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We consider the class of d ¼ 4 conformal field theories at finite temperature and chemical potential that

are holographically described within D ¼ 5 Einstein-Maxwell theory with a Chern-Simons term. The

high temperature phase, which is spatially homogeneous and isotropic, is dual to the AdS-Reissner-

Nördstrom black brane solution. For sufficiently large Chern-Simons coupling, we construct new

electrically charged AdS black hole solutions that are dual to the low temperature, spatially modulated

phase. In this phase the current, associated with the Abelian global symmetry, spontaneously acquires a

helical order. The new black holes are stationary and also have Bianchi VII0 symmetry.
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I. INTRODUCTION

Spatially modulated phases, in which the Euclidean
spatial symmetry is spontaneously broken down to some
smaller subgroup, appear in condensed matter systems in a
wide variety of settings, including spin density waves [1],
charge density waves [2] and Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) states [3,4], and are also anticipated
in QCD at high baryonic density [5]. It is therefore of
interest to investigate the properties of such phases for
strongly coupled matter using the AdS/CFT correspon-
dence. In this context it has been argued that spatially
modulated phases can arise for conformal field theories
(CFTs) at finite temperature and charge density [6–11] and
also in the presence of magnetic fields [12,13]. Other work,
utilizing the brane probe approximation, can be found in
[14–17]. The simplicity of these constructions has led to
the speculation that the typical ground states of holo-
graphic matter at finite charge density and/or in a magnetic
field could be spatially modulated [10].

The first construction of black holes dual to spatially
modulated phases was recently presented in the context of
a D ¼ 5 gravitational model with a gauge field and a
charged two-form in [11]. Electrically charged AdS5 black
holes were constructed which are holographically dual to
p-wave superconductors with a helical order. The black
holes of [11] are static and have a Bianchi VII0 symmetry,
which is naturally associated with the helical order. It was
also shown that at zero temperature the black holes become
smooth domain wall solutions interpolating between AdS5
in the UV and a homogeneous but nonisotropic ground
state with a scaling symmetry in the IR, of a type similar to
those found in [18].

Here we will consider another class of D ¼ 5 models,
first studied in this context in [6], namely, Einstein-
Maxwell theory with a Chern-Simons term. This class of
models, parametrized by the strength of the Chern-Simons
coupling, �, can be used to study d ¼ 4 CFTs with an
Abelian global symmetry, whose anomaly is fixed by �.
We will be interested in phases of the dual CFT at finite

temperature and chemical potential with respect to the
global symmetry which means that we need to construct
electrically charged AdS5 black holes. At high tempera-
tures the CFTs are described by the standard AdS-
Reissner-Nördstrom (AdS-RN) black brane solution.
When � is greater than a specific critical value, �c, the
AdS-RN black brane has spatially modulated instabilities
below a critical temperature, suggesting that the system
moves into a spatially modulated phase in which the cur-
rent acquires a helical order [6]. In the limit � ! 1, where
the backreaction to gravity gets switched off, it was argued
that the phase transition should be second order with mean
field behavior [7].
The purpose of this paper is to construct the fully back-

reacted spatially modulated black holes for � > �c. As in
[11], the key ingredient in the construction of the new
black hole solutions is that they have a Bianchi VII0
symmetry associated with the helical order. With this
symmetry, combined with time-translation invariance, we
can use an ansatz involving several functions which just
depend on a single radial coordinate. After substituting into
the equations of motion we are led to a system of ordinary
differential equations (ODEs) which we solve numerically.
While the black holes in [11] were static here they are just
stationary and this leads to the dual phase having spatially
modulated momentum in addition to the spatially modu-
lated pressure and shear that was seen in [11]. The new
black hole solutions exist for temperatures lower than the
critical temperature (which is not always the case [19]) and
have less free energy than the AdS-RN black branch. The
helical current phase is thus thermodynamically preferred
and we show that it is always second order with mean field
behavior. We will see that the spatial modulation persists in
the T ! 0 limit and in this limit the entropy density
approaches zero.
Our black holes are dual to helical current phases which

are reminiscent of the ‘‘chiral nematic’’ (or ‘‘cholosteric’’)
phase of liquid crystals (e.g. [20]). Recall that the order
parameter for a nematic phase is a three-dimensional unit
vector n, defined up to sign, called the ‘‘director.’’ In the

PHYSICAL REVIEW D 86, 064010 (2012)

1550-7998=2012=86(6)=064010(11) 064010-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.064010


chiral nematic phase there is a helical structure in which
the director twists along an axis perpendicular to the
direction of the director. For wave-number k the pitch of
a helical phase is p ¼ 2�=k. While a general helical phase,
including ours, is periodic with period p, for a chiral
nematic it has period p=2 because n ffi �n. One important
issue is to calculate the temperature dependence of the
pitch of the helical order (e.g. [21]). In many materials
the pitch increases with decreasing temperature but mate-
rials are known for which it decreases. We can obtain the
precise temperature dependence of the pitch for our helical
phases, finding that it monotonically increases, approach-
ing a nonzero value at T ¼ 0. Chiral nematics are well
known to have interesting optical properties,1 such as
selective reflection of circularly polarized light, and it
will be interesting to explore analogues of them for our
new black hole solutions using linear response theory.

II. GENERAL SETUP

We consider the D ¼ 5 action given by

S¼
Z

d5x
ffiffiffiffiffiffiffi�g

p �
ðRþ 12Þ � 1

4
F��F

��

�
��

6

Z
F^F^A;

(2.1)

where F ¼ dA and � is a constant (the boundary terms will
be given later). The corresponding equations of motion are
given by

R�� ¼ �4g�� þ 1

2

�
F��F�

� � 1

6
g��F

2

�
;

d � Fþ �

2
F ^ F ¼ 0:

(2.2)

These equations admit a unit radius AdS5 vacuum solution
which is dual to a class of d ¼ 4 CFTs with a global
Abelian symmetry. The metric, g��, is dual to the d ¼ 4

energy momentum tensor, Tmn, and the gauge-field, A�, is

dual to the d ¼ 4 Abelian current, Jm. For example, when

� ¼ 2=
ffiffiffi
3

p � 1:1547 we obtain the bosonic content of
D ¼ 5 minimal gauged supergravity, and the class is
known to include the most general class of N ¼ 1 super-
conformal field theory with type IIB or D ¼ 11 supergrav-
ity duals [23–25]. We will be focusing on the range
� > �c, with �c � 1:1584.

We will construct black hole solutions that are invariant
under time translations and also have Bianchi VII0 sym-
metry. The Killing vectors associated with the latter are
@x2 , @x3 , which generate translations in the x2, x3 direc-

tions, respectively, and @x1 � kðx2@x3 � x3@x2Þ, where k is

a constant, which generates a helical motion consisting of a
translation in the x1 direction combined with a simulta-
neous rotation in ðx2; x3Þ plane. The corresponding invari-
ant one-forms are given by

!1¼dx1; !2¼ cosðkx1Þdx2�sinðkx1Þdx3;
!3¼ sinðkx1Þdx2þcosðkx1Þdx3;

(2.3)

which satisfy d!1 ¼ 0, d!2 ¼ �k!1 ^!3 and d!3 ¼
k!1 ^!2. The ansatz we shall consider is given by

ds2 ¼ �gf2dt2 þ dr2

g
þ h2!2

1

þ r2e2�ð!2 þQdtÞ2 þ r2e�2�!2
3;

A ¼ adtþ b!2; (2.4)

where f, g, h, �, Q, a and b are functions of the radial
coordinate r only. Note that when Q � 0 the space-time is
stationary but not static. The black hole event horizon,
located at r ¼ rþ where gðrþÞ ¼ QðrþÞ ¼ aðrþÞ ¼ 0, is,
generically, the noncompact Lie group Bianchi VII0.
By substituting this ansatz into the equations of motion

we find that f and g satisfy first-order differential equations
and that h, �, Q, a and b satisfy second-order equations.
Furthermore, these differential equations can be obtained
from substituting the ansatz directly into the action (2.1)
and then varying the seven functions of r. The constant k is
held fixed in these variations. As the expressions for the
equations of motion are rather long, we just record the form
of the action

S¼
Z
d5xr2hf

�
�g00 �g0

�
3f0

f
þ2h0

h
þr

r

�

� 2g

r2hf
½f00r2hþf0ð2rhþr2h0Þþfðr2h00 þ2rh0 þhÞ�

�2gð�0Þ2�2k2sinh2ð2�Þ
h2

þe2�r2ðQ0Þ2
2f2

þk2r2e�2�Q2

2h2f2g

þ12þða0Þ2
2f2

�Qb0a0

f2
�1

2

�
e�2�g

r2
�Q2

f2

�
ðb0Þ2

�e2�k2b2

2r2h2

�
þ�k

3

Z
d5xbðba0 �ab0Þ: (2.5)

It will be useful to observe that our ansatz, and hence the
equations of motion, are left invariant under the following
three scaling symmetries:

r!�r; ðt;x2;x3Þ!��1ðt;x2;x3Þ; g!�2g;

a!�a; b!�b;

x1!��1x1; h!�h; k!�k;

t!�t; f!��1f; a!��1a; Q!��1Q;

(2.6)

where � is a constant.
The equations of motion admit the electrically charged

AdS-Reissner-Nördstrom black brane solution. It has
h ¼ r, f ¼ 1, � ¼ Q ¼ b ¼ 0, and hence,

ds2 ¼ �gdt2 þ dr2

g
þ r2ðdx21 þ dx22 þ dx23Þ;

A ¼ adt;
(2.7)

1This was recently explored using Lie algebra methods in [22].
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with

g¼ r2�r4þ
r2

þ�2

3

�
r4þ
r4

�r2þ
r2

�
; a¼�

�
1�r2þ

r2

�
: (2.8)

The AdS-RN black brane is static and has Euclidean, ISO(3),
symmetry. It has temperature T¼ð6r2þ��2Þ=6�rþ and
describes the high temperature, spatially homogeneous
and isotropic phase of the dual CFTs when held at finite
chemical potential � with respect to the global Abelian
symmetry.

A. Asymptotic AdS5 and near-horizon expansions

We will be interested in new black hole solutions that
asymptotically approach AdS5 in the UV and are dual to
d ¼ 4 phases where the breaking of the Euclidean sym-
metry to a helical order is spontaneously generated. By
analyzing the equations of motion we can construct the
following asymptotic expansion as r ! 1:

g¼ r2
�
1�M

r4
þ���

�
; f¼f0

�
1�ch

r4
þ���

�
;

h¼ r

�
1þch

r4
þ���

�
; �¼c�

r4
þ��� ;

Q¼f0

�
cQ
r4

þ���
�
; a¼f0

�
�þ q

r2
þ���

�
;

b¼cb
r2
þ��� :

(2.9)

At a convenient juncture we will use the scaling symme-
tries (2.6) to set f0 ¼ � ¼ 1. The UV data is then specified
by seven parameters M, ch, c�,cQ, q, cb and k. Note that

we have fixed the asymptotic falloff of h in (2.9) so we can
no longer use (2.6) to scale k. The holographic interpreta-
tion of these parameters will be discussed later.

At the black hole horizon, located at r ¼ rþ, the func-
tions have the analytic expansion

g¼gþðr�rþÞþ . . . ; f¼fþþ . . . ;

h¼hþþ . . . ; �¼�þþ . . . ;

Q¼Qþðr�rþÞþ . . . ; a¼aþðr�rþÞþ . . . ;

b¼bþþ . . . :

(2.10)

Regularity of the metric at the black hole horizon can
easily be seen by using the in-going Eddington-
Finkelstein coordinates v, r where v � tþ ðgþfþÞ�1 �
lnðr� rþÞ. The full expansion is fixed in terms of the
seven constants fþ, �þ, hþ, Qþ, aþ, bþ and rþ. In
particular, the coefficient gþ is fixed by these constants:

gþ¼�e2�þk2b2þ
12h2þrþ

þ
�
4� a2þ

6f2þ

�
rþ�e2�þQ2þr3þ

4f2þ
: (2.11)

After fixing the scaling symmetries (2.6) we have seven
UV parameters and seven IR parameters. We have two
first-order differential equations and five which are second

order, so a solution is fixed by 12 parameters. Thus, ge-
nerically, we expect a two-parameter family of black hole
solutions, which we will label by k and temperature T.

B. Thermodynamics

To analyze the thermodynamics of the black hole solu-
tions we will need to calculate the on-shell Euclidean
action. Additional details are presented in Appendix A.
We analytically continue by setting t ¼ �i� and in order to
get a real metric and vector field we should also write
Qþ ¼ i �Qþ, aþ ¼ i �aþ. Near r ¼ rþ the Euclidean solu-
tion then takes the approximate form

ds2E�gþf2þðr�rþÞ
�
d�þ

�Qþr2þe2�þ

gþf2þ
!2

�
2þ dr2

gþðr�rþÞ
þh2þ!2

1þr2þe2�þð!2Þ2þr2þe�2�þ!2
3;

A� �aþðr�rþÞd�þb!2: (2.12)

Regularity of the solution at r ¼ rþ is then easily seen by

making the coordinate change � ¼ 2g�1=2
þ ðr� rþÞ1=2 and

making � periodic with period �� ¼ 4�=ðgþfþÞ, corre-
sponding to temperature T ¼ ðf0��Þ�1. We can also read
off the area of the event horizon and, since we have set
16�G ¼ 1, we deduce that the entropy density is given by

s ¼ 4�r2hþ: (2.13)

We will consider the total Euclidean action, ITot, defined
as

ITot ¼ Iþ Ibndy; (2.14)

where I ¼ �iS and Ibndy is the Euclidean boundary action

of [26], including counter-terms, which is given explicitly
in Appendix A. We next define the potential W, and a
corresponding density w, for the grand canonical ensemble
via W ¼ T½ITot�OS ¼ wvol3, where ½ITot�OS is the on-shell
Euclidean action and vol3 ¼

R
dx1dx2dx3. A calculation

reveals that w can be expressed in two equivalent ways

w ¼ �M ¼ 3Mþ 8ch þ 2�q� Ts; (2.15)

with the equality of the two expressions giving a Smarr
type formula.
A variation of the bulk action I gives equations of motion

and boundary terms. Thus an on-shell variation only gets
contributions from the boundary. We hold k fixed in these
variations, for reasons we discuss in the next subsection, and
for the Euclidean black hole we then only get contributions
at r ! 1. Combining this with an on-shell variation of the
boundary action Ibndy and using the asymptotic expansion

(2.9) we deduce that w ¼ wðT;�Þ and
	w ¼ �s	T þ 2q	�: (2.16)

To illuminate the holographic meaning of the constants
appearing in the UV expansion (2.9), we now compute the
expectation value of boundary stress-energy tensor and
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the current. The relevant terms for the stress tensor are
given by[27]

hTmni¼ lim
r!1r

2½�2Kmnþ2ðK�3Þðg1Þmnþ . . .�: (2.17)

Using (2.9) we obtain

hTtti ¼ f20ð3Mþ 8chÞ; hTtx2i ¼ 4f0cQ cosðkx1Þ;
hTx1x1i ¼ ðMþ 8chÞ; hTx2x2i ¼ ðMþ 8c� cosð2kx1ÞÞ;
hTx3x3i ¼ ðM� 8c� cosð2kx1ÞÞ;
hTx2x3i ¼ �8c� sinð2kx1Þ: (2.18)

One can check that this is traceless ðg1ÞmnhTmni ¼ 0.
Setting f0 ¼ 1 we see that the energy density of our
solutions, ", is given by

" ¼ 3Mþ 8ch: (2.19)

Furthermore, we also deduce from (2.15) and (2.16) that
the first law can also be written in the form:

	" ¼ T	s� 2�	q: (2.20)

Returning to (2.18) we see that c� specifies spatially
modulated pressures and shear in the (x2, x3) plane, with
the length scale of the modulation fixed by the wave-
number k. The pressure in the x1 direction is given by
Mþ 8ch. If we define �p to be the average of the three
pressures we have �p ¼ Mþ 8=3ch, and the Smarr formu-
las in (2.15) can be written "þ 2�q ¼ Tsþ �p� 8=3ch.
These features were also seen for the black holes found in
[11]. A new feature of the black holes we are considering
here is that there is spatially modulated momentum in the
(x2, x3) plane specified by cQ and k.

We next calculate the expectation value of the current.
The relevant terms are given by [26]

hJmi ¼ lim
r!1r

3½Frm þ . . .�; (2.21)

where the ellipses refer to terms that will not be relevant
here. Using (2.9) we obtain

hJti ¼ �2f0q; hJx1i ¼ 0;

hJx2i ¼ �2cb cosðkx1Þ; hJx3i ¼ 2cb sinðkx1Þ:
(2.22)

From the temporal component we see that the constant q
fixes the charge density. From the spatial components we
see that cb fixes the strength of the spontaneously gener-
ated spatially modulated helical current. It is clearly circu-
larly polarized.

C. Variations of k

In the variations to get (2.16), or equivalently (2.20),
we held the wave-number k fixed. One can consider
arbitrary non-normalizable and normalizable deforma-
tions of the fields and then expand them in a complete
basis of functions. Here we are viewing k as labelling
one of the modes and hence should not be varied to

obtain the equations of motion.2 Furthermore, it should
not be varied to obtain an on-shell variation of the action
in analyzing the thermodynamics for a particular solu-
tion labeled by k. As we discuss further in the next
section, we will obtain a two-parameter family of black
hole solutions to the equations of motion that depend on
k and T. At fixed temperature, this should be viewed as
a moduli space of solutions, labeled by k and we should
choose the solution labeled by a specific value of k that
has the smallest free energy w. This leads to a one-
parameter family of thermodynamically preferred solu-
tions labeled by T, given by the red (dashed) line in
Fig. 2. In fact this red (dashed) line is specified by the
condition that the action ITot is stationary with respect to
a free variation of k:

Z 1

rþ
dr

�
k

�
4r2fsinh2ð2�Þ

h
� r4e�2�Q2

fgh
þ e2�b2f

h

�

� �

3
bðba0 � ab0Þ

�
¼ 0: (2.23)

In Appendix A we will discuss how this arises from
contributions to varying the action at x1 ¼ �1.
Another perspective is to consider the x1 direction to be

periodic with x1 ffi x1 þ L. In this case we should only
consider discrete wave-numbers k ¼ n=ð2�LÞ, for arbi-
trary integer n, and there is no issue of varying k to obtain
the equations of motion. In this case there will be a discrete
set of solutions on Fig. 2 and, at a fixed temperature, one
should just choose the one with smallest free energy, as
usual. One finds that the system will, in general, jump
discontinuously from one branch to another giving a series
of first-order phase transitions. In the limit that L ! 1
we will recover the continuum picture that we have
discussed above.
It is worth noting that the same kinds of issues also

arise for homogeneous and isotropic phases. For example,
recall the basic s-wave holographic superconducting
black holes [28,29]. In this setting the AdS-RN black
brane, which describes the high temperature phase, be-
comes unstable to the formation of charged scalar hair.
Although only scalar modes with k ¼ 0 have been dis-
cussed in the literature, a linearized analysis for k � 0
will produce a curve analogous to that in Fig. 1, but it will
now be symmetric about k ¼ 0. Hence, there should also
be a two-parameter family of superconducting black hole
solutions labeled by T and k. In this case, however, the
thermodynamically preferred curve of solutions will just
be the solution with k ¼ 0.

2An analogous procedure was employed in [11] and also,
essentially in a field theory context, in [7]. To clarify this point,
in Appendix A we consider a more general setup in which we
also allow a more general deformation parameter at infinity.
Specifically, we consider b ¼ �b þ cb

r2
þ . . . , with �b and cb

being the non-normalizable and normalizable deformations of
the magnetic part of the gauge field for a particular mode k.
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III. HELICAL BLACK HOLES

Based on the analysis of linearized perturbations about
the AdS-RN black brane solution carried out in [6] we
expect to be able to construct spatially modulated black
hole solutions provided that the Chern-Simons coupling �
is larger than �c � 1:1584. We will now set � ¼ 1:7, and
hence �=�c � 1:47, but we have checked that several other
values lead to qualitatively similar results. For this value
the linearized analysis of [6], which we summarize in
Appendix B, leads to the curve presented in Fig. 1 which
denotes, for a given value of k, the temperature at which the
AdS-RN black brane becomes unstable. Hence for k in the
range 0:47 & k & 3:05we expect to be able to find the new
black hole solutions.

The new helical black hole solutions are obtained by
solving the equations of motion numerically for the ansatz
(2.4) with boundary conditions at the asymptotic AdS5
boundary given in (2.9), and at the black hole horizon
given in (2.10). We use the scaling symmetries (2.6) to
set f0 ¼ � ¼ 1. As mentioned earlier a simple parameter
count indicates that we expect, generically, a two-
parameter family of solutions which we take to be labeled
by temperature T and wave-number k. In practice we fix a
specific value of k and then construct a one-parameter
family of solutions labeled by the temperature T. We
considered 20 different values of k, in the range 0:6 	 k 	
1:8 (focusing on the peak of the curve in Fig. 1), and we
have displayed our results in Figs. 2–4.

Figure 2 shows the two-parameter family of solutions
and their free energy w. We first note that the boundary of
the surface projected onto the (k, T) plane reproduces the
curve of critical temperatures as a function of k where the
AdS-RN black brane becomes unstable (see Fig. 1). We
next note that for any fixed temperature the helical black
holes have less free energy than the AdS-RN black hole
for any value of k. Thus, from Fig. 2 we deduce that there

is a second-order phase transition at T ¼ Tc � 0:0627 at
k ¼ kc � 1:32 with the system moving from a homoge-
neous and isotropic phase to a spatially modulated helical
phase. As the temperature is lowered we need to find the
value of k for which the black hole has the lowest free
energy. This leads to the one-parameter family of ther-
modynamically preferred black hole solutions which are
marked with a red (dashed) line in Fig. 2. We have also
checked numerically that this red (dashed) line coincides
with imposing (2.23). Interestingly, our numerical analy-
sis indicates that all of the black hole solutions on the red
(dashed) line have ch ¼ 0 (a similar phenomenon was
also seen in [11]). In Fig. 3 we have plotted the behavior
of ch versus k for a representative temperature of T �
0:535 and we see that it vanishes along the red (dashed)
curve as well as on the boundary curve of Fig. 2. It would

FIG. 2 (color online). The two-parameter family of helical
black holes, labeled by temperature T and wave-number k, and
their free energy w. The red (dashed) line denotes the thermo-
dynamically preferred locus, which minimizes w over the mod-
uli space of solutions at fixed T labeled by k. The plot is for
� ¼ 1:7 and � ¼ 1. Lines of constant temperature are also
included.

0.5 0.9 1.3 1.7 2.1 2.5 2.9
k

0.02

0.04

0.06

T

FIG. 1 (color online). The curve denotes the critical tempera-
ture at which the AdS-RN black brane becomes unstable and
also where the new branches of helical black holes, given in
Fig. 2, appear. The plot is for � ¼ 1:7 and � ¼ 1.

1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7
k

0.0004

0.0002

0.0002

ch

FIG. 3. Plot of ch versus k for the one-parameter family of
helical black hole solutions given in Fig. 2 for the representative
temperature T � 0:0535. In particular ch ¼ 0 on the thermody-
namically preferred red (dashed) line of solutions given in Fig. 2.
The plot is for � ¼ 1:7 and � ¼ 1.
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be interesting to understand the underlying reason for this
behavior.

In Fig. 4 we show the behavior of various other physical
quantities as a function of temperature for the thermody-
namically preferred branch, given by the red (dashed) line
in Fig. 2, and marked with red (dashed) lines in Fig. 4, as

well as for the AdS-RN black hole solution, marked with
blue (solid) lines in Fig. 4. The first two panels show the
free energyw for both solutions and the wave-number k for
the red (dashed) line. The pitch, p of the helical order is
given by p ¼ 2�=k and hence we see that the pitch mono-
tonically increases as the temperature is decreased. The

0 0.02 0.04 0.06 0.08
T

0.18

0.15

0.12

0.09

w

0 0.02 0.04 0.06
T

1.

1.1

1.2

1.3

1.4
k

0.02 0.04 0.06 0.08
T

0.01

0.02

0.03

cQ

0.02 0.04 0.06 0.08
T

0.0003

0.0006

0.0009

0.0012

c

0 0.02 0.04 0.06 0.08
T0.32

0.28

0.24

0.2

0.16

q

0.02 0.04 0.06 0.08
T

0.08

0.06

0.04

0.02

0.
cb

0.02 0.04 0.06 0.08
T

s

0.5

1.

1.5

2.

FIG. 4 (color online). The red (dashed) lines plot various physical quantities against temperature T for the thermodynamically
preferred helical black hole solutions on the red (dashed) line in Fig. 2. The blue (solid) lines refer to the AdS-RN black hole solution.
w is the free energy and k is the wave number of the helical order. cQ and c� fix the spatially modulated momentum and stress/strain in

the ðx2; x3Þ plane, respectively. q and cb determine the size of the charge and the spatially modulated current, respectively, and s is the
entropy density. The plots are for � ¼ 1:7 and � ¼ 1.
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next two panels show the behavior of cQ and c� which, we

recall from (2.18), determine the strength of the spatially
modulated momentum and stress/strain in the (x2, x3)
plane, respectively. The next two panels show the behavior
of the charge density q and also the behavior of cb, which
we recall from (2.22), determines the strength of the spa-
tially modulated helical current. The final panel shows the
behavior of the entropy density, s. By analyzing the be-
havior close to the critical temperature, T ¼ Tc � 0:0627,
we find the following mean field behavior:

cQ�2953T4
c

�
1� T

Tc

�
1=2

; c��107T4
c

�
1� T

Tc

�
;

cb�530T3
c

�
1� T

Tc

�
1=2

; k�Tc

�
11:5þ9:58

T

Tc

�
:

(3.1)

A. Low temperature behavior

It is clear from Figs. 2 and 4 that the helical order
persists as T ! 0, and in particular k approaches a nonzero
value in this limit. Furthermore, the entropy density ap-
proaches zero. However, we have not yet been able to pin
down the precise behavior of the solution in this limit, and
we leave this interesting issue for further investigation.
However, we record a couple of conclusions based on
our numerical results. Amongst the coefficients in the
near-horizon expansion (2.10), we find that hþ ! 1 and
�þ ! �1, with the entropy density, s ¼ 4�r2þhþ, going
to zero and rþhþe��þ approaching a constant value. We
also find that fþ, aþ vanish while Qþ, bþ go to constant
values. Starting from the phase transition the value of
F��F

�� at the horizon is �8=r2þ and this monotonically

increases and approaches 24 as T ! 0. Thus associated
with the vanishing entropy density, we have an expulsion
of electric charge somewhat reminiscent of [30]. We also
evaluated the horizon value of the Ricci scalar and the
square of the Ricci tensor and it appears that R ! �18
and R��R

�� ! 108. It is tantalizing that these are the same

values for the Schrödinger solution of [31].

IV. FINAL COMMENTS

We have constructed, numerically, a new class of elec-
trically charged AdS5 black holes that are dual to d ¼ 4
CFTs at finite charge density acquiring a helical current
order via a second-order phase transition. We have ex-
tracted a number of physical properties of the helical
phase including the temperature dependence of the
wave-number k that fixes the pitch, p ¼ 2�=k, of the
helix. We have shown that the pitch monotonically in-
creases as the temperature is lowered but approaches a
finite value as T ! 0. Furthermore, our numerical results
indicate that the entropy density goes to zero in this limit.
It will be very interesting to further analyze the precise
behavior of our solutions as T ! 0 in order to better

understand the emergent spatially modulated ground state
at T ¼ 0.
Another direction is to calculate various transport

coefficients by calculating various two point functions.
There will be a number of different channels to analyze
and we expect a rich structure. It will also be interest-
ing to explore the related hydrodynamics of the black
holes.
Our numerical results imply that the thermodynamically

preferred helical black holes (the red (dashed) line in
Fig. 2) have the property that the expansion coefficient
ch, appearing in (2.9) and entering the definition of the
energy density and the pressure in the direction of the axis
of the helix (see (2.18)) is exactly zero. The same phe-
nomenon was also seen for the helical superconducting
black holes of [11] and it is desirable to have a better
understanding of this property.
The construction of the D ¼ 5 black hole solutions

describing spatially modulated phases here and in [11]
has been facilitated by the fact that they are static and
have a Bianchi VII0 symmetry. This leads to the construc-
tion of a cohomogeneity one ansatz for the D ¼ 5 fields
and hence solving ordinary differential equations. Moving
to D> 5 (obviously of less interest in making connections
with condensed matter systems), many generalizations are
possible while staying within the realm of solving ODEs.
However, constructing D ¼ 4 black holes that are dual to
spatially modulated phases (as in the models [8,12]) will
necessarily involve solving partial differential equations.
While this is technically more challenging, we expect to
see new phenomena.
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APPENDIX A: MORE ON THERMODYNAMICS

Here we will expand upon the discussion of the
thermodynamics that we summarized in Sec. II B. We
found it illuminating to consider this issue in a slightly
more general setting in which we allow for a non-
normalizable falloff in the magnetic part of the gauge
field at infinity:

b ¼ �b þ cb
r2

þ . . . : (A1)

We emphasize that our new helical black hole solutions
all have �b ¼ 0. The asymptotic expansion at infinity
now reads
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g¼ r2
�
1�M

r4
þk4�2

bþ16c2bþ8q2

24r6
�2k2�bcb lnr

3r6
þk4�2

b lnr
2

6r6
þ . . .

�

f¼f0

�
1þ�chþ k2�2

b

48

r4
�k2�2

b lnr

16r4
þ�49k4�2

bþ48k2�bcb�432c2b
1728r6

þð�k4�2
bþ18k2�bcbÞ lnr

72r6
�k4�2

bðlnrÞ2
16r6

þ . . .

�

h¼ r

�
1þch

r4
þk2�2

b lnr

16r4
þ35k4�2

b�96k2�bcbþ144c2b
1728r6

þðk4�2
b�3k2�bcbÞlnr

36r6
þk4�2

bðlnrÞ2
48r6

þ . . .

�

�¼c�
r4

�k2�2
b lnr

16r4
þ576c�k

2�59k4�2
bþ96k2�bcb�144c2b
1728r6

þð�7k4�2
bþ12k2�bcbÞlnr
144r6

�k4�2
bðlnrÞ2
48r6

þ . . .

Q¼f0

�
cQ
r4

þk2�bq�12cbqþ3k2cQ

36r6
þk2�bqlnr

6r6
þ . . .

�

a¼f0

�
�þ q

r2
þ��k3�2

bþ8�k�bcb
32r4

��k3�2
b lnr

8r4
þ . . .

�

b¼�bþcb
r2
�k2�b lnr

2r2
þ�3k4�bþ8k2cbþ16�k�bq

64r4
�k4�b lnr

16r4
þ . . . :

(A2)

The expansion at the black hole horizon is presented
in (2.10).

We will consider the total Euclidean action, ITot,
defined as

ITot ¼ I þ Ibndy; (A3)

where I¼�iS and the (standard) Euclidean boundary
action, Ibndy, is given by an integral on the boundary

r ! 1 [26]:

Ibndy ¼
Z

d�d3x
ffiffiffiffiffiffiffiffiffiffiffi�g1

p �
�2K þ 6� 1

4
lnrFmnF

mn þ . . .

�
:

(A4)

Here K ¼ gmnrmnn is the trace of the extrinsic curvature
of the boundary, where nm is an outward pointing normal
vector, and g1 is the determinant of the induced metric.
The lnr term is required to remove the divergence associ-
ated with the trace anomaly Tm

m ¼ � 1
12FmnF

mn and the

ellipsis refers to a Ricci scalar term which will not be
relevant for the ansatz and boundary conditions that we
are considering. For our ansatz we have

Ibndy ¼ vol3�� lim
r!1r

2hfg1=2
�
6� 2g1=2

�
2

r
þ h0

h
þ f0

f

�

� g�1=2g0 � 1

2
lnr

�
�ða0 �Qb0Þ2

f2
þ e2�k2b2

r2h2

þ e�2�gðb0Þ2
r2

�
þ . . .

�
; (A5)

where vol3 ¼
R
dx1dx2dx3. We next point out two

equivalent ways to write the bulk part of our Euclidean
action on-shell:

IOS¼vol3��
Z 1

rþ
dr

�
2rghfþr4e2�h

2f
QQ0 þ1

2
he�2�fgbb0

þ 1

2f
r2hða0 �Qb0ÞbQþ1

6
k�ab2

�0

¼vol3��
Z 1

rþ
dr

�
r2hfg0 þ2r2hgf0 �h

f
r4e2�QQ0

�1

f
r2haða0 �Qb0Þ�1

3
k�ab2

�0
: (A6)

Notice that the first expression only receives contributions
from the boundary at r ! 1 since gðrþÞ ¼ QðrþÞ ¼
aðrþÞ ¼ 0, while the second expression also receives con-
tributions from r ¼ rþ. Using the expansions at the AdS
boundary (A2) and at the black hole horizon (2.10), and
combining with (A5) we obtain the following two equiva-
lent expressions for the total on-shell action:

½ITot�OS ¼ vol3
1

T

�
�M��bcb � 1

12
�2

bk
2 þ 1

6
��2

bk�

�

¼ vol3
1

T

�
3Mþ 8ch þ 2�q� Ts

� 1

8
�2

bk
2 � 1

3
��2

bk�

�
: (A7)

A variation of the bulk action I gives equations of
motion and boundary terms. Thus an on-shell variation
only gets contributions from the boundary. We hold k fixed
in these variations and then we only get contributions at
r ! 1. Combining this with an on-shell variation of the
boundary action Ibndy and using the asymptotic expansion

(A2) we eventually obtain
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½	ITot�OS¼vol3��

��
8chþ3Mþ2�q�1

8
�2

bk
2

�1

3
��2

bk�

�
	f0þf0

�
2q�1

3
�2

bk�

�
	�

þf0

�
�2cb�1

2
�bk

2þ1

3
��bk�

�
	�b

�
: (A8)

In this variation we are holding �� fixed and hence
��	f0 ¼ �T�2	T. We next define the potential W, and
a corresponding density w, for the grand canonical
ensemble via W ¼ T½ITot�OS ¼ wvol3. We deduce that
w ¼ wðT;�;�bÞ with

	w¼�s	Tþ
�
2q�1

3
�2

bk�

�
	�

�
�
2cbþ1

2
�bk

2�1

3
��bk�

�
	�b: (A9)

We now compute the expectation value of the stress
tensor and the current. For the former we have [26]

hTmni¼ lim
r!1r

2

�
�2Kmnþ2ðK�3Þðg1Þmn

þ
�
Fm

pFnp�1

4
ðg1ÞmnFpqF

pq

�
lnrþ . . .

�
: (A10)

Using our expansion at the AdS boundary (A2) we
obtain

hTtti ¼ f20

�
3Mþ 8ch � 1

8
�2

bk
2

�

hTtx2i ¼ 4f0cQ cosðkx1Þ
hTtx3i ¼ �4f0cQ sinðkx1Þ
hTx1x1i ¼ Mþ 8ch � 7

24
�2

bk
2

hTx2x2i ¼ Mþ
�
8c� þ 1

8
�2

bk
2

�
cosð2kx1Þ

hTx3x3i ¼ M�
�
8c� þ 1

8
�2

bk
2

�
cosð2kx1Þ

hTx2x3i ¼ �
�
8c� þ 1

8
�2

bk
2

�
sinð2kx1Þ:

(A11)

Observe that hTm
mi ¼ ��2

bk
2=6 ¼ � r2

12FmnF
mn, as ex-

pected (here we are raising indices with gmn1 and the r2

factor appears because it also appears in (A10)). Setting
f0 ¼ 1 we see that the energy density is given by

" ¼ 3Mþ 8ch � 1

8
�2

bk
2: (A12)

Observe that the equality of the two expression in (A7)
imply the Smarr type formula

4

3
" ¼ sT � 2�qþ 8

3
ch ��bcb � 1

8
�2

bk
2 þ 1

2
��2

bk�:

(A13)

If we define the average pressure �p ¼ ðhTx1x1i þ hTx1x1i þhTx1x1iÞ=3, this can also be written in the form

"þ �p¼ sT� 2�qþ 8

3
ch ��bcb � 13

72
�2

bk
2 þ 1

2
��2

bk�:

(A14)

We next calculate the expectation value of the current. The
relevant terms are given by[26]

hJmi ¼ lim
r!1

�
r3Frm � 1

6
�
m

npqAnFpq þrnF
n
m lnrþ . . .

�
;

(A15)

where r is the Levi-Civita covariant derivative with re-
spect to the boundary metric g1. Using the expansion (A2)
we obtain

hJti ¼ �2f0qþ 1

3
�2

bk� hJx1i ¼ 0

hJx2i ¼ �
�
2cb þ 1

2
�bk

2 � 1

3
��bk�

�
cosðkx1Þ

hJx3i ¼
�
2cb þ 1

2
�bk

2 � 1

3
��bk�

�
sinðkx1Þ:

(A16)

In terms of the current, the Smarr formula (A14) can be
written in the form

"þ �p ¼ sT þ�hJti þ 8

3
ch þ 1

2
�bðhJx2i coskx1

� hJx3i sinkx1Þ þ
5

72
�2

bk
2: (A17)

As we discussed in Sec. II C we view k as labelling a
particular mode and hence should not be varied. To amplify
this point, it is useful to refer back to our ansatz (2.4) and
define the x1 dependent variation ½	AðkÞ�m via

½	AðkÞ�t ¼ 	� ½	AðkÞ�x1 ¼ 0

½	AðkÞ�x2 ¼ 	�b cosðkx1Þ
½	AðkÞ�x3 ¼ �	�b sinðkx1Þ:

(A18)

We then find that the first law (A9) can be written in the
form

	W¼
Z
dx1dx2dx3ð�s	TþhJmð�kÞi½	AðkÞ�mÞ; (A19)

where hJmð�kÞi is given in (A16) and we note the inte-
grand is actually independent of x1. In particular, we
interpret 	�b as parametrizing a specific mode, labeled
by k, of a non-normalizable deformation of the gauge-field,
	AðkÞ.

1. Another perspective on (A23)

Let us consider a variation of the gauge field part of the
bulk action (2.1). This gives the boundary term
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	Sgauge ¼
Z
@M

�
�Fþ �

3
A ^ F

�
^ 	A: (A20)

Here we would like to focus on variations of wave-number
k which give rise to a contribution at the boundary of the
noncompact x1 direction. Given our ansatz (2.4) we have

	A ¼ �bx1!3	k: (A21)

We take the boundary to be at x1 ¼ �L=2 and then take
L ! 1. A calculation shows that the relevant part of the
integrand is

�
�Fþ �

3
A ^ F

�
^ 	A ¼ �dt ^ dx2 ^ dx3 ^ dr

�
ke2�fb2

h
� �

3
bðba0 � ab0Þ

�
x1	kþ . . . : (A22)

After evaluating this at x1 ¼ �L=2 and then dividing by L
in order to find the variation of the density, we are led to the
third and fourth terms of (2.23) (taking into account a
minus sign since here we are looking at the Minkowski
signature space-time).

If we now vary the Einstein-Hilbert term we get the
boundary term

	SEH¼
Z
@M

ffiffiffiffiffiffiffiffi��
p

n�ðr�	g���g��r�	g��Þ (A23)

where � is the induced metric on the boundary @M and for
the boundary components defined by x1 ¼ �L=2 we have
that the unit normal vector is n ¼ h�1@x1 . Substituting a

variation of the metric obtained by varying k in our ansatz
(2.4), we obtain contributions at x1 ¼ �1 which lead to
the first and second terms in our formula (2.23), again up to
a minus sign.

This calculation show that variations of k in our ansatz
(2.4) are associated with boundary contributions to the
variation of the action at x1 ¼ �1. Since we do not
want to modify boundary conditions at x1 ¼ �1, k is a
parameter to be held fixed in obtaining the relevant equa-
tions of motion.

APPENDIX B: LINEARIZED ANALYSIS

We summarize the analysis of linearized perturbations
about the AdS-RN black brane solution considered in [6] in
the language of this paper. Specifically, we consider the
perturbation

Q ! 
Q; b ! 
b (B1)

with h ¼ � ¼ 0 in (2.4) around the AdS-RN black brane
solution (2.7), for small 
. At first order in 
 we obtain two
coupled ODEs, linear in Q and b, given by

r�5ðr5Q0Þ0 � k2r�2g�1Qþ r�2a0b0 ¼ 0;

r�1g�1ðrgb0Þ0 � k2r�2g�1bþ r2g�1a0Q0 þ kr�1g�1�a0b ¼ 0;
(B2)

with g and a as given in (2.8). To make contact with
Eq. (4.17) of [6] one should make the following identifi-
cations: u ¼ rþ=r, c ðuÞ¼� ffiffiffi

3
p

r3Q0ðrÞ=rþ, bðrÞ ¼ �ðuÞ,
q¼�=ðrþ

ffiffiffi
3

p Þ, kthere¼khere=rþ,�¼�=4, q ¼ �=ðrþ
ffiffiffi
3

p Þ.
In order to find a normalizable static linearized mode of

interest we should impose the following boundary condi-
tions. At the horizon, r ! rþ, we demand that

Q ¼ QðþÞðr� rþÞ þ . . . ; b ¼ bþ þ . . . : (B3)

We are only interested in deformations of the
CFT given by the temperature T and the chemi-

cal potential �. Hence as r ! 1 we demand
that

Q ¼ cQ
r4

þ . . . ; b ¼ cb
r2

þ . . . : (B4)

A solution to (B2) is specified by four integration
constants and hence, for a given T, �, we expect a
unique solution (if any). By numerically solving (B2)
we find solutions that are summarized in Fig. 1, for the
special value � ¼ 1:7 (and also � ¼ 1), which agrees
well with Fig. 2 of [6].
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