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An eternally inflating universe produces an infinite amount of spatial volume, so every possible event

happens an infinite number of times, and it is impossible to define probabilities in terms of frequencies.

This problem is usually addressed by means of a measure, which regulates the infinities and produces

meaningful predictions. I argue that any measure should obey certain general axioms, but then give a

simple toy model in which one can prove that no measure obeying the axioms exists. In certain cases of

eternal inflation there are measures that obey the axioms, but all such measures appear to be unacceptable

for other reasons. Thus the problem of defining sensible probabilities in eternal inflation seems not to be

solved.
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I. INTRODUCTION

Inflation is generically eternal. While nearly every co-
moving location in an inflating universe rapidly thermalizes,
those that do not are rewarded with continuing exponential
expansion. Except for certain carefully arranged models, the
physical volume of inflating space grows forever, leading in
turn to an infinite volume in thermalized regions like ours.

Such a universe makes it difficult to make predictions.
There are an infinite number of regions just like ours. An
infinite subset of these will have any possible future. So in
what sense can we say that one future outcome is more
likely than another?

In a finite universe, even a very large one, anthropic
ideas such as Vilenkin’s ‘‘principle of mediocrity’’ [1] or
Bostrom’s ‘‘self-sampling assumption’’ [2] tell us to con-
sider ourselves a randomly chosen member of some finite
reference class of observers. But such an approach does not
work with an infinite class of indistinguishable regions.
There is no probability distribution that assigns equal
weight to each member of a countably infinite set, so we
cannot imagine ourselves to be drawn from such a distri-
bution. Instead, we must use a measure.

Many different measures have been suggested, but
I will not attempt to discuss the possibilities here. Instead
I will define the idea of a measure by the job it has to do.
Suppose that we know the content of the entire multiverse.
We also have a set of observations about conditions here
and in our past light cone. Given these observations, we
can enumerate the places in the multiverse that we might
be. Unfortunately, there are infinitely many of them. These
different places have various possible futures, say,
F1; F2; . . . . A measure is then a function that takes the
entire multiverse and our own current observations and
returns a probability for each possible future observation.

In principle, any such function is a measure. But we
want our measure to have some degree of coherence; that is
to say, its probabilities should not be completely arbitrary.
The results of applying the measure should have some

correspondence to ordinary ideas of probability. A measure
should not, for example, tell me one thing based on my
observations up to this moment and then without reason
change to something utterly different given my observa-
tions one second from now. In Sec. II, I attempt to formal-
ize this idea by proposing two minimal axioms that I think
any reasonable candidate measure should obey.
Unfortunately, it turns out that these seemingly reason-

able axioms are not easily obeyed. The difficulty is closely
related to the problems discussed in Refs. [3–5]. In Sec. III,
I describe a simple toy model of an infinite universe and
show that in that model no measure can satisfy both the
axioms. In Sec. IV, I discuss more specifically why global
cutoff measures do not satisfy the axioms, unless one treats
the cutoff as a true ‘‘end of time’’ [3] that renders the
universe finite.
In Sec. V, I compare the toy model with more realistic

models of eternal inflation, and find that in certain cases
eternal inflation does admit measures that satisfy the axi-
oms, but these measures are undesirable for other reasons
and fail if one allows bubble collisions. In Sec. VI, I
discuss the consequences of weakening the requirement
that the measure give an observer the same probabilities
after some time has passed without the observer acquiring
new information, but find that quite anomalous situations
can then arise. I conclude in Sec. VII.

II. AXIOMS

I now propose two axioms that I think any measure
should satisfy in order to have the resulting probabilities
conform to our understanding of how probabilities should
behave.
Axiom 1a (Bayes’s Rule—general case) When we make

new observations, the measure should now yield the same
probability distribution as we would get by Bayesian up-
dating of the old probability distribution using the new
observations.
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Specifically, suppose that the measure tells you that the
probability of some certain situation is pðAÞ. Now we
observe some process whose outcome is determined (in-
dependently for each identical region) by chance. In case
A, the chance to make some observationO is pðOjAÞ. If not
A, that chance is pðOj � AÞ. If we observe O, Bayes’s rule
will tell us that the chance to be in situation A is now

pðAjOÞ ¼ pðOjAÞpðAÞ
pðOjAÞpðAÞ þ pðOj � AÞpð�AÞ : (1)

Applying the measure to our new state of knowledge
should give this same value for pðAÞ.

In fact, all we will need below is the trivial case of
Bayesian updating where you do not make any new
observations:

Axiom 1b (Bayes’s Rule—trivial case) If time passes, but
you receive no other new information, your probabilities
should remain unchanged.

But could knowing that time has passed provide new
information? Indeed it could, if there were other alterna-
tives. For a mundane example, suppose that you are about
to have heart surgery. The surgeon tells you there is a 50%
chance that you have a minor problem which will be easily
repaired. But there is also a 50% chance that you have a
very severe problem. The surgeon will try to repair it, but
your chance of surviving the surgery is quite small. Now
you’re anesthetized for the surgery. If you wake up in the
recovery room, you will consider it very likely that you had
only the minor problem.

In this case, O is the observation that you are still alive.
The observation�O, that you are dead, can never be made,
but that does not matter. You should still update your
probabilities according to Eq. (1), with A representing
the minor problem and �A the severe one.

A more esoteric idea is that in certain circumstances you
could be duplicated. Suppose that at 1:00 you flip a fair
coin but do not examine it. You now think that the chance
of heads is 1=2. Now suppose that at 1:10, if the coin is
heads, there will be an exact duplicate made of you (in a
duplicate room, with a duplicate coin, etc.) If the coin is
tails, nothing special will happen.

You wait until after 1:10. Now I claim you should think
the probability of heads to be 2=3, since in the case of
heads there are 2 copies of you sitting in rooms with coins
showing heads, whereas in the case of tails there is only
one. Again the passage of time has given you new infor-
mation, in this case about the possibility of duplication.1

The important issue here is the following. In the first
example, your position is changed not simply by the pas-
sage of time but by the possibility of a different outcome, in

particular that your worldline might have come to an end
before the second observation. The second example is the
reverse. Your worldline might have come into existence at
1:10. In that case, you might also wish to readjust your
probabilities. Thus we can update our axiom to exclude
these possibilities:
Axiom 1 (Bayes’s Rule—final version) If the measure

gives you a certain set of probabilities at time t1, you
receive no new information between t1 and some later
time t2, and every worldline that includes either time
includes both, then the measure should give you the same
probabilities at t2.
‘‘Receiving new information’’ here means making an ob-

servation that could have occurred differently (or not at all).
The passage of time might be accompanied by other events
that you knew would take place. The fact that these events
do take place as expected does not give you new informa-
tion. Even though your circumstances are different after
seeing them, they do not constitute new information be-
cause you knew that you would observe them, and thus they
do not give a reason for you to update your probabilities.
We will need one more axiom:
Axiom 2a (Consistency—general case) If two or more

observers are together and share their knowledge, they
should agree on the chance of future events.
The idea here is that the measure is supposed to give

probabilities of future events. If the event is to be observable
by multiple observers, the measure should not tell them to
expect its occurrence with different probabilities, unless
some observers have relevant knowledge that others lack.
In fact, we will need this only in the following more

limited form.
Axiom 2 (Consistency—final version) If two or more

indistinguishable observers are together, they should agree
on the chance of mutually observable events.
Since the observers are indistinguishable, the measure

will automatically supply the same probability distribution,
but these probabilities are relative to each observer. For
example, suppose two observers know that exactly one of
them has won the lottery. Then the measure will tell each
observer that his own chance to be the winner is the same
number p, and the chance for the other person to have
won is 1� p. The consistency axiom then requires that
p ¼ 1� p, so p ¼ 1=2.
In addition to these axioms, the probabilities resulting

from a measure should obey the normal axioms of proba-
bility theory, i.e., they should be non-negative real num-
bers, the sum of the probabilities of mutually exclusive
possibilities should be the probability of their union, and
the total probability should be 1.

III. TOY MODEL

Now we ask whether there is any measure that satisfies
axioms 1 and 2. We begin by constructing a simple toy
model of an infinite universe.

1This problem is very similar to the ‘‘sleeping beauty problem,’’
which has occasioned much philosophical debate. But it makes no
difference whether you agree with my claim in this paragraph, so
long as you accept the converse claim that if there is no possibility
of duplication you shouldn’t change your probabilities.

KEN D. OLUM PHYSICAL REVIEW D 86, 063509 (2012)

063509-2



Suppose there is a machine that produces observers. At
1:00 it produces three observers. One of the three observers
has a blue card in his pocket, and the other two observers
have red cards. Otherwise they are identical. Since they
have not looked in their pockets, the three observers are
subjectively indistinguishable.

Each observer is in his own bedroom, but the three
(identical) bedrooms are part of a single apartment with a
common living room. The doors between the bedrooms
and living room are open, so the observers can go out to the
living room and confer with each other. All the observers
know all this information.

At 2:00, the machine produces another identical set of
three observers, and at 3:00 yet another set, and so on
forever. Thus the machine creates a countably infinite set
of subjectively indistinguishable observers. To keep the
observers indistinguishable, they must not know their cre-
ation time. So we will endow each bedroom with a clock,
but these clocks will measure only the time elapsed for
each observer. Each clock will read 12:00 at the time that
the observer is created.

Suppose you are one of these observers and you are
wondering about the color of your card. You know that
there are infinitely many observers and that there are
infinitely many with blue cards. You cannot divide these
infinities to compute the chance that your card is blue. You
need a measure. The measure gives you some probability p
that your card is blue. Because the observers in the other
bedrooms of your apartment are subjectively indistinguish-
able from you, it must also tell them that their cards are
blue with the same probability p. But because you and they
can have a discussion, and because you know the way in
which you were all created, you can be certain that exactly
one of you is the ‘‘blue observer’’ (i.e., the one with a blue
card). Thus the measure must give you p ¼ 1=3 to agree
with the principles of probability theory.2

Now we extend the scenario. Some time after being
created, each observer goes back to his own bedroom,
and the machine closes the bedroom doors, separating
the three observers in each apartment. Then it silently
rearranges the bedrooms into two-bedroom apartments as
follows. For each creation step N, one of the red observers
created by the machine in that step will share an apartment
with the blue observer created in step 2N � 1, while the
other red observer created in stepN will share an apartment
with the blue observer created in step 2N. Thus every
observer will be part of a pair, and every pairing contains
one blue observer.

When the clock in his room reads 12:30, each observer
will see the bedroom door open, and he will be able to talk
to the occupant of the one other bedroom in his apartment.
Since red observers must generally wait to be paired with
blue observers created many hours later, time must run
more slowly for them, so that they reach 12:30 at the same
time as their partners. This could be implemented, for
example, via gravitational time delay.
All observers know all this, from the moment they are

created. Thus each observer at 12:00 knows that he is now
part of a triplet of observers, and that when his clock reads
12:30, he will be part of a pair of observers. He knows
exactly how the pairings will be made, but he does not
know with whom he himself will be paired, because he
does not know which observer he is.
At 12:00, the measure told each observer that his chance

to have a blue card was 1=3. What does it tell him at 12:30?
Let us check that the conditions of axiom 1 are satisfied.
No observer receives any information between 12:00 and
12:30. At 12:30 the doors open, but that has no bearing on
the color of the cards. It happens at 12:30 independently of
the colors, and the observer knew beforehand that it would
happen then. Neither is there any worldline of any observer
which terminates or begins between times labeled 12:00
and 12:30. Thus observers do not receive new information
at 12:30, and so by axiom 1 the measure must continue to
tell each observer that his chance to have a blue card is 1=3.
But this conflicts with axiom 2. Now that the doors are

again open, the observers can discuss their situations in
pairs. Each pair will conclude that exactly one of them has
a blue card. Each observer thinks that he has only a 1=3
chance to have a blue card and so the other must have a 2=3
chance. Consistency is violated.
Thus no measure can obey axioms 1 and 2. We do not

need to enumerate possible measures; we merely show
what results any measure must produce in order to
obey the axioms, and show that no measure can obey
them all.

IV. GLOBAL TIME CUTOFF MEASURES

A common way to construct measures is to introduce a
global time coordinate t. Only a finite number of observers
exist at times before some particular value of t, and thus
probabilities can be defined as frequencies if one considers
only that subspace. Then one takes either a large value of t
or the limit as t grows without bound and one has a
measure that gives well-defined probabilities.
How would such measures handle our toy model? First

we have to specify the choice of t. Suppose first we use
‘‘external time.’’ We ignore the slow flow of time in some
of the rooms and just consider the time of creation, plus a
fixed small amount of time after the second observer in the
pair is created, to bring the rooms together. Thus an ob-
server whose clock reads 12:00 considers herself typical
among all observers with such clocks that were created in

2A previous version of this paper reached the same conclusion
based on the symmetry of the creation process. However, since the
observers will later be treated differently based on their card color,
it is not clear that such a principle can be used. One might add as
an axiom that the measure should not depend on future events, but
this would rule out some measures currently under consideration,
such as the light cone time or causal patch measure [6].
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the first N steps of the machine. One third of these observ-
ers have blue cards.

But the observer whose clock reads 12:30 reasons differ-
ently. She considers herself typical among those observers
whose clocks have reached 12:30 before some external
time N. Observers paired with someone created after
time N are not included in this set. Thus the external
time cutoff measure tells the observer whose clock reads
12:30 that her chance of having a blue card is 1=2.

The change from 1=3 to 1=2 violates axiom 1. The
observer has made no new observations, but she is never-
theless instructed to change her probabilities. A bizarre
consequence of this sort of choice will be discussed in
Sec. VI.

Now suppose instead we use a cutoff in proper time, by
which we mean the time before creation plus the subjective
time spent in the room. We consider all observers with
proper time less than N hours. There are 3N of these
observers with clocks reading either 12:00 or 12:30. So
in either case, this measure yields probability 1=3. The
problem here is that some observers who are in the refer-
ence class are able to talk to observers who are not in the
reference class. This violates axiom 2. Each observer
thinks the following three possibilities are equally prob-
able: ‘‘My card is blue and yours is red,’’ ‘‘My card is red
and yours is blue,’’ and ‘‘My card is red and your experi-
ences don’t count3 because you were created after time
N.’’ This nonsensical situation where counted observers
and noncounted observers can converse explains the failure
of the consistency axiom.

Bousso et al. [3] argue that when we use a geometric
cutoff, we must take it seriously as an end of time. In our
case, this could be done by saying that when the external
time reaches, say, 10:59, the universe comes to an end. All
observers’ worldlines terminate there and the machine
ceases operation. There are 30 observers created with
clocks reading 12:00, and 10 of those have blue cards. Of
these observers, 20, including the 10 blue ones, are paired
in apartments, while 10 of them terminate at external time
10:59 without ever being paired. Thus observers use proba-
bility 1=3 at 12:00 and 1=2 at 12:30. There is no contra-
diction, because in this case the observers do learn new
information at 12:30: they learn that they have not reached
the end of time.

This measure satisfies all the axioms. That is possible
because in this case the universe is finite. But for the same
reason, no measure is necessary. Once the universe is finite,
we can just consider ourselves typical among all observers,
without need for regularization.

Any finite universe will be free of measure problems, but
I do not think that constitutes a demonstration that our

Universe is finite. I argue here that we don’t know what to
do to construct sensible probabilities in the case of an
infinite universe, but the fact that one does not know how
to proceed in any given situation does not mean that
situation cannot exist.
Furthermore, even if the right answer is that the Universe

is finite, I see no reason to introduce a cutoff intended to
regulate infinite universes and then argue that it is a physi-
cal boundary that renders the Universe finite. One could
equally well conclude that inflation is not eternal or even
that the Universe will come to an end because it is a giant
simulation performed on a very large but finite computer.

V. MORE REALISTIC MODELS

Could it be that eternal inflation is substantially different
from this toy model, so that an eternally inflating universe
could be handled by a measure, even though the toy model
cannot? One difference is that the toy model generates
universes linearly, whereas an inflating universe grows
exponentially. But we can make a toy model with expo-
nential growth, as follows.
Instead of creating one blue and two red observers at

each time, let the machine create 2N�1 blue observers and
2N red observers at time N. Each red observer created at N
can be paired with one of the blue observers created at
N þ 1. There is still need for a time delay in pairing the
observers, but now it is merely that red observers need to be
delayed for 1 hour before being paired. Otherwise the
issues are exactly as before and the measure cannot satisfy
the axioms.
Another difference is that in eternal inflation observers

are grouped into different thermalized regions (‘‘pocket
universes’’), which in simple cases are each infinitely
large. The infinite number of observers in each region
can be handled by a measure which considers only those
in a very large spherical subregion. As long as each region
is homogeneous, this part of the measure will pose no
problem.
This technique handles the probabilities of the different

observers in the same region. We still must handle the
probability to be in one region or another. Techniques
such as this, which treat the chance to be a particular
observer as the product of the chance to be in a particular
thermalized region and the chance to be one particular
observer within that region are called ‘‘pocket-based mea-
sures.’’ Several such ideas have been proposed [7–9], but
they have mostly been abandoned because of several
problems.
One such problem is that the pocket-based measures are

prone to a ‘‘Q catastrophe’’ in which the density perturba-
tion amplitudeQ is very strongly driven to either extremely
large [10] or extremely small [11] values, giving a universe
very much unlike ours.
Another problem for these measures is that of

Boltzmann brains [12]. Each thermalized region begins

3There is some resemblance here to what philosophers call a
‘‘zombie’’, i.e., an entity who acts in every way as a person
would, but somehow has no consciousness, so it is impossible to
imagine that one is oneself that entity.
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with a big bang that leads to the development of ordinary
observers. But eventually each region with positive cos-
mological constant contains an infinite, empty universe
asymptotically approaching de Sitter space, and an infinite
number of Boltzmann brains can nucleate in any comoving
volume of that universe. The reason pocket-based mea-
sures avoid the problems discussed here (in particular
violation of axiom 1) is that they never cut through the
worldline of any observer, so they do not require observers
to change their probabilities at different times in their lives.
But it is precisely the property of not separating past from
future in the same region that leads to Boltzmann brain
domination in the infinite future.

Finally, it is not really the case that within a thermalized
region conditions are the same everywhere. Instead, the
bubbles that nucleate in an eternally inflating space-time
generally collide with each other and so break the equiva-
lence between one part of the thermalized bubble interior
and another.

VI. CAN WE ACCEPT TIME-DEPENDENT
PROBABILITIES?

Another possibility is that the axioms are wrong. In
particular, Guth and Vanchurin [4] argue that one should
simply deny axiom 1. Instead, they explicitly allow situ-
ations in which the probability one assigns to some state of
affairs can change merely because of the passage of time,
even without any possibility of death or duplication.

This idea leads to bizarre situations. Once one accepts it,
one can construct a toy multiverse model which will lead to
any desired probability shift. For example, let us consider
the following thought experiment.

It’s exactly noon. You are standing outside your house,
which has two doors. You know that exactly one of these
doors is locked. Because you are part of a multiverse of
observers cooked up to produce probability shifts, you
believe at this moment that there is a 99% chance that
the front door is the unlocked one. But in 10 seconds you
will believe that the back door is the unlocked one with
99% probability. Furthermore, you know that you will
change your beliefs at 12:00:10. (Locked doors will remain
locked and unlocked doors will remain unlocked. Your
change of beliefs is entirely due to reevaluating your likely
position in the multiverse as a measure instructs you to do.)

Just at this moment a hungry tiger runs into your yard.
Your only hope of survival is to get inside your house
rapidly. Naturally you run for the front door, which you
believe has a 99% chance to be unlocked. On the other
hand, if the tiger does not appear until 12:00:11, you run
for the back door, which you now believe is the one very
likely to be unlocked.

But suppose instead that you are a 10-second run from
either door when the tiger appears at 12:00:01. Because
you have a head start, you’ll be able to reach either door a
few seconds before the tiger. Where should you run?

Sincewhen you see the tiger you think that the front door
is unlocked, perhaps you should run there. But when you
reach the front door you’ll be very unhappy because now
you’ll be nearly sure it’s locked. Another possibility, rec-
ommended by Guth and Vanchurin [4],4 is that you should
run for the back door, because you know that by the time
you arrive you will think it likely to be unlocked. But why,
then, are you at 12:00:01 trying to escape a tiger by running
toward a door you’re nearly sure is locked? I think both
possibilities are nonsense, and therefore that one should
not permit measures that change probabilities only by the
passage of time.
If the probability change were due to certain parts of the

multiverse ending, there would be no paradox. The change
of probability could occur if there is a finite multiverse with
a 99:1 preponderance of regions with the front door un-
locked, but nearly all those regions terminate at 12:00:10,
leaving a 1:99 distribution in favor of the back door being
unlocked. In that case, you should think as follows. ‘‘Most
likely my worldline will end in 9 seconds, and this tiger
does not matter. But in the small fraction of cases where
my worldline continues, I’ll be better off with the back
door.’’
There would also be no paradox if there were a timer

scheduled to lock and unlock doors at 12:00:10. In that case
your reasoning should be, ‘‘The back door is probably now
locked, but the timer will operate before I reach the door,
so the door will be unlocked when I reach it.’’
The situation with the multiverse measure is very differ-

ent. In that case, you think the back door is likely locked,
and you know that if you run there you will arrive (not run
into the end of time on the way) and that the state of the
door when you arrive will be the same as it is now. Thus
when you set out for the back door, you feel nearly certain
of dying upon arrival. Nevertheless, 1 second before arriv-
ing, you will suddenly feel nearly sure of survival. It is this
change, with no reason for it, that leads me to find such
measures unacceptable.

VII. CONCLUSION

To make sense of probabilities in an eternally inflating
universe, we need to introduce a measure, considered here
as any procedure by which probabilities can be assigned to
an observer’s circumstances. I have exhibited two simple
axioms that I claim should be obeyed by any such measure,
and showed no measure can satisfy them in a toy model.
There are some differences between eternal inflation and
the toy model, but it appears that these still do not allow us
to construct any acceptable eternal inflation measure.

4See their discussion of a subject who, before going to sleep
for a variable period of time, makes a bet that will be paid when
he wakes up. In fact the present example is strongly analogous to
theirs, except in this case you must bet with your life.
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What can we do to make sense of the situation? One
might try arguing that anthropic ideas are wrong, and we
should not consider ourselves typical among all observers
in a multiverse. But then it does not seem possible to
recover ordinary ideas of probability. In an infinite uni-
verse, everything which can happen will happen an infinite
number of times, so what does it mean to say that one thing
is more likely than another?

Another idea is that of complementarity [13–15].
Perhaps it is not meaningful to describe widely separated
observers as simultaneously having classical existence.
In the usual description, one could say that there is an
observer A at some point in the multiverse and an indis-
tinguishable observer B in some other place outside
A’s horizon, and one needs a measure to decide one’s
chances of being A or B. Complementarity claims that
one can give a description of the universe in which ob-
server A exists, or a complementary description where B

exists, but one cannot describe them as existing at the same
time, and thus there is no need to decide which of these
observers one is. Complementarity does evade the difficul-
ties I discuss here, but one still needs some specific pro-
cedure to determine probabilities.
Finally, perhaps we just do not know how to proceed

when the Universe is infinite (and not homogeneous). I do
not think one should conclude from this that the Universe
must be finite, but rather that new ideas are needed to make
sense of probabilities in an infinite universe.
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