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In Dirac-Born-Infeld inflation, changes in the sound speed that transiently break the slow-roll

approximation lead to features in the power spectrum. We develop and test the generalized slow-roll

approximation for calculating such effects and show that it can be extended to treat order unity features.

As in slow-roll, model independent constraints on the potential of canonical inflation can be directly

reinterpreted in the Dirac-Born-Infeld context through this approximation. In particular, a sharp horizon

scale step in the warped brane tension can explain oscillatory features in the WMAP7 CMB power

spectrum as well as features in the potential. Differences appear only as a small suppression of power on

horizon scales and larger.
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I. INTRODUCTION

In Dirac-Born-Infeld (DBI) inflation [1,2], transient but
rapid changes in the sound speed leave their imprint as
features on the power spectrum. For string-motivated DBI
examples, such features might arise from duality cascades
which impart steps in the warped brane tension [3,4].
Annihilation of branes during DBI inflation has also been
shown to lead to particle production and to the imprint of
features on the warp [5]. More generally, within the context
of effective field theory [6] it has been shown that a sharp
step in the sound speed leads to oscillatory features in the
power spectrum of fluctuations [7].

Power spectrum features from sudden changes in the
warped brane tension of DBI inflation are closely related to
those from sudden changes in the potential for canonical
single field inflation. Measurements of the cosmic micro-
wave background (CMB) temperature power spectrum
from WMAP place observational constraints on the latter.
Recently, the generalized slow-roll approach (GSR) [8,9]
has been used to extract model-independent constraints
from the WMAP data on features as sharp as 1=4 of an
efold [10,11]. Even sharper features lead to highly oscil-
latory power spectrum features which can evade these
constraints due to projection effects. Indeed there is a
special case where a sharp step in the potential on scales
near the current horizon can fit the WMAP data better that
a smooth model in the acoustic regime [12].

The GSR approach remains valid for single field infla-
tion with noncanonical kinetic terms [13], including DBI
inflation, with a suitable reinterpretation of the source of
deviations from slow-roll [14]. In this paper, we develop
the GSR approach for DBI inflation and show how obser-
vational constraints on potential features translate to con-
straints on warp features.

In Sec. II, we briefly review the phenomenology of DBI
inflation and the exact computation of its power spectrum.

In Sec. III, we develop and test the GSR approach in the
DBI context and establish the correspondence between
potential features and warp features. In Sec. IV, we con-
sider the special case of a sharp step in the warp analyti-
cally and show that it can explain the WMAP data as
well as a sharp step in the potential. We discuss these
results in Sec. V.

II. DBI INFLATION

We consider DBI inflation to be a phenomenological
model with the Lagrangian density

L ¼
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2X=Tð�Þ

q �
Tð�Þ � Vð�Þ; (1)

where the kinetic term 2X ¼ �r��r��. In braneworld

theories that motivate the DBI Lagrangian, � determines
the position of the brane, Tð�Þ gives the warped brane
tension, and Vð�Þ is the interaction potential.
As a consequence of the noncanonical kinetic structure,

field perturbations propagate at the sound speed

csð�;XÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2X=Tð�Þ

q
: (2)

The inflaton energy density and pressure can be expressed
in terms of the sound speed as

�ð�;XÞ ¼
�
1

cs
� 1

�
Tð�Þ þ Vð�Þ;

pð�;XÞ ¼ ð1� csÞTð�Þ � Vð�Þ:
(3)

Note that for X=T � 1, cs ¼ 1 and the Lagrangian, � and
p take on their canonical forms.
For the background equations of motion, we take the

acceleration equation

HN

H
¼ ��2

N

2cs
� ��H; (4)
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where X ¼ H2�2
N=2, the Hubble parameter satisfies the

Friedmann equation H2 ¼ �=3, and the field equation

�NN ¼ �
�
HN

H
þ 3c2s

�
�N � c3s

V�

H2

þ 1

2
ð1� csÞ2ð1þ 2csÞ

T�

H2
: (5)

Here and throughout the subscript N denotes d=d lna, the
subscript � denotes d=d�, and we choose units where

Mpl ¼ ð8�GÞ�1=2 ¼ c ¼ ℏ ¼ 1. If warp and potential fea-

tures are absent near the initial conditions, initial values for
f�;�N;Hg can be set on the slow-roll attractor

�N � � cs
3

V�

H2
; H2 � V

3
; (6)

where we assume that the V� term dominates over T�.

Given that we choose to solve Eqs. (4) and (5), we must
ensure that the Friedmann equation is exactly satisfied on
the initial condition [15]. This can be achieved by first
choosing the initial �ðNiÞ, then taking

H�NjNi
¼�

ffiffiffiffi
V

3

s
V�

V
cs; csjNi

¼
�
1þ V

3T

V2
�

V2

��1=2
; (7)

and calculating �, H exactly through Eq. (3). Since �N ¼
H�N=H, we now have a self-consistent set of initial con-
ditions f�;�N;Hg at Ni. This technique remains valid for
all cs in the slow-roll approximation. On the other hand, for
cs � 1 the slow-roll approximation can remain valid even
for steep potentials in Eq. (6).

We evolve these equations until the field reaches � ¼
�end which we take to be the end of inflation and define
N ¼ 0 to be this epoch

N ¼
Z lnaend

lna
d lna; (8)

such that N < 0 during inflation. For the purposes of
calculating the power spectrum, it is useful to express the
efolding number, N, in terms of the sound horizon, the
comoving distance sound can travel from N to the end of
inflation

sðNÞ ¼
Z 0

N
d ~N

cs
aH

¼ 1

aend

Z 0

N
d ~N

cs

e
~NH

: (9)

By defining the effective reheat temperature as Treheat �
T0=aend, where the present CMB temperature is T0 ¼
2:726 K, we can express the sound horizon as

sðNÞ
500 Mpc

¼ e�65:08Treheat

Z 0

N
d ~N

cs
aH

: (10)

The curvature power spectrum is then given by

�2
R � k3PR

2�2
¼ lim

ks!0

��������ksyf
��������2

; (11)

where the mode function y obeys the Mukhanov-Sasaki
equation [14,16]

d2y

ds2
þ

�
k2 � 2

s2

�
y ¼ gðlnsÞ

s2
y: (12)

Here,

g � f00 � 3f0

f
; (13)

with 0 � d=d lns throughout and

f2 ¼ 8�2 �Hcs
H2

�
aHs

cs

�
2
: (14)

We solve Eq. (12) assuming Bunch-Davies initial condi-
tions where limks�1y ¼ eiks. Note that written in this form,
the Mukhanov-Sasaki equation takes exactly the same
form for canonical and noncanonical kinetic terms. This
fact will allow us to remap existing constraints on gðlnsÞ
onto DBI models.

III. GSR APPROXIMATION

In this section, we begin by reviewing the GSR approach
to calculating the curvature power spectrum [8,9,14] and
show how to apply it to the DBI model. We then test the
accuracy of the approach against the exact computation for
a step-like feature in the warped brane tension [4] and show
that the model-independent constraints on features in the
potential for canonical single field inflation [10,11] can be
readily reinterpreted in the DBI context.

A. Technique

Briefly, the GSR approach to solving the Mukhanov-
Sasaki equation (12) is to consider the RHS as an external
source with an iterative correction to the field value y. To
lowest order, we replace y ! y0, where

y0 ¼
�
1þ i

ks

�
eiks; (15)

is the solution to equations with g ! 0 and solve for the
field fluctuation y through the Green function technique.
To second order in slow-roll, the curvature power spectrum
is given by [10,17]

ln�2
R ¼ GðlnsminÞ þ

Z 1

smin

ds

s
WðksÞG0ðlnsÞ

þ ln

��
1þ 1

4
I21ðkÞ þ

1

2
I2ðkÞ

�
2 þ 1

2
I21ðkÞ

�
;

(16)

where the window function

WðuÞ ¼ 3 sinð2uÞ
2u3

� 3 cosð2uÞ
u2

� 3 sinð2uÞ
2u

: (17)

Here,

G ¼ �2 lnfþ 2

3
ðlnfÞ0; (18)

and thus,
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G0 ¼ �2ðlnfÞ0 þ 2

3
ðlnfÞ00 ¼ 2

3
g� 2

3
½ðlnfÞ0�2: (19)

We call G0 the GSR source function. The quadratic term in
ðlnfÞ0 appears to ensure constant curvature fluctuations
above the sound horizon.

The I1 and I2 integrals are the second-order corrections

I1ðkÞ ¼ 1ffiffiffi
2

p
Z 1

0

ds

s
G0ðlnsÞXðksÞ;

I2ðkÞ ¼ �4
Z 1

0

du

u

�
X þ 1

3
X0
�
f0

f
F2ðuÞ;

(20)

with u ¼ ks,

F2ðuÞ ¼
Z 1

u

d~u

~u2
f0

f
; (21)

and

XðuÞ ¼ 3

u3
ðsinu� u cosuÞ2: (22)

To calculate the power spectrum in the GSR approxi-
mation, we need to obtain the source functionsG0 and f0=f
from the solution to the background equations of motion
(4) and (5). In terms of the slow-roll parameters [14]

G0 ¼ 2

3
ð2�H � 2�H � �1Þ þ 2

3

�
aHs

cs
� 1

�
2

þ 2

3

�
aHs

cs
� 1

�
ð4þ 2�H � 2�H � �1Þ

þ 1

3

�
aHs

cs

�
2½2�2 þ 2�2H � 2�H � 2�2

H � 3�1

þ 2�H�1 þ �2
1 � �Hð4�H þ �1Þ � �2�; (23)

and

f0

f
¼

�
aHs

cs

��
�H � �H þ 1

2
�1

�
þ

�
1� aHs

cs

�
; (24)

where the additional slow-roll parameters are defined by

�H � �H � 1

2

d ln�H
dN

; �2 � �H�H þ �2
H � d�H

dN
;

�1 � d lncs
dN

; �2 � d�1

dN
: (25)

Using the field Eq. (5), we can write

�NN

�N

¼ �H � c2s ~�H þ 1

2

ð1� csÞð1þ 2csÞ
1þ cs

~�1; (26)

where

~�H �
�
3þ V�cs

�NH
2

�
; ~�1 �

T�

T
�N: (27)

These auxiliary parameters ~�H and ~�1 quantify slow-roll
deviations generated by features in the potential V� and

features in the warp T� respectively.

In terms of the auxiliary parameters, the slow-roll pa-
rameters themselves become

�H ¼ 1þ c2s
2

~�H � cs
2

1� cs
1þ cs

~�1;

�1 ¼ ð1� csÞ~�1 þ ð1� c2sÞ~�H:
(28)

Note that for �H, the term involving ~�1 is suppressed
both as cs ! 0 and cs ! 1. Furthermore ~�H is slow-roll
suppressed on the attractor of Eq. (6) and for cs ¼ 1,
�H ¼ ~�H. If features in Tð�Þ drive deviations from slow-
roll then the ~�1 term dominates, �H ¼ ½cs=2ð1þ csÞ��1

and hence j�Hj � j�1j for cs � 1.
The remaining slow-roll parameters �2 and �2 can be

constructed by taking the derivatives of �1 and �H

�2 ¼ ð1� csÞd~�1

dN
� cs�1 ~�1 þ ð1� c2sÞd~�H

dN
� 2c2s�1 ~�H;

�2 ¼�1þ c2s
2

d~�H

dN
þ �H�H þ�2

H � c2s�1 ~�H

þ cs
2

1� cs
1þ cs

d~�1

dN
þ cs

2

1� 2cs � c2s
ð1þ csÞ2

�1 ~�1; (29)

where

d~�H

dN
¼ cs

V��

H2
þ csV�

�NH
2

�
�1 ��NN

�N

þ 2�H

�

¼ cs
V��

H2
þ ð~�H � 3Þ

�
�H þ ~�H þ 1� cs

1þ cs

~�1

2

�
;

d~�1

dN
¼ T��

T
�2

N �
�
T�

T
�N

�
2 þ T�

T
�NN

¼ T��

T
�2

N � ð1þ cs þ 2c2sÞ
2ð1þ csÞ ~�2

1 þ ð�H � c2s ~�HÞ~�1:

(30)

For sharp features in the warp and potential, �2 and
�2 dominate respectively in G0 due to the appearance
of second derivatives in Eq. (30). Note that since
�2

N ¼ 2�Hcs, the impact of fractional features in the
warp vs the potential is suppressed by slow-roll
parameters.
In the slow-roll limit, one can iteratively substitute

the attractor solution Eq. (6) into the field equation to
obtain

G0 � 4�H � 2�H þ �1

� csð2þ c2sÞ
�
V�

V

�
2 � 2c3s

V��

V
� csð1� c2sÞ

T�

T

V�

V
;

(31)

where csð�Þ is given by the attractor solution Eq. (7). The
absence of a T�� term in Eq. (31) can be attributed to the

fact that the attractor solution is determined by V�.

Furthermore, in the slow-roll limit, evolution in G0 is
second order in slow-roll parameters and
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f0

f
� �2�H þ �H � 1

2
�1 � � 1

2
G0; (32)

and so

I1 � �

2
ffiffiffi
2

p ð4�H � 2�H þ �1Þ;

I2 � �4

�
f0

f

�
2 � �ð4�H � 2�H þ �1Þ2:

(33)

Thus in the slow-roll limit the total second-order correction
involves a near cancellation of the I1 and I2 terms

ln

��
1þ 1

4
I21ðkÞ þ

1

2
I2ðkÞ

�
2 þ 1

2
I21ðkÞ

�
� I21 þ I2

�
�
�2

8
� 1

�
ð4�H � 2�H þ �1Þ2: (34)

If sharp features in either the potential or the warp
dominate

G0 �2

3
�2�1

3
�2��2cs

V��

V
� 1�cs
3ð1þcsÞ

T��

T
�2

N: (35)

Unlike the canonical case, the functional constraints im-
posed by observational constraints on Vð�Þ and Tð�Þ
differ in the two limits. Nonetheless deviations in the
power spectrum for the sharp feature case, which can be
large yet observationally viable, share strong similarities
between those generated by Tð�Þ and Vð�Þ. Also, unlike
the slow-roll limit, I1 tends to be larger than I2 in that only
it depends directly on second derivatives of Tð�Þ or Vð�Þ
as we shall see explicitly in the next section.

B. Numerical Tests

The GSR construction in the previous section applies to
any model with features in the warped brane tension Tð�Þ
or potential Vð�Þ. For definiteness and motivated by the
WMAP data, we test the GSR approximation on models
where Tð�Þ has a step feature [4]

Tð�Þ ¼ �4

	B

½1þ bFð�Þ�; (36)

with

Fð�Þ ¼ tanh

�
���s

d

�
� 1; (37)

and � inflates on a potential

Vð�Þ ¼ V0

�
1� 1

6

�2

�
; (38)

rolling from small to large values. We have chosen a
convention that after the feature, Tð�Þ goes back to its b ¼
0 value. Since physical scales are matched to the end of
inflation through Eq. (9), this simplifies the comparison to
the smooth featureless case. For simplicity, we will take

Treheat ¼ V1=4
0 following Ref. [18]. Thus the DBI step

model is specified by 4 parameters f	B; V0; 
;�endg con-
trolling the underlying smooth spectrum and the 3 parame-
ters describing the step feature f�s; b; dg.
In order to set the parameters for the smooth b ¼ 0

spectrum, it is useful to re-express the attractor solution
of Eq. (6) in terms of efolds [4]

�N ¼ d�

dN
� �2

H
ffiffiffiffiffiffi
	B

p ; (39)

and hence

�ðNÞ � �H
ffiffiffiffiffiffi
	B

p 1

N � N0

; csðNÞ � � 3




1

N � N0

;

�HðNÞ � �


6
H2	B

1

ðN � N0Þ3
; (40)

where N0 is an integration constant determined by our
definition thatNð�endÞ ¼ 0. In the slow-roll approximation

�2
R �

�
H

2��N

�
2 ¼ H2

8�2�Hcs
� ðN � N0Þ4

4�2	B

; (41)

and the tilt

ns � 1 � d ln�2
R

d lnk
� 4

N � N0

: (42)

Note that to have a tilt that is compatible with observations
ns � 1��0:04 at N ��50 one requires N0 � 50. In
string-inspired models where �end � H

ffiffiffiffiffiffi
	B

p
, N0 ¼ Oð1Þ.

While such problems can be ameliorated by introducing
stringy physics not included in the DBI action [18] doing
so degrades the predictive power of calculations based on
this action (cf., Ref. [4]). We therefore instead require
�end � H

ffiffiffiffiffiffi
	B

p
so that inflation ends while the field is

deep in the DBI regime. Finally, to satisfy constraints
from upper limits on equilateral type bispectra, we require
cs > 1=30 for scales relevant to the CMB [19].
These conditions are satisfied by the following choices:

	B ¼ 1:93� 1015; V0 ¼ 7:10� 10�26;


 ¼ 0:5; �end ¼ 1:065� 10�7: (43)

In our parameterization V0 drops out of expressions for the
curvature power spectrum at a fixed N � N0 or ns � 1 and
only impacts the mapping between field and physical scale
through Treheat. It also enters into the tensor-scalar ratio and
so we take for definiteness a small value such that tensors
are negligible.
Since the GSR approximation reproduces the exact

second-order expansion in slow-roll parameters by con-
struction when they are all small, we test the technique for
the nontrivial case where b is order unity.
In Fig. 1, we show an example of the GSR source

function G0 where b ¼ �0:4 (top) and �0:005 (bottom)
and d ¼ 2:81� 10�11 and �s ¼ 5:67� 10�8. Both cases
appear like the second derivative of the step in Tð�Þ with a
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width determined by the number of efolds it takes for the
inflaton to cross the step

� lns � �N � d

�N

: (44)

The main difference is that at the larger b value the
location, amplitude and width of the feature differ slightly.

In Fig. 2 we show the corresponding power spectrum. In
the top panel, we compare the power spectrum from the
full GSR approximation (‘‘GSR2’’) of Eq. (16) to the exact
solution. In the middle panel, we show that the approxi-
mation is accurate at the 1%–2% level for the order unity
feature. Moreover, the second-order corrections remain
small as shown in the bottom panel where ‘‘GSR1’’ de-
notes setting I2 ¼ 0 and ‘‘GSR0’’ denotes setting both
I1 ¼ I2 ¼ 0 in Eq. (16). Here the maximum value that

jI1j attains is 0.37. As in the canonical case, maxjI1j<
1=

ffiffiffi
2

p
ensures accuracy in the power spectrum of the GSR

approximation, typically to a few percent in observables
such as the CMB power spectrum [11].

Note I2 provides a negligible absolute correction for
order unity and smaller features. For small features I1
and I2 corrections do become comparable but in that case
both are negligible [see Eq. (33)]. Since both leading-order
and I1 terms depend only on a single source function
G0ðlnsÞ, observational constraints from the power spectrum
may be directly mapped onto constraints on this GSR
source function [9].

C. Observational Constraints on Broad Features

Model-independent analysis of features in the source
function G0 have been conducted using a principal compo-
nent basis that is complete for the WMAP7 data set for
broad inflaton features that are traversed in �N > 1=4
[10,11]. In the acoustic regime of s� 100–400 Mpc, con-
straints on possible deviations are extremely tight with
percent level limits on the broadest features [10]. As illus-
trated in Fig. 1, these constraints can be interpreted in the
DBI context as limits on

G0 � � 2ð1� csÞ
3ð1þ csÞ cs�H

T��

T
: (45)

The only broadband feature that marginally improves the
likelihood is associated with the known ‘� 20–40 glitch
in the WMAP data. However, a simple step in the warp
does not fit the data as well as a step in the potential due to
the change in cs across the step [4]. Since the attractor
solution for the power spectrum in Eq. (41) depends on the
sound speed, a step leads not only to oscillations, but also a
step in the power spectrum across the feature (see Fig. 2).

IV. SHARP STEP

Sharp features in the warped brane tension that are
traversed by the inflaton in �N � 1 produce high-
frequency oscillations in the curvature power spectrum.
These are more difficult to constrain observationally than

FIG. 1 (color online). GSR source function G0 for a warp step
with b ¼ �0:4 (top) and b ¼ �0:005 (bottom) with d ¼ 2:81�
10�11. Also shown is the approximate form based on T�� in the

sharp, small amplitude limit from Eq. (45) which is an excellent
approximation for the small b case and remains in good quali-
tative agreement for the high b case.

FIG. 2 (color online). GSR vs exact solution for the power
spectrum (top panel), the fractional difference between the two
(middle panel), and the impact of second-order corrections
(bottom panel) corresponding to the b ¼ �0:4 model in Fig. 1
(top). GSR2 denotes the full solution (16) with I1 and I2, GSR1
the solution with I2 ¼ 0 and GSR0 with I1 ¼ I2 ¼ 0. While the
GSR2 solution captures effects at the 1%–2% level for b ¼
�0:4, even the leading-order GSR0 is accurate at the 10% level.
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broadband features due to projection effects and sky cover-
age. They are also significantly more cumbersome to cal-
culate as their effects persist over orders of magnitude in
wavenumber.

In this section, we will derive an analytical solution for a
very small and very sharp step in the warp factor and then
test it against order unity steps. From Fig. 3, we can infer
that for b � 1 an analytic model based on integrating
derivatives of Tð�Þ should be accurate once the appropri-
ate conversions between the field and sound horizon are
made. At larger b we can see that the main differences are
that the location, amplitude, and width of the feature in G0
change which we shall see require a recalibration of cor-
responding effects in the power spectrum. We use this
analytic approximation to show that there is a DBI equiva-
lent to the sharp potential step model that improves the
WMAP7 likelihood by 2� lnL� 12 [12].

We first start with some general considerations dictated
by energy conservation and the slow-roll attractor. If the
inflaton crosses a step in �N � 1 then we can ignore
energy loss to the expansion and set the total energy � in
Eq. (3) to be equal before and immediately after the cross-
ing [4]. Kinetic energy in excess (or deficit) of the attractor
after the step will then dilute away on the �N � 1 time-
scale. Denoting with � the change in quantities going
through the step, we have immediately after the step

�cs
cs

¼ 1� cs
1þ cs�T=T

�T

T
: (46)

Note that for a decrease in T, energy conservation restricts
an amplitude of j�T=Tj ¼ j2bj< 1=cs. For a small am-
plitude warp feature, we can linearize

�cs
cs

� ð1� csÞ�TT : (47)

Thus for the case of a small, sharp step in T, the sound
speed takes a fractional step of comparable amplitude.
Furthermore the slow-roll parameters �1 and �2 follow
by taking derivatives of �T=T during the interval around
the step. Similarly

�H ¼ 3

2

�þ p

�
� 3

2

�
1

cs
� cs

�
T

V
; (48)

and so

��H
�H

¼ cs
1þ cs�T=T

1� cs
1þ cs

�T

T
¼ cs

1þ cs

�cs
cs

: (49)

Note that at low sound speed, the relative effect of the
step on �H is suppressed vs cs by cs=ð1þ csÞ, as are �H

compared with�1, and �2 compared with�2, in agreement
with Eq. (28).
After crossing the step, we know that the inflaton hits the

attractor solution (6) as the kinetic energy from the step
decays after several efolds. For a small amplitude step

�cs
cs

¼ 1

2
ð1� c2sÞ�TT ; (50)

and

��H
�H

¼ �cs
cs

: (51)

Given that the change in �H is determined by the change in
the sound speed we seek to quantify the full evolution of cs
from the step through to the attractor regime.

FIG. 3 (color online). Analytic vs GSR0 solution for a small amplitude sharp step b ¼ �0:005, d ¼ 0:005�N0 ¼ 2:44� 10�12,
with cs0 ¼ 0:0507 (left) and 0.50 (right). Top panel: difference in lnPR between this model and the same b ¼ 0 model. Bottom panel:
difference between the curves in the top panel divided by the smooth envelope of the oscillations (see text).
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Following Ref. [12], we begin by expanding the field as

� ¼ �0 þ�1; (52)

where � ¼ �0 when b ¼ 0, and calculate to zeroth order
in the unperturbed slow-roll parameters. Furthermore,
the expansion rate is also unaffected by the warp feature
since �H � 1 throughout. The field equation for �1 then
becomes

�NN1 ¼ �3�N1 þ 3

2
ð1� c2s0Þ�N0

T1

T0

þ 1

2

ð1� cs0Þ2ð1þ 2cs0Þ
1� c2s0

�2
N0

T�1

T0

; (53)

where again 0 and 1 denote unperturbed b ¼ 0 and
finite b perturbations respectively. Here we have used
the fact that

cs1
cs0

¼ ðc2s0 � 1Þ
2c2s0

�
2
�N1

�N0

� T1

T0

�
: (54)

We can further transform the time variable from efolds
N to background field value �0 by taking �N0 � const

d

d�0

�
e

3�0
�N0

d�1

d�0

�
¼ e

3�0
�N0

�
3

2
ð1� c2s0Þ

1

�N0

T1

T0

þ 1

2

ð1� cs0Þ2ð1þ 2cs0Þ
1� c2s0

T1�

T0

�
: (55)

The first term on the RHS can be integrated by parts to
make the whole source proportional to T1�. For sharp

features, T1� is very concentrated around the feature

and, consequently, we can approximate the background
quantities by their values at �s. Combined with the
boundary condition that the field is on the attractor
before the step

lim
���s

d�1

d�0

¼ �ð1� c2s0Þb; (56)

we obtain

d�1

d�0

¼1�c2s0
2

bFð�0Þ�c2s0
2

1�cs0
1þcs0

b½Fð�0Þþ2�e
3ð�s��0Þ

�N0 :

(57)

Using this result in Eq. (54) and replacing

�s ��0 ¼ �N0ðNs � NÞ; (58)

we obtain

cs1
cs0

¼1�c2s0
2

bFð�0Þþð1�cs0Þ2
2

b½Fð�0Þþ2�e3ðNs�NÞ:

(59)

Note that before the step cs1=cs0 ¼ �ð1� c2s0Þb and

right after the step cs1=cs0 ¼ ð1� cs0Þ2b and so
�cs=cs ¼ 2ð1� cs0Þb as expected from Eq. (47).
Several efolds after the step cs1=cs0 ¼ 0 and so
�cs=cs ¼ ð1� c2s0Þb as expected from Eq. (50).

From �H ¼ �2
N=2cs we obtain

�H1

�H0

¼ 1� c2s0
2

bFð�0Þ

� 1þ c2s0
2

ð1� cs0Þ
ð1þ cs0Þb½Fð�0Þ þ 2�e3ðNs�NÞ; (60)

which also satisfies expectations from Eqs. (49) and (51).
From these quantities, we calculate G0 taking �H ! 0,

b ! 0, d ! 0

G0 ��1

3
�2þ2

3
�2�5

3
�1�2�Hþ8

3

�
aHs

cs
�1

�
: (61)

In this approximation,

aHs

cs
� 1 � � 5� 2cs0 � 3c2s0

8
bFð�0ÞeN�Ns

� 3ð1� cs0Þ2
8

b½Fð�0Þ þ 2�e3ðNs�NÞ: (62)

After several integrations by parts we obtain the change in
ln�2

R from Eq. (16) due to the feature, with I1 ¼ I2 ¼ 0
from the feature, as

ln�2
R1 ¼ C1WðkssÞ þ C2W

0ðkssÞ þ C3YðkssÞ; (63)

where

YðxÞ ¼ 6x cosð2xÞ þ ð4x2 � 3Þ sinð2xÞ
x3

; (64)

is proportional to
R
d lnxW0=x. Here

C1 ¼ 2ð1� c2s0Þb; C2 ¼ � 2

3

1� cs0
1þ cs0

b;

C3 ¼ 5� 2cs0 � 3c2s0
4

b: (65)

Given that

lim
x!0

WðxÞ¼1; lim
x!1WðxÞ¼0; lim

x!0
W 0ðxÞ¼0;

lim
x!1W

0ðxÞ¼�3cosð2xÞ; lim
x!0

YðxÞ¼0; lim
x!1YðxÞ¼0;

(66)

the W term represents a step in the power spectrum at
kss � 1 of fractional amplitude 2bð1� c2s0Þ, which follows
directly from the attractor solution, and the W 0 term rep-
resents a constant amplitude oscillation at kss � 1. The
latter is exactly the same form as oscillations produced by a
step in the potential for a canonical kinetic term (see
Ref. [12] Eq. (32)). Unlike the canonical case, the step in
power is comparable to the amplitude of oscillations.
Furthermore, the additional Y term changes the solution
near kss � 1. Since even for b � 1 a small error in the
location of the feature ss, which controls the frequency of
the oscillation, causes a noticeable change in the phase of
the oscillation over many cycles, we define it such that
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�G0ðlnssÞ ¼ 0; (67)

for the change from the smooth b ¼ 0 model. This defini-
tion differs slightly from the sound horizon at �s for large
b as shown in Fig. 1.

For finite step width d in field space, the inflaton traverses
the step in �s=ss � jd lns=d�jd � d=�N0. The window
functions W and W 0 oscillate on a time scale �s ¼ 1=k.
Thus the integral overG0 is damped for kss > �N=d. For the
tanh step, the integral can be approximated following [12]

ln�2
R1 ¼ ½C1WðkssÞ þ C2W

0ðkssÞ þ C3YðkssÞ�D
�
kss
xd

�
;

(68)

where

xd ¼ d�

d lns

1

�d
� �N0

�d
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�H0cs0

p
�d

; (69)

and the damping function is

D ðyÞ ¼ y

sinhy
: (70)

To obtain the full power spectrum we add ln�2
R1 to a

calculation of the b ¼ 0 model. This can be an exact nu-
merical solution, a slow-roll approximation, or the GSR
approximation. For comparison purposes, we choose here
to take the GSR0 (I1 ¼ I2 ¼ 0) solution from Sec. III.

In Fig. 3, we test the analytic approximation for a small
amplitude sharp stepb ¼ �0:005 and twovalues of the sound

speed. In the lower panel we divide the difference between
the analytic and GSR0 solutions by the envelope function

3C2D
�
kss
xd

�
: (71)

Agreement is at the 1% level except on scales much larger
than the step kss � 1 and those affected by damping kss *
xd. In the former case differences from the change in �N

from�N0 due to the different slow-roll attractor change the
mapping between� and lns. Near the damping scale, small
changes in xd are amplified in the fractional difference due
to the exponential nature of the damping even though the
absolute prediction remains accurate.
As b approaches order unity, the analytic approximation

begins to misestimate the amplitudes and damping of the
features. In Fig. 4 (left) we show a case where b ¼ �0:25
and d ¼ 2:44� 10�12, with low sound speed cs0 ¼
0:0507. Note that the functional form of the power spec-
trum in Eq. (63) remains the same only the coefficients
differ. We therefore rescale them as

C1 ¼ ln

�
1� 2bc2s0
1� 2b

�
; C2 ¼ � 2

3

1� cs0
1þ cs0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2b

p b;

C3 ¼ 5� 2cs0 � 3c2s0
4

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2b

p b; xd ¼ d�

d lns

��������ss

1

�d
;

(72)

where the form of C1 can be derived from the attractor
solution and the form of theC2,C3 corrections is motivated

FIG. 4 (color online). Analytic vs GSR0 solution for a large amplitude sharp step b ¼ �0:25 and d ¼ 2:44� 10�12 with low sound
speed cs0 ¼ 0:0507model as in Fig. 3. Left: the analytic approximation using the linear in b scalings of Eq. (65) begins to depart from
GSR0 as b approaches unity. Note however that the functional form of the feature remains the same but amplitudes and damping
require rescaling. Right: nonlinearly rescaled amplitudes and damping of Eq. (72) recover the few percent level accuracy seen in the
small step case.
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by the fact that T ¼ 0 before the feature for b ¼ 1=2. In
Fig. 4 (right), we show that the agreement is again good
after these rescalings even for the b ¼ �0:25 case.

Given that the analytic approximation works quite well
even for relatively large values of b and its functional form
mimics a step in the potential at kss � 1, we can remap
results for the latter onto the former. A potential step at
ss ¼ 8163 Mpc of amplitude C2 ¼ 0:11 improves the
WMAP7 likelihood by 2� lnL � 12 [12]. In terms of the
warp step, these parameters translate into b ¼ �0:218 for
cs0 ¼ 0:0507 and d ! 0. In Fig. 5 we compare the CMB
temperature power spectra predicted by the two models
using the best-fit parameters for the cosmological parame-
ters: �bh

2 ¼ 0:0222, �ch
2 ¼ 0:11, h ¼ 0:71, � ¼ 0:10,

ln1010As ¼ 3:077, ns ¼ 0:965 such that the underlying
smooth power spectrum is

�2
R0 ¼ As

�
k

0:05 Mpc�1

�
ns�1

: (73)

Note that aside from small changes at low multiple ‘where
the cosmic variance is high, the two spectra are indistin-
guishable. Thus a step in the warp fits the WMAP7 data as
well as a step in the potential.

V. DISCUSSION

We have shown that the GSR approximation can be
applied to DBI inflation to constrain features in the warped
brane tension Tð�Þ from observational data. The approxi-
mation accurately recovers corresponding features for up to
order unity deviations. Previous work on constraining the
GSR source functionG0 and hence second derivatives of the
potential Vð�Þ for canonical fields can be directly reinter-
preted in the DBI context as limits on the second derivative
of Tð�Þ [10,11]. The main difference between the two is that
features in Tð�Þ once traversed can strongly affect the slow-
roll attractor for modes that cross the sound horizon later.
The correspondence between features in Vð�Þ and Tð�Þ

is especially close in the limit of extremely sharp features,
for example a step feature. In both cases the power spec-
trum exhibits constant amplitude oscillations for modes
that cross the sound horizon after the step. Consequently,
the preference for a horizon-sized step in the potential in
WMAP7 implies a corresponding preference for a step in
Tð�Þ. The main difference is a reduction of power for the
low kmodes that cross before the feature. The large cosmic
variance of these modes prevents a significant distinction
between the two. On the other hand, features in Vð�Þ for
canonical inflation and Tð�Þ for DBI inflation should
induce very different bispectra. We leave these consider-
ations to a future work.
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