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We study time-reversal and parity—on the physical manifold and in internal space—in covariant loop

gravity. We consider a minor modification of the Holst action which makes it transform coherently under

such transformations. The classical theory is not affected but the quantum theory is slightly different. In

particular, the simplicity constraints are slightly modified and this restricts orientation flips in a spin foam

to occur only across degenerate regions, thus reducing the sources of potential divergences.
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I. TIME REVERSAL IN TETRAD GRAVITY

Classically, the physics of gravity is equally well
described by the Einstein-Hilbert action

SEH½g� ¼ 1

2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg
p

Rd4x; (1)

where the gravitational field is the metric g, or by the tetrad
action

ST½e� ¼
Z

eI ^ eJ ^ F?
IJ; (2)

where the gravitational field is the tetrad 1-form e with
components eI ¼ eI�dx

� and FIJ are the components of

the curvature of the torsionless spin-connection ! ¼ !½e�
determined by the tetrad.1 The relation between the two
languages is of course g�� ¼ �IJe

I
�e

J
�. These two actions,

however, are not equivalent. This can be seen by perform-
ing an internal time-reversal operation

ðiÞTe0 :¼�e0; ðiÞTei :¼ ei; i¼ 1;2;3: (3)

Under this transformation, SEH is clearly invariant as the
metric g ¼ eIeI is not affected by this transformation,

while ST flips sign, ST½ðiÞTe� ¼ �ST½e�. The difference
becomes manifest by writing both actions in tensor nota-
tion and in terms of tetrads

SEH½e� ¼ 1

2

Z
j detejR½e�d4x; (4)

ST½e� ¼ 1

2

Z
ðdeteÞR½e�d4x: (5)

They differ by the sign factor

s � sgnðdeteÞ; (6)

where for later convenience we define sgnð0Þ ¼ 0.
In loop quantum gravity, one utilizes the first-order

formalism where the tetrad e and spin connection ! are
treated as independent variables, and adds to the action the
Holst term

SH½e;!� ¼ 1

�

Z
eI ^ eJ ^ FIJ; (7)

which has no effect on the classical equations of motion.
Here we take � > 0. Thus, the action usually taken as the
starting point for the definition of the quantum theory is

S½e; !� ¼ ST½e;!� þ SH½e;!�
¼

Z
eI ^ eJ ^

�
F?
IJ þ

1

�
FIJ

�

�
Z

eI ^ eJ ^
�
?þ 1

�

�
FIJ: (8)

Defining ðiÞT!IJ as (note that this is the same transforma-
tion as for !½e� in the tetrad action)

ðiÞT!0i :¼ �!0i; ðiÞT!ij :¼ !ij; i; j ¼ 1; 2; 3;

(9)

we observe that the two terms in this action do not trans-
form in the same way under an internal time reversal:

S½ðiÞTe; ðiÞT!� ¼ �ST½e; !� þ SH½e;!�: (10)

That is, S does not transform coherently under ðiÞT, in
spite of the fact that this transformation changes only the
time orientation of the internal Minkowski space. Can we
replace S with an action that transforms coherently? This
can be done in two different manners: either modifying
the first term, to have it behave as the Einstein-Hilbert
action

S0½e;!� ¼
Z

eI ^ eJ ^
�
s ?þ 1

�

�
FIJ; (11)
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1We use units where 8�G ¼ 1. Greek indices are space-time

indices while capital latin indices denoting the four-dimensional
internal space are raised and lowered with the Minkowski metric
�IJ. The star indicates the Hodge dual in Minkowski space:
F?
IJ �? FIJ :¼ 1

2�IJKLF
KL. See Ref. [1] for the rest of the

notation.
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[recall that s is defined in Eq. (6)] or modifying the Holst
term obtaining an action that changes sign under internal
time reversal:

S00½e;!� ¼
Z

eI ^ eJ ^
�
?þ s

�

�
FIJ: (12)

In this paper we explore the consequences of both of these
corrections upon quantization. We build on the recent work
of Yasha Neiman [2] and Jon Engle [3], but also on
Refs. [4,5] where these internal discrete symmetries have
been studied in the context of spin foams.

Before closing this section, we add a few comments.

(1) Other definitions of time reversal. There also exists a
time-reversal transformation that acts on the mani-
fold (considered in the spin foam context in
Ref. [6]), defined by

ðmÞTeIa :¼ eIa;
ðmÞTeIt :¼ �eIt ; a ¼ 1; 2; 3;

(13)

and the ‘‘total’’ time-reversal transformation T ¼
ðiÞTðmÞT. T is the time-reversal symmetry mostly
considered in the literature. SEH, ST are both even
under T, while the Holst term is odd. Note also
that Ts ¼ s.

(2) Orientation. Alternatively, ðiÞT and ðmÞT can be
defined by leaving the fields untouched and flipping
the orientation of the internal Minkowski space
and the spacetime manifold, respectively. A change
of the orientation flips the sign of the normalization
of the completely antisymmetric Levi-Civita sym-

bols. Thus, ðiÞT changes the sign of s and of the

Hodge operator ?, while ðmÞT changes the sign
of s and of the integral of a 4-form. It is easy to
check that these definitions are equivalent to
Eqs. (3) and (13), respectively. Then T corresponds
to reversing the orientation of the Minkowski space
and the manifold simultaneously.

(3) Parity.We have formulated the issue above in terms
of time reversal, but it is similarly possible to do so
in terms of parity. Define

ðiÞPei :¼ �ei; ðiÞPe0 :¼ e0; i ¼ 1; 2; 3:

(14)

Since all actions are invariant under ðiÞPðiÞTe ¼ �e,
it is clear that we have the same structure with
internal parity transformations as we had in terms

of ðiÞT. We also have the total parity transformation

defined by P ¼ ðmÞPðiÞP, where ðmÞP is defined anal-
ogously to (13) and (14). The Holst term changes by
a sign under P, and is invariant under PT.

(4) The Ashtekar Electric Field. In canonical loop grav-
ity one works in the time gauge and chooses a linear
combination of the connection and its Hodge dual as

a canonical variable. The corresponding conjugate
momentum is the Ashtekar electric field Eai, but
(confusingly) one finds two different expressions
for this field in the literature [7,8]:

Eai ¼ j detejeai; or Eai ¼ �abc�ijke
j
be

k
c: (15)

The two expressions differ by the sign s and can be
derived from S0 and S00, respectively.

II. MODIFIED SIMPLICITY CONSTRAINT

We now explore the effect of taking S0 or S00 instead of S
as the starting point for deriving the covariant dynamics
of loop quantum gravity. We begin from the effect on
the canonical structure. In this section we restrict the
analysis to the regions where s � 0: we analyze the regions
where s ¼ 0, namely where the determinant of the metric
vanishes, at the end of the section.
Working on a three-dimensional Cauchy surface �, the

momentum conjugate to the connection ! is the boundary
1-form with values in the slð2;CÞ algebra

�IJ ¼
�
s ?þ 1

�

�
ðeI ^ eJÞj� (16)

for S0 and

�IJ ¼
�
?þ s

�

�
ðeI ^ eJÞj� (17)

for S00. The tetrad emaps the normal 1-form to the boundary
surface to a (timelike) Minkowski vector nI, which allows
us to split this momentum into its electric KI ¼ �IJnJ and
magnetic components LI ¼ � ? �IJnJ. Since clearly
nIe

Ij� ¼ 0, one of the two terms vanishes in each compo-
nent, leaving

KI¼ snJðeI^eJÞ?j�; LI¼� 1

�
nJðeI^eJÞ?j� (18)

in the first case, and

KI¼nJðeI^eJÞ?j�; LI¼� s

�
nJðeI^eJÞ?j� (19)

in the second.KI and LI are normal to nI and live therefore
in a 3d space (oriented by the n and the orientation ofM).

We use the notation ~K ¼ fKi; i ¼ 1; 2; 3g to indicate them.
For S0, Eq. (18) implies

while for S00, Eq. (19) gives
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which is equivalent to (20) since s ¼ �1. This is the
modified linear simplicity constraint for the actions S0
and S00.2

~K and ~L are 2-forms on the oriented 3d space �,
that is, for instance Ki ¼ Ki

abdx
a ^ dxb. Therefore they

define 3� 3 matrices, like Kci :¼ Ki
ab�

abc, whose deter-

minant we indicate, respectively, as detK and detL. Let
sK :¼ sgn½detK�; and sL :¼ sgn½detL�. Since in these
coordinates we have e0j� ¼ 0, one can check easily that

s ¼ sK; sL ¼ 1 (22)

in the S0 case,3 while in S00

s ¼ sL; sK ¼ 1: (23)

So far we have only considered the nondegenerate case.

The degenerate case occurs when ~K ¼ ~L ¼ 0 and there-
fore sK ¼ sL ¼ 0 as well. For the degenerate sector, the
simplicity constraints have the same form for the two

actions S0 and S00 and are that both ~K and ~L must vanish.

III. DISCRETIZATION

As a step towards the quantum theory, consider the
discretization of the theory. Introduce an (oriented) trian-
gulation of space-time and integrate the 2-forms � over
two-cells f in the triangulation. This associates the variable

�IJ
f ¼

Z
f
�IJ (24)

to each f. Consider one such face f sitting on the boundary
of the manifold. With respect to the frame defined by nI,
determined by the normal to the boundary, this momentum

splits into its electric and magnetic components ~Kf and ~Lf.

Consider a three-cell in � and let fi, i ¼ 1, 2, 3 be three of
its four faces, ordered according to the orientation of the
manifold. Define

detL :¼ ~Ln1 � ~Ln2 � ~Ln3 ; (25)

which is the discrete analog of the determinant of ~L in the
continuum,4 and the sign

sL :¼ sgn½detL�: (26)

We see that ~L and ~K live on faces in the discretized theory
while sL and sK are associated to tetrahedra.
With these definitions, it is possible to rewrite the

simplicity constraints in the discrete theory for the non-
degenerate case.
For S0, we must have sL ¼ 1. Also, the constraint (20)

becomes

Kf � �Lf ¼ 0; (27)

as both values of sK ¼ �1 are allowed. The important
point is that, since there is one sK per tetrahedron, one of
�1 must be chosen for all of the four faces that compose
each tetrahedron.
For S00, we have sL ¼ �1 in the nondegenerate sector,

and the constraint (21) is

Kf þ sL�Lf ¼ 0; (28)

which implies that sK ¼ 1.
Now let us consider the degenerate cases. A degenerate

tetrahedron is one where sK ¼ sL ¼ 0, while a degenerate
face is one where Kf ¼ Lf ¼ 0. Note that a tetrahedron

can be degenerate without its faces being degenerate (and
vice versa) and therefore a degenerate tetrahedron cannot
constrain its faces.
Finally, the oriented square volume V2 of a three-cell is

determined by [1]

V2 ¼ 2

9
�3 ~Ln1 � ~Ln2 � ~Ln3 ; (29)

which gives the important relation

sL ¼ sgnðV2Þ: (30)

IV. QUANTUM THEORY

Let us now study the effect of using the modified sim-
plicity condition on the quantum theory. We refer the
readers to Refs. [1,9,11,12] for the general construction.
In the quantum theory, �IJ

f is promoted to a quantum

operator which is identified as the generator of SLð2;CÞ
over a suitable space formed by SLð2;CÞ unitary represen-
tations. ~Kf and ~Lf are then the generators of boosts and

rotations respectively. The unitary representations of
SLð2;CÞ are labelled by the two quantum numbers � and
k, where � 2 Rþ and 2k 2 Z. A discrete basis in the ð�; kÞ
representation is obtained by diagonalizing the total angu-

lar momentum j ~Lj2 of the rotation subgroup of SLð2;CÞ
and its L3 component. The basis vectors are then denoted
by j�; k; j; mi, where j is a half-integer greater or equal
to jkj while m is a half-integer in the interval of ½�j; j�.
The Casimirs of SLð2;CÞ are C1 ¼ ~L � ~K and C2 ¼ j ~Lj2 �
j ~Kj2 and take the values C1 ¼ �k and C2 ¼ k2 � �2 in the
ð�; kÞ representation. If the quantum operators Ki

f and Li
f

2The conventional action S gives the linear simplicity con-
straint ~K þ � ~L ¼ 0 instead [9,10]. But note that, consistently
with what we find here, a negative sign is obtained in Ref. [2].

3In this case, sL ¼ 1 implies that ~L is a pseudovector with
respect to ðiÞT and ðiÞP, since it does not change sign under parity
and time reversal, while ~K is a proper vector as its determinant
can be positive or negative. In the quantum theory ~L generates
rotations and ~K boosts, thus S0 appears to better respect the
expected transformation properties of ~L and ~K.

4Note that it is possible to choose any three of the four edges
meeting at the edge (so long as the relative orientation is taken
into account) due to the closure constraint on ~L (which is
equivalent to the Gauss constraint in the quantum theory).
There is no closure constraint on ~K in the quantum theory
without the simplicity constraint and therefore defining detK
in the discrete theory is not useful for spin foam models.
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are defined on the representation ð�f; kfÞ and satisfy the

modified simplicity constraint (27) or (28), the states in
the quantum theory must therefore satisfy the relations
(see Ref. [9] for the details of this procedure)

�f ¼ �jf; kf ¼ sjf; (31)

where s is a sign coming from (27) or (28). As j > 0, this
relation determines the sign of the quantum number k,
which in the literature was usually taken to be positive
(although not in Ref. [2]). Therefore the key effect of the
introduction of the sign s is that the quantum theory now
includes both positive and negative k representations.

Thus, given jf and s, it is possible to determine �f and

kf. As one can easily check from (27) and (28), it is

necessary to know sL in order to implement the simplicity
constraints and therefore, one must calculate sL for each
edge. In order to do this, we first diagonalize the state with
respect to the operator corresponding to V2 for each edge,
which is equivalent to diagonalizing the states with respect
to the sL operator given by (30). This determines sL for
every edge and in the next section, we show how to use this
in order to implement the simplicity constraints in the
vertex amplitude.

V. AMPLITUDE

Let us now see the effect of the above on the amplitude
that defines the quantum theory [1]. We start by recalling
the usual form of the covariant loop quantum gravity
amplitude [9,10,13–17]. Among the numerous equivalent
manners of writing this amplitude, we choose the ‘‘Polish’’
one [18]: Let � be a 2-complex with faces f, edges e and
vertices v. For simplicity we assume here that� is the dual
of a four-dimensional triangulation and without bounda-
ries. The amplitude associated to this triangulation is

A� ¼ X
jf

�ðjfÞTr�
Y
e

Pe: (32)

Here the half-integer jf is the assignment of a spin to each

face, �ðjfÞ ¼
Q

fð2jf þ 1Þ is a measure factor and the

operators Pe are defined on the space

He ¼ �f2eHf; (33)

where Hf is the Hilbert space carrying the SLð2;CÞ repre-
sentation ð�; kÞ ¼ ð�jf; jfÞ. The trace is obtained by trac-

ing over all Hilbert spaces Hf at couples of edges sharing

the same face at the vertices. The model is then defined by

Pe ¼ PgPhPg; (34)

where Pg is the projection on the SLð2;CÞ invariant sub-
space of He (the intertwiner space), and Ph ¼ ð�f2eP

f
hÞ is

the projection on the SUð2Þ invariant substance of Hf with

SUð2Þ spin jf. This defines covariant loop quantum grav-

ity. This is the amplitude that has been shown to be related

to the general relativity action in the large distance limit
[4,19–21].
Let us now define the variant of the theory that takes

the orientation into account. The first step is to introduce
the projectors PðsL ¼ 0;�1Þ. The projector PðsL ¼ 0Þ
annihilates all states with a nonzero volume, while
PðsL ¼ 1Þ and PðsL ¼ �1Þ project onto the subspaces
where the oriented square volume is positive and negative,
respectively.
The next step is to determine the relation between sK and

sL in the SUð2Þ invariant subspace of an SLð2;CÞ repre-
sentation. From the definitions (26) and by looking at the
action of the operators Ki and Li in SLð2;CÞ given for
instance in Ref. [12], it is easy to derive that

sK ¼ sgnðkf1kf2kf3ÞsL; (35)

where the signs of kf1 , kf2 , kf3 and kf4 are all the same, as

can be seen from the discretized simplicity constraints (27)
and (28). An important consequence of this relation is that
for a state where sL ¼ 0, the relation sK ¼ 0 also neces-
sarily holds in the SUð2Þ invariant subspace.

A. The amplitude for S0

To define the quantum theory for the action S0 we have to
change the above definition in order to implement two
modifications: (i) kf should be allowed positive as well

as negative, and (ii) sL, which is equal to the sign of V2,
must be positive. These are easily implanted by defining
the amplitude5

A0
� ¼ X

kf

�ðjfÞTr�
Y
e

P0
e; (36)

where jf ¼ jkfj, the operators P0
e are defined on the

Hilbert space

H0
e ¼ �f2eH

0
f; (37)

where H0
f is the Hilbert space carrying the SLð2;CÞ

representation ð�; kÞ ¼ ð�jkfj; kfÞ. The P0
e operator is

defined by

P0
e ¼ PgPhP

0
sPhPg; (38)

where P0
s is the additional projector defined as follows:

P0
s¼PðsL¼1Þ� Y

f1;f22e

�ðsgnðkf1Þ;sgnðkf2ÞÞþPðsL¼0Þ;

(39)

5We can restrict the sum to be over nonzero kf. Even though
degenerate faces kf ¼ jf ¼ 0 are allowed by the simplicity
constraints, we know from canonical loop quantum gravity
that links with j ¼ 0 can be erased from the spin network.
The same will be done for the amplitude of the action S00 as well.
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where the Kronecker delta imposes the signs of all of the
kf meeting at a nondegenerate edge to agree (there is no

such constraint for faces meeting at a degenerate edge).
Since Ph projects on jf, we have immediately that

kj ¼ sjf, where s � sgnðkfÞ which is the same no matter

which face is chosen due to the Kronecker delta. It is easy
to see from Eq. (35) that sK can be positive or negative,
as wanted.

Notice that on the one hand the states in the sum have
doubled because kf can take both signs, but on the other

hand they are halved as all states with sL ¼ �1 are killed.
Therefore, for S0 it will be necessary to work with

Hilbert spaces carrying the representations (�f ¼ �jf,

kf ¼ jf) and (�f ¼ �jf, kf ¼ �jf). Note that only the

first is considered in the usual Engle-Pereira-Rovelli-
Livine (EPRL) model [9], though in that case there is no
projector P0

s. (We shall see that for S00 these two represen-
tations will again be needed although the extra projectorP00

s

is different.)
We close with a brief discussion of the gluing condi-

tions. By looking at the vertex amplitude and in particular
the form of the projector P0

s, it is easy to see that it is
impossible to connect two nondegenerate edges with
opposite values of sK. However, it is possible to connect
degenerate edges with any other type of edge. Therefore,
regions with an opposite sign of sK can only be connected
by passing through a ‘‘boundary region’’ composed of
degenerate edges.

B. The amplitude for S00

In this case, we have to change the vertex amplitude in
order to implement the following two modifications: (i) kf
should be allowed positive as well as negative, and (ii) sK
must be positive. This can be obtained by defining

A00
� ¼ X

kf

�ðjfÞTr�
Y
e

P00
e ; (40)

where the operators P00
e are defined on the same Hilbert

space as P0
e and the P00

e operator is

P00
e ¼ PgPhP

00
s PhPg; (41)

where the new projector P00
s is defined by

P00
s ¼ PðsL ¼ 0Þ þ PðsL ¼ 1Þ � Y

f2e

�ðkf; jfÞ

þ PðsL ¼ �1Þ � Y
f2e

�ðkf;�jfÞ: (42)

Now there is no restriction regarding the sign of the ori-
ented volume squared operator, but the simplicity con-
straint (28) must be imposed. Due to the relation (35), it
follows that sK � �1 follows automatically.

Once again, it is easy to see that two regions where the
sL have opposite signs cannot be glued together directly.
Instead, it is necessary to pass through a degenerate edge

in order to travel from a region with sL ¼ 1 to another
where sL ¼ �1.
Thus, just as for S0, there must be a ‘‘bridge’’ of degen-

erate edges between regions with opposite signs of s. In
particular, in a connected, nondegenerate region, we must
have constant s everywhere. This is not particularly sur-
prising as it is very similar to what we find in the classical,
continuous theory: the relative orientation between the
physical manifold and the internal space can only change
at singularities.

C. Comparison to similar results

In Ref. [2], the simplicity constraint was modified from
~K þ � ~L ¼ 0 to ~K � � ~L ¼ 0. This corresponds to the case
here when s ¼ �1. In the model proposed in Ref. [2], the
value of s can still flip from one cell to the next without
restriction and also the simplicity constraint is not affected
by the value of s. On the other hand, in the models
presented here, the value of s can only change across a
degenerate region and then this change plays a role in the
simplicity constraints (21).
Reference [3] suggests a modification of the quantum

theory very similar to (36). However, the two differences
are: (i) the additional projector introduced in Ref. [3] (in
the Euclidean setting) is in fact PðsL ¼ 1Þ as it only allows
states where V2

e > 0 (note that V2
e ¼ 0 is not allowed,

another difference with the prescription we give here)
and (ii) there is no sum over both signs for kf. Thus the

prescription given in Ref. [3] is different as it imposes
sK ¼ 1 (in addition to sL ¼ 1), while sK ¼ �1 are both
allowed configurations for the amplitude coming from S0
presented in this paper.6

VI. ANALYSIS

The first key consequence of the alternate definitions of
the vertex amplitude given above is that in every connected
nondegenerate region, i.e., where V2

e � 0, the sign of s
remains constant. As is clear from Sec. I, s indicates the
relative orientation between the physical manifold M and
the auxiliary Minkowski space M and thus this result

6The problem raised by the sign of s is related to several sign
issues that have been discussed in the quantum gravity literature.
See for instance the analysis of causality in spin foams in
Ref. [22]; the restriction to positive physical-time energy in
the reconstruction of the spin foam formalism from loop cos-
mology [23]; the need to select a phase picking up one compo-
nent of the amplitude in reconstructing semiclassical transition
amplitudes [24–26]; the interpretation of the early versions of the
bounce loop cosmology [27]; the analysis of parity in the
Bianchi models [28]; and in certain subtle and controversial
points of the canonical quantization [29]; and the effect of
orientation flip in gluing, for spin foam amplitudes [21]. In
fact, uncertainties about the physical interpretation of this sign
factor have been present since the very early calculations in loop
gravity [30].
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indicates that the relative orientation cannot flip without
going through a degenerate region in the triangulation.

In the asymptotic analysis in Ref. [19], one finds
a sum of two terms in the semiclassical limit of the
amplitude (32),

lim
semi-class

A� � eiSR þ e�iSR ; (43)

where SR is the Regge action. These two terms correspond
to the two possible relative orientations between M and
M. In the EPRL model, one of these two terms appears for
each edge, depending upon the relative orientation chosen
at that particular edge. Neighbouring edges do not need to
be glued consistently and therefore a mixing occurs be-
tween the two terms in the semiclassical limit. This mixing
is directly responsible for some of the divergences in the
semiclassical limit [31].

The vertex amplitude studied here behaves differently.
In the case S0, one might hope that the restriction to the
positive eigenspaces of V2 selects only one of the two
sectors in the saddle point approximation of the vertex
[4,19–21,32], leading to just one critical point instead of
two, as the theory S0 is essentially the Einstein-Hilbert one
where the sign of the action of a time-reversed configura-
tion does not flip. However, a new critical point might be
picked up corresponding to sK ¼ �1, a configuration that
was not included in previous studies. This critical point
would give the same contribution as the surviving critical
point corresponding to sL ¼ sK ¼ 1 and then the asymp-
totics would have the form

lim
semi-class

A0
� � 2e�iSR : (44)

If so, the action S0 would realize the objective sought for in
Ref. [3] (in fact, in a very similar manner), but in a context
in which both orientations exist in the theory.

Considering the properties of S00 under the discrete
transformations, we expect both terms to appear (as in
the EPRL model)

lim
semi-class

A00
� � eiSR þ e�iSR ; (45)

but there is an important difference between the vertex
amplitudes as now each of the terms in the asymptotic
analysis corresponds to a connected, nondegenerate re-
gion, rather than the orientation of each cell. In other
words, the weight associated to connected regions with
nondegenerate configurations should be the cosine of the
total Regge action, and not the product of the individual
cosines of the Regge action of each cell. This is because
connected edges must have the same relative orientation
between M and M, unless they are separated by a
degenerate region.

Therefore we still have both orientations playing a role
(both in S0 and S00), but not cell by cell. Instead, this would
occur patch by patch, on the basis of connected nondegen-
erate regions (see Ref. [4]).

VII. DISCUSSION

Based on the behavior of the Holst action under internal
time reversal and parity transformations, we have consid-
ered two distinct modifications to the Holst action which
lead to the modified actions S0 and S00. In both cases, the
simplicity constraints are slightly changed and the spin
foam quantization of the actions is a little different from
the conventional one defined for instance in Ref. [1]. These
modifications might reduce one of the sources of divergen-
ces in the semiclassical limit, as the relative orientation can
flip only across degenerate regions, thus removing some of
the problematic mixing terms [31].
The alternative between the actions S0 and S00 reflects the

alternative between the Einstein-Hilbert action SEH and the
tetrad action ST . In the classical theory the choice does
not matter, but the two actions appear to lead to inequiva-
lent quantum theories. In a Feynman sum-over-histories
approach, summing over tetrads with both signs of the
determinant in ST is like considering each metric space-
time in SEH twice: once future-oriented and once past-
oriented, and weight the two with two opposite signs of
the action. The cosine rather than the exponential that
appears in the Ponzano-Regge asymptotics can be inter-
preted as having this origin. In the theory defined by S0
both the future- and past-oriented configurations are
summed over, just as in S00, but they are weighted with
the same sign. Is there a reason to prefer one action rather
than the other?
One argument in favour of SEH and S0 is the considera-

tion that under internal time-reversal and parity trans-
formations, the generators of boosts transform as proper

internal vectors ( ~K ! � ~K) while the generators of rota-

tions transform as pseudo internal vectors ( ~L ! ~L) in S0, as
one would expect on geometric grounds. The situation is

reversed in S00 where ~K transforms as a pseudo internal

vector and ~L as a proper internal vector.
One argument by analogy in favour of ST and S00, on the

other hand, is the fact that in nonrelativistic physics the
action of a trajectory moving backward in time and that of
the same trajectory going forward have opposite signs. The
action for a process is S ¼ E�T, and if �T changes sign,
so does S. This property is lost in SEH because of general
covariance, which implies that there is no way of distin-
guishing a forward moving spacetime from backward
moving one. But it is present in ST and S00 as they depend
on the sign of s.
We close with a comment on the interpretation of

regions with opposite s. In Feynman’s picture one obtains
quantum amplitudes summing over the particle’s paths in
space. The idea that in this context particles running back-
ward in time represent antiparticles forms the intuitive
basis of the Stückelberg-Feynman form of positron theory
[33,34]. According to a beautiful argument given by
Feynman in Ref. [35], special relativity requires such
particles running back in time to exist, if the energy must
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be positive. This is because positive energy propagation
spills necessarily outside the light cone. But a propagation
of this kind is spacelike and therefore can be reinterpreted
as backward in time in a different Lorentz frame. Therefore
there must exist propagation backward in time in the theory
and this represents a (forward propagating) antiparticle.
Thus, according to Feynman, the existence of antiparticles
follows directly from quantum mechanics and special
relativity. Can an analogous argument be formulated in
quantum gravity?

Consider a gas of particles in space-time used to define
a physical comoving coordinate system. These define a
time function with respect to which the gravitational field
can be seen as evolving. In the quantum theory, however,
the gravitational field can fluctuate off shell so that the
trajectories are somewhere spacelike. But then there is a
coordinatization of space-time with respect to which the
particles run backward in time. In turn, the metric in this
coordinatization runs backwards in time with respect to the
time defined by the physical reference field. In other words,

we are again in the situation where a solution running
backward in time must be included in the path integral.
These are only speculative remarks, but they suggest that
the contribution of the tetrad fields with negative determi-
nant—negative internal time—should perhaps not be
dismissed lightly a priori.
Can this intuition be relevant for the dynamics of space-

time itself and shed some light on the physical interpreta-
tion of a region with a flipped internal time direction? Can
a region with the opposite internal time direction be
thought of as a space-time running backward in time, or
an ‘‘anti-space-time’’?
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