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This is a supplement to an earlier paper [Phys. Rev. D 84, 023510 (2011)], where those shearfree

normal cosmological models were identified, in which all light rays have repeatable paths. All of them are

conformally flat, but less general than the Stephani model and more general than Robertson-Walker.

In this paper, their defining feature is identified: in each of them, in comoving coordinates, the time

dependence factors out so that the cofactor is a static metric. An example is given of a congruence of test

observers and sources in the Minkowski spacetime that displays nonrepeatable light paths.

DOI: 10.1103/PhysRevD.86.064001 PACS numbers: 98.80.Jk, 04.20.Jb

I. MOTIVATION

This paper is a supplement to Ref. [1], which in turn was
a continuation of Ref. [2]. In Ref. [2] null geodesics in the
�0 � 0 Szekeres models [3–5] were investigated, and it
turned out that, in general, they have nonrepeatable paths.
This means, given a fixed comoving light source S and a
fixed comoving observer O, two light rays emitted from S
at different instants that hitO, intersect different sequences
of matter world lines on the way. The observer will thus see
the image of the source drift across the sky. This is a
potentially observable effect. It exists also for nonradial
rays in the spherically symmetric Lemaı̂tre–Tolman [6,7]
model, but is identically zero in the Robertson-Walker
(RW) models. Thus, it could be used as an observational
test of homogeneity of the Universe—see an astronomy-
oriented discussion in Refs. [8,9], where the drift was
termed ‘‘cosmic parallax.’’

In Ref. [2] it was shown that the drift vanishes for all null
geodesics only when the Szekeres model reduces to the
Friedmann limit. The condition for this is the same as for
zero shear in the flow of the cosmic medium. This gave rise
to the question whether the drift is caused by shear or rather
by the inhomogeneity.

To clarify this question, in Ref. [1] the condition for zero
drift for all null geodesics was investigated in the shearfree
normal (SFN) models [10–12]. They are the solutions of
Einstein’s equations with a perfect fluid source that have
zero shear, zero rotation, and nonzero expansion in the
cosmic fluid. If shear were indeed the cause of the drift,
then in the SFN models the drift should vanish. It turned
out that, in general, this is not the case. These models
consist of 3 Petrov type D metrics that are spherically,
plane and hyperbolically symmetric, and of the confor-
mally flat Stephani solution [12,13] that, in general, has no
symmetry. It was found that in each of these solutions, a
drift-free subcase exists [1] that has zero conformal curva-
ture, but is less general than the zero-Weyl-tensor limit of
the relevant case. At the same time, each subcase is more

general than the RW limit, having nonzero acceleration.
This gives rise to one more problem: what is the underlying
cause of the repeatability of all light paths when these
models are non-RW.
This is the question answered here. It is shown that each

of the drift-free cases, in the comoving coordinates, is a
conformal image of a static spacetime. The key point is not
just conformal equivalence (all these models are confor-
mally flat), but the form of the conformal factor. This will
be explained in Sec. III.
The repeatability of light paths (RLP) is defined relative

to a family of observers and light sources. In a cosmologi-
cal spacetime, such as Szekeres or Lemaı̂tre–Tolman or
SFN or RW, it is natural to assume the light sources and
observers comoving with the cosmic medium, as in
Refs. [1,2]. But one can as well assume the light sources
and observers moving along a congruence of timelike
curves unrelated to the flow lines of the cosmic matter,
and investigate the RLP property for them. It is shown in
the Appendix that even in the Minkowski spacetime, a
timelike congruence can be devised that displays the
non-RLP property.

II. THE DRIFT-FREE SFN MODELS

In Ref. [1] the following drift-free SFN models were
identified; all are subcases of the Stephani [12,13] solution.

A. The spherically symmetric model

The metric of this model is

ds2 ¼
�
FV;t
V

�
2
dt2 � 1

V2
ðdr2 þ r2d#2 þ r2sin2#d’2Þ;

(2.1)

where FðtÞ is an arbitrary function, related by � ¼ 3=F
to the expansion scalar � ¼ u�;� of the velocity field

u� ¼ ðFV;t Þ�1V��
0 . The function V is

V ¼ B1 þ B2r
2 þ ðA1 þ A2r

2ÞSðtÞ; (2.2)

where ðA1; A2; B1; B2Þ are arbitrary constants and SðtÞ is an
arbitrary function. This model is conformally flat, but is*akr@camk.edu.pl
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more general than RW because the pressure in it is spatially
inhomogeneous. The RW limit results when

A1 � 0 and B2 ¼ A2B1=A1: (2.3)

B. The plane symmetric model

The metric is here

d s2 ¼
�
FV;t
V

�
2
dt2 � 1

V2
ðdx2 þ dy2 þ dz2Þ; (2.4)

V ¼ B1 þ B2zþ ðA1 þ A2zÞSðtÞ; (2.5)

the meaning of all symbols being the same as before.
Again, this model is conformally flat, less general than
Stephani [12,13], but more general than RW, and the
prescription for the RW limit (here having k � 0 neces-
sarily) is given by (2.3). The resulting RW metric is repre-
sented in untypical coordinates; see Eqs. (7.8) in Ref. [1]
for a transformation to a familiar form.

C. The hyperbolically symmetric model

The metric is

ds2¼
�
FV;t
V

�
2
dt2� 1

V2
ðdr2þd#2þsinh2#d’2Þ; (2.6)

(note the missing factor r2 compared to case A), where

V¼B1 sinrþB2 cosrþðA1 sinrþA2 cosrÞSðtÞ; (2.7)

the meaning of all symbols being again the same as in case
A. As in both cases above, this model is conformally flat,
less general than Stephani [12,13], and more general than
RW (this time with k < 0 necessarily). As in case B, the
RW limit, resulting via (2.3), is represented in untypical
coordinates; see Ref. [1].

D. The axially symmetric model

The general form of the metric is (2.4), but this time

V ¼ C5 � C4x0 � 1
2 x

2
0 þ 1

2 ½ðx� x0Þ2 þ y2 þ z2�
D1x0 þD2

; (2.8)

ðC4; C5; D1; D2Þ being arbitrary constants and FðtÞ, x0ðtÞ
being arbitrary functions.1 To calculate the RW limit, the
following reparametrization is applied to (2.8):

x0 ¼ �UðtÞ; D1 ¼ d1=ð�kÞ; D2 ¼ d2=k;

C5 ¼ 2=k; (2.9)

where ð�; kÞ are constants. Then � ! 0 in (2.8) gives

V ¼ 2

d1Uþ d2

�
1þ 1

4
kðx2 þ y2 þ z2Þ

�
; (2.10)

which clearly corresponds to the RW metric, the scale
factor being RðtÞ ¼ 2=ðd1Uþ d2Þ.

III. THE CHARACTERISTIC PROPERTY
OF THE DRIFT-FREE CASES

In all the four cases presented in Sec. II the whole time
dependence is contained in ð1=VÞ2. Namely, in case A

ds2 ¼ 1

V2
f½FðA1 þ A2r

2ÞS;t �2dt2

� dr2 � r2ðd#2 þ r2sin2#d’2Þg; (3.1)

and the metric in braces is seen to be static. In case B and
case C the factoring out of time dependence occurs in
similarly simple ways. In case D the transformation

t0 ¼
Z Fx0;t

ðD1x0 þD2Þ2
dt; (3.2)

makes explicitly static the cofactor of ð1=VÞ2. The RW
models have the same property.
In the general Stephani solution the conformal mapping

to the Minkowski metric involves mixing t with spatial
coordinates.2 The congruence of curves in the Minkowski
spacetime, to which the world lines of matter of a general
Stephani solution are thereby mapped, must thus also dis-
play the non-RLP property.
In all cases listed in Sec. II, the time dependence factors

out as in (3.1), and the world lines of cosmic medium are
mapped into the world lines of static observers. Relative to
the congruence of static observers, all light paths are
evidently repeatable.

IV. CONCLUSION

The result of Sec. III is the following:
Corollary 1.
In the Szekeres and SFN families of cosmological mod-

els, the subcases, in which all null geodesics have repeat-
able paths, are characterized by the following properties:
(1) The conformal curvature is zero.
(2) The time dependence of the metric represented in

comoving coordinates factors out as in (3.1).
In the Szekeres models, condition (1) is at the same time

sufficient—it reduces the Szekeres models directly to the
Friedmann limit.
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1Equation (2.8) corrects a typo in (A141) of Ref. [1], where the
whole term containing x0

2 should be multiplied by 1/2. In
(A140) of Ref. [1] the second ð1=RÞ;tt should be ð1=RÞ;t .

2Because of the 5 arbitrary functions of t in the Stephani
metric, this conformal mapping cannot be calculated explicitly;
we just know it exists, since the Weyl tensor is zero.
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APPENDIX: AN EXAMPLE OF ATIMELIKE
CONGRUENCE IN THEMINKOWSKI SPACETIME

THAT DISPLAYS THE NON-RLP PROPERTY

The motivation for this example is explained in Sec. I.
Take the Minkowski metric in the spherical coordinates

d s2 ¼ dt02 � dr02 � r02ðd#2 þ sin2#d’2Þ; (A1)

and carry out the following transformation on it:

t0 ¼ ðr� tÞ2 þ 1=ðrþ tÞ2;
r0 ¼ ðr� tÞ2 � 1=ðrþ tÞ2:

(A2)

The result is the metric

d s2 ¼ 1

ðrþ tÞ4 d~s
2; (A3)

where

d~s2 ¼ 16uðdt2 � dr2Þ � ðu2 � 1Þ2ðd#2 þ sin2#d’2Þ;
(A4)

u¼def r2 � t2: (A5)

Now we assume that the curves with the unit tangent vector
field u� ¼ ½ðrþ tÞ2=ð4 ffiffiffi

u
p Þ���

0 are world lines of test ob-

servers and test light sources. Relative to this congruence,
generic light rays have nonrepeatable paths.

It suffices to consider (A4) with the unit tangent vector
of the timelike congruence being u� ¼ ½1=ð4 ffiffiffi

u
p Þ���

0 in-

stead of (A3). Since conformal images of null geodesics
are null geodesics, the only RLPs in (A3) will be the
images of the RLPs in (A4), where the mapping is defined
by the same coordinates being used in both manifolds.

We investigate the conditions of repeatability by the
method used in Refs. [1,2]. We first observe that r can be

chosen as a (nonaffine) parameter along open segments
of null geodesics. Now consider two light rays sent from
the same source S at different instants toward the same
observer O. When the earlier ray arrives at a hypersurface
r ¼ r0 at the point with the coordinates ðt; #; ’Þ, the later
ray will arrive at r ¼ r0 at the point (tþ �,# þ � ,’þ c ).
The equations of propagation of ð�; �; c Þ are obtained
from the geodesic equations by subtracting the equation
for the earlier ray from the corresponding equation for the
later ray, and linearizing the result in ð�; �; c Þ. The condi-
tion for a repeatable path is that � ¼ c ¼ 0 is a solution of
the propagation equations.
Applying this operation and this condition to the geode-

sic equations parametrized by r, we obtain

d#

dr
� ¼ 0; (A6)

where

�¼def 3u
4 þ 6u2 � 1

uðu2 � 1Þ t�

�
r

�
dt

dr

�
2 � 2t

dt

dr
þ r

�

þ ð3u2 þ 1Þ
�
r
dt

dr

d�

dr
� �

dt

dr
� t

d�

dr

�
: (A7)

One solution of (A6) is d#=dr ¼ 0, which defines null
geodesics that are radial in the coordinates of (A4).
To find whether � ¼ 0 has any solutions we proceed by

the method described in Refs. [1,2]. After a lengthy calcu-
lation (much simpler, though, than in Refs. [1,2]), we
obtain a contradiction, which means that no other RLPs
than the radial null geodesics d#=dr ¼ d’=dr ¼ 0 exist
for ‘‘comoving’’ observers in the metric (A4). This implies
Corollary 2.
With a suitably chosen timelike congruence of test

observers and test light sources, nonrepeatable light paths
exist even in the Minkowski spacetime. j
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