characteristic interaction
radius ry, is much smaller than the mean interparticles
distance /, r;,; < [. This inequality can be rewritten equiv-
alently as nri < 1. If this condition holds, the system is
called dilute [2].

Superfluid liquids, like “He, are far from being dilute.
Nevertheless, one believes that the phenomenon of
superfluidity is related with BEC. The experimental obser-
vations and the theoretical calculations estimate the con-
densate fraction for superfluid helium at 7 =0 to be
no = 0.10. A strongly correlated pair of fermions can be
treated approximately like a boson. This is why the arising
superfluidity in *He can be interpreted as the condensation
of coupled fermions. Similarly, superconductivity may be
described as the condensation of the Cooper pairs that are
formed by the electrons or the holes [5].

An ideal system for the experimental observation of the
BEC condensation is a dilute atomic Bose gas confined in
a trap and cooled to very low temperatures. BEC were first
observed in 1995 in dilute alkali gases such as vapors of
rubidium and sodium. In these experiments, atoms were
confined in magnetic traps, evaporatively cooled down to
a fraction of a microkelvin, left to expand by switching off
the magnetic trap, and subsequently imaged with optical
methods. A sharp peak in the velocity distribution was
observed below a critical temperature, indicating that con-
densation has occurred with the alkali atoms condensed
in the same ground state. Under the typical confining
conditions of experimental settings, BECs are inhomoge-
neous, and hence condensates arise as a narrow peak not
only in the momentum space but also in the coordinate
space [6-8].

If considering only two-body mean field interactions,
a dilute Bose-Einstein gas near zero temperature can be
modelled using a cubic nonlinear Schrédinger equation
with an external potential, which is known as the Gross-
Pitaevskii equation [2].

The possibility of the Bose-Einstein condensation has
also been considered in nuclear and quark matter, in the
framework of the analysis of the BCS-BEC crossover. At
ultra-high density, matter is expected to form a degenerate
Fermi gas of quarks in which the Cooper pairs of quarks
condensate near the Fermi surface (color superconductor).
If the attractive interaction is strong enough, at some
critical temperature the fermions may condense into the
bosonic zero mode, forming a Bose-Einstein quark con-
densate [9]. The basic concept of the BCS-BEC crossover
is as follows: As long as the attractive interaction between
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fermions is weak, the system exhibits the superfluidity
characterized by the energy gap in the BCS mechanism.
On the other hand, if the attractive interaction is strong
enough, the fermions first form bound molecules (bosons).
Then, they start to condense into the bosonic zero mode
at some critical temperature. These two situations are
smoothly connected without a phase transition [10].

One of the most striking features of the crossover is that
the critical temperature in the BEC region is independent
of the coupling for the attraction between fermions. This is
because the increase of the coupling only affects the inter-
nal structure of the bosons while the critical temperature is
determined by the boson’s kinetic energy. Thus, the critical
temperature reaches a ceiling for the large coupling as long
as the binding effect on the boson mass can be neglected.
Even in the nuclear matter where the interaction is rela-
tively strong, the binding energy of the deuteron is much
smaller than the nucleon mass. This fact allows us to work
within a nonrelativistic framework to describe such a
crossover [10]. However, in relativistic systems where the
binding energy cannot be neglected, there could be two
crossovers in the relativistic fluids: One is the ordinary
BCS-BEC crossover where the critical temperature in the
BEC region would not plateau because of the relativistic
effect, and the second is the crossover from the BEC
state to a relativistic state, the so-called relativistic BEC,
where the critical temperature increases to the order of the
Fermi energy [10].

In isospin symmetric nuclear matter, neutron-proton
(np) pairing undergoes a smooth transition leading from
an assembly of np Cooper pairs at higher densities to a gas
of Bose-condensed deuterons as the nucleon density is
reduced to an extremely low value. This transition may be
relevant to supernova matter or for the crust of neutron
stars [11]. A mixture of interacting neutral and charged
Bose condensates, which is supposed to be realized in the
interior of neutron stars in the form of a coexistent neutron
superfluid and protonic superconductor, was considered
in Ref. [12].

The possibility of the existence of some Bose conden-
sates in neutron stars was considered for a long time (see
Glendenning [13] for a detailed discussion). The possibil-
ity of a Bose condensation of dibaryons in dense nuclear
matter was considered in Ref. [14]. Dibaryons do not
contribute to the pressure since they have zero momentum.
The effect of narrow dibaryon resonances on basic nuclear
matter properties and on the structure of neutron stars was
investigated in mean-field theory and in relativistic Hartree
approximation in Ref. [15]. The condensation of negatively
charged mesons in neutron star matter is favored because
such mesons would replace electrons with very high Fermi
momenta. The in-medium properties of the K~ mesons
may be such that they could condense in neutron matter
as well. BECs of kaons/anti-kaons in compact objects
were discussed recently [16,17]. Pion as well as kaon
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condensates would have two important effects on neutron
stars. First, condensates soften the equation of state above
the critical density for onset of condensation, which re-
duces the maximal possible neutron star mass. At the same
time, however, the central stellar density increases due to
the softening. Second, meson condensates would lead to
neutrino luminosities which are considerably enhanced
over those of normal neutron star matter. This would speed
up neutron star cooling considerably [13]. Another particle
which may form a condensate is the H-dibaryon, a doubly
strange six quarks composite with spin and isospin zero,
and baryon number two. In neutron star matter, which may
contain a significant fraction of A hyperons, the A’s could
combine to form H-dibaryons. H-matter condensates may
thus exist at the center of neutron stars [13]. Neutrino
superfluidity, as suggested by Kapusta [18], may also lead
to Bose-Einstein condensation [19].

Real scalar fields considered in the framework of quan-
tum field theory and general relativity have equilibrium
configuration that were discovered by Seidel and Suen [20]
and are called oscillatons. They are globally regular but are
fully time dependent. As for their stability, they seem to be
quite robust as far as numerical evolution is concerned
[21]. The objects which can be formed by scalar fields
have been investigated in detail by using mainly numerical
tools [22]. Complex scalar fields can form stable equilib-
rium configurations, called boson stars [23-28], that are
globally regular and whose energy density is time inde-
pendent. The possibility that dark matter is in the form of
a scalar field [29-31] or a BEC [32-35] has also been
investigated extensively.

Therefore, the physical results presented above show
that the possibility of the existence of a BEC inside com-
pact astrophysical objects or the existence of stars formed
entirely from a BEC cannot be excluded a priori. Such a
possibility has been in fact suggested recently. Wang [36]
used the Gross-Pitaevskii equation, together with the asso-
ciated energy functional and the Thomas-Fermi approxi-
mation, to study a cold star composed of a dilute BEC. For
a static star, the exact solution for the density distribution
was obtained. A number of perturbative solutions for the
case of a slowly rotating star have also been derived. The
effect of a scalar dark matter background on the equilib-
rium of degenerate stars was studied by Grifols [37], with a
particular focus on white dwarfs, and the changes induced
in their masses and radii.

A detailed analytical and numerical analysis of the
Newtonian BEC systems was performed recently in
Refs. [33,34], respectively. In Ref. [33] an approximate
analytical expression of the mass-radius relation of a
Newtonian self-gravitating BEC with short-range interac-
tions, described by the Gross-Pitaevskii-Poisson system,
was obtained. For repulsive short-range interactions (posi-
tive scattering lengths), configurations of arbitrary mass do
exist, but their radius is always larger than a minimum
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value. For attractive short-range interactions (negative
scattering lengths), equilibrium configurations only exist
below a maximum mass. The equation of hydrostatic
equilibrium describing the balance between the gravita-
tional attraction and the pressure due to quantum effects
and short-range interactions (scattering) was numerically
solved in Ref. [34].

It is the purpose of the present paper to develop a general
and systematic formalism for the study of gravitationally
bounded BECs, in both Newtonian and general relativistic
situations. Our approach is independent of the nature of the
condensate. As a starting point, we consider nonrelativistic
BECs and generalize the Gross-Pitaevskii equation by
allowing an arbitrary form of the nonlinearity. To obtain
a transparent description of the physical properties of
the BECs we introduce the hydrodynamical representation
of the wave function which allows the formulation of
the dynamics of the condensate in terms of the continuity
and hydrodynamic Euler equations. Hence, the Bose-
Einstein gravitational condensate can be described as a
gas whose density and pressure are related by a barotropic
equation of state. In the case of a condensate with quartic
nonlinearity, the equation of state of the condensate is
given by a polytropic equation of state with polytropic
index n = 1. In the framework of the Thomas-Fermi
approximation, with the quantum potential neglected, the
structure of the gravitational BEC is described by the Lane-
Emden equation, which can be solved analytically. Hence
the mass and the radius of the condensate can be easily
obtained. The case of the rotating Newtonian condensate
is also discussed, by using the generalized Lane-Emden
equation.

By using the equation of state corresponding to the
BECs with quartic nonlinearity, we consider the general
relativistic properties of condensate stars by numerically
integrating the structure equations [the mass continuity and
the Tolman-Oppenheimer-Volkoff (TOV) equation] for a
static configuration. In our general relativistic study, we
consider the cases of condensates described by both non-
relativistic and relativistic equations of state, respectively.
The maximum mass and the corresponding radius are
obtained numerically. BEC stars with particle masses of
the order of two neutron masses (Cooper pair) and scatter-
ing length of the order of 10-20 fm have maximum masses
of the order of 2 My, maximum central density of the
order of 0.1-0.3 X 10'® g/cm?® and minimum radii in the
range of 10-20 km.

The present paper is organized as follows. The Gross-
Pitaevskii equation is written down in Sec. II. The
hydrodynamical representation for the study of the gravi-
tationally bounded BECs is introduced in Sec. III. The
static and slowly rotating Newtonian condensates with
quartic nonlinearity are analyzed in Sec. I'V. The maximum
mass of relativistic BEC stars is discussed in Sec. V in a
qualitative manner. The detailed properties of general
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relativistic BEC stars are studied in Sec. VI for both non-
relativistic and relativistic equations of state. The astro-
physical implications of our results are considered in
Sec. VII. We conclude by some final remarks in Sec. VIII.

Throughout the paper, we discuss the connection of our
results with previous boson star models based on scalar
field theory [23-28].

II. THE GROSS-PITAEVSKII EQUATION FOR THE
BOSE-EINSTEIN CONDENSATE STARS

In a quantum system of N interacting condensed bosons,
most of the bosons lie in the same single-particle quantum
state. The many-body Hamiltonian describing the interact-
ing bosons confined by an external potential V,,, is given,
in the second quantization, by

2
a— j d?xp*(?)[— z't‘—v2 + V() + Vext(F)]‘lf(?)
m
+ % f dF 7 RV WG - PO, @)

where W(7) and ¥ (7) are the boson field operators that
annihilate and create a particle at the position 7, respec-
tively, and V(7 — ) is the two-body interatomic potential
[2]. The potential V,(7) associated to the rotation of the
condensate is given by

2

Vrot(?) = _frot(t) (x2 + yz)’ 3)

mo

2
where w is the angular velocity of the condensate in the
direction z and f,,(¢) is a function which takes into account
the possible time variation of the rotation potential (here,
we shall take f,,, = 1). For a system consisting of a large
number of particles, the calculation of the ground state of
the system with the direct use of Eq. (2) is impracticable,
due to the high computational cost.

Therefore the use of some approximate methods can
lead to a significant simplification of the formalism. One
such approach is the mean field description of the conden-
sate, which is based on the idea of separating out the
condensate contribution to the bosonic field operator.
For a uniform gas in a volume V, BEC occurs in the single
particle state W, = 4/N/V, having zero momentum. The
field operator can then be decomposed in the form \if(?) =
JN/V + V(7). By treating the operator V/(7) as a small
perturbation, one can develop the first order theory for the
excitations of the interacting Bose gases [1,2].

In the general case of a nonuniform and time-dependent
configuration, like a BEC star, the field operator in the
Heisenberg representation is given by

VE ) = ¢F )+ V(7 1), 4)

where (7, 1), called the condensate wave function, is the
expectation value of the field operator, ¢ (7, 1) = (V(F, 1)).
It is a classical field and its absolute value fixes the number
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density of the condensate through n(7 1) = |4 (7 1)|>
The normalization conditionis N = [ n(7, t)d7, where N is
the total number of bosons in the star.

The equation of motion for the condensate wave func-
tion is given by the Heisenberg equation corresponding to
the many-body Hamiltonian given by Eq. (2):

0 » PSRN
ih—W(7 1) =V, H]
ot
hZ
=[5V Vi) + Vo)

" j AP, OV - PR, t)]‘if(?, 0.
5)

Replacing W(7 1) by the condensate wave function ¢
gives the zeroth-order approximation to the Heisenberg
equation:

2
in Ly = [— P vu® + Ve
ot 2m

+ [ dFV(# = Py (7, r>l2]¢<i . ©

In the integral containing the binary potential V(# — 7),
this replacement is in general a poor approximation for
short distances. However, in a dilute and cold gas, only
binary collisions at low energy are relevant and these
collisions are characterized by a single parameter, the
s-wave scattering length, independently of the details
of the two-body potential. Therefore, one can replace
V(F —7) by an effective interaction V(¥ —7F) =
uyS8(¥ — 7), where the coupling constant u is related to
the scattering length a through u, = 47h*a/m. Hence, we
assume that in a medium composed of scalar particles with
nonzero mass, the range of Van der Waals-type scalar
mediated interactions among nucleons becomes infinite
when the medium makes a transition to a Bose-Einstein
condensed phase. With the use of the effective potential the
integral in the bracket of Eq. (6) gives uy| (7, 1)|?, and the
resulting equation is the Schrodinger equation for a BEC
with a quartic nonlinearity (in the energy functional) [1,2].
However, in order to obtain a more general description of
the BEC stars, we shall assume an arbitrary nonlinear term
g'(yF 0P) [38].

As pointed out in Ref. [38], the Gross-Pitaevskii ap-
proximation is a long-wavelength theory widely used to
describe a variety of properties of dilute Bose condensates,
but for short-ranged repulsive interactions this theory fails
in low dimensions, and some essential modifications of the
theory are necessary. From a physical point of view, these
modifications can be understood as follows [38]. The
interparticle interaction can be written as V() = uy86%(7),
where u is the amplitude of the interparticle repulsion
and 84(7) denotes any well localized d-dimensional func-
tion that transforms into the mathematical Dirac delta
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distribution when the range of interactions a — 0. Assume
that the interparticle interaction is so strong that each
particle is localized within a cage formed by its neighbors.
In the dilute limit n/? << 1, the size of this cage can be
estimated as R ~ n~ '/ and the ground state energy per
particle follows from the uncertainty principle as
h?/mR? ~ #?n??/m. The ground state energy which
would go into the energy functional is given by
h2n2*d/d /1y The strong interaction assumption is valid
if the interaction energy per particle u,/R? is much bigger
than the ground state energy per particle, i.e., uy/R? >
h?/mR2. The condition for the strong coupling limit can be
written as #2n?~9/¢ /mu, << 1. As space dimensionality
decreases, it becomes increasingly harder for the repulsive
particles to avoid collisions. Below the critical dimension
d, = 2, the quartic nonlinearity |4|* in the energy func-
tional must be replaced by |¢|2*2+9/d (in d =2, the
quartic nonlinearity contains a logarithmic correction in
|4|?) [38]. For d = 1 we have a ||° interaction.

Finally, to describe a BEC star, we shall treat the gravi-
tational interaction within a mean field approximation,
introducing the self-consistent gravitational potential
Vaar (7, 1) = [dFPu(F — (7, 0> in Eq. (6) where
u(# — 7) = —Gm?/|¥ — 7| is the usual gravitational po-
tential of interaction. Therefore, the generalized Gross-
Pitaevskii equation describing a self-gravitating BEC
with short-range interactions is given by

60 = [ IV + Ve
Vw7 0) + g0 r>|2>]w<z ()

where we denoted g’ = dg/dn and where the gravitational
potential V., (7, 1) is determined self-consistently by the
Poisson equation

VVqay = 47Gnm?, (8)

where
n(7 1) = |y F 1)l% ©)

is the mass density inside the BEC star. Finally, we shall
take V., (7) = O since the system is confined by its self-
gravity.

III. THE HYDRODYNAMICAL REPRESENTATION
OF THE GRAVITATIONAL BOSE-EINSTEIN
CONDENSATE

The physical properties of a BEC described by the
generalized Gross-Pitaevskii equation given by Eq. (7)
can be understood much easily by using the so-called
Madelung representation of the wave function [1,2], which
consists in writing ¢ in the form
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(7 1) = V) exp[%S(?, t)], (10)

where the function S(7, 7) has the dimension of an action.
By substituting the above expression of the wave function
in Eq. (7), it decouples into a system of two differential
equations for the real functions n and v, given by

on

— +V- (o) =0, (1)
at

a" =2
ma—l; + v(mTU + Vo + Vit + Vigay + g') =0, (12)

where we have introduced the quantum potential

w2 Py

Vo= — , 13
and the velocity of the quantum fluid
VS
v=—, (14)
m

respectively. From its definition, it follows that the velocity

field is irrotational, satisfying the condition V X % = 0.
The quantum potential V, has the property [1]:

2

nV,Vy = vj(—:’—mnv,.vj lnn) —V,e?  (5)
where crg = —(7*n/4m)V,V,;Inn is the quantum stress
tensor which has the dimension of a pressure and is an
intrinsically anisotropic quantum contribution to the equa-
tions of motion.

By taking into account that the flow is irrotational, the
equations of motion of the gravitational ideal BEC take the
form of the equation of continuity and of the hydrodynamic
Euler equation

MLV mb) =0, (16)
ot

nm[‘z—’t’ ey V)ﬁ] — _VP(n) — nVV,,

= VWV — V- 02, (17)

where we have denoted
P(n) = g'(n)n — g(n). (18)

Therefore the Bose-Einstein gravitational condensate can
be described as a gas whose density and pressure are
related by a barotropic equation of state [1]. The explicit
form of this equation depends on the form of the nonline-
arity term g.

For a static ideal condensate, v = 0. In this case, from
Eq. (12), we obtain

Vo + Vigt + Varay + &' = const. (19)
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Applying the operator V? to both sides of Eq. (19) gives
VZ(VQ + Vrot + g/) + vzVgrav =0. (20)

In the case of a condensate with a nonlinearity of the form
g(n) = uyn?/2, where u, is a constant, it follows that the

generalized potential Vg, = =V — Vi — ugn satisfies
the Poisson equation
V2Vgen = 4mGnm?. 2D

If the quantum potential can be neglected, then from
Eq. (21), by using the relation V2V, = —2mw?, it follows
that the mass density of the condensate is described by a
Helmholtz type equation given by

4nG 2mw?

Vn + nm* — = 0. (22)
Uy Uy

IV. STATIC AND SLOWLY ROTATING
NEWTONIAN BOSE-EINSTEIN
CONDENSATE STARS

When the number of particles in the gravitationally
bounded BEC becomes large enough, the quantum pres-
sure term makes a significant contribution only near the
boundary of the condensate. Hence it is much smaller than
the nonlinear interaction term. Thus, the quantum stress
term in the equation of motion of the condensate can be
neglected. This is the Thomas-Fermi approximation which
has been extensively used for the study of the BECs [1].
As the number of particles in the condensate becomes
infinite, the Thomas-Fermi approximation becomes exact
[33,34,36]. This approximation also corresponds to the
classical limit of the theory (it corresponds to neglecting
all terms with powers of %) or as the regime of strong
repulsive interactions among particles. From a mathemati-
cal point of view the Thomas-Fermi approximation corre-
sponds to neglecting all terms containing Vn and VS in the
equation of motion.

A. Static Bose-Einstein condensate stars

In the case of a static BEC, all physical quantities are
independent of time. Moreover, in the first approximation
we also neglect the rotation of the star, taking V., = 0.
Introducing the mass density p = nm and writing the
gravitational potential as Vg, = m®, the equations de-
scribing the static self-gravitating BEC take the form

VP = —pVd, (23)

V2 = 47Gp, (24)

where Eq. (23) is just the usual equation of hydrostatic
equilibrium. These equations must be integrated together
with the equation of state P = P(p), which follows from
Eq. (18), and some appropriately chosen boundary condi-
tions. By assuming that the nonlinearity in the Gross-
Pitaevskii equation is of the form
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g(n) = an?, (25)

where « and vy are positive constants, it follows that the
equation of state of the gravitational BEC is the polytropic
equation of state

P(p) =

where we denoted K = a(y — 1)/m”.

By representing vy in the form y = 1 + 1/n, where n is
the polytropic index, it follows that the structure of the
static BEC star is described by the Lane-Emden equation

512 ddf (52 df) -0 @D

where 6 is a dimensionless variable defined via p = p_.6",
¢ is a dimensionless coordinate introduced via the trans-
formation r = [(n + 1)Kp!/" ™' /4w G]'/2¢ and p, is the
central density of the condensate [39].

Hence, the radius and the mass of the condensate are
given by

Kp”, (26)

(n + l)K 1/2 n n
ol el I T
and
(n+ DKTP2 3_0)/m
M= an DEDET gL @9)

respectively, where &, defines the zero-pressure and zero-
density surface of the condensate: 8(£;) = 0 [39].
In the standard approach to the BECs, the nonlinearity
term g is given by
u
gn) =2 S |l ==n, (30)
where uy = 4mh?a/m [1]. The corresponding equation of
state of the condensate is

P(p) = Kp?, (1)
with
27h?
- (32)
m

Therefore, the equation of state of the BEC is a polytrope
with index n = 1. In this case the solution of the Lane-
Emden equation can be obtained in an analytical form, and
the solution satisfying the boundary condition #(0) = 1
is [39]:

s1n§
0 33
() = a (33)

The radius of the star is defined by the condition
0(&,) = 0, giving &, = . Therefore the radius R of the
BEC is given by
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R = m|—=——= (34)

The radius of the gravitationally bounded BEC is indepen-
dent on the central density and on the mass of the star,
and depends only on the physical characteristics of the
condensate.

The mass of a BEC star with quartic nonlinearity is
given as a function of the central density and of the
coherent scattering length a by

hZa \3/2
M = 4772<Gm3> Pe (35)

where we have used |0'(£,)] = 1/. Using Eq. (34), it can
be expressed in terms of the radius and central density by

4
= —p.R, (36)

which shows that the mean density of the star p =
3M/4mR3 can be obtained from the central density of the
condensate by the relation p = 3p./7>.

With respect to a scaling of the parameters m, a and p,.
of the form m — a;m, a — aya, p. — a3p., the radius
and the mass of the condensate have the following scaling
properties:

R— al_S/zaé/zR, M — al_g/za;/zch. (37

B. Slowly rotating Bose-Einstein condensate stars

The case of slowly rotating BECs can also be straight-
forwardly analyzed by taking into account the fact that the
condensate obeys a polytropic equation of state. The study
of the slowly rotating polytropes is performed in detail
in Ref. [40].

The Lane-Emden equation for a rotating BEC is

(38)

where u = cosf and Q = w?/27Gp,. The volume V,,
and the mass M, of the condensate in slow rotation are
given in the first order in () by

_ 390(é)
Vo= w1+ e (39)
and
M, = Mo[l L8B3 ole) ?0,_(;)0'(5‘) Q] (40)

respectively. In these expressions, My, is given by Eq. (29)
and V, = (4/3)mR} where R, is given by Eq. (28). The
values of the function i, are tabulated in Ref. [40].
Equations (39) and (40) represent the mass and volume
relations for two stars with equal central density, one
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rotating with an angular velocity @ and the other
nonrotating.

In the case of BECs with quartic nonlinearity, corre-
sponding to a polytropic index n = 1, the Lane-Emden
equation can be integrated exactly (yielding 6(¢) =
siné/¢ and ¢y (€) = 1 — siné/€), giving for the volume
V, and mass M, of the rotating condensate the following
simple relations

Vv, = Vo(l +30), A1)

M, = Mo[l + (%2 - 1)9] (42)

Remark: since the velocity field of a BEC is irrotational,
a BEC cannot have a solid-body rotation v = €} X r (as we
have assumed), unless it nucleates a lattice of uniformly
spaced singular vortices in an attempt to mimic solid-body
rotation [41]. However, it is known that vortices appear
only for sufficiently large values of angular velocity [42].
For () < )., a BEC cannot have a solid-body rotation but
it can have a differential rotation. For example, Rindler-
Daller and Shapiro [35] propose to model self-gravitating
rotating BECs by irrotational Riemann-S ellipsoids.
Therefore, the BEC is rotating but its motion is irrotational
in agreement with the condition (14). In view of this
discussion, our model of self-gravitating BECs in solid-
body rotation is highly idealized and, at most, approximate.
This is just a very first step in the modeling of rotating self-
gravitating BECs.

V. MAXIMUM MASS OF THE STATIC
RELATIVISTIC BOSE-EINSTEIN CONDENSATE
STARS: QUALITATIVE TREATMENT

The numerical values of the basic parameters (mass
and radius) of the condensed object sensitively depend on
the mass m of the particles and on the scattering length a.
Of course, in general, the values of the mass and radius
of the gravitational condensate also depend on the adopted
model for the nonlinearity. However, a quartic nonlinearity
is a good working hypothesis as a starting point.

The scattering length a is defined as the zero-energy
limit of the scattering amplitude f, and it can be related to
the particle scattering cross section o by the relation o =
47ra® [1]. On the other hand, the notion that particles like,
for example, the quarks, retain their usual properties and
interactions at the very high densities in the neutron stars
may not be viable [13,43]. In our calculations, we use
a “hard” core approximation of the potential. Therefore,
we accept that, at high densities, the “hard” core potential
is in the QCD range of 1 fm and the allowed values of
the scattering length a may generally be in the interval
0.5fm =a<1-2fm, corresponding to a scattering
cross section of about 1 mb.

The transition temperature to a BEC of dense matter
can be written as
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2mh2 p2/3

- ;2/3]{3 md/3

2/3 -5/3
= 1.650 X 10! ><( P 2) ( - ) K,
10'°g/cm? 2m,,

(43)

T,

where m, = 1.6749 X 10~2* g is the mass of the neutron.
Neutron stars are born with interior temperatures of the
order of 2-5 X 10'! K, but they rapidly cool down via
neutrino emission to temperatures of less than 10'0 K
within minutes. Also strange matter, pion condensates, A
hyperons, 6 isobars, or free quark matter might form under
the initial thermal conditions prevailing in the very young
neutron star. Thus, a condensation process can take place
in the very early stages of stellar evolution. If the core is
composed of only “ordinary” matter (neutrons, protons,
and electrons), then when the temperature drops below
about 10° K all particles are degenerate. We expect that
after a hundred years or so the core will become superfluid
[13], and this may also favor the possibility of a Bose-
Einstein condensation through the BCS-BEC crossover.'
By introducing the dimensionless parameter «

defined as
a \1/2/ m \-3/2
=[— 44
“ (1fm) <2m) ’ @9

the radius of the BEC star given by Eq. (34) can be written

h2
R= 1’—"3 = 6.61x km, (45)
Gm

For m = 2m, and @ = 1 fm, we find R = 7 km, similar to
the size of neutron stars.? For a correct determination of the
maximum mass and maximum density of BEC stars, we
cannot ignore the effects induced by the space-time curva-
ture, and a relativistic treatment is necessary (see Sec. VI).
Before that, we shall present simple heuristic arguments to
take relativistic effects into account.

Restriction on the maximum central density and maxi-
mum mass of the BEC stars with quartic nonlinearity can
be obtained from the study of the speed of sound, defined
as ¢2 = dP/dp. With the use of Eq. (31), we obtain ¢? =
2K p. The causality condition implies ¢; = ¢, where c is
the speed of light. This leads to the following upper bound
for the central density of the condensate:

"In adopting the scaling of the mass in Eq. (43), we have in
mind the possibility that neutrons in the core of neutron stars
form the equivalent of Cooper pairs and behave as bosons of
mass 2m,,. This means that we treat the core of neutron stars as a
superfluid (see Sec. VIII for additional comments). However, our
study may be valid in other circumstances so that we leave the
mass m unspecified.

2 As will become clear below, the expression (45) of the radius
is valid both in the Newtonian and relativistic regimes.
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m3c?

h2

pe = =242 X 10,72 g/cm?. (46)

" 47a
With the use of Egs. (46) and (35), we obtain the following
restriction on the maximum mass of the BEC stars with
quartic nonlinearity:

hc’\Ja
(Gm)3/?

For m =2m,, we obtain the condition p, =
[2.42/a(fm)] X 10'® g/cm?. By taking into account that
for this range of high densities a physically reasonable
value for the scattering length is a = 1 fm, we obtain the
restriction on the maximum mass of the BEC star from the
causality condition as M = 4.46 M.

A stronger bound on the central density can be derived
from the condition that the radius of the star R must be
greater than the Schwarzschild radius Ry = 2GM/c*, R =
Rg. For a BEC star, Rg can be expressed as a function of
the central density and of the radius as Ry = 8Gp.R>/mc?
[see Eq. (36)]. Then, using Eq. (34), the condition of
stability against gravitational collapse gives

M= — 4.46Kk M. 47)

m3c?

7= 121X 1012 g/em?,  (48)

=
Pe= 8ma
a relation which, for the condensate star with m = 2m,,
and a =1 fm, leads to the constraint p, = 1.21 X
10'¢ g/cm3. The constraint on the maximum mass for
the stellar type BEC can be formulated as [see Eq. (35)]:

_7 ha
"2 (Gm)

This inequality can also be directly obtained by substitut-
ing Eq. (34) in the condition R = Ry = 2GM/c*. With
a = 1 fm and m = 2m,, we obtain for the maximum mass
of the BEC star the restriction M = 2.23 M.

For the n = 1 polytrope, the radius of the star is inde-
pendent on the central density. Generally, one may con-
sider a as a free parameter, which must be constrained by
the physics of the nuclear interactions taking place in the
system. However, due to the possible dependence of the
free scattering length a on the mass density, in the case of
BECs there may be (indirect) dependence of the radius on
the central density of the star.

Finally, we would like to emphasize that the estimates
on the maximum mass obtained in the present section are
qualitative with respect to the numerical factors, and more
precise values of the maximum mass of the BEC stars will
be obtained in the next section by using a fully general
relativistic approach.

= 2.23k M,. (49)

VI. GENERAL RELATIVISTIC BOSE-EINSTEIN
CONDENSATE STARS

In Sec. IV, we have considered the gravitationally
bounded BEC stars in the framework of Newtonian gravity.
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As discussed in Sec. V, general relativistic effects may
change the physical properties of compact objects in both
a qualitative and quantitative way. For example, general
relativity imposes a strict limit on the maximum mass of
a stable compact astrophysical object, a feature that is
missing for classical Newtonian stars. Therefore, the study
of the general relativistic Bose-Einstein condensates offers
a better understanding of their physical properties. In the
present section, we study the properties of static general
relativistic Bose-Einstein condensate stars.

A. Static general relativistic BEC stars
For a static spherically symmetric star, the interior line
element is given by
ds? = —e"di? + eFDdr? + r2(d6? + sin?0d¢?). (50)
The structure equations describing a general relativistic
compact star are the mass continuity equation and the

TOV equation of standard general relativity. They are given
by [13]:

M — 4mpr, (51)
dr
dP(r) _ Glp + P/*)4mPr’/c* + M(r)) 52)
dr Pl = 2GM(r)/ 7] (

These equations extend the classical condition of hydro-
static equilibrium for a self-gravitating gas to the context of
general relativity. We have written the energy density as
€ = pc?. The system of equations (51) and (52) must be
closed by choosing the equation of state for the thermody-
namic pressure of the matter inside the star
P = P(p). (33)
At the center of the star, the mass must satisfy the boundary
condition
M(0) = 0. (54)
For the thermodynamic pressure P, we assume that it
vanishes on the surface: P(R) = 0.
The exterior of the BEC star is characterized by the

Schwarzschild metric, describing the vacuum outside the
star, and given by [13]:

_2GM

ctr’

(ev)ext — (efu)ext — 1 r= R

(55)

The interior solution must match with the exterior solution
on the vacuum boundary of the star.
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B. Maximum mass of relativistic BECs with
short-range interactions: Semirelativistic treatment

We assume that, in general relativity, the BEC can still
be described by the nonrelativistic equation of state

2mh2a

with K = R
m

P =Kp? (56)
corresponding to a polytropic equation of state with index
n = 1. The theory of polytropic fluid spheres in general
relativity has been developed by Tooper [44], and we shall
use his formalism and notations. Therefore, we set

K
p=pb, P=Kp¥: o=-L<  (57)
&
£ 47p. 27 G\1/2
—5 Mo=TRe A=)
(58)

where p,. is the central density. In terms of these vari-
ables, the TOV equation and the mass continuity equation
become

do (1+ o0)(v + g&36?)

" 20 -dovjd 49
dv
d_.f = 052. (60)

For a given value of the relativity parameter o, they have to
be solved with the initial condition #(0) = 1 and v(0) = 0.
Since v ~ &3 as &€ — 0, it is clear that §/(0) = 0. On the
other hand, the density vanishes at the first zero &, of 6:

6(£1) = 0. (61)

This determines the boundary of the sphere. In the non-
relativistic limit o — 0, the system (59) and (60) reduces
to the Lane-Emden equation (27) with n = 1.

3While we use the equation of state (56) derived from the
nonrelativistic Gross-Pitaevskii equation (7), we treat gravity in
the framework of general relativity using the TOV equations (51)
and (52). The fully-relativistic problem is treated in Sec. VIC.
Although there are qualitative differences between the two treat-
ments, the “semirelativistic” treatment developed here already
provides the correct order of magnitude of the maximum mass of
a relativistic BEC (see below). Furthermore, this semirelativistic
treatment may be relevant for pulsars. Indeed, pulsars as neutron
stars obey a nonrelativistic equation of state since neutrons are
too massive to be relativistic even at extremely high densities,
but gravitation must be treated with general relativity (this is the
opposite of white dwarf stars in which the electrons are relativ-
istic but gravitation can be treated in the Newtonian framework).
So, if a Bose-Einstein condensation takes place through Cooper
pairing in a neutron star (pulsar), the neutrons in the star will be
nonrelativistic and the equation of state P = Kp? (that can be
rigorously derived from the GP equation) can be applied.
Therefore, pulsars could be BEC stars with a nonrelativistic
equation of state (n = 1 polytrope).
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From the foregoing relations, we find that the radius,
the mass and the central density of the configuration are
given by

R=&R.,  M=20v({)M.,  p.=ops. (62)

where the scaling parameters R., M, and p. can be
expressed in terms of the fundamental constants and the
parameter k as

A2 \1/2
R, — (%) — 2.106x km, (63)
m
# 2
M, = ﬁ = 1.420k Mo, (64)
m3c?
Pe = Sare #8460 10"°%72 g/em?.  (65)

We note that the expression of the scaled radius R, is the
same as in the Newtonian regime (in particular it is inde-
pendent on c¢), while the scaling of the mass and of the
density are due to relativistic effects. By varying o from
0 to +oo, we obtain the series of equilibria in the form
M(p,). R(p,) and M(R).

The velocity of sound is ¢2 = P'(p) = 2Kp. The con-
dition that the velocity of sound at the center of the
configuration (where it achieves its largest value) is smaller
than the velocity of light can be expressed as 2Kp,. < ¢?,
or equivalently as o = o, with

The values of ¢, and v(§£);) at this point have been tabulated
by Tooper (and confirmed by our numerical study):

& = 1.801, v(£;) = 0.4981. (67)

The corresponding values of radius, mass, and central
density are

ah?\1/2
R, = 1.801( 3) =3790k km,  (68)
Gm’
hc*\Ja
m302

(po)s = 5 =2.423 X 10"k g/cm’. (70)

4rah
However, it is not granted that the criterion o > oy
is equivalent to the condition of dynamical instability.
The principle of causality is a necessary, but not a suffi-
cient, condition of stability.4 The condition of dynamical

4Similarly, in statistical mechanics, the condition that the
specific heat is positive in the canonical ensemble is a necessary,
but not a sufficient, condition of canonical stability [45].
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instability corresponds to the turning point of mass
(dM = 0) and there is no reason why this should be
equivalent to ¢, = c. In fact, our numerical study demon-
strates that this is not the case. We find that the maximum
mass does not exactly correspond to the point where the
velocity of sound becomes equal to the velocity of light. In
the series of equilibria (parametrized by the central density
p. = 0p.), the instability occurs sooner than predicted by
the criterion (66). We find indeed that instability (corre-
sponding to the mass peak) occurs for o = o with

o, = 0.42. 1)
The values of £; and v(£)) at this point are
£ =1.888 (&) =0.5954. (72)

The corresponding values of radius, mass and central
density are

ah?\1/2
R = 1.888( 3> = 3,974k km, (73)
Gm
nc*\Ja
Mmax = 05001 W = 0710K MO, (74)
m3c?
(P max = 0.42—2 = 2.035 X 100,72 g/cm3, (75)
2mah

respectively. We also note that the radius of a BEC star is
necessarily smaller than

hla
Rox = 7 3 = 6.61k km, (76)

corresponding to the Newtonian limit (o — 0). There-
fore, its value 3.974kx = R(km) = 6.61k is very much
constrained.

The dimensionless curves giving the mass-central den-
sity, radius-central density, mass-radius relations and some
density profiles are plotted in Figs. 1-5. In Fig. 6 we
present the mass-radius relation for @ = 1 fm and different
values of m.

C. Maximum mass of relativistic BECs with
short-range interactions: Fully-relativistic treatment

The previous treatment is approximate because we use
the equation of state (56) obtained in the nonrelativistic
regime (i.e., from the Gross-Pitaevskii equation) but solve
the TOV equations (51) and (52) expressing the condition
of hydrostatic equilibrium in general relativity. A fully
relativistic approach based on the Klein-Gordon-Einstein
system has been developed by several authors [23-28] in
the context of boson stars described by a scalar field. Self-
interacting boson stars were first considered by Mielke and
Scherzer [24] and further studied by Colpi et al. [25] who
showed that the self-interaction can increase their mass up
to the Chandrasekhar mass (i.e., like for fermion stars).
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FIG. 1. Dimensionless mass-central density relation of a rela-

tivistic BEC with short-range interactions modeled by a n = 1
polytrope. There exist a maximum mass M,,,,/M, = 0.5001
(black bullet) at which the system becomes dynamically un-
stable. This mass does not coincide with the point (white bullet)
at which the velocity of sound becomes equal to the velocity of
light (see Fig. 2). In particular, gravitational instability occurs
slightly sooner than what is predicted from the criterion based on
the velocity of sound (principle of causality).

In order to make the correspondence between BECs with
short-range interactions described by the Gross-Pitaevskii
equation and scalar fields with a y A|¢|* interaction de-
scribed by the Klein-Gordon equation, we set [33]:

0.5

M/M,

048 [~

0.46 [~

\ \ \ \
0.2 0.3 0.4 0.5 0.6 0.7 0.8

PP,

FIG. 2. Zoom of Fig. 1 showing that the maximum mass does
not coincide with the point at which the velocity of sound
becomes equal to the velocity of light. The system is stable
(S) before the turning point of mass (o < o,) and unstable (U)
after the turning point of mass (o > o). The velocity of sound
is smaller than the velocity of light before the white bullet
(o0 < o) and larger after that point (o > o). Therefore, there
exists a small region (0. < o < o) where the system is un-
stable although the velocity of sound is smaller than the velocity
of light.
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FIG. 3. Dimensionless radius-central density relation of a rela-
tivistic BEC with short-range interactions modeled by a n = 1
polytrope.

(77)

where A, = i/mc is the Compton wavelength of the bo-
sons. The equation of state (56) can be written

3
dmte’
This returns the equation of state obtained by Arbey ef al.
[31] for a self-interacting scalar field in the nonrelativistic

P = Kp?, with K =

(78)

0.6 ‘

max

05 U

Relativistic

04

03

M/M,

02

0.1 Newtonian —

FIG. 4. Dimensionless mass-radius relation of a relativistic
BEC with short-range interactions modeled by a n = 1 poly-
trope. The series of equilibria is parametrized by the relativity
parameter o. There exist a maximum mass M, /M. = 0.5001
and a minimum radius R,;,/R. = 1.888 corresponding to a
maximum central density (0.)max = 0.42p.. There also exist a
maximum radius R, /R, = 7 corresponding to the Newtonian
limit o — 0.
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FIG. 5. Dimensionless density profiles corresponding to o = 0
(Newtonian), o = o, = 0.42 (maximum mass) and ¢ = o, =
1/2 (where ¢, = c).

regime showing that the relation between a and A given by
Eq. (77) is correct. We note that the parameter A can be
expressed as

A a m
— =952 P
87 9531fm2mn

(719)

We can then use (A, m) instead of (a, m) as independent
physical variables. Finally, the dimensionless parameter «
can be written

L s By L ) B B B B B B B

a=1fm

0.5

C N N ]
10 12 14 16

R (km)

FIG. 6. Mass-radius relation for relativistic Bose-Einstein con-
densates with quartic nonlinearity for a = 1 fm and different
values of the mass m (only stable configurations are shown in
the framework of the semi-relativistic treatment). From top to
bottom: m = m,, m = 1.25m,, m = 1.5m,,, m = 1.75m,, and
m = 2m,,. For all configurations p. = p,, where p,, = 2.026 X
10'* g/cm?® is the nuclear density, and the causality condition
¢y = c is satisfied.
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ANL2/2m\2
K = 0.324(—) ( m) . (80)
Ry m

We can now express the results in terms of A. The
scaling of the maximum mass is given by

= 2T X1 e [,
© (Gm)¥? 8mm*\ G 8w m?’

where Mp = (fic/G)/? is the Planck mass. This is the
scaling of the maximum mass obtained by Colpi et al.
[25] for a self-interacting scalar field in the Thomas-
Fermi limit.> For A~ 1, it is of the order of the
Chandrasekhar mass ~M3 /m? of relativistic fermion stars
while the maximum mass of noninteracting boson stars is
M,y = 0.633 M3 /m [23]. On the other hand, the scaling
of the minimum radius is given by

ah®\1/2 AR \1/2 1 ,)\ Mp
R, = (— = — = 4l—— A, (82
(Gm3> (877Gc> m? 87 m (82)

This is the scaling of the minimum radius given by Arbey
et al. [31] for a self-interacting scalar field in the Thomas-
Fermi limit. Finally, the scaling of the maximum density is
given by

(83)

Now, the maximum mass obtained by Colpi et al. [25] in
the fully relativistic regime is

M3
Moy = 0.221/i—§ = 0.22V2M, = 0.31M.,  (84)
47 m

which is smaller than our previous estimate M, =
0.5001M.. based on a nonrelativistic equation of state.
Therefore, relativistic effects in the equation of state tend
to reduce the maximum mass.

Colpi et al. [25] showed that, in the Thomas-Fermi
limit, the scalar field becomes equivalent to a fluid with
an equation of state

>The Thomas-Fermi (or strong coupling) approximation is
valid for “large” A. Actually, the condition of validity is A >
(m/Mp)?> ~ 10738 [25,33], so that this condition is almost
always satisfied as soon as the system has a self-interaction.
The condition of strong coupling is usually written A =
AMMp/m)? > 1.
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p=C [<1+12K )1/2—1]2 (85)
36K 2 P ’

where K is given by Eq. (78). We shall adopt this equation
of state for the description of our relativistic BEC star.®
For p — 0 (low or moderate densities), we recover the
polytropic equation of state P = Kp? corresponding to
a nonrelativistic BEC with short-range interactions. For
p — +oo (extremely high densities), we obtain the ultra-
relativistic equation of state P = pc?/3, similar to the one
describing the core of neutron stars modeled by the ideal
Fermi gas [47-49]. We know that a linear equation of state
P = gpc? yields damped oscillations of the mass-central
density relation, and a spiral structure of the mass-radius
relation [49], similarly to the isothermal equation of state
in Newtonian gravity [50]. Therefore, our BEC model will
exhibit this behavior, just like standard neutron stars.
However, our BEC model differs from standard neutron
|

a6 O[T 1200 — 17 + o6 |[v + £ (VT T 1200 - 1)°]
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star models in that, at low or moderate densities, P = K p?
with K = 27ah?/m? instead of P = K'p5/* with K' =
(1/5)(3/87)*3h/mb/> [47-49]. This implies, in particular,
the existence of a maximum radius given by Eq. (76),
corresponding to the Newtonian limit, which has no coun-
terpart for standard neutron stars. Furthermore, the maxi-
mum mass of the BEC star depends, through the constant
K, on the ratio k2 ~ a/m?> which is not well known while
the maximum mass of ordinary neutron stars is fixed,
through the constant K’, by the neutron mass m,,.

Substituting the equation of state (85) in the TOV equa-
tions (51) and (52), using

Pl(p) = %cz[l - ! ] (36)

JI+12Kp/c?

and introducing the same notations as in the preceding
section, we obtain

dé £(1 — 40v/E)(1 — 1/41 + 1206) ’ ®7
[
j—g o ) & =1923, (€)= 0.3865. ©1)

instead of Egs. (59) and (60). If we expand the square
roots for o < 1, we recover Egs. (59) and (60). However,
this is not a uniform expansion and the two equations (87)
and (59) are in fact different even for small values of o (of
course, they both reduce to the Lane-Emden equation (27)
for o = 0).

The velocity of sound at the center of the configuration is

-3 )
(CS)O 3C 1 m > (89)

and we always have (c¢,)g < c. The series of equilibria
becomes unstable after the first mass peak. We find that
instability occurs for o = o with

o, = 0.398. (90)

The values of £, and v(£)) at this point are

SAt present, there is no successful relativistic BEC theory,
based on the relativistic extension of the Gross-Pitaevskii equa-
tion. The main reason is the presence of anti-bosons, and how to
handle them [46]. Taking into account the present status of the
research in this field, we are tentatively proposing an effective
description of relativistic BECs in terms of a scalar field. Since
the relativistic BECs are also described by the Klein-Gordon
equation, such a description seems reasonable. We do not adopt
the model of Colpi et al. [25] as such, but we suggest that a
similar model, with a different physical interpretation of the
parameters, could describe relativistic BECs (for a comparison
between BEC models and scalar field models, see the
conclusion).

The corresponding values of the radius, mass and central
density are

, ah?\1/2
R — 1.923( 3) — 4047k km,  (92)
Gm
hc*\Ja
M, = 0307 SN _ 0436k My, (93
(Gm)3/2 0] ( )
3,2
(PYnax = 0.398 - = 1.929 X 1012 g/cm?,
2mah

(94)

respectively. The radius of the BEC star is now constrained
to the range 4.047x = R(km) =< 6.61x. The maximum
mass M}, = 0.307M, is very close to the one [see
Eq. (84)] found by Colpi et al. [25] by solving the Klein-
Gordon-Einstein equations. This shows the accuracy of the
hydrodynamical approach in the Thomas-Fermi limit. The
dimensionless curves giving the mass-central density,
radius-central density, mass-radius relations and some
density profiles are plotted in Figs. 7-10.

Since the boson star model of Colpi et al. [25] has a
fluid limit in the strong coupling regime A > 1, corre-
sponding to the equation of state (85), it is not surprising to
obtain the same results. In particular, Fig. 7 is the same as
Fig. 4 of [25]. Nevertheless, it is interesting (and maybe
enlightening) to rederive these results directly from a
hydrodynamical formalism, by solving the TOV equations
with the equation of state (85) instead of the Klein-Gordon-
Einstein system. This hydrodynamic model may be less
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FIG. 7. Dimensionless mass-central density relation of a
relativistic BEC with short-range interactions modeled by the
equation of state (85). There exist a maximum mass M/, /M, =
0.307 at which the series of equilibria becomes dynamically
unstable. The velocity of sound is always smaller than the
velocity of light. We note that the mass-central density relation
presents damped oscillations at high densities similarly to stan-
dard neutron stars [48,49].

abstract than scalar field theory and may clarify the physics
of relativistic BEC stars.

Remark: At T = 0, the first law of thermodynamics
takes the form

P/c? +
_PlHp,
n

dp 95)
where nm is the rest-mass density. Integrating this relation
with the equation of state (85), we can obtain the relation
n(p). For p — 0 (nonrelativistic limit), we get p = nm,
leading to P ~ Kp? = K(nm)? corresponding to a poly-
trope n = 1. For p — +o00 (ultra-relativistic limit), we get

3.5 —rrrrm

37 —

251

RRR,

1.5F

0.001 0.01 0.1 1 10 100 1000 10000

FIG. 8. Dimensionless radius-central density relation of a
relativistic BEC with short-range interactions modeled by the
equation of state (85).
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FIG. 9. Dimensionless mass-radius relation of a relativistic
BEC with short-range interactions modeled by the equation of
state (85). The mass-radius relation presents a snail-like structure
(spiral) at high densities similarly to standard neutron stars
[49,69]. There exist a maximum mass M,,,, /M, = 0.307 and a
minimum radius R,/R. = 1.923 corresponding to a maximum
central density (p,)max = 0.398p.. There also exist a maximum
radius Rp,./R. = 7 corresponding to the Newtonian limit
o—0.

p = (nm)*?3, leading to P ~ pc?/3 o« (nm)*> correspond-
ing to a polytrope n = 3 like for an ultra-relativistic Fermi
gas at T = 0 (standard neutron star). These results are
consistent with those obtained by Goodman [30]. The
proper number of particles is

_ (R _ZGM(I‘) -1/2 5
N—/O n(r)[l —a, :I 4aredr. (96)

It can be shown that a general relativistic, spherically
symmetric, gaseous star at 7= 0 is dynamically stable
with respect to the Einstein equations if, and only if, it is

2
:

FIG. 10. Dimensionless density profiles corresponding to
o = 0 (Newtonian) and o = ¢/. = 0.398 (maximum mass).
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a maximum of N[p] at fixed mass M[p] = M (see, e.g.,
Refs. [51,52]). The first order variations 6N — adM = 0,
where « is a Lagrange multiplier, yield the TOV equations
determining steady state solutions. The ensemble of these
solutions forms the series of equilibria. Then, using the
Poincaré theorem [45], one can conclude that the series of
equilibria becomes unstable at the first mass peak and that
a new mode of instability appears at each turning point of
mass in the series of equilibria (see Ref. [53] for an alter-
native derivation of these results). At these points, we have
8N = 8M = 0 so that the curve N(M) presents cusps
at each point where M(p,.) reaches an extremal value. An
illustration of this behavior is given in Fig. 5 of Ref. [52].
These results of dynamical stability for general relativistic
stars are similar to results of dynamical and thermody-
namical stability for Newtonian self-gravitating systems
[45,50,54].

VII. ASTROPHYSICAL IMPLICATIONS

One of the most important results in general relativistic
astrophysics is the existence of a maximum mass of the
neutron stars [47]. Ultra-dense compact objects may have
a stable equilibrium configuration until their mass M is
equal to the maximum mass M. By integrating the mass
continuity equation and the hydrostatic equilibrium equa-
tion for a star made of free, noninteracting, neutron gas
(fermion star), Oppenheimer and Volkoff [47] have shown
that the maximum equilibrium mass is Mgy = 0.7 Mo,
with a corresponding radius of the order of Rgy =
9.6 km, and a central density of the order of p. =5 X
10% g/cm?. Using a variational method in which the
equation of state was constrained to have subluminal sound
velocity and to be stable against microscopic collapse,
Rhoades and Ruffini [55] proved that, in the regions where
it is uncertain, the equation of state that produces the
maximum neutron star mass is the one for which the sound
speed is equal to the speed of light, i.e., P = pc?. As a
result, they found a maximum neutron star mass M, =
3.2 Mg, assuming uncertainty in the equation of state
above a fiducial density p, = 4.6 X 10'* g/cm?. More
realistic models that take into account the composition of
the star and the interaction between neutrons lead to values
of the maximum mass of the neutron stars in the range
1.5-3.2 M, [56]. The main reason for the lack of a better
theoretical value of the maximum mass of the neutron stars
is the poor knowledge of the equation of state of hadronic
matter at high densities.

With the use of Egs. (63) and (65) it follows that the
scaled mass, radius, and central density satisfy the relations

R, G c® c2
M2 = ———, R2 )
Pl 27G? P 27G
7

With the use of Egs. (62), (71), (72), and (97), we obtain
the following radius-mass, central density-mass, and

M. ¢’
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central density-radius relations for the maximally stable
BEC configuration in the semirelativistic treatment:

‘fl GMmax Mmax
R ... = = 5.599 km, 98
" @) M, ™ O
3.2 c®
(pc)max =4dov (fl)m
M. \2
=1.026><1016(—0> £ 9
max cm-
2
. ) c o s 10km)2 g
. = ———=3215X10°|—| —.
(pc)max g, §1 ZWGRIZHHI ( min cm3
(100)

In the fully-relativistic treatment, using Eqs. (90) and
(91), we find

Mmax

(o]

Ropn = 9.271 km, (101)

M. \2
(P)max = 3.682 X 1015<—0) £ (102)
max cm-
10 km2
(pohmer = 3160 105(Z5) £ (103)
min cm

In the first case, the mass-radius ratio of the star can be
expressed as

2(;jwmax _ 40'CU(§1)

= (0.529, 104
Cszin é:l ( )
while, in the second case, we obtain
2GM,,.
—— % =0.3109. 105
cszin 9 ( )

A classical result by Buchdahl [57] shows that for static
solutions of the spherically symmetric Einstein-matter
systems, the total mass M and the area radius R of the
boundary of the body obey the relation 2GM/c’*R =<
8/9 = 0.888, the equality sign corresponding to constant
density stars. For BEC stars, Egs. (104) and (105) obvi-
ously satisfy the Buchdahl inequality for the mass-radius
ratio.

We emphasize that the radius R ;, and the central den-
sity (p.)max given by Egs. (98)—(103) only depend on the
mass M,,.. In particular, they do not explicitly depend on
the two physical parameters of the model, the scattering
length a, and the particle mass m. On the other hand, the
maximum mass M,,,, depends on these two parameters
only through their ratio a/m?>, or equivalently, through the
parameter k, and it can be obtained from the relations

My =071k Mo, M, = 0.4368x Mo, (106)
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in the semirelativistic and fully-relativistic treatments,
respectively. Hence, all physical parameters of the model
are determined by the mass M, of the star, which can be
obtained from observations. Therefore, in the present
model, we have only one free parameter k = (a/fm)'/? X
(2m,,/m)>/2. With respect to a scaling of the scattering
length and of the particle mass of the form

a/fm — B,(a/fm),

m/2m, — By(m/2m,), (107)

where 3, B, are constants, the parameter « scales as

k— BB k. (108)

Since k = 0.324(A/87)'/2(2m, /m)?, we equivalently
conclude that the maximum mass M, depends on the
two parameters (A, m) only through their ratio A/m*.

By assuming that the mass of the star is M., = 2 M,
in the semirelativistic treatment we obtain for the parame-
ters of the star (p,)max = 0.256 X 10'® g/cm® and R, =
11.2 km, independently on the values of a and m. On the
other hand, in this case k = 2.816. If we take m = 2m,,,
this corresponds to a scattering length a = 7.93 fm, and a
coupling constant A = 1.90 X 10°. In the fully-relativistic
treatment, we find (p.)max = 0.091 X 10'® g¢/cm? and
Rin = 18.54 km. For the parameter x we obtain k =
4.578. If we take m = 2m,,, this corresponds to a scattering
length a = 21.0 fm and a coupling constant A = 5.02 X
103. Therefore, if we assume values of x of the order
of k ~ 3 in the semirelativistic treatment, and k ~ 5 in
the fully-relativistic treatment, we obtain stellar objects
with physical parameters in the range M ~2 My, R ~
1020 km, and p, ~ 0.3 — 0.1 X 10'® g¢/cm?. The only
free parameter in the model, k, uniquely determines the
mass M., of the star (or conversely).

It may be of interest to make a connection with the
results of Oppenheimer and Volkoff [47]. In their model,
the mass, the radius, and the central density of the critical
configuration are

hc\3/2 1
GM
Roy = 9.36 "2 = 9.6 km, (110)
C

6
(p)oy = 3.92 X 10*3@% = 5% 10 g/cm’.

ov
(111)

In our model, introducing the parameter A, the maximum
mass is given by

’)t hc\3/2 1
Mo = 20}“(51) g(g) W

(112)

PHYSICAL REVIEW D 86, 064011 (2012)

If we write the boson mass as m = km,, we obtain the
maximum mass in the form

A
Mmax = C\/__MOVr

2 (113)

where C = 0.265 for a nonrelativistic equation of state
and C = 0.163 for a relativistic equation of state. Using
the previous relations, we can then easily relate R,,;, and
(Pe)max 10 Roy and (p.)ov. Equation (113) clearly shows
that, with respect to the standard Oppenheimer-Volkoff
model, we have an additional parameter A (the strength
of the self-interaction) which gives the possibility of
obtaining higher values for the maximum mass. Using
Eq. (80) which becomes «k = 0. 258\/X/ k2, we can rewrite
Eq. (113) as

M, = 3.87CkMoy. (114)

Presently, there is conclusive observational evidence
from pulsar studies for the existence of neutron stars with
masses significantly greater than 1.5 M, [58]. By using the
Shapiro time delay to measure the inclination, the mass of
PSR J1614-223048 was recently determined to be 1.97 =
0.04 M, [59]. Moreover, a number of X-ray binaries seem
to contain high-mass neutron stars: About 1.9 Mg in the
case of Vela X-1 and 2.4 M, in the case of 4U 1700-377
[58]. Even more intriguing is the case of the black widow
pulsar B1957 + 20, with a best mass estimate of about
2.4 Mg [60]. This system has both pulsar timing and
optical light curve information. B1957 + 20 is located in
an eclipsing binary system, consisting of the 1.6 ms pulsar
in a nearly circular 9.17 h period orbit, and an extremely
low mass companion, M, = 0.03 M. It is believed that
irradiation of the companion by the pulsar strongly heats its
cosmic environment to the point of ablation, leading to a
cometlike tail, and a large cloud of plasma. The plasma
cloud is responsible for the eclipsing. The pulsar is literally
consuming its companion, hence the name black widow.
The mass of the companion star has been reduced to a
small fraction of its original mass [58]. On the other hand,
a measured mass of 2.4 Mg would be incompatible with
hybrid star models containing significant proportions of
exotic matter in the form of hyperons, some forms of Bose
condensates, or quark matter [58].

However, the mass and radius of the 2-2.4 M, neutron
stars perfectly fit the expected properties of a BEC star.
For k ~ 3, the mass of a typical general relativistic BEC
star 1s of the order of two solar masses, with a radius of
around 11 km. Therefore, we propose that the recently
observed 2-2.4 My mass neutron stars could be typical
BEC stars.

A last comment may be in order. If we apply the same
model (self-gravitating BEC with short-range interactions)
to dark matter [32], and use the Newtonian approximation
(which is valid in this context), the radius of a dark matter
halo is given by Eq. (34), which can be rewritten
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1/2
R=1.746><10-2( “) ( m

~3/2
1 fm 1eV/c2) kpe. (115)

We note that the radius R determines the ratio a/m> or

A/m*. Estimating the radius of dark matter halos by R =
10 kpc, we obtain m3/a = 3.049 X 107¢ (eV/c?)?/fm
and m*/A = 23.94 (eV/c?)* [34].

VIII. DISCUSSIONS AND FINAL REMARKS

In the present paper, we have proposed that the core of
neutron stars is a superfluid in which the neutrons form
equivalent of Cooper pairs, so that they act as bosons of
mass 2m,,. Therefore, once the Bose-Einstein condensation
takes place, the neutron star should be modeled as a self-
gravitating BEC star. In our approach, we also assume that
the bosons have a self-interaction, described by a scattering
length a. The basic properties of the gravitationally
bounded BECs have been obtained in both Newtonian
and general relativistic regimes. To obtain the physical
characteristics of the system, we have used the Madelung
representation in which condensates can be modeled by
using the hydrodynamic Euler equations describing a gas
whose density and pressure are related by a barotropic
equation of state. For the study of the BEC we have
adopted the Thomas-Fermi approximation, which is valid
if the total number of particles N obeys the condition
N > R/ma [33,34,36], a condition which can be reformu-
lated, with the use of the mass density of the condensate, as
p > 3m/4m*R?a. This restriction is obviously satisfied by
condensates with densities of the same order as the nuclear
density.

In the physically most interesting case, corresponding to
a quartic nonlinearity term in the energy functional, the
equation of state of the BEC is that of a polytrope with
polytropic index n = 1. In this case, the radius and the
mass of the Newtonian stellar condensate can be obtained
in an exact form. By contrast, relativistic configurations
must be constructed numerically. In a Bose-Einstein con-
densed neutron star, the mass m of the particles does not
need to coincide with the neutron mass. For the mass of the
condensed particles, we have used an effective value of
the order of m* = 2m,,. This value is justified by the high
densities in the neutron star cores, where the process of
Bose-Einstein condensation is most likely to occur via the
formation of Cooper pairs. However, we have also explic-
itly presented the numerical values of the basic physical
parameters of the stars for other values of the mass.

In the standard general relativistic theory of compact
astrophysical objects (neutron stars and pulsars) one ob-
tains first the equation of state of the dense neutron (or
quark) matter, by using quantum field theoretical methods
in a Newtonian framework (the effects of gravity are
ignored when deriving the equation of state). Then, with
the help of this equation of state, general relativistic mod-
els of stars are constructed, and the maximum mass and
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radius of the stars are obtained by numerically integrating
the TOV equation. These procedures are described in great
detail, for example, in Ref. [61]. In our paper, we have used
a similar method. First, from quantum mechanical consid-
erations we have obtained the equation of state of the con-
densate, which happens to be a polytrope of index n = 1
in the nonrelativistic limit [see Eq. (56)]. The difference
between this equation of state and the other polytropic
equations of state analyzed in the literature is that, in the
BEC equation of state, all the constants are fixed from
physical considerations (there are no free parameters in the
model). Then, with the help of this equation of state P =
Kp? we have constructed independently both Newtonian
and general relativistic stellar models. We have proposed
that this nonrelativistic equation of state (derived from the
Gross-Pitaevskii equation) could be relevant to describe
neutron stars and pulsars (viewed as BEC stars) because
neutrons are too massive to be relativistic. Of course, for
these compact objects, gravitation must be treated with
general relativity. We have also considered a relativistic
equation of state (85) obtained phenomenologically from
the scalar field theory of Colpi et al. [25]. We have found
that these two equations of state give similar results (for
what concerns orders of magnitudes).

General relativistic effects impose strong constraints
on the maximum mass. In the framework of the general
relativistic approach one must numerically integrate the
structure equations of the star. In this way, we obtain a
large class of stable astrophysical objects, whose basic
parameters (mass and radius) depend on the particle mass
m and scattering length a. Since the values of a and m are
not well-known, this offers the possibility to obtain a
maximum mass for neutron stars that is larger than the
Oppenheimer-Volkoff limit of 0.7 My, and may be com-
patible with recent observational determinations of the
masses of some neutron stars. This is possible because
we have two new parameters in our model, the boson
mass m and the scattering length a, which give additional
freedom (although these parameters should be ultimately
determined by fundamental physics). We have found that
the maximum mass M, (k) of the condensate star, given
by Egs. (74) or (93), depends in fact on a single parameter
(a, m) which is proportional to the ratio a/m> (or, equiv-
alently, to the ratio A/m*). Basically, this ratio comes from
the constant K appearing in the equations of state (56) and
(85). Since the radius R,,;, and the density (0.)max only
depend on M, all the physical properties of the BEC
stars are determined by the parameter . Condensates with
particle masses of the order of two neutron masses and
scattering length of the order of 10-20 fm (corresponding
to k ~ 3-5) have maximum masses of the order of 2 M,
minimum radii in the range of 10-20 km, and maximum
central density p, ~ 0.3 — 0.1 X 10'® g/cm? in the semi-
relativistic and fully-relativistic treatments, respectively.
On the other hand, for a = 1 fm, the maximum mass of
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the condensate varies between 0.4-0.7 My for m = 2m,,
(corresponding to k = 1), between 1-2 My for m = m,,
(corresponding to «k = 2.8), and between 10-16 M, for
m = m, /4 (corresponding to xk = 22), a value which may
correspond, for example, to the effective (density depen-
dent) kaon mass mj in the interior of neutron stars. Kaon
condensation may provide an important example of Bose-
Einstein type stellar condensate [13]. Attraction from
nuclear matter could bring down the mass of the kaon
to an effective value of mj =~ 200 MeV/c* = m,,/9.38.
Relativistic kaon condensates with kaon effective mass of
the order of m} = m, /10 and scattering length @ = 1 fm,
leading to k = 89.44 could have masses as high as 39 M,
and radii of the order of 362 km [see Egs. (92) and (93)].
On the other hand, smaller mass condensed particles
can have significantly higher maximum relativistic masses.
In addition, if we consider kaons with mass my = m,, /10
and scattering length a = 10® fm (corresponding to
the order of magnitude of the values of a observed in
terrestrial laboratory experiments [6—-8]) we have k =
8.944 X 10°. With the use of Egs. (92) and (93), we obtain
a maximum mass of M = 4 X 103 M, for the kaon con-
densate star with a radius R = 4 X 10° km ( ~ R,), cor-
responding to a super-massive black hole. Thus, BEC stars,
formed from small mass particles, may represent viable
candidates for the super-massive ‘““black holes™ that reside
at the galactic centers. Hence the Bose-Einstein condensa-
tion process in the early universe may have provided the
seeds from which super-massive black holes were even-
tually formed through accretion of interstellar matter.

An alternative model of a condensed compact astrophys-
ical object is represented by the boson stars [23-28], self-
gravitating compact solitonic objects made up of bosonic
fields. Noninteracting complex scalar fields were originally
considered for the constituents composing boson stars.
However, the resultant configurations are typically mini-
boson stars, which have small size and mass. This result
originates from the following specific feature of boson
stars: The boson star is protected from gravitational col-
lapse by the Heisenberg uncertainty principle, instead of
the Pauli exclusion principle that applies to fermionic stars,
and the characteristic length scale of the former is much
smaller than that of the latter.

It has been shown that this situation can be dramatically
changed by introducing self-interacting complex scalar
fields. The self-interaction effectively generates a repulsive
force and the maximum mass of stable relativistic boson
stars can be enhanced up to a size of the order of ordinary
fermionic stars [25,26]. However, the mass of the boson
star made of noninteracting scalar fields depends on the
mass m,., of the scalar field, so that with an appropriate
choice of m, (very small) even the mass of a mini-boson
star can be as large as the mass of a boson star consisting of
self-interacting particles [23]. This is the case, in particu-
lar, of axion stars that could account for the mass of
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MACHOs (between 0.3 and 0.8 M) if the axion mass is
of order 10710 eV /c? (see Fig. 1 of Ref. [27]). In the case
of the repulsive scalar interaction, larger boson star masses
can be achieved and the scalar field mass mg, can be
chosen larger. Based on these arguments, it has been
proposed since the 1990s that boson stars (self-interacting
or not) could produce the mass of neutron stars by using
the Bose-Einstein condensation of the relativistic Klein-
Gordon model (see the review [28]).

In the present paper we are considering ‘‘self-
interacting” Bose-Einstein condensed systems in the
Thomas-Fermi limit, which consists in neglecting the
kinetic energy of the particles (or equivalently the quantum
pressure). The star is stabilized by the pressure term gen-
erated by the presence of the self-interaction potential.
There is a fundamental difference between the physical
properties of the complex scalar field boson stars and the
BEC stars considered in the present model. This difference
is related to the rotational properties of these two classes of
objects. It has been shown in Ref. [26] that a slow rotation
of a boson star is impossible (the angular momentum is
quantized). However, rapidly rotating boson stars exist in
general relativity and they rotate differentially (not uni-
formly). The energy density of the star p vanishes at the
axis of rotation due to the presence of the centrifugal
forces. The nearby maximum of the energy density extends
to a mass torus, thereby modeling, to some extent, also a
relativistic accretion disk, which is thickened along the
equator. These properties of the complex scalar field stars
are a result of the assumption of the asymptotic flatness of
the spacetime, which implies the existence of conserved
quantities for solutions with a Killing vector field £ [26].
On the other hand, in the present model, the BEC star
satisfies a polytropic equation of state, with polytropic
index n = 1 (in the nonrelativistic limit). The slow rotation
of Newtonian polytropic stars was investigated in detail in
Ref. [40], and, as shown in Sec. IV B, the Lane-Emden
equation can be solved exactly for a continuous range of
angular velocities, starting with the static case. General
relativistic barotropic stars can also have a slow rotation.
Therefore, as opposed to the scalar field description, BEC
stars can evolve continuously to a given rotational state.
Moreover, for BEC stars, the ratio of the conserved angular
momentum and of the particle number is not an integer, as
it is in the case of the complex scalar field boson stars [26].
Finally, the general relativistic configurations of BEC stars
do not have asymptotic flatness, but they are continuously
matched to an exterior Schwarzschild geometry. It is ex-
pected, however, that in the strong coupling limit A > 1,
the self-interacting boson stars behave as a fluid with an
isotropic barotropic equation of state [25] so they should
have a continuous range of rotational states like BEC stars.
There may remain differences between BEC stars and
complex scalar field boson stars due to the differences in
the physical nature of the two types of stars, and they can
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show up in surface structure, radiation emission, interior
vortices, etc.

There is another important physical difference between
the present model (BEC star) and the scalar field model. In
our model, the star consists of a fluid obtained by averaging
microscopic quantities associated with its constituent par-
ticles, and the fluid laws can be obtained via a kinetic
theory using microscopic models of the fluid particles,
and of their interactions. The statistical averaging proce-
dure depends on the particles’ energy: in the nonrelativistic
case (E = p?/2m) it is based on the Schrodinger quantum
mechanical description, while in the relativistic case (E> =
p*c® + m%c*) it is based on the Klein-Gordon equation.
By contrast, a boson star, made of a scalar field, does not
derive from an average. The star is not made of pointlike
particles but is described by a field (self-interacting or not)
of unspecified physical nature, assumed to obey the Klein-
Gordon equation.’ Its physical properties are not obtained
by statistical averaging, and its thermodynamic properties
(equation of state, for example) do not have a clear physi-
cal meaning, and cannot be interpreted unambiguously.
Thus, from a conceptual point of view, a scalar field and
a BEC fluid are very different physical systems.

We may argue that BEC star models are more physical
and transparent than boson star models. Indeed, BEC stars
consist of physical particles (Cooper paired neutrons,
pions, kaons, quarks etc.) which may have well-known
physical characteristics, and are described by the standard
laws of nature, as we know them from Earth. The thermo-
dynamic properties of the system are obtained by averag-
ing over a quantum ensemble of self-interacting particles,
obeying a well-known statistical distribution, and they are
obtained in a transparent, clear, and physical way, starting
from a second quantization procedure. There are no similar
methods for determining the physical properties of the
boson stars, where the nature of the scalar particle is
largely unknown (Higgs bosons are not particularly good
candidates as elementary constituents of the boson stars,
and the form of the self-interaction potential is mostly
obtained phenomenologically). By contrast, BECs are cur-
rently obtained in the terrestrial laboratories, and this gives
a much better insight in their physical properties, as com-
pared to the scalar field. However, since at relativistic
energies, BECs satisfy the Klein-Gordon equation with a
self-interaction term, the possibility to describe the rela-
tivistic BEC via a scalar field representation cannot be
excluded a priori. Scalar fields are useful tools in many

"The physical interpretation of the field ¢ in the scalar field
model is different from that of the wave function ¢ in the BEC
model. As a result, the energy density and the pressure of the
scalar field are obtained directly from the energy-momentum
tensor of the field, while in the BEC model they can be obtained
in the standard thermodynamic way from the hydrodynamic
representation in both the nonrelativistic [32-36] and relativistic
cases [62].
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physical applications, and they are sometimes used as
effective descriptions of usual standard thermodynamic
fluids. Indeed, an effective description of fluid systems in
terms of a scalar field was considered by several authors.
For a minimally coupled real scalar field, it was shown that
the energy-momentum tensor always has the structure of
the energy-momentum tensor of a perfect fluid [63,64].
For spherically symmetric complex scalar fields (boson
stars), the radial and tangential pressure are in general
different (P, # P, ), but the anisotropy drops to zero in
the strong coupling limit [65,66]. This justifies the adop-
tion of a fluid description, based on an isotropic barotropic
equation of state, for relativistic scalar field systems with
A > 1[25].

Presently, the mass of the neutron stars can be deter-
mined very accurately, and many of them have masses in
the range of 2-2.4 solar masses, which are very difficult to
explain by the standard neutron matter models, including
those with exotic matter like quarks. However, these mass
values could be very easily explained by our model if
neutron stars can be considered as BEC stars. In addition,
the Bose-Einstein condensation model as formulated in
this paper has a firm physical basis since its theoretical
features have been extensively tested and observed in
terrestrial laboratory experiments. Therefore, the possibil-
ity that the 2-2.4 solar mass neutron stars are BEC stars
cannot be eliminated a priori in the favor of a more exotic
model. Moreover, since our model is described by a poly-
tropic equation of state, it admits both slow and rapid
(general relativistic) rotation modes, which make BEC
stars reasonable candidates for describing pulsar proper-
ties, which are known to have a superfluid core.

Bose-Einstein condensate stars could have a normal
matter crust, since we expect that the condensation cannot
take place at densities smaller than the nuclear density
or quark deconfinement density. The presence of the thin
crust increases the mass and the radius of the condensate
star by a factor of 10% or 17%, respectively. Therefore, the
presence of a neutron crust does not modify significantly
the basic physical properties of the star. Distinguishing
between BEC stars and “‘standard” neutron stars or other
types of condensate or quark stars could be an extremely
difficult observational task. Similarly to the case of quark
stars [67,68], we suggest that high energy radiation pro-
cesses from the surface of the condensate may provide
some distinctive features allowing a clear differentiation
of these different types of stellar objects.

In a very general approach, one may assume that the
masses m of the particles forming the stellar type conden-
sate are anisotropic, and they should be described by a
mass tensor m;;. Such anisotropic masses are known from
condensed matter physics where they are encountered in
effective mass calculations for electrons immersed in a
band structure, in the case of excitons (electron-hole cou-
ples held together by the Coulomb attraction) and in BECs
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for semiconductors. The doping structure of the semicon-
ductor and its anisotropies would give place to an effective
mass matrix for the paraexcitons (singlet excitons) at least
in the low momentum approximation [5]. A different value
for the effective mass m may considerably increase (or
decrease) the total mass of the condensate.

A rotating BEC may exhibit a very complex internal
structure and dynamics, mainly due to the presence of
vortex lattices. The vortex lattices may evolve kinetically,
with each vortex following the streamline of a quadrupolar
flow. The quadrupolar distortions can lead to a disordering
of the vortex lattice, and to an instability due to interpar-
ticle collisions, finite temperature effects or to the quad-
rupolar distortions induced by the external potential.

PHYSICAL REVIEW D 86, 064011 (2012)

On the other hand, due to the high neutrino emissivity,
which is significantly enhanced due to the condensation,
kaon condensate stars are very dark objects. Hence their
observational detection may prove to be an extremely
difficult task. The possible astrophysical/observational
relevance of these processes will be considered in a future
publication.
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