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We study the impact of primordial non-Gaussianity generated during inflation on the bias of halos using

excursion set theory. We recapture the familiar result that the bias scales as k�2 on large scales for local

type non-Gaussianity but explicitly identify the approximations that go into this conclusion and the

corrections to it. We solve the more complicated problem of nonspherical halos, for which the collapse

threshold is scale-dependent.
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I. INTRODUCTION

The standard cosmological model that fits a wide variety
of observations is based on inflation, in particular on the
production of a nearly scale-invariant spectrum of adiabatic
perturbations at very early times. Inflation also predicts, and
this too is verified by the data, that the perturbations should
be nearly Gaussian.While inflation is successful in explain-
ing the current suite of observations, it has not been success-
fully connected to the rest of physics. Equivalently, the
mechanism that drove inflation has not been identified.
For these purposes, the small deviations from scale invari-
ance or Gaussianity may prove crucial [1]. The simplest
single-field slow-roll models of inflation predict negligible
non-Gaussianity, so a detection has the potential to rule out
a large class of models. Multiple-field models, on the other
hand, often predict levels of non-Gaussianity within the
range of upcoming surveys.

The cosmic microwave background is the most obvious
place to search for non-Gaussianity, as the perturbations
are observed when they are still small, and therefore rela-
tively unprocessed. Large-scale structure, on the other
hand, is comprised of highly evolved perturbations that
are nonlinear and hence different Fourier modes have
mixed with one another. Even if the primordial perturba-
tions were perfectly Gaussian, the observed large-scale
structure would be highly non-Gaussian. The trick to using
large-scale structure is to identify a feature in the spectrum
that can be caused by primordial non-Gaussianity but not
by standard gravitational instability. Recently, such a fea-
ture has been identified [2] in the form of scale-dependent
bias.1 While it has been known for some time that primor-
dial non-Gaussianity affects the abundances of rare objects

[7–9], the signal is expected to be diminished due to the
gravitational evolution generically evolving the distribu-
tion away from Gaussian.
The initial argument for scale-dependent bias was based

on both simulations and the statistics of high peak regions
[2,10–16]. Subsequently, several groups [17–19] have ap-
plied the peak-background split in the context of excursion
set theory [20]. Here we apply a recent generalization of
the excursion set approach [21,22] to the problem of the
clustering of halos in order to extract the scale-dependent
bias term and to understand under what conditions it holds.
We extract the large-scale k�2 behavior of the bias for the
case of spherical collapse and also generalize to ellipsoidal
collapse. Here too the bias contains a scale-dependent k�2

piece, but the coefficient differs from that obtained assum-
ing spherical collapse.
This paper is organized as follows. In Sec. II, we briefly

review the path integral approach to the excursion set
before we derive the conditional and unconditional cross-
ing rates in Sec. III and IV respectively, and finally, the
halo bias in Sec. V. In Sec. VI we extract the bias parame-
ters. We conclude in Sec. VII. In the Appendix, we com-
pare our results to a case where the probability density
can be evaluated exactly—where the barrier depends only
linearly on time.

II. PATH INTEGRAL APPROACH TO THE
EXCURSION SET

In this section we briefly describe the path integral
approach to the excursion set and establish our conven-
tions. The excursion set theory was developed in a seminal
paper by Bond, Cole, Efstathiou and Kaiser [20]. For a
nice, accessible review, see Zentner [23]. The path integral
approach to the excursion set was developed in a series of
papers by Maggiore and Riotto [21,22,24] and extended by
De Simone, Maggiore and Riotto to include moving bar-
riers and conditional probabilities [25,26].
As is usual in excursion set theory, we consider the

density fluctuation with respect to the average density ��,

1Generically effects that scale as k�2, mimicking the scale-
dependent bias on large scales resulting from primordial non-
Gaussianity, can arise from relativistic effects in general relativity
with Gaussian density fluctuations. However, the effects due to
primordial non-Gaussianity are much stronger than those arising
dynamically from relativistic effects (see e.g., Ref. [3–6]).
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�ðxÞ ¼ �ðxÞ � ��

��
; (1)

smoothed over a region of radius R

�RðxÞ ¼
Z

d3x0WRðx� x0Þ�ðx0Þ

¼
Z d3k

ð2�Þ3
~WRðkÞ�ke

ik�x: (2)

In this expression, WRðx� x0Þ is a window function with
characteristic radius R, and ~WRðkÞ is its Fourier transform.
Translation invariance implies we can choose x, and
thus for convenience we take x ¼ 0, and suppress the
argument on the smoothed density field from now on,
�R � �Rðx ¼ 0Þ. Following the notation of Ref. [21], we
denote by SR ¼ �2ðRÞ the variance of the smoothedfield�R,

SR ¼
Z 1

0
d lnk

k3

2�2
j ~WRðkÞj2PðkÞ; (3)

wherePðkÞ is the matter power spectrum. As shown by Bond
et al. [20], if the density fluctuations,�R, are purelyGaussian,
and the window function is a top hat in momentum space,
~WRðkÞ ¼ �ðkR � kÞwhere kR ¼ 1=R, then the evolution of
�R when considered a function of ‘‘pseudotime’’, SR, is
Markovian. That is, each time step is uncorrelated with the
previous one, and the future evolution of�R is independent of
its history. In this case one can show that the probability
density that the field�R takes avalue�R0 when smoothed on a
scale R0 satisfies the Fokker-Planck equation, with the vari-
ance, SR, playing the role of pseudotime (see Ref. [23] for a
review). In order that one does not suffer from the so-called
‘‘cloud-in-cloud’’ problem, an absorbing barrier condition is
imposed as a boundary condition on the probability density at
the critical threshold for collapse. This means that the proba-
bility distribution at time SR includes only trajectories that
never crossed the critical threshold at earlier2 timesSR0 < SR.

Obtaining the probability distribution in the Gaussian-
Markovian limit simply amounts to solving the Fokker-
Planck equation with various boundary conditions.
However, in the general non-Markovian limit one must
solve a complicated integro-differential equation for the
probability density [21]. Moreover, even in the Gaussian-
Markovian limit, it is difficult to obtain solutions for the
probability distribution in the case where the absorbing
barrier conditions are more complicated than linear in the
pseudo-time variable.

Until recently it was analytically intractable to move far
beyond the constant collapse threshold and sharp k-space
filtering assumptions of the original formulation of the
excursion set [20]. Using the original techniques, more
complicated collapse thresholds have been considered in
order to describe collapse scenarios beyond spherical, and

the formation of ionized regions during reionization
[27,28]. However, in order to capture the effects of non-
Gaussian fluctuations and more physically realistic filter
functions, new techniques for solving for the probability
distribution when the variable �R does not evolve in a
Markovian fashion with SR were needed. In recent years
there have been several breakthroughs along this avenue
[21,22,24–26,29–31].
In this work we will follow the path integral approach of

Maggiore and Riotto [21,24]. Their formalism is general
enough to account for non-Gaussian correlations between
the fluctuations [22], for critical thresholds that evolve with
the smoothing scale and for window functions ~WRðkÞ other
than k-space top hats. Rather than attempting to solve a
differential equation for the probability distribution, in the
approach of Maggiore and Riotto one directly constructs
this quantity by summing over paths that never exceeded
the threshold, that is, by performing a path integral.
Following Maggiore and Riotto, we consider the

smoothed density field, �ðSÞð� �SRÞ, as a stochastic vari-

able with zero mean h�ðSÞi ¼ 0. This variable evolves
stochastically with time S, and we refer to single realiza-
tion of a �ðSÞ as a trajectory. We then consider an ensemble
of trajectories of this stochastic variable all starting from
the same initial point �ðS0 ¼ 0Þ ¼ 0, and we follow them
for some time S. We discretize the time interval ½0; S� into
steps, �S ¼ �, so that Sk ¼ k�, where k 2 f0; 1; . . . ; ng,
and Sn ¼ S. A discretized trajectory then, is defined as a
set of values f�1; �2; . . . ; �ng so that �ðSiÞ ¼ �i.
In this path integral approach, the fundamental object is

the probability density in this space of trajectories, which is
given by

Wð�0;�1; . . . ;�n;SnÞ� h�Dð�ðS1Þ��1Þ . . .�Dð�ðSnÞ��nÞi;
(4)

where �D is the Dirac delta, which we explicitly denote to
avoid confusion with the density perturbation. Note thatW
is defined for all possible values of � including those
above the threshold. The below-threshold requirement is
enforced at the next stage when computing �ð�n; SnÞ, the
probability of arriving at point �n at time Sn through
trajectories that have never exceeded some threshold,
BðSiÞ � Bi

�ð�n;SnÞ�
Z B1

�1
d�1 .. .

Z Bn�1

�1
d�n�1Wð�0;�1; . . . ;�n;SnÞ:

(5)

The upper limits on each � integral allow for the possibility
of scale-dependent barriers. Although the threshold value
of � is constant for spherical collapse (equal to 1.686
today), in nonspherical collapse and other applications,
the barrier is generally scale-dependent.
The fundamental quantities, W and �, are the ingre-

dients needed to connect to observations. The fraction of
the universe contained in collapsed objects on scales larger

2Recall that the variance monotonically increases with de-
creasing R, so ‘‘early’’ times correspond to large scales.
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than Sn is found from Eq. (5) by integrating over all below-
threshold values of �n and taking the complement

fcollðSnÞ ¼ 1�
Z Bn

�1
d�n�ð�0;�n; SnÞ: (6)

Differentiating this gives the formation rate of objects
collapsing on the scale Sn

F ðSnÞ � @fcollðSnÞ
@Sn

: (7)

This crossing rate is the unconditional rate that allows for
trajectories passing through any intermediate values of �.
It is also useful to compute a conditional rate that fixes one
of the intermediate values, as F ðSnj�m; SmÞ, where the
second arguments dictate the time and value of the inter-
mediate fixed point. The conditional crossing rate is found
from the analogous equation to Eq. (6), where the uncondi-
tional probability that a trajectory reaches a point �n is
replaced by the corresponding conditional probability that
a trajectory reached a point �n at time Sn having had a
value �m at intermediate time Sm [26,32],

�ð�n;Snj�m;SmÞ

�
RB1�1d�1 . . .cd�m . . .

RBn�1�1 d�n�1Wð�0;�1; . . . ;�n;SnÞRB1�1d�1 . . .
RBm�1�1 d�m�1Wð�0;�1; . . . ;�m;SmÞ

:

(8)

The cd�m in this expression indicates that we do not inte-
grate over the variable �m.

The ratio of the conditional and unconditional rates
quantifies the fact that halos (on scale Sn) are more likely
to form in overdense regions (on scale Sm < Sn) than in an
average place in the universe. The halo overdensity on
large scales Sm in initial Lagrangian space is [33]

1þ �halo
m ¼ F ðSnj�m; SmÞ

F ðSnÞ : (9)

In thiswork, we are interested in the halo biasbðkÞ, which
relates the halo overdensity to the matter overdensity,

�haloðkÞ ¼ bðkÞ�ðkÞ: (10)

Extracting bðkÞ from the smoothed quantities used in the
excursion set formalism will require a little work, but the
basic idea is that quantities smoothed on scales R carry
information about wavenumbers k of order R�1. So wewill
expand the right-hand side of Eq. (9) in �m and identify the
coefficient of the first-order term. The halos are collapsed
on scales Sn, but we are interested in their clustering on the
much larger scales associated with Sm. This coefficient can
then be massaged to extract bðkÞ.

As is, the expression for the probability density, Eq. (4),
is not very useful. One of the insights of Maggiore and
Riotto was to manipulate the terms so that the right side of
that equation contains sums of p-point functions. The trick

is to use the integral representation of the Dirac delta
function,

�DðxÞ ¼
Z 1

�1
d�

ð2�Þ e
�i�x; (11)

so that

Wð�0;�1; . . . ;�n;SnÞ¼
Z 1

�1
D�ei

P
n
i¼1

�i�ihe�i
P

n
i¼1

�i�ðSiÞi;
(12)

where we have definedZ 1

�1
D� �

Z 1

�1
d�1

ð2�Þ . . .
d�n

ð2�Þ : (13)

The expectation value, he�i
P

n
i¼1

�i�ðSiÞi can be rewritten as

he�i
P

n

i¼1
�i�ðSiÞi

¼ exp

�X1
p¼2

ð�iÞp
p!

Xn
j1;...;jp¼1

�j1 . . .�jph�ðSj1Þ . . .�ðSjpÞic
�
;

(14)

where h�ðSj1Þ . . .�ðSjpÞic is the connected p-point func-

tion. In the Gaussian case, the p-point functions with p > 2
vanish, and the probability density reduces to the limit

W
g
0n ¼

Z 1

�1
D�e

i
P

n
i¼1

�i�i�1
2

P
n
i;j¼1

�i�jh�i�ji; (15)

where the subscript denotes the initial and final times of the
trajectories; the superscript identifies this as the Gaussian
limit; and we suppress the dependence on the �1; . . . ; �n�1.
Wewill also haveoccasion to invoke trajectorieswith starting
time Sm instead of S0; these will be drawn from the distribu-
tionWg

mn and will be integrated to obtain the probability

�g
mn � �gð�m; Sm;�n; SnÞ: (16)

Note that the Gaussian expression in Eq. (15) satisfies
the identity

@k1@k2 . . .@knW
g
0n

¼ ðiÞn
Z 1

�1
D��k1 . . .�kne

i
P

n
i¼1

�i�ie
�1

2

P
n

i;j¼1
h�i�ji�i�j ;

(17)

where @i � @=@�i. Using this identity in Eqs. (12) and (14)
leads to a general expression for the probability density in
termsof thep-point functions andderivatives of theGaussian
density.

W0n�Wð�0;�1; . .. ;�n;SnÞ

¼ exp

�X1
p¼3

ð�1Þp
p!

Xn
j1;...;jp¼1

h�j1 . . .�jpic@j1 . ..@jp
�
Wg

0n:

(18)
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The effects of non-Gaussianity primarily arise from the
nonzero three-point function, so we will drop all higher-
order p-point functions (and all terms quadratic and higher
in the three-point function). In this case, the probability
density reduces to

W0n �
�
1� 1

6

Xn
i;j;k¼1

h�i�j�kic@i@j@k
�
Wg

0n: (19)

We are never interested in the raw probability density
described by Eq. (19). Rather, we are interested in the
probability of arriving at a point �n at time Sn or in the
collapse fraction. Thus, rather than evaluate Eq. (19) di-
rectly, we will integrate over intermediary values of �i to
form � and the (observable) functions that can be con-
structed from it.

One well-known limit is the case when the barrier is
constant (all B’s in Eq. (5) are the same) and the window
function in Eq. (2) is a top hat in k-space. The top hat filter
in k-space means that moving to larger S corresponds to
adding more Fourier modes, and since each Fourier mode
is independent, this filter leads to a Markovian trajectory.
Throughout we stick to the top hat in k-space filter. In this
limit of Gaussian perturbations (g) and constant barrier
(cb), the probability of reaching �n at Sn starting from
� ¼ 0 at S ¼ 0 is

�g;cbð�n;SnÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sn

p ðe��2
n=2Sn �e�ð2B��nÞ2=2SnÞ: (20)

The observables then are easily computed: the collapse
fraction via Eq. (6),

f
g;cb
coll ðSnÞ ¼ erfc

�
Bffiffiffiffiffiffiffiffi
2Sn

p
�
; (21)

and then the formation rate from Eq. (7),

F g;cbðSnÞ ¼ Bffiffiffiffiffiffiffiffiffiffiffiffi
2�S3n

p e�B=
ffiffiffiffiffiffi
2Sn

p
: (22)

For the remainder of this work, we will stick with the top
hat in k-space filter, but will work to extend the collapse
fraction and formation rate to allow for a moving barrier
and a nonzero three-point function. In our notation, this
means we will work to generalize and drop the g and cb

superscripts.3

III. UNCONDITIONAL CROSSING RATE

Starting from Eq. (19), we compute the probability of
reaching �n at time Sn allowing for any possible set of

intermediate �’s. To carry out the calculation beyond the
Gaussian, constant-barrier limit of Eq. (20), we first need to
specify how the barrier depends on scale. Following
Ref. [26], we can specify any barrier by its Taylor expan-
sion about the endpoint

Bi ¼ Bn þ
X1
p¼1

BðpÞ
n

p!
ðSi � SnÞp: (23)

A simple way to account for the moving barrier when
computing � in Eq. (5) is to shift integration variables

�i ! �0 � �i �
X1
p¼1

BðpÞ
n

p!
ðSi � SnÞp: (24)

Then all the upper limits in the integrals leading to �
become identical, equal to Bn. The integrand [Eq. (19)]
is an operator acting on Wg

0n, which now becomes

Wg
0n ¼

Z 1

�1
D� exp

�
i
Xn
i¼1

�i

�
�i þ

X1
p¼1

BðpÞ
n

p!
ðSi � SnÞp

�

� 1

2

Xn
i;j¼1

�i�jh�i�ji
�
: (25)

Integrating to form � leads to a Gaussian and non-
Gaussian term:

�gð�n; SnÞ ¼ �gð�n; SnÞ � 1

6

Xn
i;j;k¼1

h�i�j�kic

�
�Yn�1

l¼1

Z Bn

�1
d�l

�
@i@j@kW

g
0n: (26)

A. Gaussian limit

Consider the Gaussian part of this, the first term on the
right in Eq. (26). In the limit of a constant barrier, this is
straightforward to obtain and one finds the result Eq. (20).
However, for a moving barrier, things are complicated by
the presence of the additional factor in the exponent. To
evaluate the probability distribution in this case, we expand
the exponential

exp

�
i
Xn
i¼1

�i

X1
p¼1

BðpÞ
n

p!
ðSi�SnÞp

�

¼1þXn
i¼1

X1
p¼1

BðpÞ
n

p!
ðSi�SnÞp@i

þ1

2

Xn
i;j¼1

X1
p;q¼1

BðpÞ
n BðqÞ

n

p!q!
ðSi�SnÞpðSj�SnÞq@i@jþ��� ;

(27)

where the derivatives are understood to be acting on
the constant barrier limit of W. In the Sheth-Tormen

3Note that the use of a top hat filter in k-space means that in
the Gaussian limit the trajectories become Markovian, and thus
the limit we refer to as the Gaussian limit is technically the
Gaussian-Markovian limit. The effects of smoothing with a more
realistic filter are relatively straightforward to include [21,29],
see Refs. [29,31,32] for a study of their effects on the halo bias.
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approximation [27,34], one approximates ðSn � SiÞp�1 ’
Sp�1
n while simultaneously truncating the sum at p ¼ 5

terms, as discussed in Ref. [26]. One can then evaluate the
unconditional probability in the presence of a moving
barrier in the Gaussian limit. This is given by [25,26]

�gð�n; SnÞ ’ �g;cbð�n; SnÞ þ 2
Bn � �nffiffiffiffiffiffiffiffiffiffiffiffi
2�S3n

p e�
ð2Bn��nÞ2

2Sn P 0n

� 2
ðBn � �nÞ2ffiffiffiffiffiffiffiffiffiffiffiffi

2�S5n
p e�

ð2Bn��nÞ2
2Sn P 2

0n þ � � � ; (28)

where

P mn � X5
p¼1

ðSm � SnÞp
p!

BðpÞ
n ; (29)

and the . . . refer to terms higher order in an expansion in
P 0n, and we are assuming that the barrier is varying only
slowly in time, Sn. It is straightforward to integrate this
over �n to obtain the collapse fraction,

f
g
collðSnÞ ¼ erfc

�
Bn � �mffiffiffiffiffiffiffiffi

2Sn
p

�
�

ffiffiffiffiffiffiffiffi
2Sn
�

s
P 0n

24e�B2
n=2Sn �

ffiffiffiffiffiffiffiffiffiffi
�B2

n

2Sn

s
erfc

�
Bnffiffiffiffiffiffiffiffi
2Sn

p
�35þ P 2

0n

S2n
ðB2

n þ SnÞ
�
erfc

�
� Bnffiffiffi

2
p ffiffiffiffiffi

Sn
p

�
� 2

�

þ P 2
0n

S2n

ffiffiffiffi
2

�

s ffiffiffiffiffi
Sn

p
Bne

� B2n
2Sn � � � (30)

To obtain the formation rate, or the mass function, there are
two ways of proceeding. One could directly differentiate
the expression in Eq. (30) with respect to Sn to obtain
the formation rate. Alternatively, since the Gaussian-
Markovian probability distribution satisfies the Fokker-
Planck equation, the formation rate can be found directly
by differentiating the probability distribution,

F gðSnÞ ¼ � 1

2

@�

@�

���������¼Bn

: (31)

Of course, these two prescriptions should lead to the same
result. However, due to the rather crude approximation that
leads to Eq. (28), this expression no longer satisfies the
Fokker-Planck equation. This is an obvious drawback of
the crude approximation we used in order to evaluate the
probability distribution. In the Appendix, we demonstrate
that enforcing the Fokker-Planck equation when calculat-
ing the formation rates [i.e., using Eq. (31)], rather than
directly differentiating the collapse fraction, leads to re-
sults that are consistent with those obtained by an exact
treatment of the probability distribution in the case of a
linear barrier where no such approximation needs to be
made. Thus, for the rest of this work, where possible we
apply the Fokker-Planck equation.

Using Eq. (31) and (28) we obtain the unconditional
formation rate for a general barrier

F gðSnÞ ¼ Bn þ P 0nffiffiffiffiffiffiffiffiffiffiffiffi
2�S3n

p e�
B2n
2Sn : (32)

Eq. (32) is a compact expression that agrees with that
obtained in previous work, but as described above, it hides
a subtlety in the Sheth-Tormen approximation. Had we
simply differentiated Eq. (30), we would have arrived at
a considerably more complicated looking result, however,
numerically the difference is small.

B. Non-Gaussian contribution

To compute the non-Gaussian piece in Eq. (26), we need
to carry out the sums (integrals in the limit that � ! 0).
Maggiore and Riotto showed that the simple approxima-
tion of evaluating the three-point function at the endpoint
i ¼ j ¼ k ¼ n leads to the first term in an expansion in the
parameter Sn=B

2
n. A useful way of evaluating the remain-

ing integrals is to use the identity [22,25]

@3

@B3
n

fgcollðSnÞ¼� Xn
j1;j2;j3¼1

Z Bn

�1
d�1 . . .

Z Bn

�1
d�n

Y3
i¼1

@jiW
g
0n:

(33)

This is almost identical to the sum and integrals in the last
term in Eq. (26), with the exception that the right-hand side
in Eq. (33) also includes an integral over �n. To use the
identity then, we can integrate Eq. (26) over �n (which we
need to do anyway in order to compute the collapse frac-
tion). This leaves

fNGcoll ¼
1

6
h�3

ni @3

@B3
n

fgcollðSnÞ: (34)

To obtain the crossing rate, we differentiate this with
respect to Sn. The derivative acting on the three-point
function is straightforward. To evaluate the derivative act-
ing on f

g
coll, we pull the derivative all the way through:R

d�@�ð�; SnÞ=@Sn; use the Fokker-Planck equation and
then integrate by parts so that the non-Gaussian part of the
collapse fraction is

F NGðSnÞ ¼ � 1

2

�
1� 1

6
S2nS3

@3

@B3
n

�
@�g

@�

���������¼Bn

� 1

6
ð2SnS3 þ S2nS0

3Þ
@3

@B3
n

f
g
collðSnÞ: (35)
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We have defined

S 3 � h�3
ni

S2n
(36)

and denoted derivatives with respect to Sn by primes, 0.
Using Eq. (30) and (28) we find that the full unconditional
crossing rate to leading order in the three-point function is
given by

F ðSnÞ ¼ Bn þ P 0nffiffiffiffiffiffiffiffiffiffiffiffi
2�S3n

p e�
B2n
2Sn þ S3e

� B2n
2Sn

6
ffiffiffiffiffiffiffiffiffiffiffiffi
2�S5n

p ½P 0nBnðB2
n þ SnÞ

� 10B2
nSn þ B4

n � 8P 2
0nSn þ 7S2n�

þ S2nS0
3e

� B2n
2Sn

3
ffiffiffiffiffiffiffiffiffiffiffiffi
2�S5n

p ½B2
n � BnP 0n � Sn þ 2P 2

0n�: (37)

IV. CONDITIONAL CROSSING RATE

In order to evaluate the halo overdensity, Eq. (9), we also
need the conditional crossing rate. The major difference
between evaluating the probability distribution in this case
[Eq. (8)] and the previous case [Eq. (5)] is that the inter-
mediate point on the trajectory denoted by �m is not
integrated over. Using the relation between W and Wg in
Eq. (19), the starting point for the conditional crossing rate
calculation is then

�ð�n;Snj�m;SmÞ’
�Z B1

�1
d�1 ...cd�m ...

Z Bn�1

�1
d�n�1

�
�
1�1

6

Xn
i;j;k¼1

h�i�j�kic@i@j@k
�
Wg

0n

�

�
�Z B1

�1
d�1 ...

Z Bm�1

�1
d�m�1

�
�
1�1

6

Xm
i;j;k¼1

h�i�j�kic@i@j@k
�
W

g
0m

��1
:

(38)

A. Gaussian contribution

We first consider the Gaussian piece of Eq. (38) by
dropping all terms with three-point functions in them. In
this limit, there is a simplification due to the Markovian
nature of the trajectories. Namely, the probabilities do not
depend on the paths chosen but simply on the endpoints. So
Wg

0n in the numerator can be replaced withWg
0mW

g
mn. Then

all the integrals over �1; �2; . . . ; �m�1 are identical in the
numerator and denominator, leading to

�gð�n; Snj�m; SmÞ ¼
Z Bmþ1

�1
d�mþ1 . . .

Z Bn�1

�1
d�n�1W

g
mn:

(39)

As depicted in Fig. 1, this expression is identical to the
unconditional Gaussian-Markovian probability [which we
evaluated in Eq. (28)] as long as we make the substitutions

�n ! �n � �m Bn ! Bn � �m Sn ! Sn � Sm:

(40)

For example, the first term in Eq. (28)—the constant
barrier piece—becomes

�g;cbð�n; Snj�m; SmÞ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�½Sn � Sm�
p ðe�½�n��m�2=2½Sn�Sm�

� e�ð2B��n��mÞ2=2½Sn�Sm�Þ: (41)

B. Non-Gaussian contribution

To evaluate the non-Gaussian corrections to the condi-
tional collapse rate, we again rely on the approximation of
considering the three-point functions only at their end-
points. In the case of unconditional collapse, this translated
to setting h�i�j�ki ! h�n�n�ni, thereby simplifying the

sum over i, j, k. Here, too, we set all three-point functions
to their values at the endpoint but when i < m, the endpoint
is time Sm, not Sn. For example,

Xn
i;j¼mþ1

Xm�1

k¼1

h�i�j�kic�h�m�
2
nic

Xn
i;k¼mþ1

Xm�1

k¼1

: (42)

Working to linear order in the long wavelength mode, �m,
we can write (see also Ref. [35])

FIG. 1 (color online). Top panel shows a trajectory from large-
scale Sm to small-scale Sn. In the Gaussian-Markovian limit, the
probability for this trajectory does not depend on prior steps, so
is equivalent to the trajectory depicted in the bottom panel with
the shifts enumerated in Eq. (40).
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Xn
i;j;k¼1

h�i�j�kic@i@j@kWg
0;n

¼ 3h�m�
2
nic

Xm�1

k¼1

Xn
i;j¼mþ1

@kW
g
0;m@i@jW

g
m;n

þ 3h�2
n�mic

Xn
i;j¼mþ1

@mðWg
0;m@i@jW

g
m;nÞ

þ h�3
nicWg

0;m

Xn
i;j;k¼mþ1

@i@j@kW
g
m;n: (43)

Rotating the integrals in the analogous manner as Eqs. (23)
and (24) and making use of identities such as Eq. (33) as
well as

@N

@BN
n

�g
0m ¼ Xm�1

ji;...;jN¼1

Z Bn

�1
d�1 . . .

Z Bn

�1
d�m�1

YN
i¼1

@jiW
g
0;m;

(44)

we find that the non-Gaussian part of the conditional
collapse fraction can be written

fNGcollðSnj�m;SmÞ¼�1

6

��
h�3

nic @3

@B3
n

þ3h�2
n�mic @2

@B2
n

@

@�m

�
þ3h�m�

2
nic

�
@

@Bn

þ @

@�m

�
ln�

g
0;m

@2

@B2
n

�
f
g
collðSnj�m;SmÞ; (45)

where fgcollðSnj�m; SmÞ is the conditional collapse fraction in the Gaussian limit, which follows from the results of
Sec. IVA.

Taking the derivatives and working in the limit Sm ! 0with Bn � �m, we find that the non-Gaussian contribution to the
conditional collapse fraction is

fNGcollðSnj�m;SmÞ¼�1

6

�
2ðh�3

nic�3h�2
n�micÞ e�

ðBn��mÞ2
2ðSn�SmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ðSn�SmÞ3
p �

1�ðBn��mÞ2
ðSn�SmÞ þ

ðBn��mÞ
ðSn�SmÞP nm�2

P 2
nm

ðSn�SmÞ
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þ3h�m�
2
nic�m

Sm

�2exp½�ðBn��mÞ2
2ðSn�SmÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�ðSn�SmÞ3
p ðPmn�ðBn��mÞÞ� 2

ðSn�SmÞ2
erfc

�
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2ðSn�SmÞ
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P 2

mn

��
: (46)

The key result here is the appearance of the combination

h�m�
2
nic

�
@

@Bn

þ @

@�m

�
ln�

g
0;m � h�m�

2
nic �m

Sm
; (47)

which multiplies the last line in Eq. (46). The appearance
of the terms proportional to h�m�

2
nic in Eq. (46) encode the

fact that the conditional probability of collapse now de-
pends on the details of the correlation between long and
short wavelength fluctuations. We will see that these cor-
relations give rise to a scale-dependent bias. In order to
extract the bias we will eventually correlate the expression
in Eq. (46) (to linear order in �m) with the underlying

density fluctuations smoothed on the scale Rm, before
taking the limit that Sm ! 0. While the quantity in
Eq. (47) remains finite after this procedure, the terms in
the first line of Eq. (46) proportional to h�m�

2
nic vanish, and

we thus drop them in what follows.
We can then evaluate the conditional crossing rate,

which is the conditional rate at which objects form at
time Sn, given that they had an overdensity �m at time
Sm. As we have stressed above, we do not proceed by
simply differentiating Eq. (46) with respect to Sn. Rather,
we write the non-Gaussian contribution to the conditional
crossing rate as

Fmb;NGðSnj�m;SmÞ¼@fNGcollðSnj�m;SmÞ
@Sn

¼1

6
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0
3Þ

@3

@B3
n

þ3
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ln�
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�
f
g
collðSnj�m;SmÞ; (48)

where we have made use of the Fokker-Planck equation in the second line and primes denote derivatives with respect to Sn.
We have dropped the terms which vanish in the Sm ! 0 limit as described above and defined

S n2m ¼ h�2
n�mic

Sn
ffiffiffiffiffiffi
Sm

p : (49)

We then evaluate to find the conditional crossing rate
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p �35: (50)

V. HALO BIAS

We now have all the ingredients with which to extract the halo bias. Taking the ratio of Eqs. (50) and (37), and expanding
to linear order in �m, we find that the relationship between the halo overdensity and the matter overdensity is

�halo
m ¼

�
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6
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p
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: (51)

We can immediately read off from the first line here the
well-known [27] Gaussian bias in initial Lagrangian space

bg ¼ Bn

Sn
� 1

Bn þ P 0n

: (52)

The coefficients of �m in the second and third lines do not
depend on the large scale m and so represent the scale-
independent contribution to the bias due to non-Gaussian
correlations between the initial fluctuations. The result
presented here is slightly different from that reported by
Ref. [26] who do not employ the Fokker-Planck equation.
The last two lines contain terms wherein the coefficients of
�m depend on the scalem, so the bias from these terms will
be scale-dependent. Note that they are proportional to the
three-point function so vanish in the Gaussian limit. Also,
notice that the effects of the moving barrier are encoded in
the P 0n’s here. These terms then give the full contribution
to the scale-dependent bias from non-Gaussianity account-
ing for ellipsoidal collapse. Care is required to extract the
exact form of the scale-dependent bias, because the bias is
typically defined in Fourier space, while we have worked
with real space fluctuations smoothed over various scales.

VI. THE SCALE-DEPENDENT BIAS FROM
EXCURSION SETS

We can now extract the scale-dependent bias from
our excursion set result. For simplicity, we begin with the
case of spherical collapse where the barrier is constant,
BðSnÞ ¼ �c. Focusing on the scale-dependent parts of
Eq. (51), and assuming a spherical barrier so that
P 0n ¼ 0, we have

�halo
m ¼ ffiffiffiffiffiffi

Sm
p

SnS0
n2m

�m

Sm
þ

ffiffiffiffiffiffi
Sm

p
Sn2m

2

�
�2
c

Sn
� 1

�
�m

Sm
: (53)

The problem is to transform this relation, between the real
space halo overdensity smoothed on a large scale Sm with
the real space matter overdensity smoothed on the same
scale, into a Fourier space relationship

�haloð ~kÞ ¼ bðkÞ�ð ~kÞ: (54)

In terms of the Fourier space fields, the relationship
between the halo field and the matter field, as derived in
the excursion set, Eq. (53) becomes
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Z d3k

ð2�Þ3 �ð
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Z d3k0

ð2�Þ3
�ð ~k0ÞWð ~k; RmÞ

Sm
; (55)

where theSD;sph superscript reminds us that we are dealing
with the scale-dependent part of the bias only here and, for
now, focusing on the spherical collapse limit. Now correlate
both sides of Eq. (55) with �m. The left-hand side becomesZ km

0

d3k

ð2�Þ3 P�ðkÞbSD;sphðkÞ ¼
Z km

0
d lnkbSD;sphðkÞ�2

�ðkÞ;
(56)

where�2ðkÞ � k3PðkÞ=2�2, andwe have defined the power
spectrum in the usual way,

h�ð ~kÞ�ð ~k0Þi ¼ P�ðkÞð2�Þ3�3ð ~k� ~k0Þ: (57)

The right-hand side becomes the set of coefficients in paren-
thesis in Eq. (55) multiplying

1

Sm

Z km

0

d3k

ð2�Þ3 P�ðkÞ ¼ 1; (58)

as the k integral here is equal to Sm for our chosen filter. So
the remaining equality isZ km

0
dlnkbSD;sphðkÞ�2

�ðkÞ

¼
� ffiffiffiffiffiffi

Sm
p

Sn2m

2
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�2
c

Sn
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þ ffiffiffiffiffiffi

Sm
p

SnS0
n2m

�
: (59)

To proceed we need information about the shape of the
three-point function that enters into Eq. (59). The primor-
dial three-point functions are most easily written in terms
of the gravitational potential, so first recall that

�ðk; zÞ ¼ Mðk; zÞ�ðkÞ; (60)

where

M ðk; zÞ ¼ 2

3

k2TðkÞgðzÞ
�mH

2
0ð1þ zÞ (61)

and here TðkÞ is the matter transfer function normalized at
unity as k ! 0, gðzÞ is the linear growth of the gravitational
potential during the matter-dominated epoch, and �ðkÞ
denotes the primordial value of the gravitational potential
(hence no z dependence). A generic three-point function of
� is characterized by the bispectrum

h�ðk1Þ�ðk2Þ�ðk3Þi ¼ B�ðk1; k2; k3Þð2�Þ3
� �3ðk1 þ k2 þ k3Þ: (62)

We can then evaluate the three-point function of density
fluctuations,

h�m�
2
ni ¼

Z km

0

dk1
k1

Z kn

0

dk2
k2

Z 1

�1
d cos�

k31
2�2

k32
4�2

�Mðk1ÞMðk2ÞMðk3ÞB�ðk1; k2; k3Þ; (63)

where � is the angle between ~k1 and ~k2 and we have

assumed that j ~k3j ¼ j ~k1 þ ~k2j � kn. Following the nota-
tion of Ref. [12,18], we introduce the function (not to be
confused with the crossing rate!)

F 3
nðkÞ ¼ 1

Sn�
2
�ðkÞ

Z kn k22dk2
2�2

Mðk2ÞMð ~k2 � ~kjÞ

� B�ðk1; k2; j ~k2 � ~kjÞ; (64)

where ~k ¼ kẑ, and ẑ is an arbitrary unit vector. In the limit
km 	 kn, Eq. (59) then reduces toZ km

0
d lnk�2

�ðkÞbSD;sphðkÞ

¼
Z km

d lnk
�2

�ðkÞ
MðkÞ

�
1

2

�
�2
c

Sn
� 1

�
F 3

nðkÞ þ dF 3
nðkÞ

d lnSn

�
:

(65)

At this stage, we have an equality between two sums of
things. To see that we can equate each term in the sum,
imagine that we measure these sums for two slightly differ-
ent scales, km and km þ �k, then we can extract information
about the contribution to the sum from scale km by differ-
encing these quantities. This then implies, as well as being
an equality between sums, equality between each term in
the sum. Then the scale-dependent bias can be read off

bSD;sphðkÞ¼M�1ðkÞ
�
1

2

�
�2
c

Sn
�1

�
F 3

nðkÞþdF 3
nðkÞ

dlnSn

�
; (66)

which agrees with the result derived by Ref. [18]. Note that
we naturally obtain the important second term,which can be
thought of arising due to the fact that a scale-dependent
rescaling of the variance also changes the significance
interval that corresponds to a fixed mass. As we will see,
this extra term vanishes for the local ansatz, but is nonzero
and generally important for other bispectrum shapes [18,36]
and in particular largely ameliorates the discrepancies noted
by Ref. [37].
For the local ansatz,

B�ðk1; k2; k3Þ ¼ 2fNLðPðk1ÞPðk2Þ þ perm:Þ; (67)

so that

F 3
n � 4fNL; (68)

which is a constant. Therefore only the first term in
Eq. (66) contributes leaving

bSD;sph;localðkÞ ¼ 2fNL
MðkÞ

�
�2
c

Sn
� 1

�
; (69)
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for the scale-dependent bias in the spherical collapse case,
which agrees exactly with the result of Ref. [2].

Using the same techniques, we can extract the scale-
dependent bias from Eq. (51) for the full ellipsoidal col-
lapse problem. It too has pieces proportional to both F 3

n

and dF 3
n=dSn. We separate these out as

bSDðkÞ ¼ F 3
nðkÞ

2MðkÞ cn þ
1

MðkÞ
dF 3

nðkÞ
d lnSn

dn; (70)

where the coefficients are

cn � Bnb
g � 3P 0n

Bn þ P 0n

þ 2

ffiffiffiffiffiffiffi
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s
P 2

0n

ðBn þ P 0nÞ e
B2n
2Snerfc

�
Bnffiffiffiffiffiffiffiffi
2Sn

p
�
; (71)

and

dn � 1� 2P 0n

ðBn þ P 0nÞ

þ
ffiffiffiffiffiffiffi
2�

Sn

s
P 2

0n

ðBn þ P 0nÞ e
B2n
2Snerfc

�
Bnffiffiffiffiffiffiffiffi
2Sn

p
�
: (72)

These equations are the main results of the paper.
Ignoring the terms proportional to @F 3

nðkÞ=@Sn in
Eq. (70) (which vanishes for the local ansatz) we see
that the coefficient of the k�2 term, cn, has a piece equal
to the barrier times the Gaussian bias (Bnb

g). This is the
standard coefficient. However, the full treatment here has
uncovered other terms, the remaining ones on the right in
Eq. (71). In Fig. 2 we plot cn for the spherical collapse
barrier [i.e., BðSnÞ ¼ �c] and for the ellipsoidal collapse
barrier of [38]

BðSnÞ ¼
ffiffiffi
a

p
�c½1þ �ða	Þ�
�; (73)

where 	 ¼ �2
c=Sn, a � 0:7, 
 � 0:6 and � � 0:4. For the

spherical collapse barrier, cn is given by the well-known
expression cn ¼ �2

c=Sn � 1 [e.g., Eq. (69)]. For the ellip-
soidal collapse model, we must use the more complicated
expression we have derived in Eq. (71).

The naive prediction for cn (which holds in the case
of the spherical collapse barrier) is that it is related to the
scale-independent bias via cn ¼ bgBnðSnÞ. In fact, one
way to try to extract constraints on fNL is to fit the
power spectrum with a bias of the form 1þ bg þ
2fNLb

g�cM�1ðkÞ. We have shown, however, in Eq. (70)
that this simple relation does not appear to be correct when
the barrier evolves with the smoothing scale. In Fig. 3 we
show the ratio of cn to the naive prediction as a function of
Sn for the ellipsoidal collapse barrier given in Eq. (73).
Note that our result depends heavily on the approximation
of evaluating the three-point functions at their endpoint
values, as in for example Eq. (42). This is known to break
down as Sn becomes large, of order B2

n. Therefore, the
upturn in Fig. 3 may be an artifact of our approximation
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1
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1000

c n

Ellipsoidal collapse
Spherical collapse

14.515.015.516.016.517.0

Log
10

(Mass (M ))

FIG. 2 (color online). The coefficient [as defined in Eq. (70)] of
the scale-dependent bias, cn, as a function of the smoothing scale
Sn. Solid (black) curve and dashed (blue) curve show the result
in Eq. (70) for the ellipsoidal collapse model of Ref. [38]
[i.e., Eq. (73)] and the spherical collapse model (i.e., when Bn ¼
�c and P 0n ¼ 0) respectively. The upper x-axis shows the mass
corresponding to a particular Sn assuming a flat,�CDM cosmol-
ogy with �bh

2 ¼ 0:02,�ch
2 ¼ 0:11, h ¼ 0:7 and �8 ¼ 0:87.
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FIG. 3 (color online). The coefficient of the scale-dependent
bias, cn, from Eq. (70) for the ellipsoidal collapse model of
Ref. [38], normalized to the naive prediction cn ¼ bgBn. The
upper x-axis shows the mass corresponding to a particular Sn
assuming the same cosmology as in Fig. 2.
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and almost certainly does not persist as Sn increases.
Techniques that move beyond this approximation [39] are
clearly called for.

VII. CONCLUSIONS

Making use of the path integral approach to excursion
set theory, we have derived the bias of collapsed objects.
We have kept all terms linear in the long-wavelength
density fluctuation and we have allowed for a completely
general moving barrier. The bias contains both the scale-
independent contributions, analogous to those first re-
ported by Ref. [26] for a general barrier, and contributions
that depend on the long-wavelength smoothing scale. We
have demonstrated how this dependence can be inter-
preted as a scale-dependent biasing and shown that our
result reduces to the famous Dalal et. al. [2] result in the
limit of spherical collapse and the local ansatz. In the
spherical collapse limit for a general bispectrum shape,
we reproduce the results of Desjacques, Jeong and
Schmidt [18,36], including the previously overlooked
additional term.

In the case where the barrier is not constant and depends
on the smoothing scale, we find that the coefficient of the
scale-dependent bias is no longer simply related to the
Gaussian bias parameter, but rather contains additional
terms [Eq. (71)] that might affect the extraction of fNL
from upcoming surveys. While the simple relation is
recovered on sufficiently large mass scales, on smaller
mass scales, we find a significant departure from the
expected result.

In arriving at this result, we have made several approx-
imations. Following standard techniques in evaluating the
effect of a moving barrier (which characterizes ellipsoidal
collapse), we truncated the probability distribution in
Eq. (28). This approximation causes� to no longer satisfy
the Fokker-Planck equation. However, we have shown in
the Appendix that when used in combination with the
Fokker-Planck equation to calculate the halo bias, this
approximation leads to results consistent with an exact
treatment (at least to cubic order in derivatives) when
compared to the case of a linear barrier where the proba-
bility distribution can be computed exactly. For this reason,
we do not think this approximation leads to the upturn in
cn at large Sn depicted in Fig. 3.

A second approximation treating non-Gaussianity in the
excursion set is likely to have more effect on our final
answer. We evaluated the three-point function at the end-
point of the trajectories, as in Eq. (42). As noted there, one
may think of this as keeping the zeroth-order term in a
Taylor expansion about the final time Sn. It is straightfor-
ward to calculate the contributions from additional terms in
this series by making use of the results and methods of
Refs. [21,22,24]. This approximation can be shown to
correspond to an expansion in Sn=B

2
n. Furthermore, using

the saddle point techniques of Ref. [40] it is possible to

resum a number of higher-order corrections to this formula
to obtain a more accurate formula for the bias. However, to
reproduce the existing results in the literature, the zeroth-
order approximation used here appears sufficient. We leave
the calculation of higher-order corrections to future work.
While this paper was in preparation, we became aware

of the work [39], which also considers the halo bias in the
path integral formulation of the excursion set. While the
authors of Ref. [39] consider only a constant barrier, they
include next-to-leading-order corrections from relaxing the
approximation at Eq. (42). The results of this work are
consistent with those found [39] in the limit where the
barrier is constant, and one restricts to the leading-order
result.
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APPENDIX A: THE LINEAR BARRIER

In this Appendix we compare our results to a case where
the probability distribution can be evaluated exactly. Aside
from the limit where the absorbing barrier is independent
of the smoothing scale, the only other known exact solution
to the Fokker-Planck equation with an absorbing barrier
condition is in the case where the barrier has a linear
dependence on the smoothing scale,

BðSÞ ¼ B0 þ B1S; (A1)

where B0 and B1 are constants. For this barrier, it is an
elementary exercise to obtain the probability distribution

�LBð�n; SnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2�Sn

p
�
exp

�
� �2

n

2Sn

�
� exp

�
�ð2Bn � �nÞ2

2Sn
þ 2B0

nðBn � �nÞ
��

;

which one can verify solves the Fokker-Planck equation,
with the linear boundary condition Eq. (A1). The super-
script LB here and in the rest of this Appendix denotes
expressions that are only valid for the barrier in Eq. (A1).
It is straightforward to obtain the Gaussian formation

rate,
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F LBðSnÞ ¼ Bn � SnB
0
nffiffiffiffiffiffiffiffiffiffiffi

2�S3
p e�

B2n
2Sn ; (A2)

which agrees exactly with the result in Eq. (31) since for the barrier in Eq. (A1)

P 0n ¼ �SnB
0
n: (A3)

The conditional crossing rate is found as described above by simply translating the Gaussian result using the shift of
variable in Eq. (40). We can also compute the halo bias analogous to Eq. (51),

�halo;LB
m ¼

�
Bn

Sn
� 1

ðBn � SnB
0
nÞ
�
�m � 1

6

Sn3

ðBn � SnB
0
nÞ2

�
�20SnB

0
nBn þ 10B2

n � 9ðSnB0
nÞ2 � 3

B2
n

Sn
ðBn � SnB

0
nÞ2

þ 7Sn � 8
ffiffiffiffiffiffiffi
2�

p
S5=2n B03

n e
ðBn�2SnB

0
nÞ2

2Sn ððBn � 2SnB
0
nÞðBn � SnB

0
nÞ � SnÞerfc

�
Bn � 2SnB

0
nffiffiffiffiffiffiffiffi

2Sn
p

��
�m

� SnS0
n3

3ðBn � SnB
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�
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0
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03
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n e
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0
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nÞ � SnÞerfc
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Bn � 2SnB

0
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2Sn
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��
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n
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3SnB
0
n
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2�S3n

q B02
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from which we can obtain the scale-dependent part of the bias

bLBðkÞ ¼ F 3
nðkÞ

2MðkÞ
�
Bn

�
Bn

Sn
� 1

Bn � SnB
0
n

�
þ 3

SnB
0
n

Bn � SnB
0
n

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
2�S3n

q B02
n e

ðBn�2SnB
0
nÞ2

2Sn

Bn � SnB
0
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�
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��

þ 1

MðkÞ
dF 3

nðkÞ
d lnSn

�
1þ 2SnB

0
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ffiffiffiffiffiffiffiffiffiffiffiffi
2�S3n

q B02
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(A5)

and thus we find exact agreement with Eqs. (51) and (70) up to terms cubic in B0
n, the order to which we have evaluated the

approximation in Eq. (28). We thus conclude that the deviation we find at low masses is not a consequence of the
approximation of the probability distribution, but rather represents a breakdown of the approximations at Eq. (42) or
possibly of the excursion set itself.
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