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Kaiser redshift-space distortion formula describes well the clustering of galaxies in redshift surveys on

small scales, but there are numerous additional terms that arise on large scales. Some of these terms can be

described using Newtonian dynamics and have been discussed in the literature, while the others require

proper general relativistic description thatwas only recently developed.Accounting for these terms in galaxy

clustering is the first step toward tests of general relativity on horizon scales. The effects can be classified as

two terms that represent the velocity and the gravitational potential contributions. Their amplitude is

determined by effects such as the volume and luminosity distance fluctuation effects and the time evolution

of galaxy number density and Hubble parameter. We compare the Newtonian approximation often used in

the redshift-space distortion literature to the fully general relativistic equation, and show that Newtonian

approximation accounts for most of the terms contributing to velocity effect. We perform a Fisher matrix

analysis of detectability of these terms and show that in a single tracer survey they are completely

undetectable. To detect these terms one must resort to the recently developed methods to reduce sampling

variance and shot noise.We show that in an all-sky galaxy redshift survey at low redshift thevelocity termcan

be measured at a few sigma if one can utilize halos of massM � 1012h�1M� (this can increase to 10-� or

more in somemore optimistic scenarios), while the gravitational potential term itself can only bemarginally

detected. We also demonstrate that the general relativistic effect is not degenerate with the primordial non-

Gaussian signature in galaxy bias, and the ability to detect primordial non-Gaussianity is little compromised.

DOI: 10.1103/PhysRevD.86.063514 PACS numbers: 98.80.�k, 98.62.Py, 98.65.�r, 98.80.Jk

I. INTRODUCTION

In the past few decades galaxy redshift surveys have
been one of the indispensable tools in cosmology, covering
a progressively larger fraction of the sky with increasing
redshift depth. With the upcoming dark energy surveys
this trend will continue in the future. However, despite
the advance in observational frontiers, there remained a
few unanswered questions in the theoretical description of
galaxy clustering. One is the issue of validity of the Kaiser
formula, where density perturbation in redshift space is
density perturbation in real space multiplied with a term
that depends on the angle between the line-of-sight direc-
tion and the direction of the Fourier mode (we give a more
detailed definition below) [1]. It has been well known (e.g.,
Ref. [2]) that the simplest version omits some of the terms
coming from the Jacobian of the transformation from real
space to redshift space, terms of order v=H r, where v is
the velocity and r is the distance to the galaxy andH is the
conformal Hubble parameter. It is argued that these terms
are potentially important, especially for large angular sep-
arations (e.g., see Refs. [3–7]), but most of the analyses so

far have focused on effects in correlation function, without
proper signal-to-noise analysis (see, however, Ref. [8]).
A second, related issue is whether the terms originally

derived in the Newtonian approximation get modified
when a proper general relativistic description is employed.
On horizon scales, the standard Newtonian description
naturally breaks down, and a choice of hypersurface of
simultaneity becomes an inevitable issue, demanding a
fully relativistic treatment of galaxy clustering beyond
the current Newtonian description. In recent work [9,10],
it is shown that a proper relativistic description can be
easily obtained by following the observational procedure
in constructing the galaxy fluctuation field and its statistics:
We need to model observable quantities, rather than theo-
retically convenient but unobservable quantities, usually
adopted in the standard method. While both the relativistic
and the standard Newtonian descriptions are virtually indis-
tinguishable in the Newtonian limit, they are substantially
different on horizon scales, rendering galaxy clustering
measurements a potential probe of general relativity.
The relativistic description of galaxy clustering includes

two new terms that scale as velocity and gravitational
potential. Compared to the dominant density contribution,
they are suppressed by H =k and ðH =kÞ2 and become
important only on large scales, where the comoving*jyoo@physik.uzh.ch
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wavevector amplitude is k. Consequently, the identification
of these terms just by looking at the galaxy power spectrum
is hampered because of sampling variance, and the general
relativistic effects unaccounted in the standard Newtonian
description may result in systematic errors less than 1-�
for most of the volume available at z � 3 in the standard
power spectrum analysis [10]. We revisit this calculation
here, using a more realistic description of these terms, but
the basic conclusion remains the same.

In light of the fact that these corrections to the Kaiser
formula provide a potential probe of the consistency of our
model, including generic tests of general relativity on large
scales, it is worth exploring if these terms can be observed.
A new multitracer method [11] takes advantage of the fact
that differently biased galaxies trace the same underlying
matter distribution, and it can be used to cancel the ran-
domness of the matter distribution in a single realization of
the Universe, eliminating the sampling variance limitation.
This method has been used in Ref. [12] to investigate the
velocity effects of Refs. [9,10], noting that for any given
Fourier mode the imaginary part of velocity couples to the
real part of density and vice versa. Even with this novel
technique, the expected detection level is low [12].

If sampling variance is eliminated, the dominant remaining
source of error is shot noise, caused by the discrete nature of
galaxies. Recently, a shot noise canceling technique has been
proposed [13] and investigated for detecting primordial non-
Gaussianity [14] in combination with the sampling variance
canceling technique. The basis of the method is that by using
halo mass dependent weights one can approximate a halo
field as the dark matter field and reduce the stochasticity
between them. While this works best when comparing halos
todarkmatter, some shot noise canceling can alsobe achieved
by comparing halos to each other [14,15]. This opens up a
new opportunity to probe horizon scales and extract cosmo-
logical information with higher signal-to-noise ratio.

In this work our primary goal is to explore the
detectability of these effects in galaxy clustering on cos-
mological horizon scales using the galaxy power spectrum
measurements with both single tracer technique and with
the multitracer and shot noise canceling techniques. In
addition we clarify the relation of the galaxy fluctuation
field often used in the redshift-space distortion literature
using Newtonian approximation to the fully general rela-
tivistic equation. Finally, we also investigate the impact of
the general relativistic effects in detecting the primordial
non-Gaussian signature in galaxy bias.

The organization of the paper is as follows. In Sec. II, we
present the full general relativistic description of galaxy
clustering. In Sec. III, we discuss the Newtonian corre-
spondence and its relation to the redshift-space distortion
literature. The multitracer and shot noise canceling tech-
niques are presented in Sec. IV. In Sec. V, we provide the
measurement significance of the general relativistic effects
in the galaxy power spectrum. In Sec. VI, we extend our

formalism to the primordial non-Gaussianity. Finally, we
discuss the implication of our results in Sec. VII.

II. GENERAL RELATIVISTIC DESCRIPTION OF
GALAXY CLUSTERING

A full general relativistic description of galaxy cluster-
ing is developed in Refs. [9,10] (see also Refs. [16–18]).
Previously, we have adopted the simplest linear bias an-
satz, in which the galaxy number density is just a function
of the matter density ng ¼ F½�m�, both at the same space-

time.1 However, this ansatz turns out to be rather restric-
tive, since the time evolution of the galaxy sample is
entirely driven by the evolution of the matter density /
ð1þ zÞ3. Here we make one modification in the adopted
linear bias ansatz by relaxing this assumption and provid-
ing more freedom, while keeping the locality. We allow the
galaxy number density at the same matter density to differ
depending on its local history, as a local observer at the
galaxy formation site is affected by its local matter density
and the proper time to the linear order in perturbation, i.e.,
ng ¼ F½�m; tp� with tp being the proper time measured in

the galaxy rest frame. Physically, the presence of long wave-
length modes affects the local dynamics of galaxy formation
by changing the local curvature and thus the expansion rate,
and these are modulated by the Laplacian of the comoving
curvature and the proper time [19]. Therefore, in addition
to the contribution of the matter density fluctuation m�z ¼
�� 3�z at the observed redshift z [9,10], the physical num-
ber density of galaxies has additional contribution from the
distortion between the observed redshift and the proper time,
when expressed at the observed redshift

ng ¼ �ngðzÞ½1þ bð�� 3�zÞ � bt�zv�
¼ �ngðzÞ½1þ b�v � e�zv�; (1)

where the matter density fluctuation is �, the lapse �z in the
observed redshift z is defined as 1þ z ¼ ð1þ �zÞð1þ �zÞ,
and the homogeneous redshift parameter is related to the
cosmic expansion factor as 1=a ¼ 1þ �z. The subscript v
indicates quantities are evaluated in the dark matter comov-
ing gauge.2

1On large scales, a more general stochastic relation between
the galaxy number density and the matter density also reduces to
the local form we adopted here [11]. As opposed to some
confusion in literature, this biasing scheme is independent of
whether galaxies are observed.

2Gauge dependence arises only when perturbation quantities
are considered. For example, the physical number density of
galaxies is a well-defined scalar field without gauge ambiguity.
However, when we split it into the homogeneous part and the
perturbation part, the correspondence of the physical quantity to
the homogeneous part depends on the coordinate choice, and
consequently the perturbation part becomes gauge-dependent
[20]. The comoving gauge is a choice of gauge conditions, in
which v ¼ 0 or the off-diagonal component of the energy-
momentum tensor is zero. No simple choice of gauge conditions
corresponds to the observer’s choice of coordinates ðz; �;�Þ.
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The galaxy bias factor is b ¼ @ ln �ng=@ ln�mjtp and the

time evolution of the galaxy number density due to its local
history is bt ¼ @ ln �ng=@ lnð1þ zÞj�m

. Therefore, the total

time evolution of the mean galaxy number density is
proportional to the evolution bias [21]

e ¼ d ln �ng
d lnð1þ zÞ ¼ 3bþ bt: (2)

For galaxy samples with constant comoving number den-
sity, the evolution bias factor is e ¼ 3 due to our use of the
physical number density in Eq. (2). This biasing scheme in
Eq. (1) is consistent with Refs. [16–19,22], and our pre-
vious bias ansatz corresponds to bt ¼ 0.

Therefore, with this more physically motivated bias
ansatz, the general relativistic description of the observed
galaxy fluctuation is [9,10]

�obs ¼ ½b�v � e�zv� þ �� þ 2’� þ V þ 3�z�

þ 2
�r�

r
�H

d

dz

�
�z�

H

�
� 5p�DL � 2K: (3)

Here the luminosity function slope of the source galaxy
population at the threshold is p. Note that this is the slope
of the luminosity function, expressed in terms of absolute
magnitude M ¼ constant� 2:5 logL, hence the factor 5p
instead of the factor 2�L, where �L is the slope of the
luminosity function expressed in terms of luminosity L
[see Eq. (23)]. In addition, the comoving line-of-sight
distance to the observed redshift is r, the dimensionless
fluctuation in the luminosity distance is �DL, the temporal
and spatial metric perturbations are �� and ’�, the line-

of-sight velocity is V, and the gauge-invariant radial dis-
placement and lensing convergence are �r� and K.3 The

subscript � indicates quantities are evaluated in the con-
formal Newtonian gauge (also known as the zero-shear
� ¼ 0 gauge).4 We have ignored the vector and tensor
contributions to �obs in Eq. (3).

We emphasize that compared to Refs. [9,10] it is only
the terms in the square bracket that are affected by the
choice of linear bias ansatz, and Eq. (3) is consistent with

Refs. [16–19,22]. Various other terms in Eq. (3) arise due
to the mismatch between the observed and the physical
quantities. The radial and angular distortions are repre-
sented by �r� and K, and the distortion in the observed

redshift corresponds to the derivative term. The conversion
of physical volume to comoving volume gives rise to the
distortion 3�z�, and the rest of the potential and velocity

terms defines the local Lorentz frame, where the source
galaxies are defined. For galaxy samples selected by the
observed flux, additional contribution 5p�DL arises.
Further discussion regarding this contribution is given later
in this section.
Since Eq. (3) is written in terms of gauge-invariant

variables, it can be evaluated with any choice of gauge
conditions. However, in evaluating Eq. (3), it proves con-
venient to use different combinations of gauge-invariant
variables, rather than to choose one specific gauge condi-
tion and convert all the gauge-invariant variables in Eq. (3)
to quantities in the chosen gauge.
For a presureless medium in a flat universe, the Einstein

equations are (e.g., Refs. [20,23,24])

k2’� ¼ 3H2
0

2
�m

�v

a
; (4)

’0
v ¼ H�v; (5)

�� ¼ �’�; (6)

and the conservation equations are

v0
� þHv� ¼ k��; (7)

�0
v ¼ �3’0

v � kv�; (8)

where the prime is a derivative with respect to the confor-
mal time � and the equations are in Fourier space. From
these equations, it is well-known that the dark-matter comov-
ing gauge (v ¼ 0) is coincident with synchronous gauge
[�� ¼ �v þ ðav�Þ0=ak, hence �v ¼ 0 from Eq. (7)] and

the comoving curvature is conserved (’0
v ¼ 0) [25,26].

Furthermore, since these gauge-invariant variables corre-
spond to the usual Newtonian quantities [25,27], hereafter
we adopt a simple notation �v � �m, v� � v, and ’� ¼
��� � � to emphasize their connection.

To facilitate evaluation of Eq. (3), we express the
remaining gauge-invariant quantities in terms of �m, v,
and � as

V ¼ @

@r

Z d3k

ð2	Þ3
�vðkÞ

k
eik�x; (9)

�z� ¼ V þ�þ
Z r

0
d~r2�0; (10)

�zv ¼ �z� þ
Z d3k

ð2	Þ3
Hv

k
eik�x; (11)

3The displacement of the source galaxy position from the
observed galaxy position is split into the radial and angular
components, and these two parts are expressed in terms of
gauge-invariant quantities, i.e., their forms differ in each gauge
choice but give the same value regardless of gauge choice. These
quantities are most conveniently expressed in the conformal
Newtonian gauge. In Ref. [10] the radial distortion is denoted
as �R. Here we use a slightly different notation for the radial
distortion �r� to avoid confusion with the dimensionless coef-
ficient R in Eq. (21).

4The covariant derivative of the observer velocity is often
decomposed into expansion, shear, rotation, and acceleration
vectors [23]. The shear component is proportional to � ¼ að
þ
�0Þ with the metric convention in Ref. [10]. The conformal
Newtonian gauge or the zero-shear gauge corresponds to the
frame, in which there is no shear seen by a observer moving
orthogonal to the constant-time hypersurface.
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�r� ¼ ��z�

H
�

Z r

0
d~r2�; (12)

K ¼ �
Z r

0
d~r

�
r� ~r

~rr

�
r̂2�; (13)

�DL ¼ �þ V � �z�

H r
þ

Z r

0
d~r

~r

r
2�0 � 1

r

Z r

0
d~r2�

þ
Z r

0
d~r

ðr� ~rÞ~r
r

�
��þ�00 � 2

@�0

@~r

�

¼ �r�
r

þ �z� þ ’� �K; (14)

�H
d

dz

�
�z�

H

�
¼ �V � 1þ z

H
�0 � 1þ z

H

@V

@r

� �z� þ 1þ z

H

dH

dz
�z�; (15)

where integration by part is performed in Eq. (14) and we
have ignored quantities at origin that can be absorbed to the
observed mean [9,10]. The total derivative in Eq. (15) is
with respect to the observed redshift z and it is related to
the null geodesic as

d

dz
¼ 1

H

d

dr
¼ � 1

H

�
@

@�
� @

@r

�
: (16)

The derivative term also appeared as a partial derivative in
Refs. [9,10], while we wrote it here as a total derivative to
imply Eq. (16). However, in a sense it is a partial derivative
with respect to the observed redshift with other observable
quantities ð�;�Þ kept fixed.

The observed galaxy fluctuation in Eq. (3) is the sum of
the matter density �m, the gravitational potential �, the
line-of-sight velocity V, and other distortions such as �z�,

�r�, and �DL, and they are also a linear combination of

�m, �, and V with various prefactors and integrals in
Eqs. (9)–(15), which in turn can be expressed in terms
of the matter density �m. Using the Einstein equations,
we have

� ¼ 3H2
0

2

�m

ak2
�m; (17)

v ¼ � 1

k
�0
m ¼ �H f

k
�m; (18)

V ¼ iH f
�m

k
�k; (19)

where the logarithmic growth rate is f ¼ d ln�m=d lna,
d=d� ¼ Hd=d lna, and �k is the cosine angle between
the line-of-sight direction and the wavevector.

Before we compute the observed galaxy power spec-
trum, we make a further simplification by ignoring the
projected quantities such as the gravitational lensing and
the integrated Sachs-Wolfe contributions in Eqs. (10)–(14),

which are important only for the pure transverse modes

(kk ¼ 0) [10,28]. With this simplification and by using
Eqs. (9)–(15), the observed galaxy fluctuation in Eq. (3)
can be written in Fourier space as

�obs ¼
Z d3k

ð2	Þ3 e
ik�x

�
�Newt þ P�m

ðk=H Þ2 � i�k

R�m

k=H

�
;

(20)

where the two dimensionless coefficients R and P are
defined as

P ¼ ef� 3

2
�mðzÞ

�
eþ f� 1þ z

H

dH

dz

þ ð5p� 2Þ
�
2� 1

H r

��
;

R ¼ f

�
e� 1þ z

H

dH

dz
þ ð5p� 2Þ

�
1� 1

H r

��
; (21)

and the standard Kaiser formula of the observed galaxy
fluctuation is

�Newt ¼ b�m ��2
k

kv

H
¼ ðbþ f�2

kÞ�m; (22)

which can be contrasted with �obs in Eq. (3).
Apparent from their spatial dependence in Eq. (20), the

coefficients R and P originate from the velocity and
gravitational potential. While Eq. (3) can be derived with
the minimal assumption that the spacetime is described
by a perturbed Friedmann-Lemaitre-Robertson-Walker
metric and photons follow geodesics, the coefficient P in
Eq. (21) is obtained by applying the Einstein equations
[Eqs. (4)–(6)]. Given the observed e and p, the value and
the functional form of P is, therefore, heavily dependent
upon the general theory of relativity.
While P is purely relativistic, some contributions to R

may be considered nonrelativistic, since they could be
written down in Newtonian dynamics, simply as a coupling
of velocity from the Doppler effect with the time evolution
of the galaxy number density. However, different gravity
models will yield different values ofR via the logarithmic
growth rate f (see, e.g., Ref. [29], and further discussion on
this issue is presented in Sec. III). Therefore, measuringR
and P is equivalent to a direct measurement of the relativ-
istic contributions, and we collectively refer to the coef-
ficients R and P as the general relativistic effects in the
galaxy power spectrum.
Figure 1 illustrates the redshift dependence of two co-

efficients R and P , in which the evolution bias factor is
fixed e ¼ 3 (constant comoving number density). The
contributions to these two coefficients arise from the vol-
ume and the source distortions that also involve the change
in the observed redshift and the observed flux. Since the
volume distortion involves 2�r�=r in Eq. (3), both coef-

ficients diverge at z ! 0 (r ! 0), unless the radial distor-
tion of the volume effect is canceled by the source effect
(p ¼ 0:4), leaving only the distortion terms from the
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observed redshift (as we show below this cancellation is
generic). With e ¼ 3 and p ¼ 0:4, the coefficient P in
Eq. (21) nearly vanishes at low redshift.

However, as we quantify in Sec. V, even if the divergent
term does not cancel out, since the survey volume
decreases faster, the diverging terms have negligible im-
pacts on the measurement significance. Furthermore, Fig. 1
appears different from those obtained in Ref. [18], since
they adopted the halo model to relate the evolution bias
factor e to the galaxy bias factor b. Large-scale galaxy
surveys show that these two parameters for galaxy samples
are independent of each other, and their relation is different
from the halo model prediction (e.g., Ref. [30]).

Before we close this section, we discuss the fluctuation
in the luminosity distance. Additional contribution 5p�DL

to the observed galaxy fluctuation arises, because galaxy
samples are selected given an observational threshold in
flux or equivalently a luminosity threshold Lt converted by
using the observed redshift z. For flux-limited samples, the
luminosity threshold is changing as a function of redshift,
as only brightest galaxies at high redshift can have
observed fluxes large enough to be above the threshold in
flux. Volume limited samples are constructed by imposing
a constant luminosity threshold Lt, up to a maximum

redshift. Furthermore, the evolution bias factor e in this
case is defined with respect to the number density of
galaxies with L > Lt, in addition to other criteria such as
color cuts.5

Fluctuations in luminosity distance bring galaxies
around the threshold Lt into (or out of) the galaxy samples,
and this effect provides the contribution 5p�DL in Eq. (3).
The luminosity function slope of source galaxy popula-
tions at the threshold is defined as

p ¼ d log �ng
dM

¼ �0:4
d log �ng
d logL

¼ �0:4�L; (23)

where the absolute magnitude is related to the luminosity
as M�M? ¼ �2:5 logðL=L?Þ with pivot points M?

and L?.
The galaxy luminosity function is often described by the

Schechter function [31] with a power-law slope �s and an
exponential cut-off as

�ðLÞdL ¼ �?

L?

�
L

L?

�
�s

exp

�
� L

L?

�
dL; (24)

and the number density given a threshold in luminosity
is then

�n gð>LtÞ ¼ �?�ð�s þ 1; Lt=L?Þ; (25)

where �ða; xÞ is the incomplete Gamma function.
Therefore, the luminosity function slope at threshold is

p ¼ 0:4
ðLt=L?Þ�sþ1 exp½� Lt

L?
�

�ð�s þ 1; Lt=L?Þ ; (26)

which can take values from zero to infinity, depending on
the choice of Lt.
A typical case of interest is a flux-limited survey, which

is dominated by L? galaxies at the peak of the luminosity
function. For these galaxy samples p ¼ 0:4 (solid), which
can be obtained with Lt ¼ L? and �s ¼ 0 (or their vari-
ants). These galaxy samples have no diverging terms inR
and P , because the volume distortion is balanced by
the fluctuation in the luminosity distance. We may also
assume volume-limited galaxy samples with constant p
and consider two additional representative cases in Fig. 1.
First, galaxy samples at high luminosity tail (p ¼ 1:5; dot-
dashed), here taken as Lt ¼ 3L? and for which the
Schechter function slope is �s ’ �1:1 (e.g., Ref. [30]).
Last, we consider galaxy samples with sufficiently low
threshold Lt � L? (p ¼ 0; dashed), which contain gal-
axies at low mass halos.

FIG. 1. Redshift dependence of two dimensionless parameters
R and P in Eq. (21). Nonvanishing values ofR and P represent
the general relativistic effects in galaxy clustering, each of which
describes the contributions of the gravitational potential and the
velocity to the observed galaxy fluctuation field. Three different
curves represent galaxy samples in a volume-limited survey (p is
constant) with three different limits Lt in luminosity threshold: a
sample with low threshold Lt � L? (p ¼ 0; dashed), a sample
with no magnification bias Lt ’ L? ðp ¼ 0:4; solid), a sample at
high luminosity tail Lt 	 L? (p ¼ 1:5; dot-dashed). The evo-
lution bias factor e ¼ 3 is fixed in all cases, representing
homogeneous galaxy samples (constant comoving number den-
sity) often constructed in large-scale galaxy surveys.

5The luminosity function naturally evolves in time due to
aging stars in galaxies, galaxy mergers, cosmic expansion, and
so on. However, the condition that e ¼ 3 and p is constant relies
on the assumption that the shape of the luminosity function at
constant Lt remains unchanged, while the physical number
density �ngð>LtÞ is diluted as due to cosmic expansion.
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III. NEWTONIAN CORRESPONDENCE AND
REDSHIFT-SPACE DISTORTION

In the cosmological context, full general relativistic
equations reduce to Newtonian equations on small scales,
in which relativistic effects are negligible. This statement
is born out by observations that matter density fluctuations
� in various choices of gauge conditions become identical
on small scales, except insofar as unusual gauge conditions
are imposed such as the uniform density gauge, in which
� � 0 on all scales. However, as larger scale modes are
considered, matter density fluctuations become increas-
ingly different from one another, and the transition scale
is largely set by horizon scales k ¼ H .

Even on these large scales, however, ‘‘Newtonian cor-
respondence’’ exists in certain circumstances, in the sense
that the matter density �m, the velocity v, and the potential
� fluctuations in Newtonian dynamics are identical to
those quantities in fully relativistic dynamics with certain
choices of gauge conditions [25,27]. In a flat universe with
pressureless medium, the Newtonian matter density �m is
identical to the comoving gauge matter density �v, and the
Newtonian velocity v and potential � are identical to the
conformal Newtonian gauge quantities v� and ’�. Since

this correspondence holds on all scales, numerical simula-
tions properly capture large scale modes [32,33], apart
from other technical issues such as finite box size.

In redshift-space distortion literature [1,2], a Newtonian
calculation has been performed for obtaining the galaxy
fluctuation field �z in redshift space that goes beyond the
Kaiser formula in Eq. (22). A different notational conven-
tion is often adopted in the redshift-space distortion litera-
ture. Especially, galaxy number densities ng are expressed

in comoving space.6 The selection function � is defined
with respect to the comoving number density �ng of gal-

axies as

� � d lnr2 �ng
d lnr

¼ 2þ rH

1þ z
ðe� 3Þ; (27)

and the line-of-sight velocity V is

V � 1þ z

H
V ’ 1þ z

H
�z�; (28)

where the last equality holds if we ignore potential con-
tributions to �z� in Eq. (10). As a special case, the constant

comoving number density e ¼ 3 corresponds to � ¼ 2,
and both of them are constant.

The redshift-space distance s at the observed redshift z is
then related to the ‘‘real’’ distance r as

s �
Z z

0

dz0

H
¼ rþ 1þ z

H
�z ’ rþV ; (29)

where the first equality is exact to the linear order in
perturbation, while the second equality neglects potential
contributions to �z.7 From the conservation of total num-
ber of observed galaxies nzðsÞd3s ¼ nrðrÞd3r, one derives
the relation between the redshift-space and the real-space
fluctuations as

1þ �z ¼
�ngðrÞ
�ngðsÞ

��������
d3s

d3r

��������
¼ r2 �ngðrÞ

s2 �ngðsÞ
�
1þ @V

@r

��1ð1þ b�mÞ; (30)

and to the linear order in perturbations the galaxy fluctua-
tion in redshift space is then

�z ¼ b�m �
�
@

@r
þ �

r

�
V

¼ b�m � 1þ z

H

@V

@r
� eV þ 2V � 2V

H r
þ 1þ z

H

dH

dz
V:

(31)

This equation is known as the complete formula for the
observed galaxy fluctuation in the redshift-space distortion
literature, while only the first two terms constituting the
Kaiser formula [1] are often used. The additional terms
come from the Jacobian of the transformation from real
space to redshift space and also from the galaxy number
density evaluated at the observed redshift.
Even with the knowledge of the Newtonian correspon-

dence, there are fewer terms in Eq. (31) compared to the
full relativistic formula �obs in Eq. (3), and those terms
account for missing physics in the derivation. Apparently
ignored are the fluctuation �DL in the luminosity distance
(effectively p ¼ 0) and the lensing contribution that gives
rise to distortions between the observed and the source
angular positions. Note that this by itself is an important
effect: in a generic flux-limited survey with p ¼ 0:4 the
potentially divergent term �

r V is exactly canceled by the

luminosity fluctuation effect, which is caused by the fact
that a galaxy moved to a redshift closer to the observer will
have its flux slightly smaller than what the redshift distance
predicts, so it may not enter into a flux threshold, which
compensates for the volume effect in the p ¼ 0:4 case.
However, once we account for luminosity threshold

effects, the Newtonian calculation can fully reproduce
the velocity terms in Eq. (3). While the velocity terms

6Conversion of physical quantities to quantities in comoving
space requires a redshift parameter. In observation, the observed
redshift can be used without gauge ambiguity, but in general a
redshift parameter is defined in conjunction with the expansion
factor in a homogeneous universe. Therefore, it is a function of
coordinate time and hence is gauge-dependent. Only in this
section did we use ng to refer to the galaxy number density in
comoving space, as there is no gauge ambiguity in the
Newtonian limit.

7Since the real distance r takes a gauge-dependent redshift
parameter �z as an argument, we left the gauge choice of �z
unspecified, 1þ z ¼ ð1þ �zÞð1þ �zÞ.
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receive a relativistic contribution [12] from the gradient of
the potential in Eq. (15), they are canceled by the time
derivative of the velocity via the conservation (Euler)
equation in Eq. (7). Therefore, the functional form of V
is generic in Eq. (3), same in all gravity theories (the
conservation equations should hold in other theories of
modified gravity, as it simply states that the energy mo-
mentum is locally conserved [34]). However, as we scale
the velocity terms with the matter density �m by using the
Poisson equation (and also the conservation equation), the
value of R itself will be different in other gravity theories
than general relativity, and its measurements can test gen-
eral relativity, although this kind of test can be performed
by using the redshift-space distortion term in �Newt.

With respect to the relativistic contributions, adding the
lensing contribution to the conservation relation in Eq. (31)
is still not enough to recover the relativistic formula in
Eq. (3). While the lensing contribution accounts for angu-
lar distortions, there exists a radial distortion in the source
position, the Sachs-Wolfe effect [35] in the observed red-
shift, and finally the difference in the observer and the
galaxy rest frames. Equation (31) can be obtained from
the relativistic formula in Eq. (3) by ignoring potential
contributions, assuming p ¼ 0, and identifying the matter
density and the line-of-sight velocity with those in the
comoving and the conformal Newtonian gauges, respec-
tively. However, the validity of the Newtonian description
on large scales can only be judged retroactively, after the
relativistic description is derived. We emphasize again that
a fully relativistic treatment is required for estimating P .

IV. MULTITRACER SHOT NOISE
CANCELING TECHNIQUE

We consider multiple galaxy samples with different
bias factors for measuring the general relativistic effects
in the galaxy power spectrum. Using a vector notation, the
observed galaxy fluctuation fields can be written as

�obs
GR ¼

�
b0 þ f�2

kIþ
cPP

ðk=H Þ2 � i�k

cRR
k=H

�
�v þ "

� bðk;�kÞ�v þ "; (32)

where b0, I, " are the linear bias, the multidimensional
identity, and the residual-noise field vectors. By definition
the noise field is independent of the matter fluctuation
h"�vi ¼ 0, and the square bracket in Eq. (32) defines the
effective bias vector b. We will adopt a plane parallel
approximation for the power spectrum analysis, meaning
there is only one angle �k between the Fourier mode
and the line-of-sight direction we need to consider. The
corrections to this approximation are expected to be small
[8]. More generally, the effects considered here are differ-
ent from the plane parallel approximation and can be
considered separately.

The coefficients P and R in Eq. (21) are also general-
ized to the multitracer case as

P ¼ ef� 3

2
�mðzÞ

�
eþ

�
f� 1þ z

H

dH

dz

�
Iþ ð5p� 2IÞ



�
2� 1

H r

��
;

R ¼ f

�
e� 1þ z

H

dH

dz
Iþ ð5p� 2IÞ

�
1� 1

H r

��
: (33)

We introduced two new parameters cR and cP to general-
ize the measurement significance of the coefficientsR and
P to the case of multiple galaxy samples—they are cR ¼
cP ¼ 1 in general relativity, and measurements of these
two parameters amount to the measurement significance of
the two vectors R and P .
In order to assess our ability to measure the general

relativistic effects in the galaxy power spectrum, we
employ the Fisher information matrix, and the likelihood
of the measurements is

L ¼ 1

ð2	ÞN=2ðdetCÞ1=2 exp

�
� 1

2
�obsy
GR C�1�obs

GR

�
; (34)

where the covariance matrix is C ¼ h�obs
GR�

obsy
GR i ¼

bbyPm þ E, the shot noise matrix is E ¼ h""Ti, and the
matter power spectrum in the comoving gauge is PmðkÞ.
Since the observed galaxy fluctuation fields are constructed
to have a vanishing mean h�obs

GRi ¼ 0, the Fisher informa-

tion matrix is

Fij ¼
�
� @2 lnL
@�i@�j

�
¼ 1

2
Tr½C�1CiC

�1Cj�; (35)

with two measurement significance parameters �i ¼ cP ,
cR and two nuisance parameter vectors �i ¼ e, p. The
covariance matrix with subscript is Ci ¼ @C=@�i.
The inverse covariance matrix of the multitracer field

and the derivative of the covariance matrix are

C�1 ¼ E�1 � E�1bbyE�1Pm

1þ �
;

Ci ¼ @C

@�i
¼ ðbiby þ bbyi ÞPm; (36)

where � ¼ byE�1bPm, bi ¼ @b=@�i, and we ignored the
derivative of the shot noise matrix. With the inverse
covariance matrix, we have

C�1CiC
�1Cj ¼P2

mðC�1bbyi C�1bbyj þC�1bbyi C�1bjb
y

þC�1bib
yC�1bbyj þC�1bib

yC�1bjb
yÞ;

(37)

and the Fisher information matrix is

Fij ¼ ðbyC�1bÞReðbyi C�1bjÞP2
m þ Re½ðbyC�1biÞ


 ðbyC�1bjÞ�P2
m: (38)
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To further simplify the equation, we define two more
coefficients


i ¼ byE�1biPm;

�ij ¼ Reðbyi E�1bjÞPm ¼ byi E�1bj þ byj E�1bi

2
Pm; (39)

and the various terms in Eq. (38) are

byC�1bPm ¼ �

1þ �
;

byC�1biPm ¼ 
i

1þ �
;

Reðbyi C�1bjÞPm ¼ �ij �

�

i 
j þ 
�
j
i

2ð1þ �Þ : (40)

The Fisher information matrix is therefore

Fij ¼ �

1þ �
�ij þ

Reð
i
j � �
i

�
j Þ

ð1þ �Þ2 : (41)

This formula is a straightforward extension of the Fisher
matrix in Ref. [14] with the effective bias vector b being a
complex vector. The imaginary part arises solely from the
R term in Eq. (32) and its derivative.

For comparison, we also consider measurements by
using a single galaxy sample. The formalism presented in
Sec. IV is valid for a single tracer, in which vector quan-
tities reduce to scalar quantities. The Fisher information
matrix for a single tracer is

Fij ¼
2Reð
iÞReð
jÞ

ð1þ �Þ2 ; (42)

where we used the relation

��ij ¼

i


�
j þ 
�

i 
j

2
; (43)

only valid for a single tracer. Note that in the single tracer
we are not sensitive to the correlation between real and
imaginary part of the mode, which has the dominant
contribution to the signal-to-noise ratio ofR in multitracer
method [12]. This is only true in the plane parallel
approximation.

V. MEASUREMENT SIGNIFICANCE

For definiteness, we consider full sky surveys with three
different redshift ranges and adopt a set of cosmological
parameters consistent with the WMAP7 results [36]. Given
the survey volume V, the Fisher matrix is summed over the

Fourier volume, where kmin ¼ 2	=V1=3 and kmax ¼
0:03h Mpc�1 (we clarify the dependence of the measure-
ment significance on our choice of kmin and kmax). To
model the Fisher matrix parameters �, 
i, �ij, we adopt

the halo model description in Refs. [14,15]; It has been
well tested against a suite of N-body simulations with
Gaussian and non-Gaussian initial conditions.

We assume that the galaxy samples are constructed to
have a constant comoving number density (e ¼ 3I) in a
volume-limited survey (constant p ¼ pI). While uncer-
tainties in e and p can propagate to the measurement
uncertainties in P and R, we focus on how well future
surveys can measure P and R, assuming there are no
uncertainties in theoretical predictions of P and R.
Given the current measurement uncertainties in e and p
[30], the uncertainties in theoretical predictions are very
small and will be smaller in future surveys. Figure 2 shows
the number density and average bias of halos of mass
above the minimum mass Mmin at different redshift slices.
As we are interested in applying the multitracer method
with sufficiently low minimum mass to enhance the mea-
surement significance of the general relativistic effects, we
consider two cases for the luminosity function slope at the
threshold: p ¼ 0 (sufficiently low threshold Lt � L?) and
p ¼ 0:4 (Lt ’ L?).

A. Single tracers

First, we consider the prospect of measuring the general
relativistic effects by using a single tracer. Figure 3 shows
the predicted measurement significance of R and P for
various survey redshift ranges. For all galaxy samples with
different minimum mass (or different number density in
Fig. 2), the predicted measurement significance is very
weak, indicating that substantial difficulty is present in
measuring the general relativistic effects in the galaxy
power spectrum for surveys at z < 3. This difficulty is

FIG. 2. Number density and average bias of halos above the
minimum mass at different redshift slices. Since the multitracer
method utilizes all the halos of mass above the minimum mass, a
large number of halos are required to achieve sufficiently low
minimum mass.
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simply due to the small number of large-scale modes that
are sensitive to the general relativistic effects. Furthermore,
the weak measurement significance of both R and P
means that compared to the standard Newtonian contribu-
tion �Newt, the general relativistic effects or additional
terms in �z [Eq. (31)] used in the redshift-space distortion
literature are all negligible in the standard power spectrum
analysis (single tracer method).

This result confirms the prediction in Ref. [10] and
extends the predictions to galaxy samples with different
number density and bias. This conclusion is in apparent
contradiction with Ref. [6], where correlation functions are
shown with smaller errors than the size of the effects.
However, these errors are obtained from simulations with-
out taking into account the actual number of modes in a
realistic survey. Once this is taken into account there is no
contradiction [8]. The reason the wide-angle correction
remains small is that there exists no velocity-density cor-
relation (�R) due to symmetry of pairs in Eq. (20) and
the effect shows up only as a correction to the dominant
contributions that are already accounted in the plane-
parallel limit.

The difference in the predicted measurement signifi-
cance between the left (p ¼ 0:0) and the right (p ¼ 0:4)
panels arises from the redshift dependence of theR and P

values, as illustrated in Fig. 1. The signals are computed at
the mean redshift of each survey, and in the left panel
(p ¼ 0:0), the absolute values ofR and P slowly decrease
with redshift, while they remain nearly constant in the right
panel (p ¼ 0:4). Furthermore, even with higher suppres-
sion power of ðk=H Þ, it is generally easier to measure P
than R in the single tracer method for the case with
p ¼ 0:0 (left panel). Arising from the imaginary part in
Eq. (32), the R term in the galaxy power spectrum is
negligible, compared to the real part that includes the
standard Newtonian term and the P term, while the sensi-
tivity to the P term comes from the cross-correlation of the
standard Newtonian term and the P term. In the left panel,
the lack of sensitivity to the P term is due to the vanishing
signal of P .
While the shot noise of massive halos is an obstacle for

measuring the general relativistic effects, it is the cosmic
variance on large scales that fundamentally limits the
measurement significance. Therefore, the measurement
significance slowly increases as the minimum halo mass
is lowered, but it quickly saturates given values of R and
P . For measuring the general relativistic effects in the
galaxy power spectrum, there is no further gain in con-
structing galaxy samples with large number density at a
fixed survey volume.

FIG. 3. Predicted measurement significance of general relativistic effects R (upper) and P (bottom) in the galaxy power spectrum
obtained by using a single tracer. All halos of mass above minimum mass are lumped together to construct a single tracer. Four curves
represent different survey redshift ranges with corresponding volume V ¼ 2:5, 7.9, 59, 410 ðh�1GpcÞ3. For the volume-limited sample
(constant p) with constant comoving number density (e ¼ 3), two galaxy samples are constructed to have p ¼ 0 (left) and p ¼ 0:4
(right). No uncertainties in theoretical predictions are assumed. With the traditional power spectrum analysis (single tracer), it is
difficult to measure the general relativistic effects at any meaningful significance.
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B. Multiple tracers

This conclusion is, however, contingent upon the as-
sumption that the power spectrum analysis is performed
by using a single tracer, and the multitracer method can
change the prospect of measuring the general relativistic
effects in a dramatic way. Figure 4 shows the predicted
measurement significance of the general relativistic effects
by taking full advantage of the multitracer method.
Compared to the single tracer case in Fig. 3, there exist
two key differences in the measurement significance
derived by using the multitracer method. First, the mea-
surement significance is greatly enhanced in Fig. 4 by
eliminating the cosmic variance, which sets the fundamen-
tal limit in the single tracer method. Second, a substantially
larger measurement significance of theR term is obtained
than that of the P term by cross correlating multiple galaxy
samples and thereby isolating the imaginary term [12]. The
method ofmeasuring the imaginary part in the galaxy power
spectrum of two tracers [12] is fully implemented in our
complex covariance matrix as off-diagonal terms and ex-
tended to the number of tracers larger than two. The result in
Ref. [12] would correspond toR=� ’ 1:8 at z � 1.

In our most optimistic scenario, if we can utilize all
halos of M � 1012h�1M�, the velocity term R (solid) of
the galaxy samples with p ¼ 0 (left panel) can be mea-
sured at more than 10-� confidence level at z � 1, while it
is still difficult to detect the gravitational potential term P
(solid). A significant detection of R can be made, even in

surveys at low redshift (dotted and short-dashed), if halos
of M< 1012h�1M� can be used. At higher redshift z � 1,
though the increase in the survey volume is partially can-
celed by the lower abundance of halos at a fixed mass, a
substantial improvement (dashed) for P can be achieved
by going beyond z ¼ 1, as the signal P increases with
redshift (p ¼ 0).
However, the scenario above is not very realistic because

of the p ¼ 0 assumption. In the right panels, we consider
the galaxy samples with p ¼ 0:4, of which the R and P
values are nearly constant at all redshifts. The constant
signals result in higher measurement significance for sur-
veys with larger volume at higher redshift. Compared to
the case with p ¼ 0:0, the measurement significance of R
is smaller due to the smaller value ofR at z < 1, while that
of P is highly suppressed due to the vanishing value of P .
By using halos of mass slightly lower than 1012h�1M�, a
survey like the BOSS that covers redshift range z ¼ 0:3�
0:5 with a quarter of the sky can achieve a 1-� detection of
R, demonstrating the feasibility of the multitracer analysis
in future surveys.
A few caveats are in order. First, we used the galaxy

power spectrum in a flat sky and counted the number of
modes in computing the measurement significance.
Calculations of wide-angle correlation functions [8] show
that the effects of geometry are negligible, and a similar
calculation can be performed for power spectrum measure-
ments (in preparation). Furthermore, our calculation is

FIG. 4. Predicted measurement significance of general relativistic effects R (upper) and P (bottom) in the galaxy power spectrum
derived by using the multitracer method. All halos of mass above minimum mass are utilized to take advantage of the multitracer
method [11,14]. Various curves are in the same format as in Fig. 3. Compared to Fig. 3, the measurement significance is substantially
enhanced by using the multitracer method.
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rather insensitive to the minimum wavenumber kmin. At
sufficiently low Mmin, the multitracer method approaches
the optimal case with dark matter density field, where the
Fisher information can be approximated as b0E�1b0Pm.
In terms of spatial dependence alone in Eq. (32), FP /R
dkk2ðkn=k4Þ / lnðkmax=kminÞ and FR / R

dkk2ðkn=k2Þ /
ðk2max � k2minÞ with the spectral index n ’ 1. Therefore, the
dependence of the measurement significance on kmin is
logarithmic for P and negligible for R, as kmax 	 kmin.
In contrast, a significance enhancement in FR can be
achieved by increasing the maximum wavenumber kmax,
although the gain is marginal for FP . Finally, while any
degeneracy with cosmological parameters in measuring
the relativistic effects is largely eliminated due to the
cancellation of the underlying matter distribution [11,14],
a proper quantification of the measurement significance
requires considerations of uncertainties in theoretical pre-
dictions of P and R.

VI. PRIMORDIAL NON-GAUSSIANITY

We extend our formalism to the primordial non-
Gaussian signature in galaxy bias [37] and introduce
additional parameter fNL. Here we only consider the sim-
plest local form of primordial non-Gaussianity to demon-
strate how it can be implemented in the general relativistic
description, and ignore scale-independent and scale-
dependent corrections (see, e.g., Refs. [38–40]).

The primordial non-Gaussian signature in galaxy bias
can be readily implemented in our full general relativistic
description with the Gaussian bias factor in Eq. (3)
replaced by

b ! bþ 3fNLðb� 1Þ�c

�mðzÞH 2

T’ðk; zÞk2
; (44)

where �c is the linear overdensity for spherical collapse
and T’ is the transfer function of the curvature perturbation

(see also Refs. [18,19,22]). Equivalently, the primordial
non-Gaussianity can be considered as additional relativis-
tic contribution by replacing P in Eq. (21) with

P fNL ¼ P þ 3fNLðb� 1Þ�c

�mðzÞ
T’ðk; zÞ : (45)

Figure 5 shows the predicted constraints on the primor-
dial non-Gaussianity derived by accounting for the full
general relativistic effects. In obtaining the constraint
�fNL on primordial non-Gaussianity, we set cR ¼ cP ¼
1 and marginalize over e and p with priors �e ¼ 0:1 and
�p ¼ 0:05 [30]. We emphasize that e and p can be more

accurately measured in observations, further reducing their
uncertainties. With the current uncertainties in e and p, the
constraint �fNL (solid in Fig. 5) is nearly identical to the

unmarginalized constraint. The dashed curve shows that
even with no priors on e and p, �fNL is not inflated except

in the regimewith�fNL & 2, becauseR andP are affected

simultaneously by e and p but only P by fNL.
Furthermore, the unique dependence of fNL on b-1 and
T’ in Eq. (44) provides the multitracer method with more

leverage to separate it from the general relativistic effect. It
is the primordial gravitational potential at initial epoch, not
the evolved gravitational potential at the observed redshift
that the scale-dependent galaxy bias responds to, and the
difference is the transfer function T’ðk; zÞ. At low redshift,

the transfer function decays from unity on scales smaller
than the horizon around the dark energy domination epoch,
and there exists a factor two difference in T’ðk; zÞ at our
adopted kmax.
Finally, we allow e and p to vary as a function of mass

with two logarithmic slope parameters �e and �p,

e ¼ e0Iþ �e lnðM=M0Þ; p ¼ p0Iþ �p lnðM=M0Þ;
(46)

with e0 ¼ 3, p0 ¼ 0:4, �e ¼ �p ¼ 0, and M0 ¼
1012h�1M�. The effects of �e and �p (dotted in Fig. 5)

are sufficiently different from those of fNL, and �fNL

asymptotically reaches the floor set by the uncertainties
in e and p. This demonstrates that the general relativistic
effects in the galaxy power spectrum are not degenerate
with the primordial non-Gaussian signature. However, if
fNL were to be constrained below unity, similar precision
needs to be achieved in predicting R and P .
This requirement can be relaxed by increasing the maxi-

mum wavenumber kmax to exploit the unique dependence
of fNL on T’ðk; zÞ. With larger maximum wavenumber

kmax ¼ 0:1h Mpc�1, the overall uncertainties on fNL are
reduced by about 30% for all three cases in Fig. 5. Another
way is to construct galaxy samples by using independent

FIG. 5. Predicted constraints on the primordial non-
Gaussianity fNL from galaxy power spectrum measurements.
To facilitate the comparison, the constraints on fNL are obtained
by using the same survey specifications as in Ref. [14]: V ’
50 ðh�1GpcÞ3 centered at z ¼ 1. We assume e ¼ 3 and p ¼ 0:4,
and various curves show �fNL with different priors on e and p

(�e ¼ 0:1, �p ¼ 0:05 [30] for the solid curve).
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mass estimates instead of observed flux, as p drops out in
Eq. (20), further separating e from fNL.

VII. DISCUSSION

In this paper we explore the contributions to the redshift
survey beyond the Kaiser approximation in the context of
recently developed general relativistic analysis. We com-
pare the results of this formalism to the previous analyses
[6] and show that these analyses ignore several terms such
as luminosity distance fluctuation and overestimate the
significance of the effect. In addition, correlation function
analyses previously adopted are not optimal to assess the
signal-to-noise ratio of these effects, in contrast to our
power spectrum analysis. We find that these corrections
beyond the Kaiser formula are not observable in a generic
redshift survey using a single tracer, meaning that these
effects do not have to be considered in a generic redshift
survey. A caveat to this conclusion is that in this paper we
have performed the analysis using the plane parallel ap-
proximation and do not consider large angle effects [3,4],
but we expect that these effects are equally small [8]. Their
detectability will be addressed in a separate publication.

Using the multitracer shot noise canceling method the
detection significance is increased, providing a unique
opportunity to test these effects, and general relativity in
general, on horizon scales. Still, for realistic cases the
detection significance is at the few sigma confidence level
(in some more optimistic cases the detectability rises to 10
sigma or more), so this test of general relativity is of
interest only when the deviations from general relativity
are significant on large scales. We have also shown how the
primordial non-Gaussian effect in galaxy bias can be
implemented in the full general relativistic description,
and we have argued that the ability to detect primordial
non-Gaussianity is little compromised by the presence of
general relativistic effects.

Considering the fact that we perform a very large-scale
analysis, our method of measuring the general relativistic
effects in galaxy clustering need not be restricted to spec-
troscopic surveys. The use of photometric redshift mea-
surements may not affect our results if the photo-z error is
sufficiently small, e.g., an error of dz=ð1þ zÞ � 0:03 cor-
responds to k > 0:06h Mpc�1 at z ¼ 1, which is larger

than kmax ¼ 0:03h Mpc�1 we adopted here. This allows
one in principle to extend the observed halo mass ranges to
lower masses using a photometric survey and to take full
advantage of the multitracer method.
While we treated multiple galaxy samples as halos in

multiple mass bins and our method requires sufficiently low
Mmin, the SloanDigital Sky Survey (SDSS) alreadymeasures
galaxies well below M ¼ 1011h�1M� (e.g., SDSS L1 sam-
ple), and there exists numerous methods to remove satellite
galaxies and isolate central galaxies. Furthermore, it is shown
[14] that one needs a fairly large scatter in the mass-
observable relation, �lnM ¼ 0:5, to degrade the shot-noise
suppression, and the scatter is less important at the low mass
end. The reason for this insensitivity to the scatter is that in
terms of weighting, the optimal weighting method puts more
weight on massive halos, wðMÞ ¼ MþM0, where M0 is a
constant and approximated as 3 times the minimum mass.
We note however that our prediction is based on the halo
model description of the shot noise matrix, which is tested
only for halos at M � 1012h�1M�, and our prediction at
M � 1012h�1M� is an extrapolation.
The bottom line of this paper is that the corrections

beyond the Kaiser formula in redshift surveys are generally
small and only detectable using very specialized tech-
niques adopted in this paper. This is a good news for those
analyzing generic redshift surveys since they do not have to
consider them. Nevertheless, the potential detectability of
these terms gives rise to the prospect of testing general
relativity in a regime previously untested. Thus despite the
small detection significance it is worth exploring these
tests further to see if they can be of use in separating
general relativity from some of its alternatives.
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