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We explore the paradigm in which inflation is driven by a four-dimensional strongly coupled dynamic

with a nonminimal coupling to gravity. We introduce a model where the inflaton is identified with the

glueball field of a pure Yang-Mills theory. We introduce the dilatonic-like glueball action, which is

obtained by requiring saturation of the underlying Yang-Mills trace anomaly at the effective action level.

We couple the resulting action nonminimally to gravity. We demonstrate that it is possible to achieve

successful inflation with the confining scale of the underlying Yang-Mills theory naturally of the order of

the grand unified energy scale. We also argue that the metric formulation gives a more consistent picture

for models of composite inflation than the Palatini one. Finally, we show that, within the metric

formulation, the model nicely respects tree-level unitarity for the scattering of the inflaton field all the

way to the Planck scale.
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I. INTRODUCTION

Two prominent physics problems, i.e., the origin of mass
of all the standard model particles and inflation [1–6], the
mechanism responsible for an early rapid expansion of our
Universe, are both modeled traditionally via the introduc-
tion of new scalar fields.

However, field theories featuring fundamental scalars
are unnatural. The reason being that typically these theo-
ries lead to the introduction of symmetry-unprotected
super-renormalizable operators, such as the scalar qua-
dratic mass operator. Quantum corrections therefore intro-
duce untamed divergencies which have to be fine-tuned
away. Furthermore, the basic description of space-time is
via spinors and fundamental scalars have not yet been
observed in nature.

It is well known that a new strong dynamic can replace
the Higgs mechanism [7,8]. Another logical possibility is
that theories with scalars are gauge-dual to theories featur-
ing only fermionic degrees of freedom [9–12]. Recently,
we have also shown that it is possible to construct models
in which the inflaton emerges as a composite state of a
four-dimensional strongly coupled theory [13]. In Sec. II of
this paper we consider a model where the inflaton emerges
as the lightest glueball field associated to, in the absence of
gravity, a pure Yang-Mills theory. This theory constitutes
the archetype of any composite model in flat space and
consequently of models of composite inflation. We show
that it is possible to achieve successful glueball inflation.
Furthermore, the natural scale of compositeness associated

to the underlying Yang-Mills gauge theory, for the consis-
tency of the model, turns to be of the order of the grand
unified scale. This result is in agreement with the scale of
compositeness scale determined in Ref. [13] for a very
different underlying model of composite inflation. We
also argue that within the metric formulation, models of
composite inflation behave better than within the Palatini
one. In Sec. III, we investigate the tree-level unitarity
constraints, for inflaton scattering, at the effective action
level in the Einstein frame and for both the Palatini and
metric formulations. We discover that the unitarity cutoff,
i.e., the scale above which the model ceases to be valid and
gravitational corrections must be taken into account, is the
Planck scale for the metric formulation while it is the
strongly coupled Yang-Mills scale for the Palatini one.
The metric formulation provides therefore a consistent
picture for a successful glueball inflation model. We pro-
vide an extensive discussion of the effects of graviton
scattering in Sec. IV. We summarize the relevant energy
scales of the problem in Sec. V. We conclude in Sec. VI.
In the Appendix we generalize the paradigm introduced

in Ref. [13] by first spelling out the setup for generic
models of composite inflation. Within this framework we
determine useful expressions for the slow-roll parameters
for composite inflation.

II. GLUEBALL/DILATON INFLATION

Pure Yang-Mills theories featuring only gluonic-type
fields are the simplest examples of strongly coupled theo-
ries. It is therefore natural to investigate composite infla-
tion using these theories. What then is the inflaton? The
candidate is the interpolating field describing the lightest
glueball,

*Fedor.Bezrukov@physik.uni-muenchen.de
†channuie@cp3.dias.sdu.dk
‡joergensen@cp3.dias.sdu.dk
§sannino@cp3.dias.sdu.dk

PHYSICAL REVIEW D 86, 063513 (2012)

1550-7998=2012=86(6)=063513(8) 063513-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.063513


�ðxÞ ¼ �

g
Tr½G��G���; (1)

whereG�� is the standard non-Abelian field strength and�
is the full beta function of the theory in any renormaliza-
tion scheme.� is written in a renormalization scheme-free
way and therefore is associated to a physical quantity. The
Yang-Mills trace anomaly constrains the low-energy effec-
tive Lagrangian for the lightest glueball state [14–16]to be

L GI ¼ ��3
2@��@��� VGI; VGI ¼ �

2
ln

�
�

�

�
: (2)

The generalization of this action, at the effective
Lagrangian level, allowing also for a description of the
topological properties of the theory can be found in
Refs. [17,18]. This generalization, and associated opera-
tors, by construction cannot affect the potential above nor
the following analysis involving gravity. The reason being
that the resulting actionmust saturate the underlying trace-
anomaly only via the effective potential above. We discuss,
however, the naive effects of higher- order operators on
graviton-scattering in Sec. IV. This low-energy effective
Lagrangian is also known as the action for the dilaton. This
is because the composite scalar field � saturates the dila-
tonic current. Therefore, we could as well have called the
model we are about to introduce, nonminimal dilaton in-
flation. In the future we plan also to investigate perturbative
dilatonic actions [19]. A recent use for the action above for
the electroweak physics and cosmology can be found in
Refs. [20,21]

We consider the following coupling of � to gravity in
the Jordan frame:

SCI;J ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�M2 þ ��

1
2

2
g��R�� þLGI

�
: (3)

In this framework, M is not automatically the Planck
constant MPl. The nonminimal coupling to gravity is con-
trolled by the dimensionless coupling �. The nonanalytic
power of � emerges because we are requiring a dimen-
sionless coupling with the Ricci scalar.

It is convenient to introduce the field ’ possessing unity
canonical dimension and related to � as follows:

� ¼ ’4: (4)

The nonminimally coupled glueball effective action to
gravity then reads

SGI;J ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�M2 þ �’2

2
g��R��

þ 16@�’@
�’� VGI

�
;

VGI ¼ 2’4 ln

�
’

�

�
: (5)

Imposing the conformal transformation with

�2 ¼ M2 þ �’2

M2
P

; (6)

the action in the Einstein frame reads

SGI¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

�M2
P

2
g��R��

þ16��2

�
1þ3f��2�2’2

16M2
P

�
g��@�’@�’���4VGI

�
;

(7)

where f ¼ 0 corresponds to the Palatini formulation and
f ¼ 1 to the metric case. See the Appendix for relevant
references on the difference between the Palatini and the
metric approach. We have left the explicit dependence on
’ rather than using the canonically normalized new scalar
field � ¼ �ð’Þ introduced in the Appendix. We are now
able to determine the slow-roll parameters and constraints
relevant for inflation. From (A9) we obtain in the large field
regime:

’2 � M2

�
: (8)

We derive the following slow-roll parameter �:

� ’ 1

64 lnð’�Þ2ð��1 þ f � 3
16Þ

: (9)

Inflation ends when � ¼ 1 such that

’end

�
¼ exp

�
1

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð��1 þ f � 3

16Þ
q

�
: (10)

In the large field limit the number of e-foldings (A12) is

N ’
�
16

�
��1 þ f � 3

16

�
ln

�
’

�

�
2
�
’ini

’end

: (11)

A simple way to determine the value of ’ini when inflation
starts is to require a minimal number of e-foldings com-
patible with a successful inflation, i.e., N ¼ 60. This
leads to

’ini

�
’ exp

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
60

16ð��1 þ f � 3
16Þ

s �
: (12)

Further relevant information can be extracted using the
WMAP [22] normalization condition

Uini

�ini
¼ ð0:0276MPÞ4: (13)

The label ini signifies that this expression has to be eval-
uated at the beginning of the inflationary period. This
condition helps in estimating the magnitude of the non-
minimal coupling. We deduce

Uini ’ 2M4
P

�2
ln

�
’ini

�

�
’ 2M4

P

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:75

��1 þ f � 0:1875

s
; (14)

while
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�ini ’ 1

64 lnð’ini

� Þ2ð��1 þ f � 3
16Þ

¼ 0:0042: (15)

We can therefore determine the magnitude of the non-
minimal coupling which, depending whether we used the
Palatini or the metric formulation, assumes the following
value:

� ’ 1:4 � 106 Palatini; and � ’ 6:1 � 104 Metric: (16)

The knowledge of the nonminimal coupling allows us to
estimate the initial and final value of the composite glue-
ball field �. We have in units of the strong scale �

’end

�
� 1063:5;

’ini

�
� 10986 Palatini; (17)

’end

�
� 1:3;

’ini

�
� 88Metric: (18)

From these results it is clear that the metric formulation
directly provides a more natural range of values for ’.
Therefore, at the level of the present analysis and without
invoking extra operators to match the metric and the
Palatini formulation, we suggest using the metric formu-
lation when investigating/comparing strongly coupled in-
flationary models. The effective action built here is a
generating functional for trace anomaly and therefore the
associated potential VGI cannot be quantum modified. This
may protect the inflationary scenario even for large values
of the scalar field. Furthermore, future first-principle lattice
simulations will be able to investigate the full nonpertur-
bative physics.

It is possible to further relate the strongly coupled scale
� with M recalling that we are working in the large field
regime (8). This implies that the smallest value assumed by
the inflaton must satisfy (8) and therefore we obtain

�>
Mffiffiffi
�

p Metric; (19)

where M is the reduced Planck mass 2:44 � 1018 GeV
yielding

�> 0:9 � 1016 GeV: (20)

This is the typical scale for grand unification, in complete
agreement with our earlier results for the first model of
composite inflation [13]. One of the main differences with
the model presented in Ref. [13] is that here the full low-
energy potential of the inflaton is determined by matching
the trace anomaly between the underlying gauge theory
and the effective action. As for the case of Higgs inflation,
and other earlier approaches [23–29] we discover that a
phenomenologically large value of � is needed for gener-
ating the correct size of the observed amplitude of density
fluctuations. A more complete treatment for all these mod-
els would require, in the future, a mechanism for generat-
ing such a large coupling.

III. GLUEBALL INFLATION VERSUS UNITARITY

In this section we turn to the interesting question of the
constraints set by tree-level unitarity of the inflaton field.
For the present purpose it is convenient to first shift the
overall Glueball potential, before coupling it nonminimally
to gravity, in such a way that the potential evaluated on the
ground state has zero energy:

VGI ! 2’4 ln

�
’

�

�
þ�4

2e
: (21)

The reason for such a shift is that in this case the ground
state of the theory assumes the same value in the Jordan
and the Einstein frames and reads

h’i ¼ e�1
4� ¼ v: (22)

The previous inflationary analysis remains unmodified by
this shift. Furthermore, we are interested in the large field
expansion (8) which can be well approximated by setting
M ¼ 0. The following relation is then natural:

M2
P ’ �v2;) � ¼ ’

v
: (23)

In the Einstein frame we then have

SGI;’ ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�M2

P

2
g��R��

þ 16
v2

’2

�
1þ 3

16
f�

�
g��@�’@

�’

� v4

’4

�
2’4 ln

�
’

e
1
4v

�
þ v4

2

��
: (24)

We now have the ingredients needed to tackle the issue of
tree-level unitarity at the effective Lagrangian level during
the inflationary period. More specifically, we are con-
cerned with the violation of the tree-level unitarity of the
scattering amplitude concerning the inflaton field fluctua-
tions �’ around its classical time-dependent background
’cðtÞ during the inflationary period. Following the analysis
performed in Ref. [30] we can, in first approximation,
neglect the time dependence of the classical field and write

’ ¼ ’c þ �’; (25)

since the fluctuations are expected to encapsulate the high-
frequency modes of the inflaton. To estimate the actual
cutoff of the tree-level scattering amplitude we analyze
independently the kinetic and potential term for the infla-
ton in the Einstein frame. Starting from the kinetic term it
is straightforward to show that around the classical back-
ground can be written as

v2

2’2
c

ð32þ 6f�Þð@�’Þ2 X
1

n¼0

ðnþ 1Þ ð��’Þn
’n

c

: (26)

It is possible to canonically normalize the first term of the
series, i.e., the kinetic term for a free field, rescaling the
fluctuations as follows:
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�’

’c

¼ �~’

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32þ 6f�

p : (27)

Under this field redefinition (26) becomes

ð@� ~’Þ2
2

X1
n¼0

ðnþ 1Þ ð��~’Þn
ð32þ 6f�Þn2vn

: (28)

For the potential term, the higher-order operators are also
of the form

constant
ð�~’Þn

ð32þ 6f�Þn2vn
: (29)

This implies that the tree-level cutoff for unitarity is in the
metric formulation

ffiffiffi
�

p
v ’ MP; (30)

while it is simply v in the Palatini formulation. This results
shows that the cutoff, in both formulations, is background
independent. The unitarity cutoff in the metric formulation
corresponds quite nicely to the Planck scale and therefore
tree-level unitarity is safe in this approach, however this is
not the case for the Palatini formulation. These results are
in complete agreement with the findings for successful
inflation in the previous section.

IV. GRAVITON EXCHANGE FOR
COMPOSITE INFLATION

Similar to the case of Higgs inflation, composite infla-
tion introduces a nonminimal coupling to gravity of the
type �’2R allowed by all known symmetries of the under-
lying strongly coupled theory and gravity. In Refs. [31–34]
it is argued that, although this term superficially appears to
be a dimension-four operator, expanding it around flat
space, g�� ¼ ��� þ h��=MP, leads to a dimension-five

operator plus an infinite tower of higher-dimensional op-
erators

�’2R� �’2 hh

MP

þ . . . : (31)

This indicates that generic nonminimally coupled theories
become strongly interacting at scales �NRG �MP=�. The
new scale �NRG emerges because gravity in four dimen-
sions is non-renormalizable and NRG stands for Non-
Renormalizable Gravity. In the case of minimally coupled
theories, this scale is simply MP. Therefore, without any
protecting mechanism, the interaction with gravity can
lead to a series of corrections to the low-energy effective
Lagrangian. Using the canonically normalized field ’, one
naively expects the following corrections to any potential,
and in our specific case to VGI:

V ¼ VGIð�Þ þ ’4
X
n>0

an

�
’

�NRG

�
n þ �’2R

X
n

bn

�
’

�NRG

�
n
:

(32)

The new interactions are suppressed by �NRG �MP=�
while the new strongly coupled dynamic has a scale
��MP=

ffiffiffi
�

p
. The coefficients an and bn, due to graviton

exchange, depend on the behavior of gravity above the
scale �NRG. Unless a protecting mechanism exists, and
taking all the coefficients an and bn to be of order unity,
the flatness, in the Einstein frame, of the inflationary
potential can be questioned. This is not only the case of
Higgs inflation, but also of many minimal models of in-
flation, such as m2’2 chaotic inflation, since in these cases
’>�NRG during inflation.
Although no actual resolution to this potential issue was

presented in Refs. [31–34], it was, however, pointed out
that currently we have no experimental evidence that an
and bn must be of order unity and that there is still the
logical possibility that graviton exchange is softer than the
naive estimate suggested in Ref. [35] leaving our potential
unaltered. We could therefore work in the same spirit of
Higgs or chaotic inflation with the further benefit that, as
we showed above, the inflaton-inflaton scattering is better
behaved than in models of Higgs inflation.
In composite inflation, there is already a symmetry

principle partially constraining the effective potential
VGI. This constraint requires the action for ’ to be such
that, at zero external momentum, the matter trace-anomaly,
in the Jordan frame, has to reproduce the Yang-Mills trace
anomaly and therefore automatically requires an ¼ 0 for
any n > 0. The situation for the bn coefficients is more
delicate since they involve derivative vanishing at zero
momentum, however, it would seem natural that these
coefficients also have to vanish.

V. SUMMARY OF THE DIFFERENT
ENERGY SCALES

For the benefit of the reader we summarize the various
scales and associated operators involved in the present
setup before and after coupling our underlying gauge
theory to gravity.
We started our exploration by introducing the simplest

non-Abelian gauge theory known, i.e., the pure SUðNÞ
Yang-Mills gauge theory. The fundamental Lagrangian
for this gauge theory, in absence of the 	-angle operator,
is constituted by only one renormalizable conformal
operator1:

L Fund ¼ � 1

4

XN2

a¼1

G��
a G��;a: (33)

First-principle lattice simulations have shown that this
theory confines and via dimensional transmutation a renor-
malization invariant physical scale is generated. This scale

1If we also add the 	-angle operator, we have one more
renormalizable conformal operator which does not affect the
classical equations of motion.
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is identifiable with the scale � of the glueball theory
introduced in the previous sections. Using the renormal-
ization group equations, lattice simulations, as well as our
experience from ordinary quantum chromodynamics,2 the
fundamental theory can be used in the perturbative regime
to describe the dynamics of the theory at energy scales on
the order of 100� and above. For energies below this scale
and to describe the vacuum properties of the theory, the
effective potential given in (2) works and it has also been
used recently in Ref. [21] to determine cosmological
properties.

When coupling our theory to gravity we can, of course,
use directly the unique operator constituting the fundamen-
tal gauge theory (33), and use, for example, first-principle
lattice simulations. However, because we were interested
in slow-roll conditions near the ground state of the under-
lying gauge theory we used the simplest and most appro-
priate analytic description, i.e., the one in terms of the
glueball effective theory. As an important consistency
check we showed that inflation starts at energy scales just
below or near the energy scales above which the under-
lying gauge dynamic is perturbative and described by a
single renormalizable operator. We have also showed that
the natural scale for � is the grand-unified scale which is
orders of magnitude smaller than the Planck scale.
Therefore, we expect the perturbative dynamics of the
gauge theory to set in before we arrive at the Planck scale.
We showed, furthermore, that inflaton-inflaton scattering
would only be affected by Planck-scale physics making our
analysis, from this point of view, more solid than Higgs
inflation.

The grand-unified scale here is defined as the energy at
which the standard model gauge couplings in a given
renormalization scheme unify. Given that the standard
model alone does not unify, an extension perhaps also
including dark matter is needed. The standard model cou-
plings are weak at the unification point. However, the
inflationary model is still strongly coupled at this scale
(now identified with �). Therefore, a potential unification
of the standard model and the new inflationary gauge
dynamics can only take place at or around the Planck scale,
which is not accessible with our current understanding of
the gravitational corrections.

There is, however, another scale to consider, i.e., the one
associated to graviton scattering. In the last section we
have shown that, as in Higgs inflation and several other
scenarios, this problem arises at a new scale, �NRG <�.
The fact that this scale,�NRG, is smaller than�, i.e., where
inflation takes place, might spoil the inflationary scenario
unless a mechanism for softening this behavior emerges.
Because this mechanism, as stressed above [31], must be
active above the scale �NRG, this implies the following
scenarios for composite inflation. If the scale where this

mechanism emerges is below 10–100� then the effective
description given in (2) is valid and we can use the further
constraint an ¼ 0 needed to correctly saturate the trace
anomaly of the underlying gauge theory. If the mechanism
is introduced at scales between 100� and MP the under-
lying Lagrangian, before coupling to gravity, reduces to
(33). In this energy range the underlying gauge theory is
perturbative and therefore one can use any mechanism that
works for Higgs inflation. Finally, if the scale at which this
mechanism takes place is above MP a more complete
theory of gravity is needed. This shows that our model
has, in the worst-case scenario, the same limitations of
Higgs inflation for graviton scattering but works better
for inflaton scattering.

VI. CONCLUSIONS

We further investigated the paradigm according to which
inflation is driven by a four-dimensional strongly coupled
dynamics nonminimally coupled to gravity. We have done
so by introducing an explicit model where the inflaton is
identified with the glueball field of a pure Yang-Mills
theory. We used the well-known dilatonic-like glueball
action. This model constitutes the building block of any
model of composite inflation. We showed that successful
inflation can be achieved. Furthermore, the confining scale
of the Yang-Mills theory, for a successful inflation,
matches the one of the grand unified energy scale. This
result is in line with the result found in Ref. [13]. We
discovered that within the metric formulation, models of
composite inflation lead to a more consistent picture than
within the Palatini one. Another welcome feature of glue-
ball inflation in the metric formulation is that we found the
model to respect tree-level unitarity for the scattering of the
inflaton field during inflation all the way to the Planck
scale. Furthermore, using the knowledge of the phase
diagram of strongly coupled theories [36–43] we can, in
the future, explore several dynamical models of inflation.
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APPENDIX A: COMPOSITE INFLATION SETUP

We consider a generic strongly coupled theory before
coupling it to gravity. We identify the inflaton with one of
the lightest composite states of the theory and denote it
with �. This state has mass dimension d. This is the
physical dimension coming from the sum of the engineer-
ing dimensions of the elementary fields constituting the
inflaton augmented by the anomalous dimensions due to
quantum corrections in the underlying gauge theory. In this2Which is Yang-Mills with quarks.
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paper we concentrate on the non-Goldstone sector of the
theory.3

We consider the following coupling to gravity in the
Jordan frame:

SCI;J ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�M2 þ ��

2
d

2
g��R�� þL�

�
;

L� ¼ g���
2�2d
d @��@��� Vð�Þ; (A1)

with L� the low-energy effective Lagrangian for the field
� constrained by the symmetries of the underlying
strongly coupled theory. In this framework, M is not
automatically the Planck constant MPl. The nonminimal
coupling to gravity is controlled by the dimensionless
coupling �. The nonanalytic power of � emerges because
we are requiring a dimensionless coupling with the Ricci
scalar. Abandoning the conformality requirement allows
for operators with integer powers of � when coupling to
the Ricci scalar. However, a new energy scale must be
introduced to match the mass dimensions.

We diagonalize the gravity-composite dynamic model
via the conformal transformation

g��! ~g��¼�ð�Þ2g��; �ð�Þ2¼M2þ��
2
d

M2
P

; (A2)

such that

~g�� ¼ ��2g��;
ffiffiffiffiffiffiffi�~g

p ¼ �4 ffiffiffiffiffiffiffi�g
p

: (A3)

We use both the Palatini and the metric formulations. The
difference between the two formulations is in the fact that
in the Palatini formulation the connection � is assumed not
to be directly associated with the metric g��. Hence, the

Ricci tensor R�� does not transform under the conformal

transformation.
Applying the conformal transformation leads to the

Einstein frame and the action reads

SCI;E ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
M2

Pg
��R��

þ��2ð�2�2d
d þ f � 3M2

P�
02Þg��@��@��

���4Vð�Þ
�
: (A4)

Primes denote derivatives with respect to � and tildes are
dropped for convenience. f ¼ 1 signifies the metric for-
mulation [23,44–46], and f ¼ 0 the Palatini one [47].
We arrived at an involved kinetic term for the inflaton. It

is convenient to introduce a canonically normalized field �
related to � via

1

2
~g��@��ð�Þ@��ð�Þ ¼ 1

2

�
d�

d�

�
2
~g��@��@��; (A5)

with

1

2

�
d�

d�

�
2 ¼ ��2ð�2�2d

d þ f � 3M2
P�

02Þ

¼ ��2

�
1þ f � 3�2

d2M2
P

��2�
2
d

�
�

2�2d
d : (A6)

In terms of the canonically normalized field we have

SCI;E ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
M2

Pg
��R��

þ 1

2
g��@��@���Uð�Þ

�
; (A7)

with

Uð�Þ � ��4Vð�Þ: (A8)

We will analyze the dynamics in the Einstein frame,
and therefore define the slow-roll parameters in terms of
U and �:

� ¼ M2
P

2

�
dU=d�

U

�
2
;

� ¼ M2
P

�
d2U=d�2

U

�
;

N ¼ 1

M2
P

Z �ini

�end

U

dU=d�
d�:

(A9)

We will, however, express everything in terms of �, such
that we do not need an explicit solution of (A6). We obtain

� ¼ M2
P

2

�
�4��1�0 þ V 0

V

�
2
�
1

�0

�
2 ¼ 1

4

ðð1þ �
M2 �

2
dÞ� V0

V � 4
d

�
M2 �

2
dÞ2

ð1þ �
M2 �

2
dÞ 1

M2 �
2
d þ f � 3

d2
ð �
M2 �

2
dÞ2 ; (A10)

� ¼ M2
P

�
V 00�0 � V 0�00 þ 20��2ð�0Þ2V � 4��1�00V � 8��1�0V 0 þ 4��3�0�00V

V�03

�
; (A11)

3The Goldstone sector, if any, associated to the potential dynamical spontaneous breaking of some global symmetries of the
underlying gauge theory will be investigated elsewhere.
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N ¼ 1

M2
P

Z �ini

�end

V

�4��1�0V þ V 0 �
02d� ¼ 2

M2

Z �ini

�end

�
2�d
d

�
1þ f � 3�2

d2M2 �
2
d

1

1þ �

M2�
2
d

�

�4
d

�
M2 �

2
d þ ð1þ �

M2 �
2
dÞ� V0

V

d�: (A12)

Our framework resembles that of Higgs-inflation [48] with the difference that our inflaton stems from a natural four-
dimensional dynamic and therefore it is free from unnatural fine-tuning. Of course, as for the Higgs-inflation paradigm,4

the composite inflation framework still requires an explanation of the nonminimal coupling to gravity. We set aside this
important point in this initial investigation but point out that a first glimpse of how the associated operator might be viewed
from a more elementary point of view has been briefly discussed in Ref. [13].

Our framework, based on generic four-dimensional strongly coupled gauge theories, constitutes the natural template for
other models of composite inflation using, for example, holographic-inspired descriptions of strongly coupled dynamics
[55,56].
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