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We study the growth of structures in modified gravity models where the Poisson equation and the

relationship between the two Newtonian potentials are modified by explicit functions of space and time.

This parametrization applies to the fðRÞ models and more generally to screened modified gravity models.

We investigate the linear and weakly nonlinear regimes using the ‘‘standard’’ perturbative approach and a

resummation technique, while we use the spherical dynamics to go beyond low-order results. This allows

us to estimate the matter density power spectrum and bispectrum from linear to highly nonlinear scales,

the full probability distribution of the density contrast on weakly nonlinear scales, and the halo mass

function. We analyze the impact of modifications of gravity on these quantities for a few realistic models.

In particular, we find that the standard one-loop perturbative approach is not sufficiently accurate to probe

these effects on the power spectrum, and it is necessary to use resummation methods even on weakly

nonlinear scales, which provide the best observational window for modified gravity as relative deviations

from general relativity do not grow significantly on smaller scales where theoretical predictions become

increasingly difficult.
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I. INTRODUCTION

The discovery of the acceleration of the expansion of the
Universe cannot be explained using general relativity (GR)
and a matter content comprising only fluids with a positive
equation of state. Seemingly, a new fluid with a negative
equation of state, either a cosmological constant or dy-
namical dark energy, is required to generate the late time
acceleration [1]. Another plausible explanation could be
that gravity itself is poorly understood on large scales and
needs to be modified [2]. As GR is the unique Lorentz
invariant low energy theory of spin two gravitons, any
modification of gravity must include new degrees of free-
dom [3]. Hence, in both the dark energy and the modified
gravity contexts, new fields need to be included, the sim-
plest ones being, of course, scalar fields. However, the
presence of scalar fields is tightly constrained by fifth force
and equivalence principle tests [4,5]. This implies that the
scalars leading to either dark energy or modified gravity
must be screened in local and dense environments such as
on earth or in the solar system [6]. Such models abound:
chameleons [7–9], dilatons [10–12], Galileons [13], sym-
metrons [14–16], and their generalizations [17]. In all these
cases, the background cosmology coincides with a � cold
dark matter (�CDM) universe. The only hope of observing
nontrivial effects relies on the fact that perturbations in
these models grow anomalously inside the Compton radius
of the scalar field as first noticed in Refs. [9,18]. This
anomalous growth can only be effective on intermediate
scales. Indeed, on very large scales outside the Compton
radius, normal gravity is retrieved while screening effects
imply that GR is also recovered on small scales in very
dense regions of the Universe [7]. This opens up the

possibility that relevant effects may be present at the
mega parsec scale and that deviations from GR may be
detectable by future galaxy surveys.
In the following, we will concentrate on a formulation of

the perturbation equations involving two Newtonian
potentials and a time and scale dependent relationship
between them. In terms of scalar field models, this corre-
sponds to the Jordan frame picture; the difference between
the two Newtonian potentials being due to the scalar field
perturbation. In this picture, we choose to capture the
modified-gravity effects using a single function �ðk; aÞ
whose interpretation in the Einstein frame is obvious: it
measures the deviations of the geodesics under the influ-
ence of the scalar field. This function is universally char-
acterized in terms of the mass and the coupling function of
the scalar field. Here, we will consider it as defining the
modified-gravity models that we will study.
Doing so, we neglect the nonlinear effects due to the

presence of nonlinear terms originating from the scalar
field modifying gravity. As such we only modify the
Euler equation by including the effects of a new scalar
force. Hence, at this level of approximation, the models
only differ from the GR treatment of �CDM perturbations
by the inclusion of a time and scale dependent contribution
to Newton’s constant in the Euler equation. This simple
modification of gravity is amenable to a quasilinear and a
fully nonlinear treatment.
The precision that future galaxy surveys will reach

implies that simple linear perturbation theory is not accu-
rate enough. One must include higher-order effects, and at
one-loop order (i.e., next-to-leading order) we will find
that the ‘‘standard’’ perturbative expansion is not suffi-
ciently accurate to probe the modified-gravity effects we
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investigate here. Therefore, we generalize a method de-
rived using the saddle point of the generating functional of
matter and velocity fluctuations. This resummation scheme
was already tested in the GR case and shown to be more
accurate than the standard approach.

To go beyond these low-order results we also study the
dynamics of spherical perturbations [19–21]. This can be
exactly solved until shell crossing, and it provides the full
probability distribution of the matter density contrast on
weakly nonlinear scales as well as the large-mass tail of the
halo mass function. The latter can then be used to build a
phenomenological halo model that also converges to the
perturbative results on quasilinear scales. This provides a
simple estimate of the matter density power spectrum and
bispectrum from linear to highly nonlinear scales, and a
global picture of structure formation in such modified-
gravity scenarios. We discuss the relative deviations from
GR of these various quantities as a function of scale.

However, let us note that the analytical treatment of
modified gravity developed here should only be taken as
a first step, to indicate the type of effects one may expect,
because of our simplified parametrization of modified
gravity. First, more accurate modelizations would include
some of the nonlinearities due to the scalar potential at the
one-loop level [22], which modify the Euler equation in an
effective way. Second, the screening effects of the scalar
field force in dense regions would modify the spherical
collapse of an initial overdensity [20,23]. Here and as a first
step, we will not consider these issues and treat the modi-
fication of gravity at the linear level in the scalar sector of
the models. In Refs. [24–26], this corresponds to the
‘‘no-chameleon’’ regime, which should be seen as a non-
screening case here in as much as we are neglecting the
screening effects of modified gravity in dense regions. In
the Appendix, we compare our analytic treatment of the
no-chameleon case with the simulations of Oyaizu et al.
[25], which shows a very convincing agreement. Of course,
in future work, we intend to include one-loop corrections in
the scalar sector as well as screening effects in the spheri-
cal collapse. Yet, it is useful to first develop the analytic
formalism for the simpler parametrization studied in this
paper. This will serve as a basis for more complex models
that involve further ingredients [which are also more model
dependent, while the formalism developed here can be
applied to any function �ðk; aÞ in the Euler equation].

A similar approach was followed in Ref. [27] where
fðRÞ and Dvali-Gabadadze-Porratti models were consid-
ered. These cases were treated in the Jordan frame where
the effect of modified gravity appears, for instance, in the
difference between the two Newtonian potentials due to the
anisotropic stress resulting from the presence of an extra
scalar degree of freedom. In this work, the nonlinear terms
up to third order in the scalar dynamics were included,
allowing one to study the onset of the screening mecha-
nism at the perturbative level. Moreover, only the standard

one-loop contribution was taken into account in the quasi-
linear regime, and a fitting parameterized post-Friedmann
framework formula was used to analyze fully nonlinear
scales. In the present work, the nonlinearities in the scalar
sector are not taken into account. On the other hand, we go
beyond the standard one-loop perturbative expansion and
include a partial resummation of perturbation theory.
Moreover, the highly nonlinear regime is studied using
the spherical collapse and a halo model taking into account
shell coupling due to the scale dependence of modified
gravity. One of the advantages of our approach resides also
in its versatility. Indeed we work in the Einstein frame
where numerous models of modified gravity are defined
[17]. Our treatment can be applied to chameleon and fðRÞ
models and easily extended to other models like dilatons
and symmetrons. These extensions are being currently
investigated.
The paper is arranged as follows. In Sec. II, we describe

the modified-gravity models we will consider. We present
the dynamical equations in the hydrodynamical approxi-
mation in Sec. III, and we study the perturbative regime in
Sec. IV, for the density power spectrum and bispectrum.
Next, we analyze the spherical collapse in the no-screening
case in Sec. V. This allows us to obtain the probability
distribution of the density contrast on weakly nonlinear
scales in Sec. VI and the halo mass function in Sec. VII.
Finally, we use these ingredients to build a phenomeno-
logical halo model in Sec. VIII, which provides estimates
of the power spectrum and bispectrum from linear to
highly nonlinear scales. We conclude in Sec. IX.

II. MODIFIED GRAVITY

A. The perturbed equations

We consider models of modified gravity that can be
defined by a change of the perturbation equations for
cold dark matter (CDM). The modifications are usually
parametrized by two time and scale dependent functions
�ðk; aÞ and �ðk; aÞ [28]. Other approaches have also been
emphasized as in Ref. [29]. The ��� parametrization
does not follow directly from a Lagrangian formulation
where causality is automatically taken into account. In the
following, wewill use a restricted class of modified-gravity
models where the perturbed dynamics can be entirely
specified by two time dependent functions only, mðaÞ and
�ðaÞ. These two functions enter as building blocks of a
time and space dependent function �ðk; aÞ. Finally, the
knowledge of �ðk; aÞ defines �ðk; aÞ and �ðk; aÞ com-
pletely. The origin of this parametrization springs from
modified-gravity models where a scalar field alters gravity
on large scales and is screened in dense environments,
leading to no modification of gravity in the solar system
and in laboratory experiments. In turn, the dynamics of
these models can be entirely reconstructed from the time
evolution of the mass function mðaÞ of the scalar field,
and its coupling to matter particles �ðaÞ. This way of
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describing modifying gravity applies to chameleons and
fðRÞ models, symmetrons and dilatons. Here, we will
simply use the fmðaÞ; �ðaÞg parametrization as a way of
unambiguously defining modified-gravity models at the
level of the perturbations.

At the linear level, the perturbation equations of the
CDM fluid follow from the conservation of matter

� ¼ ��0; (1)

where the density contrast is � ¼ ð�m � ��mÞ= ��m and
� ¼ @ivi is the divergence of the velocity field. We denote
by a prime the time derivative in conformal time �, with
d� ¼ dt=a and aðtÞ is the scale factor. The Euler equation
involves the Newtonian potential � and reads in Fourier
space as

~� 0 þH ~� ¼ k2 ~�; (2)

where we denote Fourier-space quantities with a tilde. Here
H ¼ a0=a is the conformal expansion rate, and we are
using the Newtonian gauge with two distinct potentials �
and �,

ds2 ¼ �a2ð1þ 2�Þd�2 þ a2ð1� 2�Þdx2; (3)

where x are comoving coordinates. The gravitational dy-
namics determine the evolution of � as

� k2 ~� ¼ 4	
ðk; aÞG ��m
~�=a; (4)

which is a modification of the Poisson equation ( ��m is the
mean comoving matter density and G is Newton’s con-
stant). We also assume that there is a constitutional relation
between the two potentials,

~� ¼ �ðk; aÞ ~�; (5)

implying that

� k2 ~� ¼ 4	�ðk; aÞG ��m
~�=a; (6)

where

�ðk; aÞ ¼ �ðk; aÞ
ðk; aÞ: (7)

As a result, this implies that the density contrast obeys

~� 00 þH ~�0 � 3�m

2
H 2�ðk; aÞ~� ¼ 0; (8)

where�mðaÞ is the matter density cosmological parameter.
The growth of structures depends on the choice of the
function �ðk; aÞ. We will define a large class of such
models in the following section.

B. Parametrized modified gravity

The choice of function �ðk; aÞ seems to be unlimited.
Here we focus on the simple choice

�ðk; aÞ ¼ 1þ �ðk; aÞ (9)

and

�ðk; aÞ ¼ 1þ �ðk; aÞ
1� �ðk; aÞ ; (10)

where � measures the deviation from GR and is defined by
two time dependent functions only, mðaÞ and �ðaÞ [17]. In
modified-gravity models with a screened scalar field in
dense environments, mðaÞ is the mass of the scalar field
at the cosmological background level. Similarly�ðaÞ is the
coupling function between the scalar field and CDM par-
ticles. The space and time dependent function �ðk; aÞ is
expressed as

�ðk; aÞ ¼ 2�2ðaÞ
1þ m2ðaÞa2

k2

: (11)

This parametrization is valid for chameleons and fðRÞ
models, symmetrons and dilatons [17]. This implies in
particular that

�ðk; aÞ ¼ ð1þ 2�2Þk2 þm2a2

k2 þm2a2
(12)

and

�ðk; aÞ ¼ ð1þ 2�2Þk2 þm2a2

ð1� 2�2Þk2 þm2a2
: (13)

This is an explicit parametrization, which shows that
modified-gravity effects only appear on scales such that
k * amðaÞ, i.e., when scales are within the Compton
wavelength of the scalar field. Outside the Compton wave-
length, GR is retrieved. These expressions are valid in the
Jordan frame where Newton’s constant becomes time de-
pendent too [17]. For the models we consider here with
m � H, such a time variation can be safely neglected in
the Jordan frame. In the Einstein frame, the particle masses
vary accordingly in a negligible manner.
In the rest of this paper, we will only deal with one

particular family of models defined by the coupling
constant

� ¼ 1ffiffiffi
6

p (14)

and the mass of the scalar field, which is given by

mðaÞ ¼ m0a
�3ðnþ2Þ=2; (15)

where m0 is a free scale that will be chosen to be close to
1 Mpc�1 and n > 0. In the matter dominated epoch, these
models are equivalent to fðRÞ theories in the large curva-
ture regime [17] where the fðRÞ correction to the Einstein-
Hilbert action reads [30]

fðRÞ � �16	G�� � fR0

n

R1þn
0

Rn (16)

and �� is the effective dark energy in the late time
Universe. In the recent past of the Universe, the mass of
the large curvature models differs slightly from (15); see
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the Appendix for more details. The massm0 is given by the
useful relationship

m0 ¼ H0

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m0 þ 4��0

ðnþ 1ÞjfR0
j

s
(17)

with c=H0 � 4 Gpc. Modifications of gravity must satisfy
m0c=H0 * 103 to comply with a loosely screened
Milky Way [31]. This also corresponds to jfR0

j less than
10�5, the case jfR0j ¼ 10�4 being marginal. When m0 is
too large, effects of modified gravity on the large scale
structure occur on very nonlinear scales. In the following,
we will use values of m0 � 1 Mpc�1, which satisfy the
loose screening bound for the Milky Way and imply inter-
esting effects on the large scale structure.

We can also deduce now the two parametric functions

�ðk; aÞ ¼
4
3

k2

m2
0

as þ 1

k2

m2
0

as þ 1
(18)

and

�ðk; aÞ ¼
4
3

k2

m2
0

as þ 1

2
3

k2

m2
0

as þ 1
; (19)

where

s ¼ 3nþ 4: (20)

We will use the parametrization of �ðk; aÞ in the following
when we give numerical examples. More precisely, we will
consider the four cases ðn;m0Þ ¼ ð0; 0:1Þ, (0, 1), (1, 0.1),
and (1, 1), where m0 is given in units of Mpc�1. This
corresponds to the two scales m0 ¼ 0:1 and 1 Mpc�1 and
to the two exponents n ¼ 0 and 1. For these models we
should have n > 0 [see Eq. (16)], and the choice n ¼ 0 for
our numerical computations is only meant to exemplify the
case of small n, that is, s ! 4. The scales we consider are
of the same order as the ones used so far in N-body
simulations where jfR0j ¼ 10�4, 10�5, 10�6 and n ¼ 1.
We will give a qualitative comparison with these numerical
results; especially we will briefly analyze the difference
between the full numerical simulations, the no-chameleon
case where the chameleon effects in the dense region is
neglected, and our resummation method in the Appendix.
There we analyze the fðRÞ models where we take into
account the late time effect of the cosmological constant
on the mass function mðaÞ. A more quantitative compari-
son is left for future work.

III. PERTURBATIVE DYNAMICS

A. Hydrodynamical perturbations

As explained in the previous section and in the
Introduction, we consider models where the continuity
and the Euler equations are only modified by the nontrivial
relationship between the two Newtonian potentials.

Formally, these equations have the same structure as in
GR. When interpreted in terms of scalar field models, new
nonlinearities should appear in the Euler equation.
However, the analysis of their role is left for future work.
Then, the continuity and Euler equations read in Fourier
space as

@ ~�

@�
ðk;�Þþ ~�ðk;�Þ

¼�
Z
dk1dk2�Dðk1þk2�kÞ�ðk1;k2Þ

� ~�ðk1;�Þ~�ðk2;�Þ; (21)

@~�

@�
ðk; �Þ þH ~�ðk; �Þ þ 3�m

2
H 2½1þ �ðk; �Þ� ~�ðk; �Þ

¼ �
Z

dk1dk2�Dðk1 þ k2 � kÞ�ðk1;k2Þ
� ~�ðk1; �Þ~�ðk2; �Þ; (22)

which are the nonlinear generalizations of Eqs. (1) and (2),
with the parametrization (9). The kernels � and � are
given by

�ðk1;k2Þ ¼ ðk1 þ k2Þ � k1

k21
;

�ðk1;k2Þ ¼ jk1 þ k2j2ðk1 � k2Þ
2k21k

2
2

:

(23)

In this paper we are mostly interested in the recent
Universe on large scales; hence we do not distinguish
between the dark matter and the baryons that are treated
as usual as a single collisionless fluid. These equations are
only a first approximation of the dynamics of modified
gravity on subhorizon scales. Indeed, nonlinearities in the
potential and coupling function of the scalar field inducing
the modification of gravity imply that the full dynamics
should be described by the fluid equations for CDM parti-
cles and the Klein-Gordon equation for the scalar field.
Here we consider only the linear part of the scalar field
dynamics, which is tantamount to treating the scalar
field as massive with a linear coupling to matter. When
the mass of the scalar field is large enoughmðaÞ � H, this
allows one to integrate out the scalar dynamics and reduce
the equations of motion to the previous ones with a modi-
fied Newton constant. A priori, this procedure can be
carried out to all orders, taking into account the higher
derivatives of the scalar field potential and coupling func-
tion at the minimum of the effective potential describing
the background cosmology. Explicitly, this has been car-
ried out to the one-loop level in the scalar field perturba-
tion, resulting in an effective dynamics, once the scalar
field effects have been integrated out, with a modified
�ðk1;k2Þ [22]. The effect of this new contribution will
be taken into account in a forthcoming publication.
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It is convenient to write the two fields � and � as a two-
component vector c [32], which we define as

c � c 1

c 2

� �
� �

��= _a

� �
: (24)

Because of the factor �ðk; �Þ in the Euler equation (22) the
linear growing modeDþðk; tÞ depends on the wave number
k. Therefore, instead of usingDþ as the time coordinate we
use the logarithm of the scale factor,

�ðtÞ ¼ lnaðtÞ: (25)

This agrees with the standard choice used in most pertur-
bative studies for the simpler case of the Einstein-de Sitter
universe, where Dþ ¼ a [32–35]. Then, the equations of
motion (21) and (22) read as

@ ~c 1

@�
� ~c 2

¼
Z

dk1dk2�Dðk1 þk2 �kÞ�ðk1;k2Þ ~c 2ðk1Þ ~c 1ðk2Þ;
(26)

@ ~c 2

@�
�3

2
�mð1þ�Þ ~c 1þ

�
1

2
�3

2
w�de

�
~c 2

¼
Z
dk1dk2�Dðk1þk2�kÞ�ðk1;k2Þ ~c 2ðk1Þ ~c 2ðk2Þ;

(27)

where �deðaÞ is the dark energy cosmological parameter
and w the dark energy equation-of-state parameter. As
in Refs. [33,36,37], this can be written in a more concise
form as

O ðx; x0Þ � ~c ðx0Þ ¼ Ksðx; x1; x2Þ � ~c ðx1Þ ~c ðx2Þ; (28)

where we have introduced the coordinate x ¼ ðk; �; iÞ,
i ¼ 1, 2 is the discrete index of the two-component vector
~c , and repeated coordinates are integrated over. The
matrix O reads as

Oðx;x0Þ¼�Dðk�k0Þ�Dð���0Þ

�
@
@� �1

�3
2�mð�Þð1þ�ðk;�ÞÞ @

@�þ 1
2� 3

2w�deð�Þ

0
@

1
A

(29)

and the symmetric vertex Ks is

Ksðx; x1; x2Þ ¼ �Dðk1 þ k2 � kÞ�Dð�1 � �Þ
� �Dð�2 � �Þ�s

i;i1;i2
ðk1;k2Þ; (30)

with

�s
1;1;2ðk1;k2Þ ¼ �ðk2;k1Þ

2
;

�s
1;2;1ðk1;k2Þ ¼ �ðk1;k2Þ

2
;

�s
2;2;2ðk1;k2Þ ¼ �ðk1;k2Þ;

(31)

and zero otherwise.
The vertex Ks does not depend on cosmology, and it is

not modified. Here modified gravity only affects the linear
operator O through the term �ðk; �Þ. In the case of a
�CDM universe, that is, for � ¼ 0, the matrix O and the
linear growing modeDþðtÞ only depend on time. Then, it is
possible to remove the explicit time dependence of the
equations of motion by using the time coordinate � ¼
lnDþ and making the approximation �m=f

2 ’ 1, where
f ¼ d lnDþ=d lna. This is a good approximation that is
used in most perturbative works, and it means that terms of
order n in perturbation theory scale with time as DþðtÞn
[38]. Here we do not use this approximation because we
consider the case where the linear growing mode and the
matrixO also depend on the wave number. This also means
that in the �CDM limit, � ! 0, our approach is exact in
the sense that it does not rely on the approximation
�m=f

2 ’ 1.

B. Linear regime

1. Linear growing and decaying modes

The linear regime corresponds to the linearization of the
equations of motion (28) or (26) and (27). We have already
discussed the linear equations in Sec. II A to introduce
modified-gravity effects. Here we present a more detailed
analysis. The linear equations are O � c L ¼ 0 or

@ ~c L1

@�
� ~c L2 ¼ 0; (32)

@ ~c L2

@�
� 3

2
�mð1þ �Þ ~c L1 þ

�
1

2
� 3

2
w�de

�
~c L2 ¼ 0;

(33)

where the subscript L denotes the linear solutions.
Substituting Eq. (32) into Eq. (33) yields a second-order
equation for the linear modes Dð�Þ,

@2D

@�2
þ
�
1

2
� 3

2
w�de

�
@D

@�
� 3

2
�mð1þ �ÞD ¼ 0: (34)

As usual, we have a growing mode Dþð�Þ and a decaying
mode D�ð�Þ, and we define the initial conditions by the
growing mode Dþ, so that in the linear regime we have

~c Lðk; �Þ ¼ ~�L0ðkÞ
Dþðk; �Þ
@Dþ
@� ðk; �Þ

 !
: (35)
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In other words, we assume the decaying mode has had time
to decrease to a negligible amplitude, which is the case in
standard cosmologies. Then, the initial conditions are fully

determined by the linear density field ~�L0ðkÞ.
It is convenient to normalize the growing mode to the

scale factor at early times. Indeed, we consider modified-
gravity models parametrized by a function �ðk; aÞ such that
� ! 0 for a ! 0. Then, at early times we recover the
Einstein-de Sitter universe (the dark energy component
also becomes negligible), and we have the usual behaviors:

t ! 0: Dþ ! a ¼ e�; D� / a�3=2 ¼ e�3�=2: (36)

For numerical computations, it is convenient to introduce
the reduced growing mode gþðk; �Þ ¼ Dþðk; �Þ=a. From
Eq. (34) it obeys

@2gþ
@�2

þ
�
5

2
� 3

2
w�de

�
@gþ
@�

þ 3

2
½ð1� wÞ�de ��m��gþ ¼ 0 (37)

with the initial conditions

� ! �1: gþ ! 1;
@gþ
@�

! 0: (38)

The linear growing mode can easily be computed from
Eqs. (37) and (38). Although the linear decaying mode
D� also obeys Eq. (34), it is not convenient to use this for
numerical computations (solving forward in time is un-
stable because of the contamination by the growing mode).
It is better to use the Wronskian,

W ¼ Dþ
@D�
@�

� @Dþ
@�

D�; (39)

which in our case is still independent of k and given by

Wð�Þ ¼ �e�ð1=2Þ
R

�

0
d�0½1�3w�deð�0Þ�: (40)

This normalization of W also defines the normalization of
D�, which reads

D�ðk; �Þ ¼ �Dþðk; �Þ
Z 1

�
d�0 Wð�0Þ

Dþðk; �0Þ2 : (41)

The integrals in Eqs. (40) and (41) allow a fast computation
of D�ðk; �Þ.

We show in Figs. 1 and 2 the linear growing and decay-
ing modes as a function of time [described by the scale
factor aðtÞ]. The deviation from the GR linear mode (which
is almost identical to the lower curve in Fig. 1 and to the
upper curve in Fig. 2) increases for a higher wave number.
On these scales, the effects of modified gravity grow as we
span the parameters ðn;m0Þ ¼ ð1; 1Þ, (0, 1), (1, 0.1),
(0, 0.1). Indeed, as seen from Eqs. (18)–(20), deviations
from GR appear at lower k for small massm0 and at earlier
time for smaller n. We can see that a positive �ðk; aÞ in the
Euler equation (22) leads to a larger growing modeDþ and

a smaller decaying modeD�. This can be understood from
the fact that a positive � can also be interpreted as a larger
effective Newton constant in Eq. (6). This implies a faster
development of gravitational clustering, and both linear
modes evolve faster than in the �CDM cosmology.
These behaviors can also be seen in Figs. 3 and 4 where

we show the linear modes as a function of the wave number
at redshift z ¼ 0. Although we plot our results up to k ¼
100h Mpc�1 to allow a clear separation between different
curves, values beyond 1h Mpc�1 do not describe the true
quantitative difference between the models for observables

FIG. 1 (color online). Linear growing mode Dþðk; tÞ normal-
ized to the scale factor aðtÞ for four ðn;m0Þ models. In each case
we show the results for wave numbers k ¼ 1h Mpc�1 (lower
curve) and k ¼ 5h Mpc�1 (upper curve), as a function of aðtÞ.
These two scales are in the nonlinear regime and have only been
chosen to exemplify the type of effects obtained in modified
gravity.

FIG. 2 (color online). Linear decaying mode D�ðk; tÞ normal-
ized to aðtÞ�3=2 for four ðn;m0Þ models. In each case we show
the results for wave numbers k ¼ 1h Mpc�1 (upper curve) and
5h Mpc�1 (lower curve), as a function of aðtÞ. These two scales
are in the nonlinear regime and have only been chosen to
exemplify the type of effects obtained in modified gravity.
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such as the power spectrum because they are in the non-
linear regime, which is not described by these linear
modes. In addition, on small scales new ‘‘screening’’
mechanisms, which are not described by the equations of
motion (21) and (22), take place and lead to a convergence
to GR and to the�CDM predictions. In agreement with the
parametrization (11), the linear modes deviate from the GR
result at a wave number k�m0 (in the plots the values of
m0 are given in units of 1 Mpc�1). At high k the deviation
is larger for smaller n (then smaller s) because modifica-
tions of gravity have had more time to affect the dynamics;
see Eq. (18).

2. Linear growth rate

We plot in Fig. 5 the linear growth rate fðk; zÞ as a
function of redshift, defined as usual by

fðk; zÞ ¼ @ lnDþðk; aÞ
@ lna

: (42)

Both the linear growing mode Dþ and the linear growth
rate f depend on the wave number, and to avoid over-
crowding the figure we only plot our results for
k ¼ 1h Mpc�1 (which is in the mildly nonlinear regime
at z ¼ 0). The �CDM prediction could not be distin-
guished from the results obtained for ðn;m0Þ ¼ ð1; 1Þ and
(0, 1) (lower curves). In agreement with Fig. 1, the larger
linear growing modes Dþ obtained for ðn;m0Þ ¼ ð1; 0:1Þ
and (0, 0.1) lead to larger growth rates f. The deviation
associated with the case ðn;m0Þ ¼ ð1; 0:1Þ would be diffi-
cult to detect with future surveys such as Euclid, but the
case ðn;m0Þ ¼ ð0; 0:1Þ should give a clear signal (see
Fig. 2.5 in Ref. [39]).

3. Linear correlation and response functions

From Eq. (35) the linear two-point correlation of the
vector c L, then of the linear density and velocity fields,
reads as

CLðx1; x2Þ ¼ h ~c Lðx1Þ ~c Lðx2Þi (43)

¼ �Dðk1 þ k2ÞPL0ðk1Þ
Dþ1Dþ2 Dþ1D

0
þ2

D0þ1Dþ2 D0þ1D
0þ2

 !
; (44)

where Dþi ¼ Dþðki; �iÞ and D0þi ¼ @Dþ
@� ðki; �iÞ.

In Sec. IVB2 we will consider a perturbative resumma-
tion scheme that goes beyond standard one-loop perturba-
tion theory. It involves the response function (or
propagator) defined as the average of the functional de-
rivative

Rðx1; x2Þ ¼
�
D ~c ðx1Þ
D~
ðx2Þ

�
~
¼0

; (45)

where ~
 is a ‘‘noise’’ added to the right-hand side of
Eq. (28). Thus, Rðx1; x2Þ measures the response of the
system at time �1 to an infinitesimal perturbation at an

FIG. 3 (color online). Linear growing mode Dþðk; tÞ normal-
ized to the scale factor aðtÞ for four ðn;m0Þ models, at redshift
z ¼ 0 up to nonlinear scales.

FIG. 4 (color online). Linear decaying mode D�ðk; tÞ normal-
ized to aðtÞ�3=2 for four ðn;m0Þ models, at redshift z ¼ 0 up to
nonlinear scales.

FIG. 5 (color online). Linear growth rate fðk; zÞ ¼
@ lnDþ=@ lna for wave number k ¼ 1h Mpc�1, for four
ðn;m0Þ models.
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earlier time �2. It also describes the ‘‘propagation’’ of
infinitesimal fluctuations. By causality, it satisfies

�1 <�2: Rðx1; x2Þ ¼ 0; (46)

and it obeys the initial condition

�1 ! �þ
2 : Rðx1; x2Þ ! �Dðk1 � k2Þ�i1;i2 : (47)

In the linear regime, where the equation of motion (28)
reduces to O � c L ¼ 0, the response function obeys

�1 >�2: O � RL ¼ 0: (48)

Using the initial condition (47), this gives

RLðx1; x2Þ

¼ �ð�1 � �2Þ�Dðk1 � k2Þ
D0

þ2D�2 �Dþ2D
0
�2

� D0þ2D�1 �D0�2Dþ1 D�2Dþ1 �Dþ2D�1

D0
þ2D

0
�1 �D0

�2D
0
þ1 D�2D

0
þ1 �Dþ2D

0
�1

 !
;

(49)

which involves both the linear growing and decaying
modes Dþ and D�. Here �ð�1 � �2Þ is the Heaviside
function, which ensures causality.

IV. PERTURBATIVE REGIME

The equation of motion (28) is nonlinear, and it has no
explicit general solution. Therefore, it is usually solved by
perturbative methods, which are sufficient on large scales
and at early times where the density and velocity fluctua-
tions are small. Within our parametrization, modified grav-
ity only changes the linear operator O of Eq. (29), through
the factor �ðk; �Þ. Thus, we keep the same quadratic non-
linearity as in GR, with the same vertex Ks of Eq. (30).
Therefore, we can use the same perturbative schemes as in
standard cosmologies.

We first describe the standard perturbative approach in
Sec. IVA and next a more accurate resummation scheme in
Sec. IVB 2. Here we only go up to ‘‘one-loop order’’: our
standard perturbative prediction only includes the linear
and one-loop (i.e., next-to-leading) terms, while our re-
summed prediction only adds a partial resummation of
higher-order terms.

We follow the approach described in detail in Ref. [40]
(see also Refs. [33,36]).

A. Standard expansion

Since the equation of motion (28) is quadratic in ~c , it
can be solved through a perturbative expansion in powers

of the linear solution ~c L, as

~c ðxÞ ¼ X1
n¼1

~c ðnÞðxÞ; with ~c ðnÞ / ð ~c LÞn: (50)

Substituting this expansion into Eq. (28) gives the
recursion

O � ~c ðnÞ ¼ Ksðx; x1; x2Þ �
Xn�1

‘¼1

~c ð‘Þðx1Þ ~c ðn�‘Þðx2Þ; (51)

which allows one to compute terms of increasing order,

starting with ~c ð1Þ ¼ ~c L. One usually writes the expansion
(50) in terms of the density and velocity fields, as [38,41]

~�ðk; �Þ ¼ X1
n¼1

Z
dk1 . . .kn�Dðk1 þ . . .þ kn � kÞ

� Fs
nðk1; . . . ;kn;�Þ ~�L0ðk1Þ . . . ~�L0ðknÞ; (52)

and

~�ðk; �Þ ¼ X1
n¼1

Z
dk1 . . .kn�Dðk1 þ . . .þ kn � kÞ

� Es
nðk1; . . . ;kn;�Þ~�L0ðk1Þ . . . ~�L0ðknÞ; (53)

where ~�L0 is the linear density field at some chosen
time, as in Eq. (35). The symmetrized kernels Fs

n and
Es
n are obtained from the recursion (51). In GR the

time dependence of these kernels factorizes as
Fs
n / DnþFs

nðk1; . . . ;knÞ and Es
n / �aðd lnDþ=dtÞDnþ�

Es
nðk1; . . . ;knÞ upon using the approximation �m=f

2 ’ 1
[38]. In our case, where the linear growing mode Dþðk; �Þ
depends on the wave number, there is no such factorization
and one must solve for the kernels Fs

nðk1; . . . ;kn;�Þ and
Es
nðk1; . . . ;kn;�Þ for each time � of interest.
Finally, from the expansion (50) one obtains the two-

point correlation as

Cðx1; x2Þ ¼ h ~c ðx1Þ ~c ðx2Þi (54)

¼h ~c ð1Þ ~c ð1Þiþh ~c ð3Þ ~c ð1Þiþh ~c ð1Þ ~c ð3Þiþh ~c ð2Þ ~c ð2Þiþ��� ;
(55)

where we can use Wick’s theorem to perform the average

over the initial conditions ~c L0. In particular, up to one-
loop order the density power spectrum reads as

Pðk; �Þ ¼ Ptreeðk; �Þ þ P1loopðk; �Þ; (56)

where Ptree, associated with ‘‘tree diagrams,’’ also corre-
sponds to the linear power spectrum,

Ptreeðk; �Þ ¼ PLðk; �Þ ¼ Dþðk; �Þ2PL0ðkÞ; (57)

while P1loop, associated with ‘‘one-loop’’ diagrams, is also
given by

P1loopðk; �Þ ¼ PðbÞðk; �Þ þ PðcÞðk; �Þ; (58)

using the notations of Valageas [40], with (see also
Refs. [33,38,41]),
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PðbÞðk; �Þ ¼ 6PL0ðkÞ
Z

dk0PL0ðk0ÞFs
3ðk0;�k0;k;�Þ;

(59)

PðcÞðk;�Þ¼2
Z
dk0PL0ðk0ÞPL0ðjk�k0jÞFs

2ðk0;k�k0;�Þ2:
(60)

B. Path-integral formulation

1. General formulation

The standard perturbative approach recalled in Sec. IVA
computes the density power spectrum, and more generally
many-body correlation functions, by first deriving an ex-

plicit expression for the nonlinear field ~c in terms of the

initial field ~c L, as in Eqs. (50), (52), and (53), up to some
order, and second taking the Gaussian average over the
initial conditions, as in Eq. (55).

It is possible to work in the reverse order, by first taking
the average over the initial conditions and second writing
an expansion in terms of the many-body correlations. A
well-known procedure in the context of plasma physics and
the study of the Vlasov equation is to use the Bogoliubov-
Born-Green-Kirkwood-Yvon hierarchy, which gives a re-
cursion between successive correlation functions that may
be truncated at some order [42]. A similar approach has
also been used in Ref. [35] to study the formation of large-
scale structures in the single-flow perturbative regime, as in
Eqs. (21) and (22). As described in Refs. [33,36,40], an
alternative approach, also used in field theory and statisti-
cal physics [43,44], is based on a path-integral formulation.
There, it is shown that the statistical properties of the

nonlinear field ~c , which are fully defined by the equation
of motion (28) and the Gaussian initial conditions (35), can
be obtained from the generating functional

Z½~j� ¼ he~j� ~c i ¼
Z

D ~cD~�e
~j� ~c�S½ ~c ;~��; (61)

where ~�ðxÞ is a Lagrange multiplier and the action S½ ~c ; ~��
reads as

S½ ~c ; ~�� ¼ ~� � ðO � ~c � Ks � ~c ~c Þ � 1

2
~� � �I � ~�: (62)

Here �I is the two-point correlation of the initial condi-
tions, taken at a time �I. This matrix disappears in the final
equations when we take the limit �I ! �1. Whereas

moments of the field ~c generate the many-body correla-
tions of the density and velocity fields, such as the density
power spectrum PðkÞ, moments that involve the auxiliary

field ~� generate the response functions [36,44]. In particu-
lar, we have

h~�i¼0; h~� ~�i¼0; h ~c ðx1Þ~�ðx2Þi¼Rðx1;x2Þ: (63)

As explained in Refs. [33,40], the standard perturbative
results of Sec. IVA can be recovered from the generating
functional (61). Indeed, one can see at once from Eq. (51)
that the expansion (50) is also an expansion over powers

of the vertex Ks, with ~c ðnÞ / Kn�1
s and Fs

n / Kn�1
s .

Therefore, the standard expansion in powers of ~�L0 for
~c , which leads to the usual expansion in powers of PL0 for
averaged quantities, such as the density power spectrum
(56), is identical to an expansion in Ks. Then, this expan-
sion can be directly obtained from Eq. (61) by expanding in

the cubic part ~� � Ks � ~c ~c of the action (62). This gives an
alternative expression of the expansion (55) in terms of
Feynman’s diagrams [45].

2. Direct steepest-descent expansion

One interest of the expression (61) is that it can also
serve as the basis of other approximation schemes. Here we
focus on the ‘‘direct steepest-descent’’ method described in
Refs. [33,40], which is compared with numerical simula-
tions for the density power spectrum and bispectrum in
Refs. [37,46]. In this approach, instead of expanding the
cubic part of the action to write Eq. (61) as a series of
Gaussian integrals, one expands around a saddle point
(which depends on ~j) as in a semiclassical or ‘‘large-N’’
expansion [47,48]. This yields the Schwinger-Dyson
equations

O � C ¼ � � Cþ	 � RT; (64)

O � R ¼ �D þ � � R; (65)

for the nonlinear two-point correlation C and response R,
where � and 	 are ‘‘self-energy’’ terms (there are two
‘‘correlations,’’ C and R, and two self-energies, � and 	,
because there are two fields, the physical field c and the
auxiliary field �).
These equations are exact and define � and 	. The

direct steepest-descent or large-N expansion scheme cor-
responds to writing the self-energy terms� and	 as series
in powers of the linear correlation CL and response RL.
Then, the order of the approximation is set by the order of
the truncation chosen for these expansions of � and 	.
Because the truncation is made on � and	, rather than on
C and R, this automatically yields a partial resummation of
higher-order terms [e.g., formally R would be given by the
highly nonlinear expression ðO� �Þ�1 whose expansion
in PL0 contains terms of all orders as soon as � contains at
least one power of PL0]. As described in Refs. [33,40,47],
the result obtained for the correlation C at a given order
(e.g., at one-loop order as in this paper) agrees with the
result obtained by the standard perturbative expansion at
the same order and only differs by additional higher-order
terms (which are only partially resummed).
Then, this direct steepest-descent scheme gives at the

one-loop order
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�1loopðx; yÞ ¼ 4Ksðx; x1; x2ÞKsðz; y; z2ÞRLðx1; zÞCLðx2; z2Þ;
(66)

	1loopðx; yÞ ¼ 2Ksðx; x1; x2ÞKsðy; y1; y2ÞCLðx1; y1ÞCLðx2; y2Þ:
(67)

This corresponds to a one-loop diagram [33,37,40], and at
this order � / PL0 while 	 / P2

L0. Substituting into

Eqs. (64) and (65) gives the nonlinear correlation complete
up to order P2

L0, as in (56), with the addition of a partial

resummation of higher-order terms. Equation (64) can be
solved as

Cðx1; x2Þ ¼ R� CLð�IÞ � RT þ R �	 � RT; (68)

where the first product does not contain any integration
over time, and we take �I ! �1. Thus, to compute
the density power spectrum up to one-loop order within
the direct steepest-descent resummation, we first com-
pute the linear correlation CL and RL, given by Eqs. (44)
and (49). This provides the self-energies � and 	 from
Eqs. (66) and (67). Next, we compute R by solving the
integro-differential equation (65) and C from the explicit
expression (68).

The formalism used for the �CDM cosmology still
applies to our modelization of modified gravity.
However, the numerical computation is somewhat heavier.
Indeed, as described in Refs. [33,37], in the �CDM case,
the approximation�m=f

2 ’ 1 allows us to explicitly factor
the time dependence of the linear correlation and response
functions, and of the self-energies. Here this is no longer
possible, because of the arbitrary function �ðk; �Þ in the
linear operator (29). This makes the numerical implemen-
tation slightly more complex, as we can no longer use these
factorizations to simplify the algorithms and we must keep
track of the complex dependence on time and wave number
of all linear modes and two-point functions. However, the
method remains exactly the same, as described above, and
it is still possible to devise efficient and reasonably fast
numerical codes.

3. Recovering the standard one-loop results

Since we compute the self-energies� and	 for the one-
loop steepest-descent scheme, we can also use them to
recover the standard perturbative expansion instead of
using the standard procedure recalled in Sec. IVA.
Indeed, the solution of Eq. (65) can be written as the
expansion over powers of �,

R ¼ RL þ RL �� � R (69)

¼ RL þ RL � � � RL þ RL � � � RL �� � RL þ � � � :
(70)

Therefore, up to order PL0 we can write

R ¼ Rð0Þ þ Rð1Þ; (71)

with

Rð0Þ ¼ RL; Rð1Þ ¼ RL � �1loop � RL: (72)

Then, from (68) the two-point correlation reads up to order
P2
L0 as

C ¼ Cð1Þ þ Cð2Þ; (73)

with

Cð1Þ ¼ RL � CLð�IÞ � RT
L ¼ CL; (74)

and

Cð2Þ ¼ Rð1Þ � CLð�IÞ � RT
L þ RL � CLð�IÞ � Rð1ÞT

þ RL �	1loop � RT
L: (75)

This expression is equivalent to Eqs. (56)–(60) for the
density power spectrum [40]. Therefore, since we have
already computed � and 	, we can compute the standard
one-loop power spectrum through Eqs. (74) and (75), in-
stead of using Eqs. (59) and (60). This avoids explicitly
computing the n-point kernels Fs

n of the standard expan-
sion (52).
A similar procedure, based on the closure approximation

[34], which is equivalent (at one-loop order) to the ‘‘2PI’’
effective action method of Valageas [33], was used in
Ref. [27] to obtain the standard perturbative predictions
for several modified-gravity models. However, while
Ref. [27] included quadratic and cubic nonlinearities in
the scalar field, associated with the onset of the chameleon
mechanism, in this paper we only consider modifications to
the Poisson equation at the linear level. On the other hand,
within our simpler formulation of modified gravity we go
beyond the standard perturbative approach by computing
the ‘‘steepest-descent’’ resummation presented in the pre-
vious section.

4. Alternative resummations

Finally, the path integral (61) can also lead to alternative
resummation schemes, such as the ‘‘1PI’’ and ‘‘2PI’’ ef-
fective action methods described in Ref. [47]. The 2PI
effective action still leads to the Schwinger-Dyson equa-
tions (64) and (65), but the self-energy terms are given in
terms of the nonlinear two-point functions C and R, instead
of the expansion over CL and RL used in the direct
steepest-descent scheme. At one-loop order, this amounts
to replacing CL and RL by C and R in Eqs. (66) and (67).
However, already for the �CDM case this makes the
computation more complex since Eqs. (64) and (65) be-
come coupled nonlinear equations over C and R [33,34].
Then, one needs to solve for the four quantities C, R, �,
and 	 by simultaneously moving forward with time. This
numerical computation was performed in Ref. [33], and it
appeared that it did not provide a significant improvement
over the simpler direct steepest-descent scheme (although
a more precise comparison with numerical simulations
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may remain of interest). Therefore, we do not investigate
this scheme further.

The direct steepest-descent method of Sec. IVB2 is not
necessarily the most accurate resummation scheme. In
particular, it yields a response function that does not decay
at high k or late times, but shows increasingly fast oscil-
lations with an amplitude that follows the linear response
function. This is not realistic, since one expects a
Gaussian-like decay for Eulerian response functions, as
can be seen from theoretical arguments and numerical
simulations [32,36,49–51]. However, the fast oscillations
still provide an effective damping in a weak sense (that is,
when the response function is integrated over). Alternative
resummation schemes have also been studied in the litera-
ture, such as the ‘‘renormalized perturbation theory’’
[32,49] and several related approaches [52–54], which
rely on a response function that interpolates between its
low-k standard perturbative expression and a resummed
high-k limit, methods based on path-integral formulations
[55], on closures of the hierarchies satisfied by the corre-
lation functions [34,35], or on Lagrangian-space formula-
tions [56].

The reason we consider the direct steepest-descent
method here is that it provides a simple and efficient
method, which has already been shown to be reasonably
accurate for �CDM cosmology [37,46]. An advantage
with respect to some alternative approaches, which can
show similar levels of accuracy, is that it is fully systematic
and contains no free parameter or interpolation procedure.
Therefore, the generalization from the �CDM cosmology
to modified-gravity scenarios is straightforward, as de-
scribed in Sec. IVB 2, and we can expect a similar
accuracy.

C. Bispectrum

Because the gravitational dynamics is nonlinear, the
density field becomes increasingly non-Gaussian in the
course of time. The most popular measure of these non-
Gaussianities, which can be used to break degeneracies
between cosmological parameters or to constrain primor-
dial non-Gaussianities, is the three-point correlation func-
tion [57]. In Fourier space this is the so-called bispectrum,

h~�ðk1Þ ~�ðk2Þ~�ðk3Þi ¼ �Dðk1 þ k2 þ k3ÞBðk1; k2; k3Þ:
(76)

This can be computed by the standard perturbative ap-
proach [38]. Substituting the expansion (52) yields the
standard tree-order result

Btreeðk1; k2; k3Þ ¼ 2Fs
2ðk2;k3;�ÞPL0ðk2ÞPL0ðk3Þ þ 2 cyc:;

(77)

where ‘‘2 cyc.’’ stands for two terms obtained by circular
permutations over fk1; k2; k3g.

Within the path-integral formalism of Sec. IVB1, ex-
panding Eq. (61) in powers of Ks, that is, in the cubic part

of the action S, yields for the three-point correlation at tree
order [40]

Ctree
3 ¼ RL � Ks � CLCL þ 5 perm: (78)

This gives for the equal-time density bispectrum:

Btreeðk1; k2; k3;�Þ
¼ 2

Z �

�1
d�0 X

i0
1
;i0
2
;i0
3

RL;1;i0
1
ðk1;�;�0ÞCL;1;i0

2
ðk2;�;�0Þ

� CL;1;i03ðk3;�;�0Þ�s
i01;i2;i3

ðk2;k3Þ þ 2 cyc:; (79)

which is again equivalent to Eq. (77). In practice, instead of
Eq. (77) we use Eq. (79) to compute the standard tree-order
bispectrum. The effects of the modified-gravity function
�ðk; aÞ are included through the linear correlation and
response CL and RL, which depend on the modified linear
modesDþðk; aÞ andD�ðk; aÞ as described in Sec. III. As in
Sec. IVB 3, this allows us to obtain the ‘‘standard’’ pertur-
bative predictions without computing the kernels Fs

n of
Eq. (52).
At one-loop order the expressions involve more terms.

They can be found in Ref. [40] (for the�CDM cosmology)
for the standard approach as in (77), the equivalent
path-integral formulation as in (79), and the direct
steepest-descent method used in Sec. IVB 2 for the power
spectrum. Contrary to the power spectrum, a detailed
comparison with numerical simulations [46] shows that
at one-loop order the steepest-descent resummation for
the bispectrum is not more accurate than the standard
result. Therefore, we do not investigate this resummation
for the bispectrum here.
Because the linear modes depend on wave number,

computing the one-loop order terms is significantly more
difficult than in the �CDM case, even within standard
perturbation theory. Using the scalings Btree / D4þP2

L0

and B1loop / D6þP3
L0, we consider the following approxi-

mation:

B1loop ’
�

Btree

Btree
�CDM

�
3=2

B
1loop
�CDM: (80)

Thus, we simply rescale the one-loop correction obtained

in the �CDM scenario by the prefactor ðBtree=Btree
�CDMÞ3=2.

This would be exact if the ratio of the linear modes
were constant. We choose this prefactor, rather than
ðDþðkÞ=Dþ;�CDMðkÞÞ6, because it includes an integration

over the past history and over the appropriate range of
wave numbers of the linear modes. This should be suffi-
cient for our purpose, which is simply to estimate the
magnitude of these one-loop corrections.
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D. Numerical results

1. Setup

For our numerical computations, we adopt in this paper a
flat�CDM reference model with cosmological parameters
ð�m;�b; h; �8; nsÞ ¼
ð0:279; 0:046035; 0:701; 0:817; 0:96Þ, which is consistent
with WMAP five-year observations [58]. We use a publicly
available code, CAMB [59], to compute the linear power
spectrum including baryon acoustic oscillations. This is the
same cosmology as used in Refs. [37,46], which allows a
clear comparison with their �CDM results. Then, the four
models that we consider in this paper, defined by the
parameters ðn;m0Þ ¼ ð1; 0:1Þ, (1, 1), (0, 0.1), and (0, 1),
as described in Sec. II B, are defined by the same initial
conditions as this reference�CDMmodel. This means that
they all coincide at early times and on large scales, because
�ðk; aÞ ! 0 for a ! 0 or k ! 0, but their linear variance
�8 today on scale 8h�1 Mpc slightly differs.

For later use, let us note �Lð�Þðx; �Þ, the linear density

field within the reference �CDM cosmology,

~� Lð�Þðk; �Þ ¼ Dþð�Þð�Þ~�L0ðkÞ; (81)

where Dþð�Þ is the �CDM linear growing mode, which

does not depend on wave number. Then, the actual linear
density field can be written in terms of this reference
�CDM linear field as

~� Lðk; �Þ ¼ Dþðk; �Þ
Dþð�Þð�Þ

~�Lð�Þðk; �Þ: (82)

This is merely a rewriting of the initial conditions, which
we choose to express at any time � through the reference
�CDM growing mode.

2. Power spectrum

We show our results for the matter density power spec-
trum PðkÞ on baryon acoustic oscillation (BAO [60]) scales
in Fig. 6. To clearly distinguish the different curves and the
baryon acoustic oscillations, we normalize PðkÞ by a
smooth �CDM linear power spectrum PLsðkÞ without
baryon oscillations, from Ref. [61]. Our nonlinear predic-
tion includes both the perturbative ‘‘two-halo’’ part P2HðkÞ,
based on the steepest-descent resummation (68), and the
nonperturbative ‘‘one-halo’’ part P1HðkÞ, as described in
Sec. VIII and Eq. (124) below. However, on these scales
the power spectrum is dominated by the perturbative con-
tributions, and the full nonlinear result is very close to the
resummed perturbative part (68).
As explained above, all our results converge at low k to

the same reference �CDM power, Pð�ÞðkÞ, because of our
common choice of initial conditions. Moreover, on the
scales shown in Fig. 6, this�CDM power spectrum cannot
be distinguished from the (n ¼ 0, m0 ¼ 1) result, where
the effects of modified gravity are the weakest amongst the
models that we consider here. As in the�CDM cosmology,
the nonlinear evolution amplifies the power spectrum but
erases most of the oscillations. The difference between the
various modified-gravity models and GR is rather small,
and it is not amplified by the nonlinear evolution. We
clearly see that to probe these deviations it is necessary
to go beyond linear theory and to include at least one-loop
corrections. Moreover, the comparison with the upper
dotted curve, which shows the standard one-loop result
for the case (n ¼ 0, m0 ¼ 1) (which cannot be distin-
guished from GR), shows that these modified-gravity ef-
fects are at the order of or smaller than the accuracy of the
standard one-loop prediction. This means that to probe
modified gravity on these scales it is necessary to use
more accurate analytical formalisms, such as the resum-
mation scheme described in Sec. IVB2 and used in this

FIG. 6 (color online). Ratio of the power spectrum PðkÞ to a smooth �CDM linear power spectrum PLsðkÞ without baryonic
oscillations, from Ref. [61]. We show our results for three models with ðn;m0Þ ¼ ð1; 0:1Þ (middle red lines), (0, 0.1) (upper black
lines), and (0, 1) (lower blue lines). In each case, we plot both the linear power (dashed line) and our nonlinear result (solid line) from
Eq. (124), which is based on Eq. (68). For comparison, we also plot the standard one-loop result from Eq. (73) for the case (0, 1) (upper
blue dotted line).

PHILIPPE BRAX AND PATRICK VALAGEAS PHYSICAL REVIEW D 86, 063512 (2012)

063512-12



paper, or to include higher-order corrections within the
standard perturbative approach (but this latter option may
not be very efficient because the standard perturbative
expansion does not converge very well). This provides
another motivation for the development of efficient pertur-
bative schemes, which resum high-order contributions.

3. Bispectrum

We show our results for the matter density bispectrum on
BAO scales in Fig. 7. Here we only consider equilateral
configurations, BeqðkÞ ¼ Bðk; k; kÞ, and we normalize the

bispectrum by 3PLsðkÞ2. Because PLsðkÞ is not the actual
power spectrum but a smooth �CDM linear power spec-
trum without baryon acoustic oscillations, this ratio is
not identical to the usual ‘‘reduced bispectrum’’ Qeq ¼
Beq=ð3P2Þ. However, this allows us to clearly distinguish

the baryon acoustic oscillations of the tree-level bispec-
trum (77)–(79). Again, on these scales the �CDM bispec-
trum cannot be distinguished from the (n ¼ 0, m0 ¼ 1)
result.

As for the power spectrum shown in Fig. 6, the nonlinear
evolution amplifies the bispectrum but erases most of the
oscillations. The difference between the various models
and GR is again rather small, and it is necessary to go
beyond the tree-level prediction. Unfortunately, the com-
parison between our approximate one-loop prediction and
our full nonlinear model, which includes the nonperturba-
tive ‘‘two-halo’’ and ‘‘one-halo’’ contributions as de-
scribed in Sec. VIII below, suggests that one-loop terms
are not sufficient to obtain reliable measures of such
modified-gravity effects and that nonperturbative contribu-
tions cannot be neglected. Since the theoretical accuracy of
such nonperturbative terms is lower than the one of per-
turbative terms (which can be computed in a systematic
and rigorous fashion), this means that the bispectrum is not

a very efficient probe of these modified-gravity models
(unless one can run dedicated N-body simulations for
each modified-gravity scenario). Thus, the power spectrum
studied in Sec. IVD2 should provide a better tool, as the
accuracy of its theoretical predictions is better controlled.

V. SPHERICAL COLLAPSE

A. General case

To go beyond low-order perturbation theory, the main
analytical tool that can provide exact nonlinear results is
the study of the spherical collapse. This allows an explicit
computation of the nonlinear dynamics (restricted to
spherical symmetry) that can also serve as a basis to
evaluate several quantities of cosmological interest, such
as the halo mass functions and the probability distributions
of the density contrast. We describe in this section the
equations that govern the spherical dynamics and give a
simple approximation for typical fluctuations.
Following the usual approach for �CDM or quintes-

sence cosmologies [62,63], the physical radius rðtÞ, which
contains a constant mass M until shell crossing, evolves as

€r ¼ � @�

@r
¼ � 1

a

@�

@x
; with � ¼ �N þ��; (83)

where � is the total potential seen by massive particles.
Here we note with a dot derivatives with respect to time t,
physical coordinates by r, and comoving coordinates by x.
Within our framework, defined by Eqs. (21) and (22), the
potential � contains two parts, the usual Newtonian po-
tential �N ¼ �N, associated with GR, and the effective
component��, associated with the modification of gravity.
In physical coordinates, we have

r2
r�N ¼ 4	Gð�ðphysÞ

m þ ð1þ 3wÞ ��ðphysÞ
de Þ; (84)

FIG. 7 (color online). Ratio of the equilateral bispectrum, BeqðkÞ ¼ Bðk; k; kÞ, to the product 3PLsðkÞ2, where PLsðkÞ is a smooth
�CDM linear power spectrum without baryonic oscillations, from Ref. [61]. As in Fig. 6, we show our results for three models with
ðn;m0Þ ¼ ð1; 0:1Þ (middle red lines), (0, 0.1) (upper black lines), and (0, 1) (lower blue lines). In each case, we plot the tree-level
bispectrum (dashed line) from Eq. (79), the one-loop bispectrum (dash-dotted line) from Eq. (80), and our nonlinear result (solid line)
from Eq. (128).
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where we note with a superscript ‘‘(phys.)’’ densities in
physical coordinates and we again assumed a uniform dark
energy component. Using Gauss’s theorem, this yields the
usual part ð€rÞN of the acceleration of the shell at radius r
[62,63],

ð €rÞN ¼ � 4	G
3

r½�ðphysÞ
m ð<rÞ þ ð1þ 3wÞ ��ðphysÞ

de �; (85)

where �
ðphysÞ
m ð<rÞ is the mean physical density within

radius r,

�ðphysÞ
m ð<rÞ ¼ 3M

4	r3
: (86)

In comoving coordinates (with the background Hubble
flow), the effective component �� only depends on the
matter density fluctuations, ��m ¼ �m � ��m, through

~� � ¼ �ðk; tÞ ~��N with r2ð��NÞ ¼ 4	G��m=a;

(87)

and then

~� �ðk; tÞ ¼ � 4	G ��m

ak2
�ðk; tÞ~�ðk; tÞ: (88)

This is a linear approximation in the spherical-collapse
dynamics, which is only valid as long as the screening
effects of modified gravity are not taken into account.
When the screening effects appear, the scalar force leading
to the extra contribution in Newton’s equation is highly
suppressed and the spherical over density collapses as in
GR. These effects can be modeled in the top-hat approxi-
mation as in Ref. [20] or using the exclusion set theory
[23]. Taking into account these effects is left for future
work.

Going back to configuration space, this yields the addi-
tional part ð €rÞ� due to this ‘‘fifth force,’’

ð€rÞ� ¼ � 4	G
3

r ��
ðphysÞ
m

Z 1

0
dk4	k2�ðkÞ~�ðkÞ ~WðkxÞ; (89)

where the integral is written in terms of comoving quanti-
ties and x ¼ r=a. Here we introduced the Fourier trans-
form of the 3D top hat of radius x and volume V,

~WðkxÞ ¼
Z
V

dx0

V
eik�x0 ¼ 3

sinðkxÞ � kx cosðkxÞ
ðkxÞ3 : (90)

If � does not depend on the wave number, we can check
that Eq. (89) gives

ð €rÞ� ¼ ��
4	G
3

r ��
ðphysÞ
m �ð<xÞ (91)

¼ ��
4	G
3

r½�ðphysÞ
m ð<rÞ � ��ðphysÞ

m �: (92)

In agreement with Eq. (85), a uniform �ðtÞ gives rise to a
fifth force that is proportional to the Newtonian gravitational

force where we subtract the background part (associated
with the mean density of the Universe).
Collecting Eqs. (85) and (89) we obtain the equation of

motion

€r ¼ � 4	G
3

r

�
�
ðphysÞ
m ð<rÞ þ ð1þ 3wÞ ��ðphysÞ

de

þ ��ðphysÞ
m

Z 1

0
dk4	k2�ðkÞ~�ðkÞ ~WðkxÞ

�
: (93)

As in Refs. [62,63], it is convenient to introduce the
normalized radius yðtÞ defined as

yðtÞ ¼ rðtÞ
aðtÞq with q ¼

�
3M

4	 ��m

�
1=3

; yðt ¼ 0Þ ¼ 1:

(94)

Thus, q is the Lagrangian comoving coordinate of the shell
rðtÞ, that is, the comoving radius that would enclose the
same massM in a uniform universe with the same cosmol-
ogy. This also implies

�
ðphysÞ
m ð<rÞ
��ðphysÞ
m

¼ y�3; �r � �ð<rÞ ¼ y�3 � 1: (95)

Choosing again � ¼ lnaðtÞ as the time coordinate, as in the
previous sections, Eq. (93) reads as

@2y

@�2
þ
�
1

2
� 3

2
w�de

�
@y

@�
þ�m

2
ðy�3 � 1Þy

¼ ��m

2
y
Z 1

0
dk4	k2�ðkÞ~�ðkÞ ~WðkxÞ: (96)

The left-hand side is the usual result in �CDM cosmology
[62,63], and the right-hand side is the new term associated
with the ‘‘fifth force.’’ If � does not depend on the wave
number, the integral reduces to �ðaÞ�ð<xÞ ¼ �ðy�3 � 1Þ,
as in the usual third term of the left-hand side. Then, the
motion of each mass shell, described by yðM;�Þ or
rðM;�Þ, is independent of the other shells before shell
crossing. If �ðk; aÞ depends on the wave number, the in-
tegral does not reduce to a simple function of y at the same
mass scale, and it explicitly depends on the whole density

profile, �ðxÞ or ~�ðkÞ in Fourier space, of the matter pertur-
bation. Then, the dynamics of all mass shells are coupled at
all times, even before shell crossing, and we must solve for
the evolution of the full density profile with time, yðM;�Þ,
as a function of M and �.
In previous works [21,24], the spherical-collapse dy-

namics was often approximated through an effective re-
scaling of Newton’s constant [this corresponds to a
function �ðaÞ that does not depend on k]. This allows one
to recover the usual form of the equations of motion where
all shells are decoupled before shell crossing. By varying
this effective Newton constant [24], or making it a dynami-
cal variable that depends on the environment [21], one may
capture screening effects. Here we do not include such
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screening effects, but Eq. (96) takes into account the
dependence of the dynamics on the density profile. This
allows us to include the effects associated with the depen-
dence on the wave number of �ðk; aÞ. As we will check in
Fig. 8 below, this already yields a dependence on the mass
of the linear density threshold �cðMÞ associated with halo
formation.

Thus, the modified-gravity term makes the equation of
motion significantly more complex, because it is no longer
local and it turns the usual ordinary differential equation
into a partial integro-differential equation.

B. Approximation for typical profiles

Let us assume we are interested in the dynamics of a
single mass shellM. Then, we wish to obtain from Eq. (96)
a closed approximate equation for yMð�Þ � yðM;�Þ,
which does not involve the other shells M0. The simplest
method is to use an ansatz for the density profile �ðx; �Þ, or
~�ðk; �Þ, that is parametrized by yMð�Þ. This will simplify
numerical computations because it will transform Eq. (96)
into a single ordinary differential equation. Then, let us
recall that the mean conditional profile of the linear density
contrast �LðxÞ, under the constraint that the mean density
contrast within a comoving radius R is equal to �LR, reads
as [64]

�LðxÞ ¼ �LR

�2
R

Z
V

dx0

V
C�L�L

ðx;x0Þ; (97)

where C�L�L
is the matter density linear correlation,

C�L�L
ðx1;x2Þ ¼ h�Lðx1Þ�Lðx2Þi

¼
Z 1

0
dk4	k2PLðkÞ sinðkjx2 � x1jÞ

kjx2 � x1j ; (98)

and �2
R is the variance of the linear density contrast at

scale R,

�2
R ¼ h�2

LRi ¼
Z 1

0
dk4	k2PLðkÞ ~WðkRÞ2: (99)

This only relies on the assumption that the linear density
field is Gaussian. Then, we consider the approximation
where the density profile used in Eq. (96) is set to

�ðxÞ ¼ �xM

�2
xM

Z
VM

dx0

VM

C�L�L
ðx;x0Þ; (100)

which reads in Fourier space as

~�ðkÞ ¼ y�3
M � 1

�2
xM

PLðkÞ ~WðkxMÞ; (101)

where we used �xM ¼ y�3
M � 1. Here xMð�Þ ¼

rMð�Þ=að�Þ ¼ yMð�ÞqM is the comoving radius of the
shell M and it follows its spherical dynamics.
Substituting the ansatz (101) into Eq. (96) gives the
equation of motion

d2yM
d�2

þ
�
1

2
� 3

2
w�de

�
dyM
d�

þ�m

2
ðy�3

M � 1ÞyM

�
�
1þ 1

�2
xM

Z 1

0
dk4	k2�ðkÞPLðkÞ ~WðkxMÞ2

�
¼ 0:

(102)

Equation (102) is exact if � does not depend on the
wave number, in which case the expression in the paren-
thesis is equal to ð1þ �ð�ÞÞ and we recover the behavior of
Eq. (92). It is also valid at order one over �L and �when the
initial perturbation has the linear profile (97) at early time.
Thus, it agrees with the typical profile (97), under the
constraint �LxM at mass shell M, in the linear regime, at

zeroth order over �. It is no longer exact at higher orders
over �L because the nonlinear dynamics changes the shape
of the density profile in a complex fashion. It is not valid at
order �, even in the linear regime, because the mean profile
(97) is not a solution of the linear dynamics, as the linear
growing mode Dþðk; aÞ depends on the wave number. In
our case, where � 	 1, this is a negligible effect, and we
would actually obtain similar results by using in Eqs. (100)
and (101) the reference �CDM linear correlation C�L�Lð�Þ
and power PLð�Þ.

C. Spherical-collapse mapping

In the linear regime we can check that Eq. (96) agrees
with Eq. (34) for the linear growing mode. Indeed, using
yL ¼ 1� �Lq=3, �Lq ¼ R

V dx�LðxÞ=V, and x ¼ q at low-

est order, Eq. (96) becomes at linear order

Z
V

dx

V

Z
dkeik�x

�
@2 ~�L

@�2
ðkÞ þ

�
1

2
� 3

2
w�de

�
@~�L

@�
ðkÞ

� 3�m

2
ð1þ �ðkÞÞ ~�LðkÞ

	
¼ 0: (103)

FIG. 8 (color online). Reference linear density contrast
�cð�Þ ¼ F�1

q ð200Þ associated with a nonlinear density threshold

of 200 at redshift z ¼ 0. We show our results as a function of the
halo massM for four ðn;m0Þmodels, for typical initial profiles of
the form (104). In each case, the upper curve is the approximate
result from Eq. (102) and the lower curve the exact result from
Eq. (96).
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This agrees with Eq. (34), and we recover the linear

solution ~�Lðk; �Þ ¼ Dþðk; �Þ~�L0ðkÞ.
At linear order, the ansatz (101) reads in Fourier space as

~�LðkÞ ¼ ð�LqM=�
2
qM ÞPLðkÞ ~WðkqMÞ. Substituting into

Eq. (103) remains exact if the profile of the perturbation
is given by Eq. (100) (or for the shell M, whatever the
initial profile, if � does not depend on the wave number).

We now consider the spherical dynamics of typical
initial perturbations, of the form (97) at early times, which
we write as

�Lq0ð�Þ ¼ �Lqð�Þ
�2

q;q0ð�Þ
�2

qð�Þ
; (104)

for the mean initial density contrast within arbitrary radius
q0. Here, as explained in Sec. IVD1, we choose to write
the initial conditions in terms of the reference �CDM
linear field, which is simply an ‘‘update’’ at arbitrary
time � of the initial field �L0 given at a fixed time. This
is more convenient than using the actual linear field �L,
which depends on the modified-gravity growing mode
Dþðk; �Þ and mixes dependences on the initial conditions
and on the modified-gravity parameters. In this fashion,
Eq. (104) describes the same initial condition for all our
models. Here �2

q1;q2ð�Þ is the cross correlation of the

smoothed reference linear density contrast at scales q1
and q2,

�2
q1;q2ð�Þ ¼ h�Lq1ð�Þ�Lq2ð�Þi

¼
Z 1

0
dk4	k2PLð�ÞðkÞ ~Wðkq1Þ ~Wðkq2Þ; (105)

and �2
qð�Þ ¼ �2

q;qð�Þ. For each mass scale q, with M ¼
ð4	=3Þ ��mq

3, and initial amplitude �Lqð�Þ, which define

the initial condition (104), we can solve the spherical
dynamics (96) or the approximate dynamics (102). For
the ‘‘exact’’ dynamics (96) we consider for simplicity
that inner shells that have already collapsed to the center
of the halo remain at the center. [After shell crossing we
should modify Eq. (96) to take into account the change
with time of the mass enclosed within a given shell.
However, we do not consider this effect because radial
orbits suffer from a strong instability, which diverges at
the time of collapse to the center [65], and after that time
one should include transverse motions that lead to virial-
ization]. As long as shell crossing is restricted to inner
shells, within the mass scaleM of interest, this is not a very
serious problem because the dynamics is mostly sensitive
to the total mass enclosed within a given radius (as in the
usual Newtonian case or for � that does not depend on the
wave number) or to the local slope of the density profile
[for the low-k behavior �ðkÞ / k2].

At a given mass scale q and time �, this defines a
mapping, �Lqð�Þ � �x ¼ F qð�Lqð�ÞÞ, from the reference

linear density contrast �Lqð�Þ to the nonlinear density

contrast �x. Here x is again the Eulerian comoving radius
of the shell M, with x ¼ r=a ¼ yq as in (94).
If � does not depend on the wave number, this mapping

does not depend on the scale q nor on the shape of the
initial profile. If � depends on the wave number, this
mapping depends both on the mass scale q (then the sub-
script q inF q) and on the initial shape of the profile [which

is why we had to choose a specific case, such as the typical
shape (104)]. This implies that if we choose, for instance, a
given nonlinear density threshold, such as 200, to define
halos, the associated linear density contrast �cð�Þ ¼
F�1

q ð200Þ depends on the mass of the halo (through the

scale q).
We show our results for this linear density threshold

F�1
q ð200Þ at redshift z ¼ 0 in Fig. 8. For each model we

plot both the exact result from Eq. (96) and the approxi-
mate result from Eq. (102). We clearly see the mass
dependence associated with the modification of gravity.
For positive � gravitational clustering is more efficient and
a lower value of �Lð�Þ is required to reach the nonlinear

density contrast � ¼ 200. Because we recover GR on large
scales (� ! 0 for k ! 0) all curves converge to the�CDM
threshold at large mass and show increasingly large devia-
tions from GR at smaller mass. The asymptotic value is
�c ’ 1:59 rather than 1.67 as we define �c as F�1

q ð200Þ
instead of F�1

q ð1Þ, that is, by a nonlinear density contrast

of 200 rather than by the full collapse to the center, as in
Ref. [66].
Similar trends were obtained in Ref. [21], using a sim-

plified dynamics described by an effective Newton con-
stant that depends on the ‘‘environment’’ density, which
allowed them to include screening effects. Thus, because
the latter are more important for large mass, they obtained
a mass-dependent threshold �c that decreases at small
mass and converges to the GR value at large mass. We
can see in Fig. 8 that even without such screening effects, a
dependence on mass is already present because of the
dependence on the wave number of �ðk; aÞ. Since both
effects show similar trends, including them both would
give a steeper dependence on mass than in Fig. 8.
Nevertheless, it is interesting to also investigate both
mechanisms separately, as their relative amplitude depends
on the details of the modified-gravity model.
We can see that the approximation (102) somewhat

underestimates the departure from the GR result. This
can be understood from the fact that the dynamics steepens
the density profile, which amplifies the right-hand side in
Eq. (96). Nevertheless, the approximation (102), which is
much easier to compute, gives a reasonable estimate of the
modified-gravity effect. Because inner shells have already
collapsed when the shell at mass M reaches the nonlinear
threshold �x ¼ 200, we should include virialization effects
that smooth out the inner density profile. Therefore, the
difference seen in Fig. 8 should actually be somewhat
overestimated. Moreover, for smaller nonlinear density
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contrast �x the relative deviation decreases, because the
ansatz (100) is exact at linear order (for our initial con-
ditions). Thus, for practical estimates the approximation
(102) should be sufficient, at least in a first step.

VI. DENSITY CONTRAST PROBABILITY IN
THE QUASILINEAR REGIME

Following Refs. [66,67], we can use the spherical-
collapse dynamics described in Sec. V to derive the proba-
bility distribution of the matter density contrast in the
quasilinear regime.

To compute the probability distribution, P ð�xÞ, of the
nonlinear density contrast within a sphere of comoving
radius x, it is convenient to introduce the cumulant gen-
erating function

e�’ðyÞ=�2
xð�Þ � he�y�x=�

2
xð�Þ i (106)

¼
Z 1

�1
d�xe

�y�x=�
2
xð�ÞP ð�xÞ: (107)

This determines the distribution P ð�xÞ through the inverse
Laplace transform

P ð�xÞ ¼
Z þi1

�i1
dy

2	i�2
xð�Þ

e½y�x�’ðyÞ�=�2
xð�Þ : (108)

In Eqs. (107) and (108) we rescaled the cumulant generat-
ing function by a factor �2

xð�Þ so that it has a finite limit in

the quasilinear regime, �xð�Þ ! 0, for the case of Gaussian
initial fluctuations [38]. In particular, its expansion at
y ¼ 0 reads

’ðyÞ ¼ �X1
n¼2

ð�yÞn
n!

h�n
xic

�2ðn�1Þ
xð�Þ

: (109)

The average (106) can be written as the path integral

e�’ðyÞ=�2
xð�Þ ¼ ðdetC�1

�L�Lð�ÞÞ1=2
Z

D�Lð�Þe
�S½�Lð�Þ�=�2

xð�Þ ;

(110)

where C�1
�L�Lð�Þ is the inverse matrix of the two-point

correlation of the reference linear density field and the
action S reads as

S½�Lð�Þ� ¼ y�x½�Lð�Þ� þ
�2

xð�Þ
2

�Lð�Þ � C�1
�L�Lð�Þ � �Lð�Þ:

(111)

Here �x½�Lð�Þ� is the nonlinear functional that assigns to

the initial condition, defined by the reference linear density
field �Lð�Þðx0Þ, the nonlinear density contrast �x within the

sphere of radius x.
As in Sec. VC, we choose to define the initial conditions

through the reference �CDM linear field �Lð�Þ. We could

also write all expressions above in terms of the actual linear

field �L, its correlation C�L�L
, and the variance �2

x. Here

we prefer the formulation (110) because it clearly separates
the initial conditions from the modified-gravity effects.
Thus, in the action (111) all modified-gravity effects are
enclosed in the functional �x½�Lð�Þ�, which describes the

gravitational dynamics, whereas if we express the initial
conditions in terms of the �-dependent linear field �L,
these modified-gravity effects would appear in all terms
of the action. Of course, we adopt this formulation because
we wish to compare with this �CDM reference several
models that only show small deviations.
The action S does not depend on the normalization of the

linear power spectrum since both �2
xð�Þ and C�L�Lð�Þ are

proportional to PLð�Þ. Then, in the quasilinear limit,

�xð�Þ ! 0, the path integral (110) is dominated by the

minimum of the action [67],

�xð�Þ ! 0: ’ðyÞ ! min
�Lð�Þðx0Þ

S½�Lð�Þ�: (112)

Using the spherical symmetry of the top-hat window W
that defines the spherical average �x, one obtains a spheri-
cal saddle point [67]. In GR its linear radial profile is given
by Eq. (104), where q is the Lagrangian radius that corre-
sponds to the Eulerian radius x,

q3 ¼ ð1þ �xÞx3: (113)

Then, the amplitude �Lqð�Þ of the saddle point (104), which
also sets the scale q through Eq. (113), is given by the
spherical-collapse mapping,

�x ¼ F ð�Lqð�ÞÞ: (114)

This derivation agrees with the results that can be obtained
from a perturbative computation of the cumulants h�n

xic at
leading order and a resummation of the series (109) [64]. It
also extends these results to the case where the series (109)
has a zero radius of convergence, which occurs when
P ð�xÞ decreases more slowly than a simple exponential
at large densities [67], [68].
A nice feature of this derivation is that it bypasses the

computation of the cumulants h�n
xic through the kernels Fs

n

of Eq. (52), as all spherically averaged quantities are given
by the spherical-dynamics mapping F ð�Lð�ÞÞ (which in-

cludes terms at all orders by expanding over �Lð�Þ).
However, the problem is more complex in our case because
of the dependence of �ðk; aÞ on the wave number. Indeed,
this means that the nonlinear density contrast �x at radius x
does not depend on the linear density contrast �Lqð�Þ at the
Lagrangian radius q, associated with the same mass M
only. Indeed, as discussed in Sec. V, the spherical dynamics
(96) depends on the full shape of the initial perturbation.
Taking into account this modification changes the profile
�Lð�Þðx0Þ of the minimum of the action S½�Lð�Þ� in

Eq. (112), because the functional �x½�Lð�Þðx0Þ� is no longer
of the form �x ¼ F ð�Lqð�ÞÞ.
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To simplify the analysis we neglect this change of
the profile of the saddle point. This is actually valid to
first order over �. Indeed, let us write the action S as S ¼
S0 þ �̂S1, where S0 is the usual �CDM action (where
� ¼ 0), and S1 is the modification due to a nonzero
�ðk; aÞ kernel, where we factored out a normalization
parameter �̂ that scales as �. Because of this new term
�̂S1, the saddle point �Lð�Þ is changed to �Lð�Þ ¼ �L0ð�Þ þ
�̂�L1ð�Þ, where �L0ð�Þ is the GR saddle point (104). Then,

the generating function is changed to ’ðyÞ ! S0½�L0ð�Þ þ
�̂�L1ð�Þ� þ �̂S1½�L0ð�Þ þ �̂�L1ð�Þ�. Because �L0ð�Þ is a

saddle point of the action S0, we have S0½�L0ð�Þ þ
�̂�L1ð�Þ� ¼ S0½�L0ð�Þ� þOð�̂2Þ; that is, S0½�Lð�Þ� is only

modified by terms of order �2. Because of the prefactor �̂
we also have �̂S1½�L0ð�Þ þ �̂�L1ð�Þ� ¼ �̂S1½�L0ð�Þ� þ
Oð�̂2Þ. Therefore, S½�Lð�Þ� ¼ S½�L0ð�Þ� þOð�̂2Þ and we

can neglect the change of the saddle point up to first order
over �. In fact, we do better than this because we only
neglect the change of the radial profile, but we keep track
of the dependence on � of the amplitude �Lqð�Þ of the

saddle point.
On the other hand, if we use the approximation (102)

instead of Eq. (96), the functional �x½�Lð�Þðx0Þ� is again of

the form �x ¼ F qð�Lqð�ÞÞ and the saddle-point profile

(104) becomes exact within this approximation.
In both cases, whether we use the approximation (102)

or the exact equation (96), the function F q now also

depends on the scale q, in contrast to the usual
Newtonian case.

Then, from this spherical-collapse mapping F qð�Lqð�ÞÞ,
described in Sec. VC, we obtain the generating function
’ðyÞ as follows [66,67]. Substituting the profile (104) into
Eq. (111) and using Eq. (114), the minimum (112) reads as

’ðyÞ ¼ min
�Lqð�Þ

�
yF qð�Lqð�ÞÞ þ 1

2

�2
xð�Þ

�2
qð�Þ

�2
Lqð�Þ

�
: (115)

Defining the function �ð
Þ through the parametric system
[67,69],


 ¼ �x ¼ F qð�Lqð�ÞÞ and � ¼ ��Lqð�Þ
�xð�Þ
�qð�Þ

; (116)

the minimum (115) also writes as

’ðyÞ ¼ min



�
y
 þ �ð
Þ2

2

�
: (117)

This corresponds to the implicit equations (Legendre trans-
form)

y ¼ ��
d�

d

and ’ ¼ y
 þ �2

2
: (118)

Finally, this gives the probability distribution P ð�xÞ
through Eq. (108). The probability distribution P ð�xÞ de-
pends on the spherical-collapse dynamics and on the shape

of the initial power spectrum PLð�ÞðkÞ, through the ratio

�xð�Þ=�qð�Þ in the second Eq. (116). This second effect,

sometimes called a ‘‘smoothing effect’’ [69], is due to the
collapse (or expansion) of the mass shell M from the
Lagrangian scale q to the Eulerian scale x. This mixes
scales and implies that the distribution P ð�xÞ at scale x is
sensitive to the initial power over all scales. In our
modified-gravity case, a second dependence on the shape
of the linear power spectrum appears through the mapping
F q itself, because of the �-dependent terms in Eqs. (96)

and (102).
We show in Fig. 9 the probability distribution P ð�xÞ at

redshift z ¼ 0 and radius x ¼ 5h�1 Mpc. Here we use the
exact dynamics (96), but using the approximation (102)
gives very close results that would not be distinguished in
this figure. We recover the usual asymmetric shape due to
nonlinear gravitational clustering, which builds an ex-
tended high-density tail and shifts the peak of the distribu-
tion toward low densities before a sharp low density cutoff
at �x ! �1þ (on small scales, most of the matter lies in
overdensities but most of the volume lies in underdense
regions).
Since it is difficult to distinguish different curves on this

figure, we plot the relative deviation from GR in Fig. 10,
for the two models where it is the largest. (The two other
cases would fall below the range plotted in the figure for
the most part.) We plot our results using either the exact
equation (96) or the approximation (102). We can see that
both curves are very close. Indeed, as explained in
Sec. VC, for smaller density fluctuations the ansatz (100)
becomes more accurate as it is exact to linear order and the
profile has not had time to be strongly modified by the
dynamics (moreover, the collapse is not very sensitive to
the exact shape of the profile).
As we consider models with a positive value of �, which

leads to an effective amplification of gravity, it is easier to
build large nonlinear density fluctuations. This was also

FIG. 9 (color online). Probability distribution of the matter
density contrast within spherical cells of radius 5h�1 Mpc at
z ¼ 0 (all curves almost fall on each other).
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apparent in Fig. 8 for the specific case of �x ¼ 200. For
Gaussian initial conditions the tails of the proba-

bility distribution P ð�xÞ are of the form P ð�xÞ �
e
��2

Lqð�Þ=ð2�2
qð�ÞÞ, where �Lqð�Þ ¼ F�1

q ð�xÞ, and the lower

value of j�Lqð�Þj that is needed to reach a given j�xj yields
a slower decay of the rare-event tails. This is why we
recover a positive deviation from GR (i.e., a higher proba-
bility P ) at both very low and very high densities in
Fig. 10. Of course, since probability distributions are al-
ways normalized to unity this implies that the relative
deviation shows a change of sign and that the probability
distribution P ð�xÞ obtained in these models is smaller than
the �CDM one for moderate densities. This explains the
behaviors seen in Fig. 10.

These features are in qualitative agreement with the
results obtained in numerical simulations of various
modified-gravity models [70,71], which also find that an
effective amplification of gravity generically leads to more
numerous very low density and high density regions, while
shifting the peak of the probability distribution toward
lower densities.

The relative deviation from GR does not necessarily
grow to unity at high densities (and may even decline).
This is due to the fact that high densities at a given Eulerian
radius x correspond to large masses, hence to large
Lagrangian (i.e., initial) radius q. Then, because we re-
cover GR on large scales, the linear threshold �Lqð�Þ ¼
F�1

q ð�xÞ converges to the one obtained in the �CDM

cosmology, as in Fig. 8. Therefore, depending on the rate
of convergence toward GR on large scales (as compared
with the increasingly high sensitivity of the rare tail) the
large-density tail may or may not converge back to the GR

prediction. In modified-gravity scenarios with a screening
mechanism that implies convergence to GR in high-density
environments, such as the chameleon mechanism, the high
density tail is expected to show a faster convergence back
to the GR prediction.
These effects do not appear at very low densities, which

correspond to increasingly small mass M and Lagrangian
radius q, where the modifications from GR do not vanish
within our framework. In this limit, the relative deviation
of P ð�xÞ from the �CDM reference can grow up to unity.
However, this appears far in the low-density tail, which is
characterized by a very sharp cutoff, and this may not be a
very efficient tool to probe modified-gravity effects.

VII. HALO MASS FUNCTION

The computation of the probability distribution P ð�xÞ
was described in the previous section for the quasilinear
regime, �xð�Þ ! 0. However, this result is more general

and actually applies to rare events, where the path integral
(110) is peaked around the minimum of the action S. In the
quasilinear limit any finite nonzero density contrast �x

becomes a rare event, which is why Eq. (117) determines
the full probability distribution in this regime. For arbitrary
values of �x, Eq. (117) applies to rare events, that is, to the
tails of the probability distribution P ð�xÞ [65] (this again
allows one to recover the results obtained from a perturba-
tive analysis [64]). However, for large overdensities shell
crossing appears at some stage (typically for �x > 200),
after which Eq. (117) no longer holds [65,66].
Nevertheless, for lower densities one obtains the asymp-

totic behavior P ð�xÞ � e
��2

Lqð�Þ=ð2�2
qð�ÞÞ. This also deter-

mines the large-mass tail of the halo mass function
nðMÞdM=M, where we define halos as spherical objects
with a fixed density contrast threshold � ¼ 200,

M ! 1: ln½nðMÞ� � � �Lð�ÞðMÞ2
2�ð�ÞðMÞ2 ; (119)

with

�Lð�ÞðMÞ ¼ F�1
q ð�Þ; (120)

where �ð�ÞðMÞ ¼ �qð�Þ with M ¼ ��m4	q
3=3.

As in Refs. [62,66], a simple approximation for the mass
function that satisfies the large-mass asymptote (119) can
be obtained using the Press and Schechter scaling variable

 [72],

nðMÞ dM
M

¼ ��m

M
fð
Þ d




; (121)

with


 ¼ F�1
q ð200Þ

�ð�ÞðMÞ ; (122)

where we choose to define halos by the nonlinear density
threshold � ¼ 200. The scaling function fð
Þ is obtained

FIG. 10 (color online). Relative deviation from general rela-
tivity of the probability distribution P ð�xÞ, at redshift z ¼ 0 for a
radius x ¼ 5h�1 Mpc. For each ðn;m0Þ model the deviation
from GR is positive at low and high densities and negative
around �� 0. The solid and dotted lines are the exact results
from Eq. (96) for ðn;m0Þ ¼ ð1; 0:1Þ and (0, 0.1). The closest
dashed line of the same color is the result from the approxima-
tion (102), for the same value of ðn;m0Þ.
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from a fit to�CDM numerical simulations that satisfies the

exponential tail fð
Þ � e�
2=2 [66]

fð
Þ ¼ 0:502½ð0:6
Þ2:5 þ ð0:62
Þ0:5�e�
2=2: (123)

This ensures that the halo mass function is always normal-
ized to unity and obeys the large-mass tail (119), for any
spherical-collapse mapping F q. The only change from the

�CDM cosmology is that the linear thresholdF�1
q ð200Þ in

Eq. (122) now depends on the mass M through the scale
qðMÞ. The approximation (123) only ensures that the large-
mass tail is correct, but it may happen that the low-mass
power-law tail should depend on �. An analysis of such
effects would require numerical simulations because
analytical methods cannot predict the low-mass tail of
the halo mass function (which is sensitive to mergers and
nonlocal effects). Nevertheless, we can expect modifica-
tions for moderate masses to be less important and partly
taken into account through the normalization constraint of
the mass function.

As compared with the excursion set approach presented
in Refs. [21,73,74], we do not include screening effects,
but we take into account the dependence on the wave
number of the modified-gravity kernel �ðk; aÞ. As ex-
plained in Sec. V, this leads to a mass-dependent linear
threshold �LðMÞ and then to deviations from the �CDM
mass function that will depend on mass.

We show the halo mass function in Fig. 11, and its
relative deviation from the �CDM mass function in
Fig. 12. Here we use the approximation (102) for the
mapping F qð�Lqð�ÞÞ, but we checked that using Eq. (96)

yields close results. For the models that we consider here
the mass functions are very close to each other and relative
deviations are on the order of 10% or less. In agreement
with the behavior of the probability distribution P ð�xÞ
discussed in the previous section, a positive �ðk; aÞ leads
to more numerous high density fluctuations and to a larger
number of massive collapsed halos. This explains why the
ratio to the �CDM mass function is greater than unity for


 > 1, which corresponds to rare halos. Again, this relative
deviation grows for lower n and smaller m0.
The same trends appear in numerical simulations

of similar modified-gravity scenarios [24,70,75,76], with
an increase of the large-mass tail for models with an
effective amplification of gravity. We show our results
for fðRÞ models with jfR0j ¼ 10�4, 10�5, 10�6, as in
Refs. [24,75,76], in the Appendix.
On the mass scales shown in Fig. 12, the ratio keeps

growing at high masses form0 ¼ 0:1 while it decreases for
m0 ¼ 1. As in the high density tail shown in Fig. 10, this is
due to two competing effects: (i) the exponential tail (119)
of the halo mass function amplifies the sensitivity to
modified-gravity effects at large masses, but (ii) these
deviations from GR decrease at large scale and then at
large mass [�ðk; aÞ ! 0 for k ! 0], as seen in Fig. 8. Then,
depending on the relative importance of both effects, the
ratio of the mass function to its �CDM reference may or
may not grow with mass on the scales that are considered.
As expected, a lower parameter m0 [which implies a modi-
fication of gravity up to larger scales, k�m0 and q�
1=m0; see Eq. (11)] yields a slower convergence to GR at
high mass, and then a larger weight to the first effect (i)
above. This explains why on the mass scales shown in
Fig. 12 the ratio keeps growing at high masses for m0 ¼
0:1 while it decreases for m0 ¼ 1.

VIII. FROM LINEAR TO HIGHLY
NONLINEAR SCALES

Following Refs. [37,46], we can combine the perturba-
tive results of Sec. IV with the halo mass function of
Sec. VII to obtain the matter density power spectrum and
bispectrum from linear to highly nonlinear scales. As in the
usual halo model [77], we write the nonlinear power spec-
trum as the sum of two-halo and one-halo terms,

PðkÞ ¼ P2HðkÞ þ P1HðkÞ; (124)

FIG. 12 (color online). Relative deviation from �CDM of the
halo mass function at redshift z ¼ 0.

FIG. 11 (color online). Halo mass function at redshift z ¼ 0.
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where P2H is the contribution from pairs of particles that
are located in two different halos and P1H is the contribu-
tion from pairs located in the same halo. As explained in
Ref. [37], P2H contains the perturbative contribution to the
power spectrum and we write

P2HðkÞ ¼ F2Hð2	=kÞPpertðkÞ; (125)

where F2HðqÞ is the fraction of pairs, with initial
(i.e., Lagrangian) separation q, that belong to two distinct
halos, and PpertðkÞ is the power spectrum obtained by

perturbation theory. It is not possible to use the standard
one-loop prediction, unless one adds a high-k cutoff, be-
cause it grows too fast at high k and leads to unphysical
results at high k for the sum (124). Here we consider the
one-loop prediction PpertðkÞ given by the resummation (68)

with Eqs. (66) and (67). Indeed, at this order it yields
PpertðkÞ � PLðkÞ at high k [33], so that the two-halo term

is subdominant with respect to the one-halo term and one
obtains a good match to numerical simulations [37,46].
Next, the one-halo contribution, which is fully nonpertur-
bative, reads [37]

P1HðkÞ ¼
Z 1

0

d




fð
Þ M

��mð2	Þ3
ð~uMðkÞ2 � ~WðkqÞ2Þ;

(126)

where ~W is the Fourier transform of the 3D top hat, defined
in Eq. (90), and ~uM is the normalized Fourier transform of
the density profile �MðxÞ of halos of mass M,

~uMðkÞ ¼ 1

M

Z
dxe�ik�x�MðxÞ: (127)

We use the usual ‘‘Navarro-Frenk-White’’ halo profile
[78], with the mass-concentration relation from Ref. [37].
Therefore, we do not take into account the effects of the
modified gravity on the shape of the profiles of the dark
matter halos. Our one-halo term P1H only depends on
�ðk; aÞ through the change of the halo mass function de-
scribed in Sec. VII. The counterterm ~W2 in Eq. (126)
ensures that the one-halo contribution decays as P1HðkÞ /
k2 at low k, so that the total power (124) converges to the
linear power on large scales. This follows from the con-
servation of matter and the fact that halo formation corre-
sponds to a small-scale redistribution of matter [37,79,80].

In a similar fashion, the matter density bispectrum can
be written as the sum of three-halo, two-halo, and one-halo
terms,

B ¼ B3H þ B2H þ B1H; (128)

with [46]

B3Hðk1; k2; k3Þ ¼ Bpertðk1; k2; k3Þ; (129)

B2Hðk1;k2;k3Þ¼PLðk1Þ
Z d





M

��mð2	Þ3
fð
Þ

�Y3
j¼2

ð~uMðkjÞ� ~WðkjqÞÞþ2 cyc:; (130)

B1Hðk1;k2;k3Þ

¼
Z d




fð
Þ

�
M

��mð2	Þ3
�
3Y3
j¼1

ð~uMðkjÞ� ~WðkjqÞÞþ2 cyc:

(131)

Again, the counterterms ~W in Eqs. (130) and (131) ensure
that the two-halo and one-halo contributions decay on large
scales so that the bispectrum converges to the perturbative
prediction Bpert. As found in Ref. [46] and contrary to the

situation encountered for the power spectrum, the standard
one-loop perturbation theory prediction for Bpert is well

behaved at high k (i.e., it is significantly smaller than the
one-halo contribution), and it is more accurate than the
resummation schemes that have already been studied.
Therefore, we only consider the standard perturbative ap-
proach for the three-halo contribution (129). More pre-
cisely, we use the exact tree-level result (79) and the
approximate one-loop correction (80) by setting Bpert ¼
Btree þ B1loop.
While Eq. (128) yields a reasonably good match to

numerical simulations (�10%) over all scales for the
bispectrum [46], Eq. (124) significantly underestimates
the power spectrum on the transition scales (by
�20–30%), even though it gives a good accuracy on larger
scales (�1% below k ’ 0:3h Mpc�1 at z ¼ 1) and smaller
scales (�10% above k ’ 5h Mpc�1 at z ¼ 1). Following
Ref. [46], we consider a simple power-law interpolation
Ptang between large and small scales,

PtangðkÞ ¼ P2Hþ1HðkÞ for k 
 k� and k � k0þ
(132)

and

PtangðkÞ is a power law within k� 
 k 
 k0þ: (133)

The transition range ½k�; k0þ� is automatically determined
from the shape of P2Hþ1HðkÞ and Bðk; k; kÞ, and it depends
on the shape of the linear power spectrum and on redshift.
This improves the agreement with numerical simulations
in the �CDM cosmology [46] while keeping the perturba-
tive and one-halo behaviors on large and small scales.
We show in Figs. 13 and 14 the matter density power

spectrum and bispectrum that we obtain at redshift z ¼ 0,
from linear to highly nonlinear scales. The various curves
are very close, and we can see that at high k the deviations
are actually damped by nonlinear effects. Within our
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framework, this is because we neglected any impact of
modified gravity on the halo profile (127) and the only
influence of modified gravity appears through the halo
mass function nðMÞ. This may not be such a bad approxi-
mation because in more realistic models modifications to
gravity vanish on small scales (e.g., through chameleon or
Vainshtein mechanisms) so that the density profiles of
small halos are expected to converge to the GR behavior.
Then, we expect that our modelization provides a similar
accuracy to the one found in �CDM cosmology by com-
parison with numerical simulations [37,46]. As in
Sec. IVD, we clearly see that nonlinear gravitational clus-
tering amplifies both the power spectrum and bispectrum at
high k but damps the baryon acoustic oscillations. As in

Refs. [37,46], our approach allows us to describe the power
spectrum and bispectrum from large linear scales down to
small highly nonlinear scales.
We show in Figs. 15 and 16 the relative deviations from

the �CDM reference of the power spectrum and of the
equilateral bispectrum. In the weakly nonlinear regime the
relative deviations grow with k, following the behavior of
�ðk; aÞ. In agreement with the discussions above, they
reach a maximum on transition scales, starting to deviate
from the �CDM growth for k�m0, and then slowly
declining on highly nonlinear scales. On these nonlinear
scales, the relative deviations at the level of the linear or

FIG. 13 (color online). Logarithmic power, �2ðkÞ ¼
4	k3PðkÞ, at z ¼ 0 for four ðn;m0Þ models. In each case we
plot the linear power (dashed line) and the nonlinear power
(solid line).

FIG. 14 (color online). Equilateral bispectrum BeqðkÞ ¼
Bðk; k; kÞ, at z ¼ 0 for four ðn;m0Þ models. The bispectrum is
multiplied by a factor k3 in this plot to decrease the range
spanned by the vertical axis and to make the figure easier to
read. In each case we plot the tree-level bispectrum (dashed line)
and the full nonlinear bispectrum (solid line).

FIG. 15 (color online). Relative deviation from �CDM of the
power spectrum obtained in four models at redshift z ¼ 0. In
each case, we plot the relative deviation both of the linear power
(dashed line) and of the nonlinear power (solid line). From left to
right we consider the models ðn;m0Þ ¼ ð0; 0:1Þ, (1, 0.1), (0, 1),
and (1, 1).

FIG. 16 (color online). Relative deviation from �CDM of the
bispectrum obtained in four models at redshift z ¼ 0. In each
case, we plot the relative deviation both of the tree-level bispec-
trum (dashed line) and of the nonlinear bispectrum (solid line).
From left to right we consider the models ðn;m0Þ ¼ ð0; 0:1Þ,
(1, 0.1), (0, 1), and (1, 1).
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tree-order contributions are no longer a good estimate of
the actual signal and greatly overestimate the effects of
modified gravity. Since the theoretical accuracy is greater
on weakly nonlinear scales (which can be analyzed by
systematic perturbative approaches) than on highly non-
linear scales (which require phenomenological ingredients
such as halo profiles), these behaviors suggest that it is
more efficient to focus on weakly nonlinear scales to probe
such modifications of gravity.

It is also worth emphasizing that the deviations from
�CDM that we have calculated with the steepest-descent
resummation method together with the halo model show
the same trends as the N-body results [24,25] obtained for
models with n ¼ 1 and jfR0j ¼ 10�4, 10�5, 10�6. Indeed,
numerical results show that the deviation from �CDM
reaches a peak at weakly nonlinear scales before decreas-
ing on highly nonlinear scales. Simple fitting procedures
designed for �CDM cosmology [81] have been shown not
to provide good results and to miss this high-k behavior
[25]. This shows the advantage of approaches like ours that
are closer to physical modeling. Even though they may be
less accurate than a specific fitting formula, their behavior
as cosmological parameters and scenarios are modified is
more reliable.

IX. CONCLUSION

We have considered the dynamics of structure formation
in modified-gravity models analytically. To do so, we have
used a steepest-descent technique for the generating func-
tional of density and velocity perturbations as well as the
spherical-collapse dynamics. The models we have consid-
ered correspond to screened modifications of gravity due to
a scalar field. In numerical examples we have focused on
models defined by a power-law mass function and a con-
stant coupling to matter, which coincide with fðRÞ models
in the large curvature limit and in the matter era, although
the techniques developed here are general. The results we
have presented comprise the power spectrum, the bispec-
trum, the probability distribution of the density contrast,
and the large-mass tail of the halo mass function. Modified
gravity has interesting features astrophysically when the
ratio of the mass of the scalar field over the Hubble rate
now m0=H0 is of order 10

3. In this case, deviations can be
substantial and larger than a few percent. In this paper, we
do not attempt to give precise predictions, we are more
interested in indications that can be obtained relatively fast
using our analytical tools without the need for large
N-body simulations.

After a description of the linear growing and decaying
modes, which become k dependent in these modified-
gravity scenarios, we have obtained the associated linear
growth rate fðk; zÞ. For the realistic parameters ðn;m0Þ
studied here measuring its deviation from the GR predic-
tion remains challenging, but future surveys such as Euclid

should give a clear signal for the most favorable cases [e.g.,
ðn;m0Þ ¼ ð0; 0:1Þ].
Next, we have described how higher-order perturbative

contributions can be computed in the weakly nonlinear

regime. The dependence on the wave number of the linear

modes makes numerical implementations of these pertur-

bative schemes significantly more complex than in the

usual GR case, because time and scale dependences no

longer factor out. We have presented the generalization

of the ‘‘standard’’ perturbative approach as well as a

‘‘steepest-descent’’ approach that performs partial resum-

mations of higher-order diagrams. The path-integral for-

malism that underlies this second method also provides an

efficient route to recover the standard perturbative

approach and avoids the need to compute the n-point
kernels Fs

n. We find that for realistic modified-gravity

scenarios, such as the ones investigated here, the deviations

of the power spectrum from GR on BAO scales are

quite modest (typically less than 6%) and below the accu-

racy of the standard perturbative approach at one-loop

order. This means that one must use more accurate

schemes, such as the one-loop steepest-descent approach

presented here, or possibly include higher-order terms

within the standard approach (but its convergence is not

very well behaved).
For the bispectrum we find that nonperturbative contri-

butions (associated with one-halo and two-halo terms)

cannot be neglected on the weakly nonlinear scales where

the deviations from GR can be detected. This suggests that

for practical purposes the power spectrum is a more reli-

able probe of such modified-gravity effects, because its

deviations from the GR predictions are larger than for the

bispectrum in the perturbative regime, where rigorous and

systematic approaches can be developed.
To go beyond these low-order perturbative approaches,

we have described the dynamics of spherical density fluc-

tuations, which can be exactly solved before shell crossing.

Again, modifications to gravity make the analysis signifi-

cantly more complex, because the motions of different

shells no longer decouple, even before any shell crossing.

This means that one must solve the evolution with time of

the full density profile. Nevertheless, we have introduced a

simple approximation for typical profiles that allows one to

decouple the motion of the mass shell of interest. We find

this provides a reasonable approximation to the exact

dynamics (but slightly underestimates the effects of modi-

fied gravity). This analysis provides the characteristic de-

pendence on mass of the critical linear density threshold

�cðMÞ associated with a given nonlinear threshold (such as
� ¼ 200). In the case studies here, where the function

�ðk; aÞ is positive and corresponds to a time- and scale-

dependent effective amplification of gravity, this threshold

�cðMÞ decreases at low mass (because this amplification is

larger on smaller scales) and converges to the constant GR
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prediction at large mass (because we recover GR on large

scales).
In contrast to some previous works, this dependence on

mass does not arise from screening effects (that depend on
mass through the depth of the gravitational potential,
which triggers the screening mechanism) but from the k
dependence of the modified-gravity kernel �ðk; aÞ.

This also allows us to obtain the probability distribution,

P ð�xÞ, of the nonlinear density contrast within spherical

cells, in the weakly nonlinear regime. Because of this

effective amplification of gravity, the tails of P ð�xÞ
grow with respect to the GR prediction (and by conserva-

tion of the probability normalization to unity P ð�xÞ de-
creases for moderate density fluctuations). This growth is

smaller and the relative ratio to GR does not necessarily go

to infinity in the large-density tail, as opposed to the low-

density tail, because on large scale the dynamics converges

to GR.
The same effect amplifies the large-mass tail of the halo

mass function. Again, the ratio to the GR prediction may

increase or decrease with mass in the range of interest

depending on how fast modifications to gravity vanish on

large scales.
Finally, combining perturbative approaches with halo

models, we have computed a simple estimate of the power
spectrum and bispectrum from linear to highly nonlinear
scales. Within this modelization, we find that the relative
deviation from GR is the largest on the transition scales
between the linear and the highly nonlinear regimes, for
both the power spectrum and bispectrum. Since nonlinear
scales are difficult to predict with a high accuracy (because
of the complex nonperturbative dynamics associated with
shell crossings and because one should include baryon and
galaxy formation effects), this suggests that weakly non-
linear scales, in particular in the perturbative regime, are
the best probes of these modified-gravity models.

As a summary, our new results can be listed as follows:
(a) a comparison of the accuracy of one-loop perturba-

tive expansions (by using two such schemes and by
estimating nonperturbative one-halo contributions)
with realistic deviations from GR, for the matter
power spectrum and the bispectrum.

(b) an analysis of the spherical collapse that includes
shell coupling and the scale dependence of the
modified-gravity kernel �ðk; aÞ.

(c) the dependence on mass, due to the scale depen-
dence of � (and not to screening effects), of the
deviation from GR on the halo mass function.

(d) an analytical model for the probability distribution
P ð�xÞ in the rare-event regime.

(e) a combination of one-loop perturbative expansions
with halo models for the matter power spectrum and
the bispectrum up to highly nonlinear scales.

Our methods call for improvements to reach the needs of

precision cosmology. Indeed we have neglected, for ease of

treatment and as a first step, two major effects. The first one

consists of including nonlinearities in the scalar field sector

of the models. Here the fact that the scalar field dynamics

are only linear and nonlinear effects in both the potential

and the coupling to matter ought to be considered.

Technically, this can be done at the one-loop level by

self-consistently modifying the Euler equation with non-

linear terms coming from the scalar field interaction with

matter particles. A second ingredient we have not consid-

ered so far is the screening of the scalar force in dense

environments. This will modify the spherical collapse of

overdensities and therefore the halo statistics. Eventually

this will have an impact on the growth of nonlinear struc-

tures. As a result, the effects described in this paper can

only be taken as indications on quasilinear scales. Work on

all these aspects is in progress. We also intend to carry out a

comparison of our analytical results with the N-body

simulations that use the same mass and coupling parame-

trization of modified gravity. Doing so, and for a greater

variety of models including dilatons and symmetrons, we

hope to validate our analytical approach, which could then

be used for models that will appear in the future and be

analyzed without the need for large N-body simulations.
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APPENDIX A: THE CASE OF fðRÞ MODELS

We consider in this appendix the case of fðRÞ models
that have also been studied through numerical simulations,
with a power-law form as in Eq. (16). The mass of the
scalar field evolves with time as [25]

FIG. 17 (color online). Relative deviation from �CDM of the
halo mass function at redshift z ¼ 0, for n ¼ 1 and jfR0

j ¼
10�4, 10�5, and 10�6, from top to bottom.
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mðaÞ ¼ m0

�
�m0ð1þ zÞ3 þ 4��0

�m0 þ 4��0

�ðnþ2Þ=2
; (A1)

where m0 is given by Eq. (17). This gives the approximate
scaling (15) at high redshift, but for accurate computations
it is necessary to use the more precise expression (A1).

To compare with the numerical results of
Refs. [24,25,75,76,82], we adopt the same WMAP3
�CDM reference model [83], with cosmological parame-
ters ð�m;�b;h;�8;nsÞ¼ ð0:24;0:04181;0:73;0:76;0:958Þ.
We focus on the case n ¼ 1, with the amplitudes jfR0

j ¼
10�4, 10�5, and 10�6. We show in Figs. 17–19, the relative
deviations from the �CDM reference of the halo mass
function, the matter power spectrum, and the bispectrum.
Our results are similar to the ones obtained in Figs. 12, 15,
and 16, in the main text, for our power-law models pa-
rametrized by ðn;m0Þ. We can check that our results also
show a reasonable agreement with the ‘‘no-chameleon’’
numerical simulations of Refs. [24,25,75,76] for the halo
mass function and the power spectrum, although we may
overestimate the large-mass tail forM> 1015 h�1M�. The
almost straight lines on transition scales in Fig. 18
correspond to the interpolation (133) and should not

be considered as an accurate prediction. However, they
correctly reproduce the saturation of the relative deviation
and the transition toward the highly nonlinear regime
(dominated by the one-halo contribution) where the rela-
tive deviation declines (within our framework, where
we neglect modifications of halo profiles). The same be-
havior is found in numerical simulations, as can be seen in
Fig. 18 where we compare our results to the no-chameleon
simulation of Oyaizu et al. [25], with a reasonably good
quantitative match. It is interesting to note that using
simple fitting procedures designed for �CDM cosmology,
such as the halo fit from Ref. [81], has been shown
not to provide good results and to miss this high-k behavior
[25]. This is not fully surprising, since such fitting formulas
were not designed for these scenarios. This shows
the advantage of using approaches such as the one pre-
sented in this paper that are closer to physical modeling
(using both systematic perturbative expansions and phe-
nomenological halo models). Even though they may be
less accurate than a specific fitting formula for the class of
models the latter was built from, their behavior as cosmo-
logical parameters and scenarios are modified is more
reliable.
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