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We show how the relativistic matter and velocity power spectra behave in different gauges. We

construct a new gauge where both spectra coincide with Newtonian theory on all scales. However, in this

gauge there are geometric quantities present which do not exist in Newtonian theory, for example the local

variation of the Hubble parameter. Comparing this quantity to second-order Newtonian quantities, we find

that Newtonian theory is inaccurate on scales larger than 10 Mpc. This stresses the importance of

relativistic corrections to Newtonian cosmological N-body simulations on these scales.
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I. INTRODUCTION

At early times the Universe was very close to isotropic
and homogeneous, the best indication being the tiny
fluctuations (about �10�5) in the cosmic microwave
background radiation [1]. However, the structure of the
Universe that we observe today is very inhomogeneous on
scales below the homogeneity scale of �100 Mpc [2,3].
There are galaxies (with mass collection radius up to
�1 Mpc) and clusters of galaxies (at scales of �10 Mpc).
Up to scales of �100 Mpc we find superclusters and
large voids [4].

The theory of structure formation connects the
early homogeneous Universe with the inhomogeneous
Universe we observe today. It is assumed that there exist
initially small density perturbations, which grow due to
gravitational attraction. The mathematical tool is relativis-
tic cosmological perturbation theory [5], which considers
small perturbations on a homogeneous and isotropic
Friedmann-Robertson-Walker space-time. However, in
this theory there are subtleties arising due to the freedom
of gauge, i.e., choosing the correspondence between per-
turbed and background quantities [6,7].

Another approach is Newtonian cosmology; see,
e.g., Ref. [8]. One has to keep in mind that Newtonian
theory is wrong in that it assumes instantaneous gravita-
tional interaction and an infinite speed of light. However,
because of its simplicity compared to the relativistic the-
ory, the Newtonian equations are the preferred choice in
cosmological N-body simulations, which are used to test
our understanding of structure formation.

But the question is, how reliable are these simulations,
since they use Newtonian rather than relativistic equations.
Here we ask, how reliable is Newtonian cosmology on
large scales?

In order to answer this question, people have so far
followed mainly two different strategies. One strategy is
to choose a gauge and then calculate the relativistic
corrections appearing in this gauge. It turns out that in
any gauge that is not the synchronous gauge there are
relativistic corrections appearing to the density contrast
on large scales; see, e.g., Refs. [9,10].
The other strategy is based on the use of gauge-invariant

variables. Gauge-invariant quantities were first introduced
by Bardeen in Ref. [6] (see also Ref. [5] for a more recent
review) and are the basis for the work of Hwang and Noh,
who found an exact correspondence up to second order
between Newtonian and relativistic cosmology [11,12].
The relativistic-Newtonian correspondence up to second

order found in Ref. [11] holds in the following way: the
Newtonian density contrast is identified with a relativistic
gauge-invariant expression that reduces to the density con-
trast on comoving hypersurfaces. However, the Newtonian
gravitational and velocity potentials are identified with
gauge-invariant expressions which reduce to the relativistic
potentials on zero-shear hypersurfaces. Using the same
strategy, Hwang and Noh also found a correspondence
between relativistic cosmological perturbation theory and
the first-order post-Newtonian approximation [13]. Again,
this correspondence holds if one identifies the first-order
post-Newtonian approximation perturbation fields with
relativistic gauge-invariant quantities that are interpreted
on different hypersurfaces.
However, one needs to keep in mind that any physical

problem is described by a set of equations of motion and
appropriate initial conditions. The initial conditions must
be specified on a spatial Cauchy hypersurface, which in the
context of cosmological perturbation theory corresponds to
a particular foliation of space-time, i.e., to a hypothetical
observer who is able to determine physical quantities on a
spatial hypersurface. The relativistic-Newtonian corre-
spondence mixes the quantities defined on different spatial
hypersurfaces and thus no hypothetical observer in the
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Einsteinian world could actually determine these com-
bined quantities.

Another recent approach from Green and Wald uses a
whole new framework to investigate the problem [14,15].
Using their framework, the authors construct a dictionary
between Newtonian solutions and relativistic solutions.
However, in order to reconstruct the exact full relativistic
structure out of theNewtonian solution, additional differential
equations need to be solved (e.g., Eq. (2.44) in Ref. [15]). A
similar dictionary is proposed byChisari andZaldarriaga [16].
They show how relativistic corrections can be absorbed into
initial data of simulations and how to modify the Newtonian
coordinates to be able to compare them to relativistic coor-
dinates. Both strategies seem to result in extra input and extra
numerical work on top of the Newtonian calculation.

In this work we give a quantitative estimate of when the
relativistic corrections to the Newtonian solutions are im-
portant. In order to do so, we first construct a gauge in
which both the density contrast and the velocity perturba-
tions coincide with Newtonian theory. Then, the signifi-
cance of the relativistic corrections to Newtonian theory
can be evaluated by considering the local modification of
the Hubble parameter, which appears in this gauge, and
comparing it to second-order Newtonian quantities.

Let us note that the question of this work is different from
the question of what a real observer can see in the Universe.
The latter has been recently discussed in Refs. [17–20].

Throughout this work we restrict our attention to an
Einstein-de Sitter background cosmology, because it pro-
vides an accurate description for most of the history of the
Universe and has simple expressions for the scale factor
(a / �2, where � denotes conformal time) and the conformal
Hubble parameter (H ¼ 2=�). We adopt a Hubble constant
ofH0 ¼ 71 km=s=Mpc, in agreementwithmeasurements of
the Wilkinson Microwave Anisotropy Probe [21].

The outline is as follows. In Sec. II we review Newtonian
cosmological perturbation theory and present the equations
up to second order. In Sec. III we describe relativistic cosmo-
logical perturbation theory and give an overview over solu-
tions in the six most common gauges. In particular, we show
how the shapes of power spectra vary from gauge to gauge.
We find that none of these gauges give both matter and
velocity spectra in correspondence with Newtonian theory.
In Sec. IV we introduce a new gauge with the property that it
coincides with Newtonian theory on all scales regarding the
density contrast and the velocity perturbation, the Newtonian
matter gauge. Using the strategy described above, we con-
clude that relativistic corrections are more important than
second-orderNewtonian effects on scales larger than 10Mpc.

II. NEWTONIAN COSMOLOGICAL
PERTURBATION THEORY

A. First order

Newtonian cosmological perturbation theory results in
perturbed Newtonian equations (continuity equation, Euler

equation and Poisson equation) on an expanding
Friedmann-Robertson-Walker background. In this model
the linear equations can be written in Fourier space [8]:

�ð1Þ0 þ ik � vð1Þ ¼ 0; (1)

vð1Þ0 þH vð1Þ ¼ �ik�ð1Þ;

�k2�ð1Þ ¼ 3

2
H 2�ð1Þ;

where �ð1Þ is the first-order density contrast, vð1Þ is the first-
order velocity perturbation, �ð1Þ is the first-order gravita-
tional potential and k is the comoving wavenumber. The
linear equations can be decoupled into scalar and vector
parts. It turns out that in an Einstein-de Sitter model the

vector contribution to vð1Þ is decaying and hence can be
neglected (see, e.g., Ref. [22]).
The remaining growing solutions for the perturba-

tions are

�ð1Þ ¼ �ð1ÞðkÞ;

�ð1Þ ¼ � 2

3

k2

H 2
�ð1Þ;

vð1Þ ¼ � 2

3

ik

H
�ð1Þ:

We assume a Harrison-Zel’dovich spectrum for the pri-
mordial curvature perturbation field, with an amplitude
A ¼ 4:88� 10�5, which corresponds to measurements of
the Wilkinson Microwave Anisotropy Probe [21]. It

follows that the initial condition for �ð1Þ can be written
as (see, e.g., Ref. [22])

j�ð1Þj ¼ 3

5
Að2�2Þ1=2k�3=2TðkÞ; (7)

where TðkÞ is the transfer function, which accounts for
suppressed growth of structure during the radiation-
dominated epoch. We adopt the form of TðkÞ from
Ref. [23] for a pure cold dark matter model (i.e., without
any baryonic matter).

B. Second order

At second order the Newtonian equations are more
complicated. For a detailed derivation, see Ref. [22]. In
Fourier space they read

�ð2Þ0 þ ik � vð2Þ ¼ � ik

ð2�Þ3 � ð�
ð1Þ ? vð1ÞÞ;

vð2Þ0 þH vð2Þ þ ik�ð2Þ ¼ � ik

ð2�Þ3 ðv
ð1Þ ? vð1ÞÞ;

k2�ð2Þ þ 3

2
H 2�ð2Þ ¼ 0;
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where a star denotes a convolution. Note that the structure
of the second-order equations is very similar to that of the
first-order equations. However, there are additional source
terms, consisting of convolutions of first-order perturba-
tions, which we have written on the rhs of each equation.
Due to these source terms, the second-order perturbations
grow faster than the first-order perturbations. Solutions can
be obtained numerically. Plots of the first- and second-
order density contrast are shown below in Fig. 2, where
we compare them to a relativistic quantity, the local varia-
tion of the Hubble parameter.

III. RELATIVISTIC COSMOLOGICAL
PERTURBATION THEORY

In relativistic cosmological perturbation theory we con-
sider small perturbations of the homogeneous and isotropic
metric and the energy-momentum tensor of a perfect fluid.
The evolution of these perturbations follows from the
covariant conservation of the energy-momentum tensor

and Einstein’s field equations. We define the perturbed
metric

g�� ¼ a2
�1� 2� w;i

w;i ð1� 2c Þ�ij þ 2h;ij

 !
: (11)

We restrict our attention to scalar perturbations at linear
order. There are hence four degrees of freedom in the
metric perturbation, corresponding to �, c , w and h.
However, two of them can be fixed due to the gauge free-
dom. This corresponds to choosing �0 and � in the gauge
transformation

�

x

 !
! �þ �0

xþr�

 !
; (12)

where � is the conformal time and x are comoving coor-
dinates. In the following we will discuss the advantages of
choosing w ¼ 0 as a gauge condition. The proper time
between two events along a worldline is given by

Z ffiffiffiffiffiffiffiffiffiffiffiffi
�ds2

p
¼
Z

d�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�� 2w;i

dxi

d�
� ½ð1� 2c Þ�ij þ 2h;ij�dx

i

d�

dxj

d�

s
: (13)

Now we expand the integrand and keep only terms up to
OðgviÞ, where g 2 f�; c ; w; h; vig, which gives

Z ffiffiffiffiffiffiffiffiffiffiffiffi
�ds2

p
¼
Z

d�a

�
1þ�� v � rw� v2

2

�
: (14)

The proper time is extremal if and only if the Lagrangian
L ¼ að1þ�� v � rw� v2

2 Þ satisfies the Euler-Lagrange
equation

d

d�

@L

@v
¼ @L

@x
: (15)

This gives in first order

1

a

d½aðvþrwÞ�
d�

¼ �r�: (16)

It is convenient to choose w ¼ 0, so that the Euler-
Lagrange equation coincides exactly with Newton’s law
for the motion of particles in an expanding universe,

1

a

dðavÞ
d�

¼ �r�: (17)

Thus, in a gauge with w ¼ 0 we can identify the
metric perturbation � with the Newtonian gravitational
potential. This is the reason why it is common to identify
the Bardeen potential �, which is the same as � in the
longitudinal gauge (where w ¼ h ¼ 0), as the gravita-
tional potential (the exact definition of � is given below).
In physical terms, w ¼ 0 implies that comoving observers
do not change their coordinates between constant-time
hypersurfaces.

After choosing w ¼ 0 there is still another degree
of freedom, which can be fixed by a second gauge condi-
tion, e.g.,
(i) Uniform curvature gauge (UC). In this gauge we

set w ¼ c ¼ 0. It follows that the intrinsic Ricci

curvature, which is given by ð3ÞR ¼ 4
a2
�c , vanishes

in this gauge [7].
(ii) Longitudinal gauge (L). In this gauge we set

w ¼ h ¼ 0. It is equivalent to the zero shear gauge,
defined by w ¼ � ¼ 0, where

� � aðh0 � wÞ (18)

generates the traceless part of the extrinsic curvature
tensor and can be interpreted as shear in the normal
worldlines [7]. Another common name for this
gauge is conformal Newtonian gauge. However,
we will not use this name since it is not the only
gauge where the particles move according to
Newton’s law of motion, as we have shown above.
Bertschinger’s Poisson gauge reduces to the longi-
tudinal gauge in the scalar sector [8].
The longitudinal gauge is equivalent to the use of
the Bardeen potentials [6],

� � �þ 1

a
½ðw� h0Þa�0; (19)

� � c �H ðw� h0Þ: (20)
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(iii) Uniform expansion gauge (UE). In this gauge we
set w ¼ 	 ¼ 0, where

	 � 3

a
ðc 0 þH�Þ � 1

a2
�� (21)

is the perturbation of the trace of the extrinsic
curvature tensor [7]. Since the full trace is given
by K ¼ �3H þ 	, where H is the Hubble expan-
sion rate, we can identify �H � �	=3 as the per-
turbation in the expansion rate.

(iv) Uniform density gauge (UD). In this gauge
we set w ¼ � ¼ 0. There are hence no density
perturbations.

(v) Synchronous gauge (S). In this gauge we set
w ¼ � ¼ 0. It follows that observers at different
places have synchronous clocks, since � affects
the time-time component of the metric tensor.
There is a residual gauge freedom, which can easily
be fixed by specifying that the peculiar velocity
vanishes at a particular moment of time (see, e.g.,
Ref. [5]). For a matter-dominated universe this
coincides with the comoving gauge (see below).

(vi) Comoving gauge (C). In this gauge we set
w ¼ v ¼ 0, where v is the velocity potential, so
that v ¼ rv. There are hence no peculiar velocities
in this gauge. It turns out that during matter domi-
nation the comoving gauge and the synchronous
gauge coincide [22]. Hence, we will treat them as
one gauge in the following.

(vii) An interesting gauge with w � 0 is the spatially
Euclidean gauge (SE). Here we set h ¼ c ¼ 0, so
that the spatial part of the metric has Euclidean
geometry.

The relativistic equations of motion for the fluctuations
follow from the perturbed energy-momentum conservation
equation, T

�
�;� ¼ 0, and the Einstein equation, G�� ¼

8�GT��, where G�� denotes the Einstein tensor and T��

is the energy-momentum tensor. In longitudinal gauge,
covariant conservation of energy and momentum gives
for dust (see, e.g., Ref. [5])

�0
GI;L þ �vGI;L � 3�0 ¼ 0; (22)

rv0
GI;L þHrvGI;L ¼ �r�; (23)

and the Einstein equation gives

3H 2�þ 3H�0 � �� ¼ � 3

2
H 2�GI;L; (24)

�0 þH� ¼ � 3

2
H 2vGI;L; (25)

3�00 þ 3H ð�0 þ 2�0Þ þ �ð���Þ ¼ 0; (26)

ð���Þ;ij ¼ 0; (27)

where we have introduced the gauge-invariant density
contrast,

�GI;L � �� 3H ðw� h0Þ; (28)

as well as the gauge-invariant velocity potential,

vGI;L � vþ h0: (29)

Thus, the equations are written in gauge-invariant form.
Note that the fields�, �GI;L, vGI;L reduce simply to�L, �L,

vL, respectively, in the longitudinal gauge. This tells us

TABLE I. Overview—growing modes of first-order scalar perturbations for dust models according to relativistic cosmological
perturbation theory in L, UC, SE, S, C, UD, and UE gauge. The quantities are arranged in the following way: the upper group contains
perturbations in the metric tensor, the middle group contains perturbations in the energy-momentum tensor (peculiar velocity potential
and density contrast) and the lower group contains derived geometrical quantities (intrinsic curvature, shear, and expansion rate). All
solutions are expressed as function of Bardeen’s metric potential �.

Gauge L UC SE S/C UD UE

� � 5
2�

5
2� 0 � 5

9
k2

H 2 � �� 1
a ða 3H�

k2þ9
2H

2Þ0
c � 0 0 5

3�
5
3�þ 2

9
k2

H 2 � �þ 3H 2�
k2þ9

2H
2

w 0 0 � �
H

0 0 0

h 0 �
H 2 0 � 2

3H 2 � � 2
3H 2 �� 1

3
k2

H 4 � �R
� d�0 3H�

k2þ9
2H

2

v � 2
3

1
H

� � 5
3

1
H

� � 2
3

1
H

� 0 2
9

k2

H 3 � � 2
3

1
H

�þ 3H�
k2þ9

2H
2

� �ð2þ 2
3

k2

H 2Þ� �ð5þ 2
3

k2

H 2Þ� �ð5þ 2
3

k2

H 2Þ� � 2
3

k2

H 2 � 0 �ð2þ 2
3

k2

H 2Þ�þ 9H 2�
k2þ9

2H
2

ð3ÞR �4 k2

a2
� 0 0 � 20

3
k2

a2
� 20

9
k4

a2H 2 � �4 k2

a2
ð�þ 3H 2�

k2þ9
2H

2Þ
� 0 a �

H a �
H � 2

3a
�
H � 2

3a
�
H ð1þ k2

H 2Þ � 3aH�
k2þ9

2H
2

	 3H�
a ð152 þ k2

H 2ÞH�
a ð152 þ k2

H 2ÞH�
a ð152 � 2

3
k2

H 2ÞH�
a � 2

3
k2

H 2 ð5þ k2

H 2ÞH�
a 0
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FIG. 1 (color online). Matter power spectrum (P�� � j�j2), matter-velocity power spectrum (Pv� � jv�j) and velocity power
spectrum (Pvv � jvj2) according to relativistic perturbation theory in different gauges (defined in the text) and according to Newtonian
theory (labelled by ‘‘N’’), for z ¼ 0 (left panels) and z ¼ 100 (right panels).

NEWTONIAN VERSUS RELATIVISTIC COSMOLOGY PHYSICAL REVIEW D 86, 063527 (2012)

063527-5



how to interpret this set of gauge-invariant fields: they
measure the perturbations on zero-shear hypersurfaces.

In longitudinal gauge, the growing solutions are

c L ¼ �L ¼ � ¼ constant; (30)

vL ¼ � 2

3

�

H
; (31)

�L ¼ �2�� 2

3

k2

H
�: (32)

The solutions in other gauges can be obtained using the
following gauge transformations [7]:

~� ¼ �̂�H�0 � �00; (33)

~c ¼ ĉ þH�0; (34)

~w ¼ ŵþ �0 � �0; (35)

~h ¼ ĥ� �; (36)

~v ¼ v̂þ �0; (37)

~� ¼ �̂þ 3H�0; (38)

~� ¼ �̂� a�0; (39)

~	 ¼ 	̂� 9

2
H 2 �

0

a
þ �

�0

a
: (40)

The solutions in different gauges are given in Table I.
Figure 1 shows plots of the matter power spectrum,

P�� ¼ j�j2, the matter-velocity power spectrum, Pv� ¼
jv�j, and the velocity power spectrum, Pvv ¼ jvj2. Each
spectrum is shown for different gauges and at two different
redshifts: z ¼ 100, because this is where typical numerical
simulations begin, and z ¼ 0, because this is where typical
numerical simulations end. The initial condition for � is
given by Eq. (7). This is possible because we can identify
� ¼ �L as the Newtonian gravitational potential, as seen
from (17).

Figure 1 demonstrates that the relativistic matter power
spectrum coincides with the Newtonian one on all scales
in synchronous/comoving gauge; however, there are no
relativistic velocity perturbations. For the longitudinal
gauge and the spatially Euclidean gauge the relativistic
velocity power spectrum coincides with the Newtonian one
on all scales, but the matter power spectra do not match on
superhorizon scales. The other gauges give non-Newtonian
results in both spectra. None of these gauges gives a
correspondence to Newtonian theory both in the matter
and the velocity power spectrum on all scales.

Note that the claims about the Newtonian-relativistic
correspondence found in the literature are based on either
the use of appropriate dictionaries [15,16] or the appropri-
ate mixing of gauge-invariant variables [12]. We stress that
the findings in this section are solutions as measured
by one hypothetical observer, i.e., in one gauge. It seems
to us that, in order to estimate the relativistic corrections to
Newtonian cosmology, we must first of all seek a gauge in
which both the density contrast and the matter velocity
coincide.

IV. NEWTONIAN MATTER GAUGE

By choosing �0 and � adequately, it is possible to con-
struct a gauge in which both the density contrast and the
peculiar velocity coincide with their Newtonian counter-
parts on all scales. We call this gauge the Newtonian matter
gauge (NM), as all variables associated with the state of the
matter (dust) agree with their Newtonian values. In order to
construct it, we start in the longitudinal gauge, where the
peculiar velocity already coincides with the Newtonian

one. We then choose �0 ¼ 2�
3H

so that

�N ¼ �NM ¼ �L þ 3H�0: (41)

Note that the (0, 0) component of the metric perturbation
vanishes in this gauge,

�NM ¼ ��H�0 � �00 ¼ 0; (42)

which is not a problem because the ð0; iÞ part of the metric
perturbation is not zero in this gauge,

wNM ¼ wL þ �0 � �0 ¼ �0 ¼ 2�

3H
; (43)

which means that we cannot identify �NM as the
Newtonian gravitational potential, as we discussed earlier.
It is illuminating to evaluate (16) in the Newtonian

matter gauge. Since �NM ¼ 0, we have

1

a

d

d�
½aðvNM þrwNMÞ� ¼ 0: (44)

Using

1

a

d

d�
ðawNMÞ ¼ 1

a

d

d�

�
a
2�

3H

�
¼ 1

�2
d

d�
�3

�

3
¼ �;

(45)

we recover Newton’s equation of motion. This is not a
surprise because we have chosen the gauge to give matter
velocities in agreement with Newtonian theory.
In the Newtonian matter gauge we find a nonvanishing

intrinsic curvature,

ð3ÞRNM ¼ � 20

3

k2

a2
�; (46)

as well as a nonvanishing expansion rate perturbation,
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�	NM ¼ 2

3

k2

aH
�; (47)

and nonvanishing shear,

�NM ¼ � 2

3

a

H
�: (48)

All these quantities do not appear in Newtonian cosmology.
In particular, we define the local modification of the Hubble
expansion rate,

�H � ð�HÞNM
H

¼ �	NM

3H
: (49)

Since the density contrast and the peculiar velocities
coincide with Newtonian theory in this gauge, we can
use �H to estimate the magnitude of relativistic modifica-
tions to the Newtonian theory. In Fig. 2 we show the
density contrast at first- and second-order Newtonian cos-
mological perturbation theory, as well as �H on different
scales. We see that on comoving length scales smaller than
1 Mpc the second-order Newtonian effects are always
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FIG. 2 (color online). Density contrast in first- and second-order Newtonian cosmological perturbation theory, compared to the
quantity �H (defined in the text), which represents the local modification of the Hubble rate and is a purely relativistic effect. The
prefactor is chosen to make the quantities dimensionless. The different panels show the behavior on different scales: on comoving
length scales larger than 10 Mpc the relativistic modification is always larger than second-order Newtonian effects, while on scales
below 1 Mpc the relativistic modifications are small compared to second-order Newtonian effects. These results hold for a spatially flat
dust universe.
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larger than the relativistic modifications. However, on
comoving length scales larger than 10 Mpc the relativistic
modification is more important than the second Newtonian
order. This can have a drastic effect on the reliability of
Newtonian N-body simulations of large cosmological vol-
umes. Thus, Newtonian and general relativistic models of
cosmology could coincide in the matter and velocity power
spectra for all times, but would then disagree in their
Hubble diagrams and thus in their conclusions on the
expansion history of the Universe.

In order to make a quantitative statement about the
validity of Newtonian theory we define two characteristic
redshifts. Let zNL be the redshift at which the perturbation
on a given scale goes nonlinear, which is, according to the
spherical collapse model [24], given by

P ð1Þ
� ðk; zNLÞ � 1; (50)

where P ð1Þ
� � k3

2�2 j�ð1Þj2 is the dimensionless matter power

spectrum. Perturbation theory can only be applied up to
this redshift. For comparison, let zNN be the redshift at
which the relativistic modifications become as important as
the second-order Newtonian corrections, that is,

�ð2Þðk; zNNÞ � �Hðk; zNNÞ: (51)

In Table II we show an overview of these characteristic
redshifts for different comoving scales, which can be read
off from Fig. 2, using the relation a ¼ 1=ð1þ zÞ between
scale factor and redshift. A discussion follows in the next
section.

In Fig. 3 we plot the dimensionless band power of �H

against the comoving wavenumber k for different redshifts.
It can be seen that the relativistic corrections to the Hubble
rate on the cluster scale (k� 0:1 Mpc�1) is of the order of
1% at a redshift of z� 2 and 10% today.

Note that relativistic corrections on the Gpc scale are
always below 1%. However, this result should not be
interpreted too fast as a confirmation of Newtonian theory
on these very large scales. In fact, the density contrast itself

is very small on the these scales. In particular, the fraction

�H=�
ð1Þ
N ¼ a2=3 is independent of scale, so that the rela-

tivistic corrections become comparable to the density
contrast today on all scales that still behave linearly.

V. DISCUSSION

The theory of structure formation gives the transition
between the early homogeneous Universe and the Universe
we observe today. In this work we have studied two differ-
ent theories that describe this transition: relativistic and
Newtonian cosmological perturbation theory. Although the
former is the physically more correct tool, the latter is, due
to its simplicity, the preferred choice in cosmological
N-body simulations, with which we test our understanding
of structure formation. Fixing the background universe to
be an Einstein-de Sitter model, we have calculated the first-
and second-order perturbations in Newtonian cosmologi-
cal perturbation theory and the first-order perturbations in
relativistic cosmological perturbation theory.
We have shown how the power spectra for matter and

velocity perturbations behave according to relativistic
cosmological perturbation theory in different gauges and
according to Newtonian theory. In the synchronous/
comoving gauge the density perturbations behave exactly
like in Newtonian theory; however, there are no velocity
perturbations. In the longitudinal gauge the velocity per-
turbations behave like in Newtonian theory, but the density
contrast differs significantly on superhorizon scales.
In the newly defined Newtonian matter gauge there are

no relativistic corrections at all to the Newtonian matter
and velocity power spectra. However, there are other
quantities present which do not appear in Newtonian

TABLE II. zNL and zNN (defined in the text) for different
comoving wavenumbers. For k * 0:6 Mpc�1 we have zNL >
zNN, which means that these scales go nonlinear before relativ-
istic effects become more important than second-order
Newtonian effects. However, for k & 0:6 Mpc�1 we find zNL <
zNN, so that relativistic corrections become more important than
the second-order Newtonian terms before these scales go non-
linear.

k [Mpc�1] zNL zNN

0.01 future >104

0.1 0.42 753

0.3 3.43 49.2

0.6 6.23 6.10
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FIG. 3. The local modification of the Hubble parameter, �H,
plotted against the comoving wavenumber k. From top to bot-
tom, the lines denote growing redshifts of 0, 2, 5, 10, 20, and 50,
respectively. Solid lines mark the regime of validity of linear
perturbation theory. Our results do not strictly apply in the
nonlinear regime (dotted lines).
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cosmology: shear, intrinsic curvature and perturbations in
the expansion rate. In particular, we have introduced the
local modification of the expansion rate, �H, and compared
it to second-order terms in Newtonian theory in order to
evaluate at which scales Newtonian theory represents a
good approximation.

Clearly, Newtonian theory is a good approximation
when the scale goes nonlinear before relativistic modifica-
tions can become more important than second-order
Newtonian corrections, i.e., for zNL > zNN. This is true
for k * 0:6 Mpc�1 (see Table II). For zNL < zNN, relativ-
istic modifications become more important than second-
order Newtonian corrections before the corresponding
scale goes nonlinear. This is the case for k & 0:6 Mpc�1.

Here, we only focussed on one relativistic effect: the
local variation of the Hubble parameter. There are however
other relativistic quantities that Newtonian simulations do
not ‘‘see’’, namely intrinsic curvature and shear. When the
fluctuations in the Hubble expansion rate become relevant,
the tracing of light rays through a Newtonian simulation
also must start to deviate from what the full theory would
predict. This has to be kept inmindwhen using hugevolume
simulations in quantitative comparison with real data.

We stress that our results do not contradict the claims
about the exact Newtonian-relativistic correspondence of
equations of motions written in terms of Bardeen variables
in different foliations found in the literature, e.g., by
Hwang and Noh [11,12]. We have calculated the relativis-
tic corrections as they appear in one specific and fixed
foliation of space-time, i.e., as measured by one specific
hypothetical observer in the linearly perturbed world,
while the work by Hwang and Noh is based on the combi-
nation of gauge-invariant variables that can be interpreted
on different hypersurfaces.

We are now in a position to be able to quantify the
reliability of Newtonian simulations at large scales. We
can interpret existing Newtonian simulations (i.e., simula-
tions that have not been corrected or modified along the
lines proposed in Refs. [15,16]) to correspond to simula-
tions in the Newtonian matter gauge. Then the simulated
density contrast and peculiar velocities are correct
(by definition) and other observables like the Hubble

expansion rate are modeled very well on scales below
10 Mpc. However, on larger scales relativistic corrections
are more important than Newtonian nonlinear effects.
Thus we conclude that reliable predictions on superclus-

ter scales, void scales and the baryon acoustic oscillation
scale and beyond can only be based on general relativistic
equations. Newtonian simulations are good at providing us
with a qualitative picture at scales above 10 Mpc, but a
measurement of cosmological parameters at better than the
10 percent level cannot rely on them. Our findings do not
question that Newtonian simulations remain important and
extremely valuable at the cluster scale and below, i.e., in
the deeply nonlinear regime.
In Newtonian cosmology, the so-called redshift space

distortions [25] are due to the peculiar motion of galaxies,
whereas in the relativistic formulation in Newtonian matter
gauge, they would receive contributions from the peculiar
motion and from space-time metric perturbations, most
importantly the local variation of the cosmic expansion
rate �H. This clearly demonstrates that the differences
between Newtonian and relativistic dust cosmologies
should be observable in high-fidelity galaxy redshift sur-
veys. A quantitative analysis of these differences requires
further investigations.
Let us finally remark that exact theorems also support

our point of view that general relativistic and Newtonian
dust cosmology are inequivalent. It has been shown by
Ellis that there are no shear-free dust solutions of the
Einstein field equations that both expand and rotate
(‘‘Dust Shear-Free Theorem’’, see Ref. [26]). However,
solutions of this kind do exist in Newtonian cosmology,
as was shown by Narlikar [27]. This alone demonstrates
that the two theories are inequivalent.
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