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We present an efficient separable approach to the estimation and reconstruction of the bispectrum and

the trispectrum from observational (or simulated) large-scale structure data. This is developed from

general cosmic microwave background (poly)spectra methods that exploit the fact that the bispectrum and

trispectrum in the literature can be represented by a separable mode expansion that converges rapidly

(with nmax ¼ Oð30Þ terms). The underlying methodology can encompass a wide variety of modal types,

including polynomials, trigonometric functions, wavelets, and bins. With an effective grid resolution lmax

(number of particles/grid points N ¼ l3max), we present a bispectrum estimator that requires only

Oðnmax � l3maxÞ operations, along with a corresponding method for direct bispectrum reconstruction.

This method is extended to the trispectrum revealing an estimator that requires only Oðn4=3max � l3maxÞ
operations. The complexity in calculating the trispectrum in this method is now involved in the original

decomposition and orthogonalization process that need only be performed once for each model. However,

for nondiagonal trispectra these processes present little extra difficulty and may be performed in Oðl4maxÞ
operations. A discussion of how the methodology may be applied to the quadspectrum is also given. An

efficient algorithm for the generation of arbitrary non-Gaussian initial conditions for use in N-body codes

using this separable approach is described. This prescription allows for the production of non-Gaussian

initial conditions for arbitrary bispectra and trispectra. A brief outline of the key issues involved in

parameter estimation, particularly in the nonlinear regime, is also given.

DOI: 10.1103/PhysRevD.86.063511 PACS numbers: 98.80.Bp, 98.80.-k

I. INTRODUCTION

In previous work [1–3] we developed and implemented a
methodology for the efficient and general analysis of non-
Gaussianity in the cosmic microwave sky. Our purpose
here is to apply these separable mode methods to large-
scale structure, making tractable a fast general analysis of
all bispectra and trispectra, rather than the few special
cases studied to date. Calculation of the three-point corre-
lator or bispectrum h�k1

�k2
�k3

i using 3D large-scale struc-

ture data naively appears to require a computationally
intensive l6max operation, or l

9
max for the trispectrum, where

lmax is the effective observational or simulated grid reso-
lution (i.e. the volume sidelength L over the averaged
galaxy or grid spacing �x, giving a particle number
N � l3max). However, if—as in the cosmic microwave
background (CMB)—predicted non-Gaussianity can be
described by rapidly convergent and separable mode ex-
pansions, then there is a dramatic reduction to only
Oðnmax � l3maxÞ operations for estimating any bispectrum,
where nmax is the (small) number of modes required for an
accurate representation (nmax � 30 for WMAP analysis
[2]). The relative impact on trispectrum estimation is

even more dramatic, reducing again to �Oðn4=3max � l3maxÞ
operations. Direct reconstruction of the bispectrum today
then allows for the decomposition into its constituent and
independent shapes, including contributions directly from
the primordial bispectrum, from next-to-leading order
terms in nonlinear gravitational collapse, from the con-

volved primordial trispectrum, etc. These methods equally
can be applied to generating simulation initial conditions
with arbitrary given bispectrum and trispectrum, again
using a simple separable mode algorithm requiring only

Oðnmax � l3maxÞ orOðn4=3max � l3maxÞ operations, respectively.
It should be noted that, while an application of the meth-
odology to real data sets such as the Sloan Digital Sky
Survey (SDSS) [4] would necessitate an analysis of com-
plications such as galaxy bias, redshift space distortions,
etc., the methods described here may be most straightfor-
wardly applied to simulated dark matter distributions as
formed using N-body codes.
Our purpose here is not to review the many important

contributions made to the study of higher order correlators
in large-scale structure, for which there are some compre-
hensive recent reviews available [5,6]; however, we note
that the field is well-motivated because non-Gaussianity is
recognized as a critical test of the simplest standard infla-
tionary scenario. Moreover, there are a growing number of
alternative inflationary scenarios where deviations from
non-Gaussianity can be large (see [7] for a review). The
most stringent constraints on primordial non-Gaussianity
so far have come from CMB bispectrum measurements
(e.g. [2,8], see [5]) with relatively weak constraints coming
from the large-scale structure galaxy bispectrum [9]
due to complications in dealing with nonlinear evolution.
While it appears to be possible also to derive competitive
constraints using the abundance of rare objects or
scale-dependent bias (e.g. [10]), these complementary
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approaches generally assume a local-type non-Gaussianity
(see the review [11]). With improving galaxy and other
surveys covering a growing fraction of the sky, it is rea-
sonable to expect measurements of higher order correlators
from this three-dimensional data to provide the best and
most comprehensive information about non-Gaussianity.
These large-scale structure (poly)spectra should allow us to
discriminate between different non-Gaussian shapes, nota-
bly between primordial and late-time sources, ultimately
complementing CMB measurements and exceeding them
in precision.

In this paper we present a method for quickly calculating
the bispectrum from a given density perturbation in Sec. II.
Next we show how to extend this analysis to the trispec-
trum in Sec. III. As any estimator would require non-
Gaussian simulations for testing and error analysis, we
present an approach in Sec. IV for including a general
bispectrum and trispectrum in the initial conditions for
N-body simulations. We then go on to show in Sec. V
how a general estimator for constraining primordial non-
Gaussianity can be constructed, when the bispectrum can
be approximated using a simple ansatz, and in the com-
pletely general case. Finally we present our concluding
remarks.

II. LARGE-SCALE STRUCTURE BISPECTRUM
CALCULATION

A. General bispectrum estimator

Higher order correlators of the galaxy or matter density
distribution can be expected to exhibit a low signal-to-
noise ratio for individual combinations of wave numbers
(as for multipoles in the CMB). A useful strategy for the
comparison between observations and theoretical models
(or simulated numerical models) is the use of an estimator
that tests for consistency by summing over all multipoles
using an optimal signal-to-noise weighting. The general
estimator for the galaxy or density bispectrum, when
searching for a given theoretical three-point correlator
h�k1

�k2
�k3

i, is

E ¼
Z d3k1

ð2�Þ3
d3k2
ð2�Þ3

d3k3
ð2�Þ3 h�k1

�k2
�k3

i

� ½C�1ð�obs
k1

ÞC�1ð�obs
k2

ÞC�1ð�obs
k3

Þ
� 3C�1ð�obs

k1
�obs
k2

ÞC�1ð�obs
k3

Þ�; (1)

where �obs
k represents a noisy measurement of the galaxy or

density perturbation with signal plus noise covariance C
given by

C�1ð�obs
k Þ ¼

Z d3k0

ð2�Þ3 h�k�k0 i�1�obs
k0 : (2)

We will discuss the normalization necessary for parameter
estimation in Sec. V. Here, we have added a linear term to
the cubic estimator in order to account for inhomogeneous

effects from incomplete survey coverage (e.g. due to dust
extinction), sampling bias, shot noise, and other known
systematics, which together can substantially increase the
experimental variance.
If we assume that the density field is statistically iso-

tropic, as it is in most well-motivated theoretical models,
then the bispectrum Bðk1; k2; k3Þ is defined by

h�k1
�k2

�k3
i ¼ ð2�Þ3�Dðk1 þ k2 þ k3ÞBðk1; k2; k3Þ; (3)

where �DðkÞ is the three-dimensional Dirac � function
enforcing a triangle condition on the wave vectors ki, for
which it is sufficient to use only the wave numbers ki ¼
jkij. For simplicity, let us suppose we are only in a mildly
nonlinear regime with good observational coverage over a
modest redshift range, so that we can make the approxi-
mation that the covariance matrix is nearly diagonal
C�1ð�obs

k Þ � �obs
k =PðkÞ. With these replacements, the esti-

mator (1) becomes

E ¼
Z d3k1

ð2�Þ3
d3k2
ð2�Þ3

d3k3
ð2�Þ3

� ð2�Þ3�Dðk1 þ k2 þ k3ÞBðk1; k2; k3Þ
Pðk1ÞPðk2ÞPðk3Þ

� ½�obs
k1

�obs
k2

�obs
k3

� 3h�sim
k1

�sim
k2

i�obs
k3

�; (4)

where �sim
k represents simulated data with the known in-

homogeneous systematic effects included, while we also
assume that shot noise is incorporated in the power spec-
trum Pþ N ! ~P, along with incomplete sample coverage
(though we will drop the tilde). We note that, although this
galaxy estimator with a linear term (4) has not been given
in this form explicitly before, the bispectrum scaling and
signal-to-noise ratios here and in what follows are consis-
tent with the pioneering discussions in Refs. [9,12] (see
also the analogous CMB bispectrum estimator discussed in
Ref. [13] and elsewhere). In any case, this large-scale
structure bispectrum estimator (4) does not appear to be
particularly useful because its brute force evaluation would
require at least l6max operations for a single measurement
(after imposing the triangle condition). The problem is
compounded by the many simulated realizations of the
observational setup that are required to obtain an accurate
linear term in (4). In fact, if the theoretical bispectrum
Bðk1; k2; k3Þ is computed numerically, then this is even
more computationally intensive, since it requires many
N-body simulations and bispectrum evaluations to achieve
statistical precision.
Nevertheless, let us now suppose that we have a large set

of simulated non-Gaussian realizations �obs
k generated with

the same theoretical bispectrum Bðk1; k2; k3Þ [and the same
power spectrum PðkÞ]. If we take the expectation value of
the estimator (4) by summing over these realizations, then
we find the average to be
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hEi ¼
Z d3k1

ð2�Þ3
d3k2
ð2�Þ3

d3k3
ð2�Þ3 ð2�Þ

6�2
Dðk1 þ k2 þ k3Þ

� B2ðk1; k2; k3Þ
Pðk1ÞPðk2ÞPðk3Þ

¼ V

8�4

Z
V B

dk1dk2dk3
k1k2k3B

2ðk1; k2; k3Þ
Pðk1ÞPðk2ÞPðk3Þ ; (5)

whereV B is the tetrahedral region allowed by the triangle
condition. The averaged estimator (5) is an important
expression, so it is instructive for subsequent calculations
to outline the explicit steps that take us between these two
lines. First, the second Dirac � function contributes only a
volume factor �ð0Þ ¼ V=ð2�Þ3. Second, we complete the
angular integration by expanding the integral form of the
remaining � function in spherical Bessel functions and
harmonics,

�DðkÞ ¼ 1

ð2�Þ3
Z

d3xeik�x; (6)

eik�x ¼ 4�
X
lm

iljlðkxÞYlmðk̂ÞY�
lmðx̂Þ: (7)

Third, each k̂i integration involves just a single spherical
harmonic and contributes a factor 2

ffiffiffiffi
�

p
�l0�m0, so we end

up with only a constant term from the Gaunt integral
G000

000 ¼ 1=2
ffiffiffiffi
�

p
[i.e. the integration over the three remain-

ing YlmðxÞ]. Finally, the last integral over the three Bessel
functions j0ðk1xÞj0ðk2xÞj0ðk3xÞ yields �=ð4k1k2k3Þ and
simultaneously imposes a triangle condition on k1, k2, k3
that we denote by the restricted domain of integrationV B.

The estimator average (5) leads naturally to a weighted
cross correlator or inner product between two different
bispectra Biðk1; k2; k3Þ and Bjðk1; k2; k3Þ, that is,

C ðBi; BjÞ ¼
hBi; Bjiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hBi; BiihBj; Bji
q ; (8)

where

hBi; Bji � V

8�4

Z
V B

dk1dk2dk3

� k1k2k3Biðk1; k2; k3ÞBjðk1; k2; k3Þ
Pðk1ÞPðk2ÞPðk3Þ : (9)

The estimator (4) is thus proportional to the Fisher matrix
of the bispectrum, Fij ¼ CðBi; BjÞ=6� (see Ref. [9]).

The fiducial model for non-Gaussianity is the fNL ¼ 1
local model. For the CMB, where the final CMB bispec-
trum Bl1l2l3 is linearly related to the primordial bispectrum

B0ðk1; k2; k3Þ, it is straightforward to define a normaliza-
tion that yields a universal FNL, representing the total
integrated bispectrum for a particular theoretical model
relative to that from the fNL ¼ 1 local model (see
Ref. [2]). However, with bispectrum contributions from

gravitational collapse and nonlinear bias arising even
with Gaussian initial conditions, a universal normalization
is a more subtle issue that we will defer to Sec. V.
Finally, we point out that the bispectrum estimator (1)

can be applied in any three-dimensional physical context
where we wish to test for a particular non-Gaussian model.
It can be applied at primordial times, with potential fluc-
tuations (i.e. replacing �k ! �k), in the late-time linear
regime on large scales where the density perturbation is
simply related by a transfer function �k ¼ Tðk; zÞ�k (as in
the CMB), in the mildly nonlinear regime where next-to-
leading order corrections are known, or deep in the non-
linear regime on small scales where we must rely on
N-body and hydrodynamic simulations. However, for a
useful implementation, we must rewrite (1) in a separable
form.

B. Separable mode expansions and bispectrum
reconstruction

The averaged estimator (5) gives a natural measure for
defining separable mode functions

Qnðk1; k2; k3Þ ¼ 1

6
½qrðk1Þqsðk2Þqtðk3Þ þ 5 perms�

� qfrðk1Þqsðk2Þqtgðk3Þ; (10)

which we can use to decompose an arbitrary bispectrum
(here, for convenience, the label n, denotes a linear order-
ing of the 3D products n $ frstg). We choose to expand
the bispectrum Bðk1; k2; k3Þ in its noise-weighted form (see
Ref. [1]),

Bðk1; k2; k3Þvðk1Þvðk2Þvðk3Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk1ÞPðk2ÞPðk3Þ

p ¼ X
�Q
n Qnðk1; k2; k3Þ;

(11)

where we have used the freedom to introduce a separable
modification to the weight function wðk1; k2; k3Þ ¼
k1k2k3=v

2ðk1Þv2ðk2Þv2ðk3Þ in (5). Series convergence usu-
ally can be improved with scale invariance, suggesting the

choice vðkÞ ¼ ffiffiffi
k

p
. The exact form of the one-dimensional

basis functions qrðkÞ is not important, except that they
should be bounded and well behaved on the bispectrum
domain V B. Some qrðkÞ examples that are orthogonal on
V B were given explicitly in Ref. [1]. In particular, these
are analogues of Legendre polynomials PnðkÞ. However, it
is important to note that the modes employed in these
separable products can be polynomials, trigonometric
functions, wavelets, or bins. The choice depends on utility
and the modes can be tailored for specific classes of
theoretical models under investigation.
The product functions Qn are independent but not nec-

essarily orthogonal, so it is convenient from these to gen-
erate an orthonormal set of mode functions Rn, such that,
hRn;Rmi ¼ �nm (achieved using Gram-Schmidt orthogo-
nalization with the inner product (8) or other methods such
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as Cholesky decomposition). We distinguish the expansion

coefficients �Q
n and �R

n by the superscripts for the sepa-
rable ‘‘Q’’ and orthonormal ‘‘R’’ modes, respectively;
these are related to each other by a rotation involving
the matrices hQm;Qni and hQm;Rni (see Ref. [1]). The
orthonormal modes Rn are convenient for finding the
expansion coefficients of an arbitrary bispectrum

Bðk1; k2; k3Þ from the inner product (8) through �R
n ¼

hB;Rni that are then rotated to the more explicitly sepa-

rable form �Q
n . Of course, there is some computational

effortOðnmax � l3maxÞ to achieve this orthogonalization and
decomposition, but it is a modest initial computation that
creates a framework for the subsequent data and error
analysis.

Now consider the effect of substituting the expansion
(11) into the bispectrum estimator (4). It collapses to the
simple summation

E ¼ X
n

�Q
n �Q

n ; (12)

where the observed �Q
n coefficients are defined by

�Q
n ¼

Z
d3xMrðxÞMsðxÞMtðxÞ; (13)

withMrðxÞ the observed density perturbation multiplied in
Fourier space with the mode functions qrðkÞ, that is,

MpðxÞ ¼
Z d3k

ð2�Þ3
�obs
k qrðkÞeik�xffiffiffiffiffiffiffiffiffiffiffiffi

kPðkÞp : (14)

Including the linear term in (4) to account for systematic
inhomogeneous effects, we have

�Q
n ¼

Z
d3xðMrðxÞMsðxÞMtðxÞ

� ½hMrðxÞMsðxÞiMtðxÞ þ 2 perms�Þ: (15)

Furthermore, rotating to the orthonormal frame with Rn,
it is straightforward to demonstrate that the averaged

observed coefficient will be �R
n ¼ h�R

n i, given a set of
realizations with the bispectrum Bðk1; k2; k3Þ in (11).
Thus we can directly reconstruct the bispectrum from a
single realization (with a sufficient single-to-noise ratio)
using

Bðk1; k2; k3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk1ÞPðk2ÞPðk3Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1k2k3

p X
n

�R
n Rnðk1; k2; k3Þ:

(16)

This reconstruction yields the full bispectrum shape in a
model-independent manner. One can also consider a
model-independent measure of the total integrated non-
Gaussian signal, using Parseval’s theorem in the orthonor-
mal frame (see Ref. [2] for a discussion of the quantity
�F2
NL ¼ P

n�
R2
n ). However, the bispectrum estimator (12)

provides an immediate means to determine the significance
of an observation of a particular type of non-Gaussianity

with specific coefficients �Q
n , e.g. by comparison with the

�R
n extracted from Gaussian simulations. We note that an

initial implementation of the bispectrum reconstruction
method (16) indicates its efficacy in recovering local
non-Gaussianity.
We emphasize that the bispectrum reconstruction (16)

provides an extremely efficient method for calculating the
bispectrum from any given density field �k with optimum
noise weighting. Moreover, these separable mode expan-
sion methods have been thoroughly tested in a CMB con-
text [2]. In essence, the l6max operations required with the
original estimator (or for a direct bispectrum calculation
such as that described in Ref. [12]) have been reduced to a
series of l3max integrations given by (14). Of course, the
number of mode coefficients depends on the rate of con-
vergence of the expansion (11) that is usually remarkably
rapid. For the CMB, a comprehensive survey of most
theoretical bispectra in the literature required only 30
eigenmodes for an accurate description at WMAP resolu-
tion [2]. Even for a separable bispectrum in the linear
regime (i.e. a terminating sum), we shall explain the ad-
vantages of using the well-behaved mode expansion (11).
The form of the next-to-leading order corrections for large-
scale structure show no obvious pathologies that would
alter this convergence significantly in the mildly nonlinear
regime (see later), and substantial efficiencies will remain
even in highly nonlinear contexts. This reconstruction
approach (16) is ideally suited for N-body simulations
where the bispectrum can be predicted at high precision
by efficiently extracting it from multiple realizations using
both Gaussian and non-Gaussian initial conditions (see
later). In an observational context, sparse sampling or
poor survey strategies could reduce the effectiveness of
the estimator (4) in Fourier space, so care must be taken in
a large-scale structure survey design to ensure good cover-
age so that higher order correlator measurements exploit
these efficiencies.

III. EXTENSION TO THE TRISPECTRUM
AND BEYOND

A. General trispectrum estimator

In [3] we discussed general CMB estimators for the
trispectrum, where the decomposition of a planar trispec-
trum (nondiagonal or single diagonal) is sufficient to study
the majority of cases described in the literature. While this
projection depends explicitly on five parameters (or four in
the nondiagonal case), in order to study other probes of
non-Gaussianity, particularly for nonlinear large-scale
structure, it may be necessary to consider the general
trispectrum depending on the full six parameters. This is
further motivated by the study of the galaxy bispectrum,
which may contain an enhanced contribution due to the
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trispectrum (see, e.g., Ref. [14]). Clearly, then, we should
also include a nonzero trispectrum to obtain non-Gaussian
initial conditions suitable for a general bispectrum analysis
using N-body codes.

The form of the general trispectrum estimator, for the
connected part of a given four-point correlator
h�k1

�k2
�k3

�k4
ic, is directly analogous to that presented

already in Ref. [3] for the CMB:

E ¼
Z d3k1

ð2�Þ3
d3k2

ð2�Þ3
d3k3

ð2�Þ3
d3k4

ð2�Þ3
ð�obs

k1
�obs
k2

�obs
k3

�obs
k4

�6h�sim
k1

�sim
k2

i�obs
k3

�obs
k4

þ3h�sim
k1

�sim
k2

ih�sim
k3

�sim
k4

iÞh�k1
�k2

�k3
�k4

ic
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ ; (17)

where the notation h� � �ic denotes the connected compo-
nent of the correlator. Note that this formula includes the
quadratic term necessary to generalize to the case of in-
complete sample coverage and inhomogeneous noise in a
similar fashion to the CMB trispectrum estimator [see the
discussion after (4)]. We omit the covariance-weighted
version of the expression that is obvious from a comparison
with (1). Imposing the � function appears to leave an
intractable l9max operation for a full trispectrum estimator

evaluation, but, as with the bispectrum, this can be reduced
dramatically using a separable approach.
Assuming statistical isotropy, we can choose to parame-

trize the trispectrum using the lengths of four of its sides
and two of its diagonals. In particular, we can exhibit these
dependencies explicitly by representing the � function
imposing the quadrilateral condition, as a product of tri-
angle conditions using the diagonals:

h�k1
�k2

�k3
�k4

ic ¼ ð2�Þ3�Dðk1 þ k2 þ k3 þ k4ÞTðk1;k2;k3;k4Þ (18)

¼ð2�Þ3
Z
d3K1d

3K2�Dðk1þk2�K1Þ�Dðk3þk4þK1Þ�Dðk1þk4�K2ÞTðk1;k2;k3;k4;K1;K2Þ:
(19)

The decomposition of the trispectrum Tðk1; k2; k3;
k4; K1; K2Þ is similar to that described in [3], but in which
the trispectrum is assumed to depend on the first five
parameters only. In the interest of completeness we evalu-
ate a suitable weight function necessary for evaluation of

the more general decomposition from the expectation value
of the estimator (17). Similarly to the case of the bispec-
trum (5), the expectation value for the estimator is found to
take the following simple form:

hEi ¼ V

ð2�Þ3
Z d3k1

ð2�Þ3
d3k2

ð2�Þ3
d3k3

ð2�Þ3
d3k4

ð2�Þ3
ð2�Þ6�Dðk1 þ k2 þ k3 þ k4ÞT2ðk1;k2;k3;k4Þ

Pðk1ÞPðk2ÞPðk3ÞPðk4Þ (20)

¼ V

ð2�Þ3
1

2�4

Z
V T

dk1dk2dk3dk4dK1dK2

k1k2k3k4K1K2ffiffiffiffiffi
g1

p T2ðk1; k2; k3; k4; K1; K2Þ
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ ; (21)

where the function g1 is given by the expression

g1 ¼ K2
1K

2
2

�X
i

k2i � K2
1 � K2

2

�
� K2

1�23�14 þ K2
2�12�34 � ðk21k23 � k22k

2
4Þð�12 þ �34Þ; (22)

and we denote �ij ¼ k2i � k2j . For clarity, we omit the

many calculational steps required in the derivation and

present them in the Appendix. Here, we note that V T is

the region allowed by the quadrilateral condition that is

described in some detail in [3], noting the different ranges

for the wave numbers ki < kmax and diagonals Ki < 2kmax.

By considering two different trispectra T2 ! TiTj in the

estimator average (20), we can use this expression to define

a noise-weighted cross correlator and inner product [or
Fisher matrix, see the discussion after (5)].

B. Separable mode expansions and the
trispectrum estimator

Using the weight (20), a simple extension of the
argument outlined in [3] to include two diagonals instead
of one, we find a similar eigenmode to the case of the
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bispectrum. In particular, we could expand the trispectrum
as !Tðk1;k2;k3;k4;K1;K2Þ¼

P
n�nQnðk1;k2;k3;k4;K1;K2Þ

where Qn ¼ qfrðk1Þqsðk2Þqtðk3Þqugðk4ÞrvðK1ÞrwðK2Þ, n
represents frstuvwg1 and !, here and subsequently, is
shorthand for an appropriate separable weighting. As we
will see in the estimator below, however, it is simpler to
achieve a separable form by parametrizing our bispectrum
using angles rather than diagonals. To achieve this, we

may make a coordinate transformation from ðK1; K2Þ !
ð� ¼ k̂1:k̂2; � ¼ k̂1:k̂4Þ where we use K1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k22 þ 2k1k2�

q
and K2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ k24 þ 2k1k4�

q
. The

Jacobian of this transformation is k21k2k4=ðK1K2Þ.
Thus (20) becomes

hEi ¼ V

ð2�Þ3
1

2�4

Z
V T

dk1dk2dk3dk4d�d�

� k31k
2
2k3k

2
4ffiffiffiffiffi

g1
p T2ðk1; k2; k3; k4; �; �Þ

Pðk1ÞPðk2ÞPðk3ÞPðk4Þ ; (23)

where g1 is given by Eq. (22) but now must be expressed in
terms of �, �. We may use this weight to form an eigen-
mode expansion of the trispectrum where we use Legendre

polynomials to describe the angular part. Explicitly we
may expand the trispectrum in a noise-weighted form as

vðk1Þvðk2Þvðk3Þvðk4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ

p Tðk1; k2; k3; k4; �; �Þ

¼ X
nl1l2

�nl1l2Qnðk1; k2; k3; k4ÞPl1ð�ÞPl2ð�Þ; (24)

where n ¼ fr; s; t; ug and Qnðk1; k2; k3; k4Þ ¼
qfrðk1Þqsðk2Þqtðk3Þqugðk4Þ in an analogous manner to

Eq. (10). Scale invariance suggests the choice vðkÞ ¼
k3=4. In order to make this expression separable in terms
of the vectors ki, we note the following expansion of the
Legendre polynomials

Plðk̂1:k̂2Þ ¼ 4�

2lþ 1

Xl
m¼�l

Ylmðk̂1ÞY�
lmðk̂2Þ: (25)

Using Eqs. (6) and (7) we can now write the estimator as
expressed in (17) in the form

E ¼ X
nl1l2

��Q
nl1l2

��Q
nl1l2

; (26)

where the extracted trispectrum coefficients are given by

��Q
nl1l2

¼ ð4�Þ2
ð2l1 þ 1Þð2l2 þ 1Þ

X
m1m2

Z
d3x½Mm1m2

rl1l2
ðxÞMm1�

sl1
ðxÞMtðxÞMm2�

ul2
ðxÞ � ðMm1m2

rl1l2
ðxÞMm1�

sl1
ðxÞhMtðxÞMm2�

ul2
ðxÞi

þ 5 permsÞ þ ðhMm1m2

rl1l2
ðxÞMm1�

sl1
ðxÞihMtðxÞMm2�

ul2
ðxÞi þ 2 permsÞ�; (27)

where the permutations are with respect to the indices fr; s; t; ug. In the above we define the filtered density perturbations
M...

... by

Mm1m2

rl1l2
ðxÞ ¼

Z d3k

ð2�Þ3 e
ik�x qrðkÞ�obs

kffiffiffiffiffiffiffiffiffiffi
PðkÞp

k3=4
Yl1m1

ðk̂ÞYl2m2
ðk̂Þ; Mm1�

sl1
ðxÞ ¼

Z d3k

ð2�Þ3 e
ik�x qsðkÞ�obs

kffiffiffiffiffiffiffiffiffiffi
PðkÞp

k3=4
Y�
l1m1

ðk̂Þ;

MtðxÞ ¼
Z d3k

ð2�Þ3 e
ik�x qtðkÞ�obs

kffiffiffiffiffiffiffiffiffiffi
PðkÞp

k3=4
;

(28)

with a � denoting a filtered map using Y�
lm.

The algorithm (26) provides a highly efficient method
for estimating any trispectrum from a given density field. It

requires only Oðn4=3max � l3maxÞ operations, which makes
feasible the intractable naive brute force calculation requir-
ing Oðl9maxÞ operations. In making this rough numerical
estimate, we assume that the number of modes in each of
the six dimensions is equal (and small), while noting that
we have to perform a double summation for the two angle
parameters �, � over the indices l1, m1, l2, m2.

As for the bispectrum, it is possible from the separable
�Qnl1l2 modes to create a set of orthonormal �Rnl1l2 modes

using the inner product (23). Like the original decom-

position of a theoretical trispectrum (24), orthogonaliza-
tion is a computationally intensive task requiring up to

Oðl6maxÞ operations. However, it need only be performed
once at the outset to set up the calculation framework,
with the resulting rotation matrices being available for

all the repetitive subsequent analysis (� l3max opera-
tions). We can realistically envisage, then, reconstructing

the complete trispectrum directly from the observational

data using the rotated ��Q
nl1l2

coefficients [as in (16)]. It is

interesting to note that almost all theoretical trispectra
presented to date in the literature are ‘‘planar,’’ that is,

either depending on only one diagonal or none. We treat
the latter special case below, but we leave the simplifi-

cations arising from the single diagonal case for dis-
cussion elsewhere [15].

1The diagonals and the wave numbers are described by differ-
ent eigenmodes due to their differing range, i.e. ki < kmax while
Ki < 2kmax.
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C. Nondiagonal trispectrum and
quadspectrum estimation

In the case that the trispectrum is independent of the
diagonals K1, K2 (or angles �, �) we get a simpler ex-
pression for the averaged estimator (17):

hEi ¼ V

ð2�Þ6
Z
V T

dk1dk2dk3dk4k1k2k3k4

�X
i

ki � j~k34j

� j~k24j � j~k23j
�

T2ðk1; k2; k3; k4Þ
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ ; (29)

where ~k34 ¼ k1 þ k2 � k3 � k4, etc. We may use the
weighting this suggests to decompose the trispectrum
into the form !T ¼ P

n�nQn where Qn ¼ qfrqsqtqug.
The estimator is simpler to calculate since there are no
cross terms between integrals. We find the extracted
observational coefficients simplify to

�n ¼
Z

d3x½MrðxÞMsðxÞMtðxÞMuðxÞ
� ðMrðxÞMsðxÞhMtðxÞMuðxÞi þ 5 permsÞ
þ ðhMrðxÞMsðxÞihMtðxÞMuðxÞi þ 2 permsÞ�; (30)

where Mt was defined in (28). Here, we see that the
trispectrum estimation scales once again as onlyOðnmax �
l3maxÞ operations. The extraction of expansion coefficients

��Q from a given nonseparable theoretical trispectrum
appears to require up to l4max operations, but it is a one-
off calculation amenable to many shortcuts. A practical
implementation reveals that nondiagonal trispectra given
in the literature require only nmax � Oð10Þ modes for
accurate representation. As an example, even the patho-
logical local model with diverging squeezed states requires
only nmax ¼ 20 for the expansion (24) to achieve a 95%
correlation with the primordial shape. It is clear that there
is no inherent impediment to direct estimation and evalu-
ation of trispectra from survey data of adequate quality.

This separable methodology can be applied to correla-
tors beyond the trispectrum, such as the quadspectrum
~Qðk1;k2;k3;k4;k5Þ defined from

h�k1
�k2

�k3
�k4

�k5
i ¼ ð2�Þ3�ðk1 þ k2 þ k3 þ k4 þ k5Þ

� ~Qðk1;k2;k3;k4;k5Þ: (31)

For simplicity, however, we restrict attention here to
quadspectra that are nondiagonal, depending only on the

wave numbers k1; . . . ; k5, that is,
~Qðk1;k2;k3;k4;k5Þ ¼

~Qðk1; k2; k3; k4; k5Þ. The expectation value of the quad-
spectrum estimator is then given by

hEi¼ V

ð2�Þ3
Z �

�5
i¼1

d3ki

ð2�Þ3
�

�ð2�Þ6�ðk1þk2þk3þk4þk5Þ ~Q2ðk1;k2;k3;k4;k5Þ
Pðk1ÞPðk2ÞPðk3ÞPðk4ÞPðk5Þ

¼ V

ð2�3Þ3
Z
dk1dk2dk3dk4dk5ðk1k2k3k4k5Þ2

�
�Z

dxx2j0ðk1xÞj0ðk2xÞj0ðk3xÞj0ðk4xÞj0ðk5xÞ
�

�
~Q2ðk1;k2;k3;k4;k5Þ

Pðk1ÞPðk2ÞPðk3ÞPðk4ÞPðk5Þ; (32)

where the integral over the five spherical Bessel functions
serves also to define the allowed quadspectrum
domain VQ. The expression (32) may be used to derive

a weight to decompose the quadspectrum in the form

½�5
i¼1vðkiÞ=

ffiffiffiffiffiffiffiffiffiffiffi
PðkiÞ

p � ~Qðk1; k2; k3; k4; k5Þ ¼
P

n�nQnðk1; k2;
k3; k4; k5Þ where n $ fr; s; t; u; vg and Qnðk1; k2; k3;
k4; k5Þ ¼ qfrðk1Þqsðk2Þqtðk3Þquðk4Þqvgðk5Þ, and where im-

posing scale invariance sets vðkÞ ¼ k9=10. The resulting
separable estimator is directly analogous to that for the
nondiagonal trispectrum (30), but for brevity we will only
discuss initial conditions with a nontrivial quadspectrum.

IV. EFFICIENT GENERATION OF ARBITRARY
NON-GAUSSIAN INITIAL CONDITIONS

The generation of non-Gaussian initial conditions for N-
body simulations with a given primordial bispectrum has
been achieved to date only for bispectra that have a simple
separable form (see, e.g., [16–19]). For N-body codes to
efficiently produce non-Gaussian initial conditions for an
arbitrary nonseparable bispectrum, a well-behaved sepa-
rable mode decomposition will be required, as achieved for
CMB map simulations in Ref. [1]. However, we can do
even better by simulating initial data given both an arbi-
trary bispectrum and trispectrum, as shown for the CMB in
[3]. As we have discussed already, this is of particular
interest for measurements of the large-scale structure bis-
pectrum, because of nonlinear contributions expected from
the trispectrum. We describe the non-Gaussian primordial
potential perturbation as

� ¼ �G þ 1

2
FNL�

B þ 1

6
GNL�

T; (33)

where �G is a Gaussian random field with the
required power spectrum PðkÞ. It should be noted that
this definition introduces two trispectrum terms of the
form h�T�G�G�Gi and h�B�B�G�Gi (similar to the
local trispectrum terms with coefficients gNL and �NL,
respectively). Therefore, it may be desirable to cancel
this extra contribution. This issue will be addressed at the
end of the section. Following Ref. [1] for the primordial
bispectrum Bðk1; k2; k3Þ with separable expansion
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Bðk; k0; k00Þ
Pðk0ÞPðk00Þ þ PðkÞPðk0Þ þ PðkÞPðk00Þ
¼ X

n

�Q
n Qnðk; k0; k00Þ; (34)

the bispectrum contribution to the primordial perturbation
� becomes simply

�BðkÞ¼
Z d3k0

ð2�Þ3
d3k00

ð2�Þ3

�ð2�Þ3�ðkþk0þk00ÞBðk;k0;k00Þ�Gðk0Þ�Gðk00Þ
Pðk0ÞPðk00ÞþPðkÞPðk0ÞþPðkÞPðk00Þ

(35)

¼ X
n

�nqfrðkÞ
Z

d3eik�xMsðxÞMtgðxÞ; (36)

where the filtered density perturbations MsðxÞ are now
defined by

MsðxÞ ¼
Z d3k

ð2�Þ3 �
GðkÞqsðkÞeik�x: (37)

We note that the modal bispectrum algorithm in Ref. [1]
used here is a generalization of the separable CMB bispec-
trum simulation method presented in Ref. [20]. Here, in
3D, the intermediate expression [(35) was first presented in

convolved form; see (49) below] in Refs. [19,21]. It should
be noted that, with this prescription, the definition agrees
identically with the expansion� ¼ �G þ FNL�

G ��G in
the case of the local model. Of course, we normalize
Bðk1; k2; k3Þ such that it has FNL ¼ 1. Like the estimator,
this requires only Oðnmax � l3maxÞ operations for every
realization of new initial conditions, as opposed to a brute
force approach that requires l6max. Note also that once the
nmax filtered density perturbations

R
d3xeik�xMsðxÞMtðxÞ

have been obtained for a given �G, they can be applied to
an arbitrary number of differently shaped bispectra repre-

sented by �Q
n s.

We can similarly find a relatively simple and highly
efficient expression to compute initial conditions for the
trispectrum �T . Following [3], the primordial trispectrum
Tðk1; k2; k3; k4; �; �Þ is represented and expanded using
wave number qrðkÞ and angle Puð�Þ modes in a similar
fashion to Eq. (24),

Tðk1; k2; k3; k4; �; �Þ
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ þ 3 perms

¼ X
nl1l2

�nl1l2Qnðk1; k2; k3; k4ÞPl1ð�ÞPl2ð�Þ: (38)

The trispectrum contribution to � then becomes

�TðkÞ ¼
Z d3k0d3k00d3k000

ð2�Þ6
�ðkþ k0 þ k00 þ k000ÞTðk;k0;k00;k000Þ�Gðk0Þ�Gðk00Þ�Gðk000Þ

Pðk0ÞPðk00ÞPðk000Þ þ 3 perms
(39)

¼ X
nl1l2nl1l2

��Q
nl1l2

ð4�Þ2
ð2l1 þ 1Þð2l2 þ 1Þ

X
m1m2

Yl1m1
ðk̂ÞYl2m2

ðk̂ÞqrðkÞ
Z

d3xeik�xMm1�
sl1

ðxÞMtðxÞMm2�
ul2

ðxÞ; (40)

where the filtered density perturbations Mm1�
sl1

and Mt are
now given by

Mm1�
sl1

ðxÞ ¼
Z d3k

ð2�Þ3 e
ik�xqsðkÞ�GðkÞY�

l1m1
ðk̂Þ;

MtðxÞ ¼
Z d3k

ð2�Þ3 e
ik�xqtðkÞ�GðkÞ: (41)

For the particular case that the trispectrum is indepen-
dent of the angles �, � (or diagonals K1, K2) the decom-
position is somewhat simpler:

�TðkÞ ¼ X
nn

��Q
n qrðkÞ

Z
d3xeik�xMsðxÞMtðxÞMuðxÞ:

(42)

This applies to many cases in the literature, including
constant, local, and equilateral models. This simplification

will also apply to initial conditions with nondiagonal
quadspectra. The expression for quadspectrum perturba-

tion �
~Q is very similar to the expressions above with

�
~Q ¼ X

n

~�Q
n qrðkÞ

Z
d3xeik�xMsðxÞMtðxÞMuðxÞMvðxÞ:

(43)

It is clear that it is possible, given separable expansions of
an arbitrary bispectrum and trispectrum, to efficiently gen-
erate multitudes of realizations, with each requiring only
Oðnmax � l3maxÞ operations.
It should be noted that since the bispectrum (35) and

trispectrum (39) contributions are not independent, it may
be necessary to subtract out an unwanted ‘‘bispectrum’’
contribution to the trispectrum. The bispectrum contribu-
tion induces a trispectrum given by
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h�ðk1Þ�ðk2Þ�ðk3Þ�ðk4Þic ¼ ð2�Þ3F2
NL

Z
d3K½ ~Tðk1; k2; k3; k4; KÞ�Dðk1 þ k2 �KÞ�Dðk3 þ k4 þKÞ

þ ~Tðk1; k3; k2; k4; KÞ�Dðk1 þ k3 �KÞ�Dðk2 þ k4 þKÞ
þ ~Tðk1; k4; k2; k3; KÞ�Dðk1 þ k4 �KÞ�Dðk2 þ k3 þKÞ�; (44)

where

~Tðk1; k2; k3; k4; KÞ ¼ Bðk1; k2; KÞ
Pðk1ÞPðk2Þ þ 2 perms

Bðk3; k4; KÞ
Pðk3ÞPðk4Þ þ 2 perms

PðKÞðPðk1ÞPðk3Þ
þ Pðk1ÞPðk4Þ þ Pðk2ÞPðk3Þ þ Pðk2ÞPðk4ÞÞ: (45)

Cancellation of this spurious ‘‘trispectrum’’ may be
achieved by altering the algorithm given by Eq. (33) to
the form

� ¼ �G þ 1

2
FNL þ 1

6
GNL�

T � 1

2
F2
NL

~�T; (46)

where

~�TðkÞ ¼
Z d3k2

ð2�Þ3
d3k3

ð2�Þ3
d3k4

ð2�Þ3 d
3Kð2�Þ3�Dðkþk2 �KÞ

��Dðk3 þk4 þKÞ ~Tðk; k2; k3; k4;KÞ
PðkÞPðk2ÞPðk3Þ þ 3perms

��Gðk2Þ�Gðk3Þ�Gðk4Þ: (47)

With this prescription it is found that

h�ðk1Þ�ðk2Þ�ðk3Þi¼ ð2�Þ3�Dðk1þk2þk3Þ
�Bðk1;k2;k3Þ;

h�ðk1Þ�ðk2Þ�ðk3Þ�ð4Þic¼ð2�Þ3�Dðk1þk2þk3þk4Þ
�Tðk1;k2;k3;k4Þ; (48)

as desired. We shall leave a detailed analysis of this issue to
a future work.

Recently, Refs. [19,21] proposed an alternative approach
to creating non-Gaussian initial conditions from bispectra
by integrating directly the convolution expression

�BðkÞ¼
Z d3k0

ð2�Þ3

� Bðk;k0;jkþk0jÞ�Gðk0Þ�Gðkþk0Þ
Pðk0ÞPðjkþk0jÞþPðkÞPðk0ÞþPðkÞPðjkþk0jÞ:

(49)

Originally in Ref. [19] the denominator only had a
Pðk0ÞPðjkþ k0jÞ term, so for explicitly separable bispec-
tra, using convolutions, they were able to exploit the same
efficiencies described above to reduce the problem from
Oðl6maxÞ to Oðl3maxÞ operations. However, this procedure
leads in general to a nontrivial and spurious non-
Gaussian contribution to the power spectrum, so the above
expression with a symmetrized denominator was advo-
cated instead [21]. The key difficulty with this modifica-

tion, however, is that the denominator becomes
nonseparable, so the method can no longer exploit separa-
bility in evaluating the convolution (except in the trivial
local case where the integrand is unity). For models other
than local, a highly inefficient brute force analysis was
pursued. We contrast this with the modal approach where
the problem of separable efficiency is already solved in
general. The modal decomposition does not require the
bispectrum Bðk1; k2; k3Þ to be separable, so the form of the
denominator in (34) presents no additional difficulty. In
addition, we note that even in the separable bispectra, the
CMB modal initial conditions prescription had other bene-
ficial effects because of the well-behaved bounded mode
functions employed; these may carry over to this three-
dimensional case.

V. NON-GAUSSIAN PARAMETER ESTIMATION

Fast separable methods for estimating arbitrary bispec-
tra or trispectra in large-scale structure observations or
simulated data greatly improve the prospect of using higher
order correlators as an important cosmological diagnostic.
This is particularly pertinent for testing the Gaussian hy-
pothesis of the inflationary scenario. The complication is
that even Gaussian initial fluctuations receive non-
Gaussian contributions through late-time gravitational col-
lapse (see reviews [5,22] and the references therein). Here,
we briefly sketch some key issues facing parameter esti-
mation in this context.
There has been much recent progress describing next-to-

leading order contributions to non-Gaussianity from
gravity. A simple example of this is the matter density
power spectrum which contains several contributions, in-
cluding those from an enhanced primordial bispectrum
FNLB0ðk1; k2; k3Þ [23]:

PBðkÞ ¼ FNL

ð2�Þ3
Z

d3yB0ðk; y;k� yÞF2ðy;k� yÞ

¼ FNL

ð2�Þ3
Z

d3yd3k2�ðk2 � kþ yÞ
� B0ðk; y; k2ÞF2ðy;k2Þ; (50)

where the gravitational kernel for this convolution is
given by
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F2ðy;k2Þ ¼ 17

21
þ P1ð�Þ

�
y

k2
þ k2

y

�
þ 4

21
P2ð�Þ: (51)

Taking the separable expansion (11) for B0ðk1; k2; k3Þ and
substituting into Eq (50), we find the simple integral over
the mode functions qrðkÞ:

PBðkÞ ¼ FNL

X
n

�n

2�2

qrðkÞ
ffiffiffiffiffiffiffiffiffiffi
PðkÞp

k3=2

Z
V B

dydk2

ffiffiffiffiffiffiffiffiffiffiffiffi
yPðyÞ

q
qsðyÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Pðk2Þ

q
qtðk2Þ

�
5

7
þ 2

7

�
k22 þ y2 � k2

2k2y

�
2

�
�
y

k2
þ k2

y

��
k22 þ y2 � k2

2k2y

��
; (52)

where V B represents the domain for which the triangle
condition holds for the wave numbers ðk2; y; kÞ. Note that
this integral breaks down into products of one-dimensional
integrals over y and k2, which can be evaluated easily.
Here, the calculation steps leading to (52) are very similar
to those used to obtain (5).
In the mildly nonlinear regime, the matter density

bispectrum similarly contains nonlinear contributions
from gravitational collapse, from the primordial bispec-
trum FNLB0, and from the primordial trispectrum �NLT0

[14,24]:

Bðk1; k2; k3Þ ¼ ½2F2ðk1;k2P0ðk1ÞP0ðk2Þ þ 2perms� þ FNLB0ðk1; k2; k3Þ�
þ �NL

ð2�Þ3
Z

d3T0ðk1;k2; y;k3 � yÞF2ðy;k3 � yÞ þ 2perms

� BGðk1; k2; k3Þ þ FNLB0ðk1; k2; k3Þ þ �NLB
Tðk1; k2; k3Þ: (53)

In Appendix B, we substitute the separable expansion for
the trispectrum (24) into (53) to find integral expressions
for the resulting bispectrum. For nondiagonal trispectra,
the result is simple and very similar to the power spectrum
modification (52). The result is three distinct contributions
to the late-time bispectrum!Bðk1; k2; k3Þ ¼ P

n�nQn with
the bispectrum approximated as in separable form as

!Bðk1;k2;k3Þ¼
X
n

ð�G
n þ�B

n þNL�
T
n ÞRnðk1;k2k3Þ; (54)

with the coefficients �i
n representing distinct shapes in the

orthonormal frame. Here, the primordial �B coefficients
are normalized such that in the initial conditions FNL ¼ 1,
and similarly for the primordial trispectrum �NL ¼ 1.

Setting aside the trispectrum contribution, if we can
remove the Gaussian part from �n, �n then we have an
optimal estimator for the non-Gaussianity parameter FNL,

E ¼ 1

N2

X
�B
n�

B
n ; (55)

where we have defined the predicted �B
n and measured

�B
n by

�B
n ¼ �n � ��G

n ; �B
n ¼ �n � ��G

n ; N2 ¼ X
�B2

n :

(56)

Here ��G
n refers to the decomposition coefficients for

Gaussian initial conditions, calculated either from theory
[as above in (53)] or obtained from N-body simulations
(note ��G

n ¼ ��G
n ) and the n are calculated from initial

conditions with FNL ¼ 1. The variance of the estimator
can then be calculated by applying it to a large set of
Gaussian 12 simulations. This is directly analogous to

the CMB estimator used in [1] (where of course ��G
n ¼

0). It should be noted that in the study of real data sets, such
as from SDSS, it is necessary to account for complications
such as redshift space distortions, survey geometry, galaxy
bias, etc. This requires that the decomposition coefficients,
��G
n , include these effects. The usual method employed to

carry out such an analysis is to create a mock data set
that includes such systematics. These are generally created
using large suites of N-body simulations. However, in [25]
an alternative approach using second order Lagrangian
perturbation theory that is accurate on large scales (be-
tween 30 and 80 h�1 Mpc) was described. We defer the
important study of real three-dimensional data using the
modal approach to a future publication.
In the nonlinear regime, and with significant bias affect-

ing the galaxy distribution, it may not be possible to
approximate non-Gaussianity using (55). We need to ap-
proach parameter estimation for FNL (or �NL) quite differ-
ently. The estimator (55) can be thought of as a least
squares fit of the theory to the data. As the relative size
of the individual �B

n are constant, we can only change the
amplitude, FNL. Therefore, we must simply choose an FNL

that minimizes

E ¼ Xð�B
nFNL � �B

n Þ2 (57)

for a given form of �B
n . In the general case we expect the

ratios of the individual coefficients to change as we change
FNL. As a result we must consider the �B

n to be an arbitrary
function of FNL and so we now wish to minimize

E ðFNLÞ ¼
Xð�B

n ðFNLÞ � �B
n Þ2 (58)
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with respect to FNL. We will assume that it will not be
possible in general to determine �nðFNLÞ analytically so
that we could then try to solve @E=@FNL ¼ 0. This means
that to minimize E requires extracting the �n from sets of
N-body simulations each with different non-Gaussian ini-
tial conditions that correspond to a particular FNL. We then
reconstruct the dependence of E on FNL and find the best-fit
FNL for the given observations. One also must be careful
calculating the variance on such a measurement of FNL. In
general this would entail applying the same approach to
each density distribution in the set of simulations with the

estimated FNL, F̂NL, and then determining the distribution

of the recovered Fsim
NL , P½Fsim

NL ;FNL ¼ F̂NL�. Of course,
Gaussian simulations may be substituted if FNL is suffi-
ciently small that the effect on the error bars is negligible,
i.e. such that the probability distribution function may be

approximated as P½Fsim
NL ;FNL ¼ F̂NL� ¼ 0. Of course, gen-

erating enough N-body simulations to reliably produce this
probability distribution function is an onerous task. We
may instead attempt to analytically calculate the quantities
�nðFNLÞ by extending the tree-level approach [see, for
example, Eq. (53)] to include higher order loop corrections.
Work in this direction has been carried out in [26–30]. A
study of the domain of validity of these perturbation theory
formulas is, therefore, an extremely worthwhile task.

Finally, we note that in general the galaxy bispectrum
will take contributions from both the bispectrum and tris-
pectrum of the curvature perturbation [14] (which is why
we cannot in general connect FNL with its CMB counter-
part in a simple way). The amplitudes of FNL and �NL can
be determined by consistency conditions for certain mod-
els or they can vary independently. In this case we must
constrain the amplitude of both FNL and �NL contributions
marginalizing over these two parameters. Such a computa-
tionally intensive analysis becomes much more feasible
with an efficient bispectrum extraction method (16) and
with non-Gaussian initial conditions that include the speci-
fication of the trispectrum (33).

VI. CONCLUSION

While the CMB is an ideal observable for tests of
primordial non-Gaussianity since the perturbations remain
in the linear regime, there are encouraging prospects for
achieving comparable, and ultimately superior, constraints
on non-Gaussianity because of forthcoming galaxy sur-
veys. In this paper we have described how methods devel-
oped for the analysis of non-Gaussianity in the CMB may
be applied to the study of N-body simulations and surveys
of large-scale structure. These methods are based on mode
expansions (whether polynomials, wavelets, or bins), ex-
ploiting a complete orthonormal eigenmode basis to effi-
ciently decompose arbitrary polyspectra into a separable
polynomial expansion.

Applying the methodology to the bispectrum reveals a
vast improvement in computational speed for finding a

general estimator and correlator, reducing complexity
from Oðl6maxÞ to Oðnmax � l3maxÞ. As we use a complete
orthonormal basis we are also able to efficiently calculate
the bispectrum from simulations and, assuming a sufficent
signal-to-noise ratio, observations. Of particular interest is
the application to the generation of non-Gaussian initial
conditions for N-body codes. The approach can be used to
create initial conditions with arbitrary independent poly-
spectra. With this method, calculation of the bispectrum
contribution requires a similar number of operations as
decomposition. This improvement to the brute force ap-
proach opens up the opportunity of investigating a far
wider range of models using large-scale structure than
has hitherto been considered.
The extension of the approach to the trispectrum has

also been described in some detail. As with the bispec-
trum, computational speed is vastly improved using the
separable method. However, for trispectra that depend on
the diagonals as well as the wave numbers, the decom-
position into separable modes is still a computationally
intensive operation requiring up to Oðl6maxÞ operations.
Nonetheless, this decomposition need only be performed
once for each model. In the particular case that the
trispectra is independent of the diagonals, the decompo-
sition process may be performed efficiently in Oðl4maxÞ
operations. It should also be noted that the general
trispectrum may be divided into contributions denoted
as ‘‘reduced’’ trispectra. Since, for almost all theoretical
trispectra presented to date in the literature, the reduced
trispectra depends on five parameters (i.e. the four wave
numbers and one diagonal), a reduction in complexity
for this wide range of models may also be achieved.
This class of models will be discussed in a subsequent
article [15].
As in the case of the bispectrum, this approach can also

be used to recover trispectra from simulations and produce
non-Gaussian initial conditions with arbitrary trispectra for
N-body codes. Once the trispectrum has been decomposed
into separable modes, the calculation of the trispectrum
contribution to non-Gaussian initial conditions is an ex-
tremely efficient operation that may be performed in

Oðn4=3max � l3maxÞ operations. In this paper we have also
briefly outlined how the method may be extended to higher
order correlators such as the quadspectra, revealing a
highly efficient algorithm in the case that the quadspectrum
depends only on its wave numbers.
The estimation of non-Gaussian parameters using large-

scale structure is complicated due to nonlinear evolution.
In this paper we have outlined some of the issues involved.
The application of the separable approximation to finding
the contribution to the matter density power spectrum due
to the bispectrum (as well as the matter density bispectrum
contribution due to the trispectrum) has been derived. In
addition, a prescription for parameter estimation in the
fully nonlinear regime has been described.
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While observational problems connected to surveys,
such as redshift distortion and photometric errors, have
not been addressed here, the generality and robustness of
the methodology described in this paper suggests that a
vast improvement on the scope of models investigated
using large-scale structure is possible, offering a significant
test of the initial conditions of the Universe. However,
different large-scale structure survey strategies affect the
quality of the higher order correlators that can be extracted.
Given that these polyspectra can be determined efficiently
and their strong scientific motivation, this should become
an issue of growing importance in survey design.
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APPENDIX A: GENERAL TRISPECTRUM
ESTIMATOR

In this Appendix we shall elucidate in more detail the
calculations involved in arriving at the expectation value of
the trispectrum estimator given by Eq. (21). This derivation
is instructive for the calculation of many of the results
presented in this paper.
Similarly to the case of the bispectrum, the expectation

value for the estimator is found to give

hEi ¼ V

ð2�Þ3
Z d3k1

ð2�Þ3
d3k2

ð2�Þ3
d3k3

ð2�Þ3
d3k4

ð2�Þ3

� ð2�Þ6Dðk1 þ k2 þ k3 þ k4ÞT2ðk1;k2;k3;k4Þ
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ :

(A1)

Using the parametrization in terms of
ðk1; k2; k3; k4; K1; K2Þ and expanding the Dirac delta func-
tions using (6) and (7), we find

hEi ¼ V

ð2�Þ3
Z ðk1k2k3k4K1K2Þ2dk1dk2dk3dk4dK1dK2

ð2�Þ15
T2ðk1; k2; k3; k4; K1; K2Þ
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ ð4�Þ9X

l1

ð2l1 þ 1Þ

�
�Z

dx1x
2
1jl1ðk1x1Þj0ðk2x1Þjl1ðK1x1Þ

��Z
dx2x

2
2j0ðk3x2Þjl1ðk4x2Þjl1ðK1x2Þ

��Z
dx3x

2
3jl1ðk1x3Þjl1ðk4x3Þj0ðK2x3Þ

�
;

(A2)

where the expression on the second and third lines arises
from the integration over the angular variables. Next, we
use the following identity from [31,32]

Z 1

0
r2drjlðkrÞjlðk0rÞj0ð	rÞ ¼ �ðk; k0; 	Þ

� �

4kk0	
Pl

�
k2 þ k02 � 	2

2kk0

�
;

(A3)

where � imposes the triangle condition on wave numbers
ðk; k0; 	Þ, which is automatically satisfied for the trispec-
trum estimator at all points of the quadrilateral due to the
Dirac delta functions, and Pl represents the lth Legendre
polynomial. Finally we may further simplify using the
following result from [33]:

X1
l¼0

ð2lþ 1ÞPlðxÞPlðyÞPlðzÞ ¼ 2

�
ffiffiffi
g

p ; g ¼ 1þ 2xyz� x2 � y2 � z2 > 0

¼ 0; otherwise: (A4)

For the case of the trispectrum estimator we have

x ¼ k21 þ K2
1 � k22

2k1K1

; y ¼ k24 þ K2
1 � k23

2k4K1

; z ¼ k21 þ k24 � K2
2

2k1k4
; (A5)

and the condition g > 0 is again satisfied for all points within the quadrilateral.
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Using these expressions the expectation value of the
estimator takes the following simple form:

hEi ¼ V

ð2�Þ3
1

2�4

Z
VT

dk1dk2dk3dk4dK1dK2

� k2k3K2

2
ffiffiffi
g

p T2ðk1; k2; k3; k4; K1; K2Þ
Pðk1ÞPðk2ÞPðk3ÞPðk4Þ : (A6)

In writing this expression we set �Dð0Þ ¼ V=ð2�Þ3.
Therefore a suitable weight for the mode decomposition,
which is a simple generalization of the discussion in [3] to
include an extra diagonal, is given by wðk1; k2; k3;
k4; K1; K2Þ ¼ k2k3K2=ð ffiffiffi

g
p

Pðk1ÞPðk2ÞPðk3ÞPðk4ÞÞ. We

note that the factor k2k3K2=ð2 ffiffiffi
g

p Þ may be written as

k2k3K2

2
ffiffiffi
g

p ¼ k1k2k3k4K1K2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1K
2
2ð
P
i
k2i � K2

1 � K2
2Þ � K2

1�23�14 þ K2
2�12�34 � ðk21k23 � k22k

2
4Þð�12 þ �34Þ

r � k1k2k3k4K1K2ffiffiffiffiffi
g1

p ; (A7)

where we denote �ij ¼ k2i � k2j and we denote the denominator
ffiffiffiffiffi
g1

p
for brevity.

APPENDIX B: TRISPECTRUM CONTRIBUTION TO THE BISPECTRUM

The contribution to the galaxy bispectrum due to the primordial trispectrum is given by

BT
g ðk1; k2; k3Þ ¼ 1

ð2�Þ3
Z

d3yTðk1;2 k2;k3;�yÞF2ðy;k3 � yÞ þ 2perms

¼ 1

ð2�Þ3
Z

d3yd3k4Tðk1;k2; y;k4ÞF2ðy;k4Þ�Dðk4 � k3 þ yÞ þ 2perms; (B1)

where F2 is given by Eq. (51) and the permutations are cyclic in ðk1; k2; k3Þ. First we consider the special case that the
trispectrum depends only on the wave numbers k1, k2, y, k4 such that we may write Tðk1; k2; y; k4Þ ¼P

n�nqrðk1Þqsðk2ÞqtðyÞquðk4Þ. The calculation is very similar to the power spectrum case and we find

BT
g ðk1; k2; k3Þ ¼

X
n

�n

4�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk1ÞPðk2Þ

p
ðk1k2Þ3=4

qrðk1Þqsðk2Þ
k3

Z
V
dydk4ðyk4Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðyÞPðk4Þ

q
qtðyÞquðk4Þ

�
5

7
þ 2

7

�
k24 þ y2 � k23

2k4y

�
2

�
�
y

k4
þ k4

y

��
k24 þ y2 � k23

2k4y

��
þ 2perms; (B2)

where V represents the domain for which the wave num-
bers ðy; k4; k3Þ satisfy the triangle condition. The integral,
we note again, may be written as a sum of products of one-
dimensional integrals over y and k4.

Next we consider the more general case where the
trispectrum depends also on two diagonals or equivalently

the angles � ¼ k̂1:k̂2 and � ¼ k̂1:k̂4. In this case we may
decompose the trispectrum as

ðk1k2yk4Þ3=4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk1ÞPðk2ÞPðyÞPðk4Þ

p Tðk1;k2; y;k4Þ

¼ X
nl1l2

�nl1l2qrðk1Þqsðk2ÞqtðyÞquðk4ÞPl1ð�ÞPl2ð�Þ; (B3)

where n � fr; s; t; ug. The calculation follows much the
same lines as the special case with simplification of the
formulas in this case achieved using Eq. (6), the following

identity as described in [34,35]

Z
dxx2jlðkxÞjl0 ðk0xÞjnð	xÞ

¼�ðk;k0;	Þ �

2kk0	nþ1

X
L

QnLðk;l;k0;l0ÞPL

�
k2þk02�	2

2kk0

�

(B4)

(where the � function imposes the triangle condition on
the three wave numbers, PL is a Legendre polynomial, and
the functionsQnL may be found in [34,35]) and the identity

X
m1;m2

l1 l2 L
m1 m2 M

� �
l1 l2 L0
m1 m2 M0

� �
¼ �LL0�MM0

2Lþ 1
:

(B5)

With these considerations we find
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BT
g ðk1;k2;k3Þ¼

X
nl1l2

�nl1l2

2�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðk1ÞPðk2Þ

p
ðk1k2Þ3=4

qrðk1Þqsðk2Þ
k3

Pl1ðk̂1:k̂2ÞPl2ðk̂1:k̂3Þ
Z
V
dydk4ðyk4Þ1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðyÞPðk4Þ

q
qtðyÞquðk4Þ

�
�
17

42
Pl2

�
k24þk23�y2

2k3k4

�
þ4�

3

X
l4

ð�1Þðl4�l2þ1Þ=2h2l2l41
ð2l2þ1Þ

1

y

�
y

k4
þk4

y

�X
L

Q1Lðk4; l4;k4; l2ÞPL

�
k24þk23�y2

2k3k4

�

þ16�

105

X
l4

ð�1Þðl4�l2þ2Þ=2 h2l2l42
ð2l2þ1Þ

1

y2
X
L0
Q2L0 ðk4; l4;k4; l2ÞPL0

�
k24þk23�y2

2k3k4

��
þ2perms: (B6)
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