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The recently proposed Hořava-Lifshitz theory of gravity is analyzed from the quantum cosmology point

of view. By employing usual quantum cosmology techniques, we study the quantum Friedmann-Lemaı̂tre-

Robertson-Walker universe filled with radiation in the context of Hořava-Lifshitz gravity. We find that this

universe is quantum mechanically nonsingular in two different ways: the expectation value of the scale

factor haiðtÞ never vanishes and, if we abandon the detailed balance condition suggested by Hořava, the

quantum dynamics of the universe is uniquely determined by the initial wave packet and no boundary

condition at a ¼ 0 is necessary.
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I. INTRODUCTION

In 2009, Hořava proposed a new theory of gravitation [1]
based on an anisotropic scaling of space x and time t
coordinates. The resulting theory, since then dubbed
Hořava-Lifshitz (HL) gravity, has proved to be power-
countable renormalizable. One of its key points is that,
even though it does not exhibit relativistic invariance at
short distances, general relativity (GR) is indeed recovered
for low-energy limits. Some interesting consequences of
this theory include the existence of nonsingular bouncing
universes [2–4] and the possibility that it may represent an
alternative to inflation, since it might solve the flatness and
horizon problem and generate scale-invariant perturbations
for the early universe without the need for exponential
expansion [5–7].

Due to the asymmetry of space and time in the HL
gravity, its natural framework is the Arnowitt-Deser-
Misner (ADM) formalism [8], where the spacetime metric
g��ðt;xÞ is decomposed as usual in terms of the three-

dimensional metric hijðt;xÞ of the spatial slices of constant
t, the lapse function Nðt;xÞ, and the shift vectorNiðt;xÞ. In
his original work, Hořava made an important assumption
about the lapse function to simplify the HL gravitational
action, the so-called ‘‘projectability condition’’, namely
N � NðtÞ. There are, nevertheless, extended models where
this condition is relaxed. Projectable theories give rise to a
unique integrated Hamiltonian constraint, leading to great
complications when compared with GR. The so-called
nonprojectable theories, on the other hand, typically give
rise to a local Hamiltonian constraint, as in GR. Healthy
nonprojectable extensions of the original HL gravitational
action are discussed in detail in Ref. [9]. Fortunately, since
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) space-
times are homogeneous and isotropic, the spatial integral
can be dropped from the integrated Hamiltonian constraint
in our case [10,11], yielding a true local constraint even for

the projectable case. For our purposes here, it suffices to
consider the simplest HL projectable theory in an FLRW
spacetime. We notice that a modified FðRÞ HL theory in
an FLRW spacetime has been recently considered in
Ref. [12], leading to very interesting results regarding the
possible unification between primordial inflation and dark
energy. Another important assumption originally intro-
duced by Horava is the principle of ‘‘detailed balance’’.
This condition, which states that the potential in the gravi-
tation action follows from the gradient flow generated by a
three-dimensional action, reduces the number of indepen-
dent coupling constants. Recently, it has became clear
that the detailed balance condition can be also relaxed
[10,13–16]. In particular, in Refs. [14,15] the dynamical
role and the consequences for the matter couplings of the
detailed balance condition in classical cosmology are de-
tailed. In this paper we will abandon the detailed balance
condition since, as we will show, it gives rise to the most
interesting quantum universes. The limit where this condi-
tion can be recovered will also be discussed.
There have been many attempts to incorporate quantum

mechanics into GR. One of the first ones was quantum
cosmology. In quantum cosmology, we work with the
Hamiltonian (ADM) formulation of GR, using Dirac’s
algorithm [17] of quantization, i.e., the substitution �q !
�i�=�q, where �q is the canonical momentum associated

with the variable q (which can be one of the three canonical
variables in GR, hij, N or Ni), and the imposition that the

first-class constraints of the theory should annihilate the
wave function of the spacetime. GR has four constraints:
three of them simply tell us that the wave function of the
spacetime depends only on the intrinsic geometry of the
spatial slices in the ADM decomposition, while the last one
is a dynamical constraint which gives the dynamical equa-
tion of quantum cosmology, the so-called Wheeler-DeWitt
equation [18]. The wave function is a priori defined on
the space of all 3-metrics—called superspace—which are
in general very intricate infinite-dimensional spaces.
However, we can take advantage of the symmetries of a
homogeneous universe to freeze out all but a finite number
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of degrees of freedom of the metric, and then quantize the
remaining ones. These models are known as minisuper-
space models. Quantum cosmology in FLRW minisuper-
space filled with a perfect fluid has been shown to be viable
and interesting in the sense that the initial big bang singu-
larity is not present in such a model since haiðtÞ � 0 for all
times, and the classical behavior of the universe is recov-
ered for large times [19,20]. Moreover, in this class of
models a certain evolution parameter of the fluid gives us
a measure of time, and one can investigate the evolution of
the scale factor as the fluid evolves.

For static spacetimes, Horowitz and Marolf [21] found
an original way of classifying a spacetime as quantum
mechanically nonsingular. In their work, a spacetime is
said to be quantum mechanically nonsingular if the evo-
lution of quantum particles in the classical background is
uniquely determined by the initial wave packet, i.e., no
boundary conditions at the classical singular points are
necessary. This is equivalent to saying that the spatial part
of the wave equation is essentially a self-adjoint operator,
i.e., it has a unique self-adjoint extension (for a review of
the mathematical framework necessary to define quantum
singularities in static spacetimes, see Ref. [22]). In the GR
context, the quantization of the FLRW minisuperspace
filled with a perfect fluid does require a boundary condi-
tion at a ¼ 0 in order to assure the self-adjointness of
the Wheeler-DeWitt equation, which, on the other
hand, is necessary to guarantee a unitary time evolution.
Mathematically, the Hamiltonian operator corresponding
to the evolution equation of the universe is not essentially
self-adjoint. In this way the quantum dynamics of the
universe is not unique since we do not know, in principle,
which boundary condition we must apply at the initial
singularity. However, as we will see later, it is possible to
find quantum cosmologies in the HL gravity context for
which the quantum evolution of the universe is unique,
and no boundary condition for the wave function is
necessary.

In this paper we will apply the machinery of quantum
cosmology to the HL theory of gravity. In particular, we
will investigate the necessity of initial boundary conditions
for the Wheeler-DeWitt equation and the behavior of the
universe by examining the time evolution of the expecta-
tion value of the scale factor. A certain evolution parameter
of the radiation filling the universe will play the role of the
time coordinate. The content of the universe will be intro-
duced in the gravitational action via the Schutz formalism
[23,24], demanding the recovery of the usual GR formu-
lation in the low-energy [25]. The paper is organized as
follows. Sections II, III, and IV present brief reviews of the
results we need and the main definitions about quantum
singularities, the HL theory of gravity, and the usual quan-
tum cosmology in the GR context, respectively. Our main
results are presented in Secs. V and VI. The last section is
devoted to some concluding remarks.

II. QUANTUM SINGULARITIES

Typical solutions of the Einstein field equations are
known to exhibit singularities. They can be classified as
[26]: quasiregular singularities, where the observer feels no
physical quantity diverging, except at the moment when its
worldline reaches the singularity (for instance, the conical
singularity of a cosmic string); scalar curvature singular-
ities, where every observer approaching the singularity
experiences diverging tidal forces (for example, the singu-
larity inside a black hole and, more important in the present
context, the big bang singularity in FLRW cosmology);
nonscalar singularities, where there are some curves in
which the observers experience unbounded tidal forces
(for example, whimper cosmologies). It is well known
[27] that under very reasonable conditions (the energy
conditions), which basically state that gravity must be
attractive, singularities are inevitable in GR. In this way,
cosmological models with nonexotic fluids, as radiation or
dust, typically present an initial singularity, known as the
big bang singularity. Since we cannot escape this fact in
GR, we hope that the quantum theory of gravitation will
solve this issue, guiding us in how to deal with the singu-
larities, or even excluding them entirely. Unfortunately, we
do not yet have such a theory. However, there is much
evidence that this theory would actually solve this prob-
lem. This evidence comes with the introduction of quan-
tum mechanics in GR in many different ways. In this paper
we will highlight two distinct approaches.
The first approach is quantum field theory in curved

spacetimes. In this framework, we analyze the behavior
of quantum particles (or fields) in a classical curved back-
ground, which we assume to be a regular solution of the
Einstein field equations. We adopt Horowitz and Marolf’s
definitions [21]. In their work, they analyze the behavior of
a scalar particle in singular static spacetimes possessing a
timelike Killing vector field ��. In such spacetimes, the
wave equation can be separated into

@2�

@t2
¼ �A�; (1)

where A ¼ �VDiðVDiÞ þ V2M2 and V ¼ �����, with

Di being the spatial covariant derivative in a static slice �
not containing the singularity. In principle, the domain
DðAÞ of the operator A is not known, so we choose as a
first attempt DðAÞ ¼ C1

0 ð�Þ. In this way, our operator is

symmetric and positive definite. However, this domain is
unnecessarily small; in other words, the conditions on the
functions are so restrictive that the operator A is not self-
adjoint. Its adjoint operator A� has a much larger domain
DðA�Þ ¼ f� 2 L2ð�Þ: A� 2 L2ð�Þg. It is important to
notice that we have chosen L2ð�Þ as the Hilbert space of
our quantum theory (for a discussion about this point see
Ref. [22]). We must relax the conditions on the allowed
functions in order to extend the domain of A in such a way
that DðA�Þ ! DðAÞ. If the extended operator is unique,
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A is said to be essentially self-adjoint, and its extension is
given by ð �A;Dð �AÞÞ, where �A is the closure of A (for more
details see Ref. [28]). The time evolution of the particle
will then be given by

�ðtÞ ¼ expð�it �A1=2Þ�ð0Þ; (2)

and the spacetime is said to be quantum mechanically
nonsingular. However, if the extension is not unique, i.e.,
if there exists infinitely many extensions A�, with � being
a parameter such that to each � there corresponds one
boundary condition at the singular point, then we have a
different time evolution,

��ðtÞ ¼ expð�itA1=2
� Þ�ð0Þ; (3)

for each �. In this case, the spacetime is said to be quantum
mechanically singular. Similar to the classical case, when a
spacetime is quantum mechanically singular extra infor-
mation (a boundary condition) must be given in order to
obtain the time evolution. In particular, in GR we need to
tell what happens to the particle when it reaches the
singularity.

The second approach we exploit here is quantum
cosmology in minisuperspaces. In this framework, we
consider a few degrees of freedom of the system (the rest
are assumed to be frozen) and quantize the constraints of
the theory via Dirac’s algorithm.We impose ½a; pa� ¼ i (in
units where ℏ ¼ 1), where a is the scale factor of FLRW
models, and ½T; pT� ¼ i, where T is a parameter associated
with the evolution of the fluid filling the universe. In this
way, we obtain the Wheeler-DeWitt equation of the uni-
verse, which, as we will see, is a Schrödinger-like equation
from which we can define an internal product between two
solutions and, therefore, evaluate expectation values of
observables. In this context, we define the universe as
nonsingular if haiðtÞ � 0 for all times. Since the operator
â is positive in L2ð0;1Þ, we will have haiðtÞ ¼ 0 if the
wave function representing the universe is sharply peaked
at a ¼ 0. Note that this criterion is different from that
originally stated by DeWitt, which says that the universe
is quantum mechanically nonsingular if �ða ¼ 0; tÞ �
08 t. In fact, it was shown that this criterion is not
enough to prevent singularities in quantum cosmological
models [29].

The two classifications of quantum singularities de-
scribed above belong to completely different frameworks,
but we can apply the mathematical machinery used in
static spacetimes in order to decide if the evolution of a
wave packet governed by the Wheeler-Dewitt equation is
unique in a given quantum cosmology scenario.

III. HL GRAVITY

In order to introduce the HL theory of gravity, let us first
introduce the decomposition of the metric in the ADM
form,

ds2 ¼ �N2c2dt2 þ hijðdxi � NidtÞðdxj � NjdtÞ; (4)

and then let us postulate that the dimensions of space and
time are (in units of momentum) ½dxi� ¼ �1 and ½dt� ¼
�3. This assumption assures that the theory is power-
countable renormalizable in four dimensions. In these
units, we have ½N� ¼ ½hij� ¼ 0, while ½Ni� ¼ 2, leading

to ½ds2� ¼ �2. Notice that the volume element, defined by

dV4 ¼ N
ffiffiffi
h

p
d3xdt; (5)

has dimension ½dV4� ¼ �6.
The extrinsic curvature tensor, which measures how the

spatial slices in the ADM decomposition of spacetime
curve with respect to external observers, is defined by

Kij ¼ 1

2N

�
@hij
@t

�rðiNjÞ
�
: (6)

It is easy to see that it has dimension ½Kij� ¼ 3. The most

general term involving the extrinsic curvature tensor which
is invariant under the group of diffeomorphisms of the
spatial slices will define the kinetic term in the action.
This term depends on two coupling constants � and �,
and is given by

SK ¼ �
Z

dtd3x
ffiffiffi
h

p
NðKijK

ij � �K2Þ: (7)

Note that ½�� ¼ 0, i.e., � is a dimensionless constant. This
is the reason why we made the choice ½dt� ¼ �3.
The potential term for the gravitational action is

given by

SV ¼ �
Z

dtd3x
ffiffiffi
h

p
NV½hij�; (8)

where V½hij� is built out of the spatial metric and its spatial

derivatives. Since ½dV4� ¼ �6, we must have ½V½hij�� ¼ 6

in order to assure that SV is a scalar. The most general
action (without the detailed balance condition) containing
terms with dimensions less than or equal to 6 is given by
(for more details see Ref. [10])

SHL ¼ SK þ SV; (9)

where

V½hij� ¼ g0�
6 þ g1�

4Rþ g2�
2R2 þ g3�

2RijR
ij

þ g4R
3 þ g5RðRijR

ijÞ þ g6R
i
jR

j
kR

k
i

þ g7Rr2Rþ g8riRjkriRjk: (10)

Here the constant � has dimension ½�� ¼ 1 and ensures that
all the coupling ga are dimensionless. In order to restore
the units where c ¼ 1, i.e., ½dx� ¼ ½dt�, we need to per-
form the transformation dt ! ��2dt.
Since ½Ri

jkl� ¼ 2, as we go to lower momenta the domi-

nant action is
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SIR ¼
Z

dtd3xN
ffiffiffi
h

p ½�ðKijK
ij � �K2Þ � g1�

4R� g0�
6�:
(11)

We can now rescale time and space so that � ¼ 1 and
g1 ¼ �1, and set c ¼ � ¼ 1, leading to

SIR¼�2
Z
dtd3xN

ffiffiffi
h

p ½ðKijK
ij�K2ÞþR�g0�

2�: (12)

Note that, by choosing

�2 � 1

16�G
; � ¼ g0�

2

2
; (13)

we have the usual Einstein-Hilbert action

SGR ¼ 1

16�G

Z
dtd3xN

ffiffiffi
h

p ðKijK
ij � K2 þ R� 2�Þ

¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffi
�ð4Þg

q
ðð4ÞR� 2�Þ; (14)

where ð4Þg�� and ð4ÞR are the spacetime metric and Ricci

scalar, respectively.
The full HL action we will consider hereafter is

SHL ¼ M2
P

2

Z
dtd3xN

ffiffiffi
h

p ðKijK
ij � �K2 þ R� 2�

� g2M�2
P R2 � g3M

�2
P RijR

ij � g4M
�4
P R3

� g5M
�4
P RðRijR

ijÞ � g6M
�4
P Ri

jR
j
kR

k
i

� g7M
�4
P Rr2R� g8M

�4
P riRjkriRjkÞ; (15)

where MP ¼ 1=
ffiffiffiffiffiffiffiffiffiffi
8�G

p
stands for the Planck mass in

c ¼ 1, ℏ ¼ 1 units.

IV. QUANTUM COSMOLOGY IN GR

In the so-called Schutz formalism [23,24] for the matter
content of GR, the four-velocity of a perfect fluid is ex-
pressed in terms of six potentials in the form

U� ¼ ��1ð	;� þ �
;� þ �S;�Þ; (16)

where � and S are, respectively, the specific enthalpy and
the specific entropy of the fluid. The potentials � and 
 are
connected with rotations and, hence, they are not present in
the FLRW universe due to its symmetry. The potentials 	
and � have no clear physical meaning. With the usual
normalization

U�U� ¼ �1; (17)

Schutz showed that the action for the fluid in GR is
given by

Sf ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p
p; (18)

where p is the pressure of the fluid, which is related to the
density by the equation of state p ¼ w�. In this way, the

total action for the spacetime filled with a perfect fluid is
given by

S ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ðR� 2�Þ þ

Z
d4x

ffiffiffiffiffiffiffi�g
p

p: (19)

Varying the above action with respect to the metric, we get
the usual Einstein equations,

G�� þ�g�� ¼ M�2
P T��; (20)

with T�� given by

T�� ¼ ð�þ pÞU�U� þ pg��: (21)

For the FLRW universe with metric

ds2 ¼ �N2dt2 þ aðtÞ2
�

dr2

1� kr2
þ r2d�2

�
; (22)

where d�2 is the metric in the unit sphere and k ¼ �1, 0, 1
for the open, flat, and closed universe, respectively, the four
velocity of the fluid is given by U� ¼ N�0

�, so that

� ¼ ð _	þ � _SÞ=N: (23)

On the other hand, by thermodynamical considerations,
Lapchinski and Rubakov [30] found that the expression
for the pressure is given in terms of the potentials by

p ¼ w�1þ1=w

ð1þ wÞ1þ1=w
e�S=w

¼ w

ð1þ wÞ1þ1=w

� _	þ � _S

N

�
1þ1=w

e�S=w: (24)

For the particular case of FLRW universes, we have

Kij ¼ _a

Na
hij; Rij ¼ 2k

a2
hij; (25)

with hij ¼ diagð 1
1�kr2

; r2; r2sin2�Þ, so that the total action

is given by (in units where 16�G ¼ 1)

S¼
Z
dtd3xN

ffiffiffi
h

p ðKijK
ij�K2þRÞþ

Z
dtd3xN

ffiffiffi
h

p
p

¼
Z r2 sin�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�kr2
p d3x

Z
dt

�
�6

_a2a

N
þ6kNa

þN�1=wa3
w

ð1þwÞ1þ1=w
ð _	þ� _SÞ1þ1=we�S=w

�
: (26)

The spatial integration does not affect the equations of
motion, and we have the following canonical momenta
associated, respectively, with the dynamical variables a,
	 and S:

pa ¼ � 12 _aa

N
; p	 ¼ N�1=wa3

ð1þ wÞ1=w ð _	þ � _SÞ1=we�S=w;

pS ¼ �p	: (27)

The Hamiltonian of the system will be given by
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H ¼ pa _aþ p	ð _	þ � _SÞ � L; (28)

where

L ¼ �6
_aa

N
þ 6kNaþ N�1=wa3

w

ð1þ wÞ1þ1=w

� ð _	þ � _SÞ1þ1=we�S=w: (29)

After a tedious but straightforward calculation, we find

H ¼ N

�
� p2

a

24a
� 6kaþ p1þw

	 a�3we�S=w

�
: (30)

Since the action does not depend on _N, we conclude that
N is actually a Lagrange multiplier of the theory. This is
not surprising since the results could not depend on how
the spacetime is sliced. Varying the action

S ¼
Z

dt½pa _aþ p	ð _	þ � _SÞ �H� (31)

with respect to N leads to the super-Hamiltonian constraint

H ¼ � p2
a

24a
� 6kaþ p1þw

	 a�3we�S=w � 0: (32)

Performing a canonical transformation of the form

T ¼ �pSe
Sp�ð1þwÞ

	 ; pT ¼ pð1þwÞ
	 eS;

�	 ¼ 	þ ð1þ wÞ pS

p	

; �p	 ¼ p	;
(33)

we get

H ¼ � p2
a

24a
� 6kaþ pT

a3w
� 0: (34)

Now, we proceed with Dirac’s algorithm of the quantiza-
tion of constrained systems by making the substitutions
pa ! �i@=@a, pT ¼ �i@=@T, and demand that the con-
straint annihilate the wave function, finding the
Schrödinger-Wheeler-DeWitt equation of the universe,

@2�

@a2
þ 144ka2�þ i24a1�3w @�

@t
¼ 0; (35)

with t ¼ �T being the time coordinate in the gauge
N ¼ a3w, as follows from Hamilton’s classical equations
of motion [31]. Notice that the above equation is of the

form i@�=@t ¼ Ĥ�. In order for the Hamiltonian operator

Ĥ to be self-adjoint we define the internal product of two
wave functions as

h�;�i ¼
Z 1

0
a1�3w���da; (36)

and impose restrictive boundary conditions at a ¼ 0. The
simplest ones are the Dirichlet and Neumann conditions:

�ð0; tÞ¼0ðDirichletÞ; @�ð0; tÞ
@a

¼0ðNeumannÞ: (37)

As we will see, the situation is qualitatively different in the
HL theory of gravity.

V. QUANTUM COSMOLOGY IN HL

The total action we will consider here is

S ¼ SHL þ
Z

dtd3xN
ffiffiffi
h

p
p; (38)

where SHL is given by Eq. (15). We choose this action
basically because the GR action can be recovered in the
low-energy limit. Discarding the spatial integration again,
we have

S¼
Z
dt

�
�3ð3��1Þ _a

2a

N
þ6Nka�2�a3

�12kN

a
ð3g2þg3Þ�24kN

a3
ð9g4þ3g5þg6Þ

þN�1=wa3
w

ð1þwÞ1þ1=w
ð _	þ� _SÞ1þ1=we�S=w

�
: (39)

Let us introduce the following constants (as in Ref. [32]):

gC ¼ 6k; g� ¼ 2�; gr ¼ 12kð3g2 þ g3Þ;
gS ¼ 24kð9g4 þ 3g5 þ g6Þ: (40)

Now, proceeding as in GR, i.e., defining the momenta
corresponding to each one of the dynamical variables and
calculating the canonical Hamiltonian, we arrive at

H ¼ � p2
a

12ð3�� 1Þa� gCaþ g�a
3 þ gr

a
þ gs

a3
þ pT

a3w

� 0: (41)

Specializing to the radiation case (w ¼ 1=3), we find the
Schrödinger-Wheeler-DeWitt equation,

@2�

@a2
� 12ð3�� 1Þ

�
gCa

2 � g�a
3 � gr � gs

a2

�
�

þ 12ð3�� 1Þi @�
@t

¼ 0; (42)

again with t ¼ �T. Note that gr shifts just the energy
levels, since it is a constant in the potential. However, the
term gs changes the effective potential dramatically. The
case gs ¼ 0 corresponds to the detailed balance condition
[see Ref. [3] where, with the use of the detailed balance
condition, Calcagni obtains an action similar to Eq. (39),
but without the term proportional to a�3].

VI. EXACT SOLUTIONS

A. Flat FLRW universe

First, note that if we take a spatially flat universe (k ¼ 0)
with � ¼ 0, we have the following equation:

� 1

12ð3�� 1Þ
@2�

@a2
¼ i

@�

@t
; (43)
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which is a Schrödinger-like equation for a free particle
with ℏ ¼ 1 and mass m� ¼ 6ð3�� 1Þ, except for the
requirement a > 0. Let us consider only the case � >
1=3. In order to ensure the self-adjointness of the above
equation, a boundary condition has to be chosen, as dis-
cussed in Sec. III. For the sake of simplicity, we choose the
Dirichlet boundary condition. For an initial wave packet of
the form

�ða; 0Þ ¼
�
128
3

�

�
1=4

ae�
a2 ; (44)

Eq. (43) can be easily solved using a specific propagator
(see Ref. [19]). The result is

�ða;tÞ¼
�

m�

m�þ2it


�
3=2

�
128
3

�

�
1=4

a

�exp

�
� �
m2

�a
2

m2
�þ4
2t2

�
exp

�
2itm�


2a2

m2
�þ4
2t2

�
: (45)

We can calculate the expectation value of the operator a
through the formula

haiðtÞ ¼ h�; a�i ¼
Z 1

0
aj�ða; tÞj2

¼ 2

m�

ffiffiffiffiffiffiffiffi
2

�


s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�

4
þ 
2t2

s
: (46)

Note that if we take � ¼ 1, we recover the result ob-
tained in Ref. [19]. Nothing changes in HL theory in a flat
FLRW universe in comparison with GR (as in the classical
case, see for instance [2]). In particular, haiðtÞ is nonsin-
gular and haiðtÞ � t as t ! 1, recovering the classical
behavior of the universe in the classical limit. Besides,
the evolution of the wave packet is given once we choose
a particular boundary condition at a ¼ 0. Therefore, the
evolution of the universe is not unique in the sense stated in
Sec. II.

B. Closed FLRW universe

For the spatially closed (k ¼ 1) FLRW spacetime, there
is an effective potential in the Schrödinger-Wheeler-
DeWitt equation of the universe. From Eq. (42), we see
that this potential represents a shifted quantum harmonic
oscillator with a singular perturbation. Setting the mass and
frequency of the harmonic oscillator to bem� ¼ 6ð3�� 1Þ
and !� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2=ð3�� 1Þp
, respectively, we have the follow-

ing Schrödinger-like equation:

� 1

2m�

@2�

@a2
þ

�
1

2
m�!

2
�a

2 � gr � gs
a2

�
� ¼ i

@�

@t
: (47)

First, we will analyze the necessity of a boundary condition
at a ¼ 0 on this equation. The first step is to separate
variables in the form �ða; tÞ ¼ c ðaÞe�iEt, leading to

�
� d2

da2
þ VðaÞ

�
c ðaÞ ¼ 2m�Ec ðaÞ; (48)

with

VðaÞ ¼ m2
�!

2
�a

2 � 2m�gr � ð2m�gsÞ=a2: (49)

Following Ref. [28], we say that VðaÞ is in the limit circle
case at infinity and at zero if for all �, all solutions of�

� d2

da2
þ VðaÞ

�
c ðaÞ ¼ �c ðaÞ (50)

are square integrable at infinity and at zero, respectively. If
VðaÞ is not in the limit circle case, it is said to be in the limit
point case. We now enunciate the Theorem X.7 from
Ref. [28], which gives us a criterion to decide if the

Hamiltonian operator Ĥ ¼ �d2=da2 þ VðaÞ is essentially
self-adjoint, i.e., if it has a unique self-adjoint extension.
Theorem 1.—Let VðaÞ be a continuous real-valued func-

tion on ð0;1Þ. Then Ĥ ¼ �d2=da2 þ VðaÞ is essentially
self-ajoint if and only if VðaÞ is in the limit point case at
both zero and infinity.

We now need a criterion to decide if Ĥ is in the limit
point or limit circle case at zero and infinity. We will find
this criterion in the next two theorems, extracted again
from Ref. [28].
Theorem 2.—Let VðaÞ be a continuous real-valued func-

tion on ð0;1Þ and suppose that there exists a positive
differentiable function MðaÞ, so that
(i) VðaÞ � �MðaÞ,
(ii)

R1
1

ffiffiffiffiffiffiffiffiffiffiffi
MðaÞp

da ¼ 1,

(iii) MðaÞ=ðMðaÞÞ3=2 is bounded near 1.

Then VðaÞ is in the limit point case at 1.
Theorem 3.—Let VðaÞ be continuous and positive near

a ¼ 0. If VðaÞ � 3
4a2

near zero then �d2=da2 þ VðaÞ is in
the limit point case at zero. If for some � > 0, VðaÞ 	
ð34 � �Þa�2 near zero, then �d2=da2 þ VðaÞ is in the limit

circle case.
From now on, we will consider gs < 0. In the end of this

section, we will return to the case gs > 0. Let us first use
Theorem 2 to show that the Hamiltonian operator in
Eq. (47) is in the limit point case at infinity. To verify
this fact, note that the potential VðaÞ has a minimum

Vmin ¼ 2m�½
ffiffiffiffiffiffiffiffiffiffiffiffi�2gs

p
m1=2

� !� � gr� at a ¼ ð�2gs
m�

Þ1=4!�1=2
� .

If Vmin � 0, we choose MðaÞ ¼ 1 and all the requirements
of Theorem 2 are fulfilled. If Vmin 	 0, we take MðaÞ ¼
jVminj. In any case, we conclude that Ĥ is in the limit point
case at infinity.
Note now that the potential VðaÞ has the form VðaÞ �

�2m�gs=a
2 near a ¼ 0. Therefore, by Theorem 3, if

�2m�gs � 3=4 then Ĥ is in the limit point case at zero;
otherwise, it is in the limit circle case. We have established

a range of parameters in which the operator Ĥ is essentially
self-adjoint, i.e., if

JOÃO PAULO M. PITELLI AND ALBERTO SAA PHYSICAL REVIEW D 86, 063506 (2012)

063506-6



�m�gs � 3=8; (51)

then the evolution of the wave function representing the
universe is uniquely determined by the initial wave packet
and no boundary condition at a ¼ 0 is necessary.
Otherwise, we need to impose a boundary condition at
this point. For simplicity we did not consider the case
� � 0, but the previous analysis still works in this case.

It turns out that Eq. (47) can be solved exactly.
By introducing the new variable x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

m�!�
p

a and a

parameter [32]

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8m�gs

p
; (52)

Eq. (47) becomes

� d2

dx2
c ðxÞ þ

�
x2 � 2

!�

ðgrþ EÞ þ 4�2 � 1

4x2

�
c ðxÞ ¼ 0:

(53)

By introducing the new function yð�Þ given by

c ðxÞ ¼ e�x2

2 x�þ1=2yðx2Þ; (54)

it is easy to see that yð�Þ satisfies the associated Laguerre
equation

�y00ð�Þ þ ð1þ �� �Þy0ð�Þ þ �Eyð�Þ ¼ 0; (55)

where

�E ¼
�ðEþ grÞ

2!�

� ð1þ �Þ
2

�
: (56)

This equation is known to be Hermitian (formally self-
adjoint) with the inner product

hf; giL ¼
Z 1

0
e����fð�Þgð�Þd�: (57)

The general solution of Eq. (55) is given by [33]

yð�Þ ¼ AEMð��E; 1þ �;�Þ þ BEUð��E; 1þ �;�Þ;
(58)

whereM andU are the confluent hypergeometric functions
of the first and second kinds, respectively. For �E ¼ n ¼
0; 1; 2; . . . , both M and U are polynomials of degree n,
proportional to the associated Laguerre polynomial L�

n ð�Þ.
The other linearly independent solution is not square-
integrable near a ¼ 0, so it must be excluded from the
present analysis. If �E =2 N [ f0g, we have the following
asymptotic behavior for M and U, as � ! 1:

Mð��E; 1þ �;�Þ � �ð1þ �Þ
�ð��EÞ e���1��E��;

Uð��E; 1þ �;�Þ � ��E:
(59)

Therefore,M is not square-integrable near infinity, whereas
U is. Thus,M is not an acceptable solution in this case. As
� ! 0, the asymptotic behavior of U is given by

Uð��E; 1þ �;�Þ � ����ð�Þ=�ð��EÞ; (60)

and, hence,U is square-integrable neara ¼ 0 only if�< 1.
For� � 1, we do not have an acceptable solution, except in
the case �E ¼ n ¼ 0; 1; 2; . . . . Therefore, for� � 1 (which
corresponds to �m�gs � 3=8), we automatically quantize
the energy levels of the universe, which are given by

En ¼ ð2nþ 1þ �Þ!� � gr: (61)

The corresponding normalized eigenstates are given by

�nða;tÞ¼ð4m�!�Þ1=4
�

�ðnþ1Þ
�ð�þnþ1Þ

�
1=2ðm�!�a

2Þ2�þ1
4

�exp

�
�m�!�

2
a2
�
L�
n ðm�!�a

2Þe�iEnt; (62)

and a general solution�ða; tÞ, depending on the initial wave
packet �ða; 0Þ, is then given by

�ða; tÞ ¼ X1
n¼0

cn�nða; tÞ; (63)

with

cn ¼
Z 1

0
�ða; 0Þ��

nða; 0Þda: (64)

For 1=2 	 �< 1, Eq. (60) shows that U is square-
integrable at a ¼ 0. We then need a boundary condition
at a ¼ 0 in order to have a well posed Sturm-Liouville
problem. They are found in Ref. [34] and are given by

�1y ¼ ��0y; � 2 R; (65)

where

�0y¼ lim
x!0

x�þ1y0ðxÞ; �1y¼ lim
x!0

�
yðxÞþ x

�
y0ðxÞ

�
: (66)

If � ¼ 1, then limx!0x
�þ1y0ðxÞ ¼ 0 and we find that [35]

�E ¼ n ¼ 0; 1; 2; . . . , and the corresponding associated
Laguerre polynomials. For other values of �, the quantized
energy levels are not so simple. In all cases, the wave
function will satisfy the DeWitt condition,

�ð0; tÞ ¼ 0; (67)

but we stress the fact that this is not the condition which
turns the Wheeler-DeWitt equation into a self-adjoint
form.
It is worth analyzing the case � ! 1, gr ! 0, and

� ! 1=2, where we expect to recover the usual quantum
cosmology. In this limit, Eq. (62) becomes

�nða;tÞ¼
� ffiffiffiffiffiffi

48
p

ffiffiffiffi
�

p
22nþ1ð2nþ1Þ!

�
1=2

H2nþ1ð
ffiffiffiffiffiffi
12

p
aÞe�6a2e�iEnt;

(68)

with

En ¼ 2nþ 3=2: (69)
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These same eigenstates have already been found in
Ref. [19] in the context of ordinary quantum cosmology.
They satisfy the Dirichlet boundary condition�ð0; tÞ ¼ 0.
The Neumann boundary condition is satisfied when
� ! �1=2. We do not consider this case here, but it is
trivial to generalize our results to �1<�< 1=2 (see
Ref. [34]). Therefore, the HL quantum cosmology tends
naturally to the usual quantum cosmology in the appropri-
ate limit.

Having studied the self-adjointness of the evolution
equation of the universe, let us now focus on the evolution
of the expectation value of the scale factor given a solution
representing the state of the universe. Obviously, if we
calculate the expectation value of the scale factor in any
of these eigenstates it will be constant. But the universe
evolves in such a way that we must consider wave packets
representing the state of the universe. In order to find exact
solutions, we choose an initial wave packet of the form

�ða; 0Þ ¼
�
2�þ5=2
�þ3=2

�ð�þ 3=2Þ
�
1=2

a�þ1e�
a2 ; (70)

where gs ¼ ��ð�þ 1Þ=ð2m�Þ. Note that gs < 0 in this
case, so that the potential VðaÞ is repulsive, preventing
the formation of a classical singularity. The propagator
for Eq. (47) is given by [36]

Gða; a0; t;�Þ ¼ m�!�

ffiffiffiffiffiffiffi
aa0

p
sinð!�tÞ eigrti�ð�þ3=2Þ

� exp

�
im�!�

2
cotð!�tÞða2 þ a02Þ

�

� J�þ1=2

�
m�!�aa

0

sinð!�tÞ
�
; (71)

and through the equation

�ða; tÞ ¼
Z 1

0
Gða; a0; t;�Þ�ða0; 0Þda0; (72)

we find, after some tedious calculation,

�ða; tÞ ¼
�
2�þ5=2
�þ3=2

�ð�þ 3=2Þ
�
1=2

�
m�!�

i sinð!�tÞ
�
�þ3=2

� a�þ1eigrt

½2
� im�!� cotð!�tÞ��þ3=2

� exp

� �m2
�!

2
�
a

2

4
2sin2ð!�tÞ þm2
�!

2
�cos

2ð!�tÞ
�

� exp

�
im�!� sinð!�tÞ cosð!�tÞa2

2ð4
2sin2ð!�tÞ þm2
�!

2
�cos

2ð!�tÞÞ
� ð4
2 �m2

�!
2
�Þ
�
: (73)

The expectation value of the scale factor is given by

haiðtÞ ¼ �ð�þ 2Þffiffiffiffiffiffiffi
2


p
�ð�þ 3=2Þ

1

m�!�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
2sin2ð!�tÞ þm2

�!
2
�cos

2ð!�tÞ
q

¼ haið0Þ
m�!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
2sin2ð!�tÞ þm2

�!
2
�cos

2ð!�tÞ
q

: (74)

We stress the nonsingular character of the above equation,
since haiðtÞ � 0 for all times. As in the usual quantum
cosmology [19], the singularity is not present in the quan-
tum model. Note also the similarity with the results found
in Ref. [19]. The only difference here is that the parameter
� changes the frequency of oscillation of the scale factor.
The behavior of this quantum universe in HL theory is not
very different from the usual quantum cosmology.
We can also study the case gs > 0, when the potential

VðaÞ is attractive, which does not prevent the formation of
a classical singularity. In order to obtain exact solutions we
must restrict 2m�gs 	 1=8 so that� � 0. We do not have a
propagator in this case, but we can use Eq. (63) to numeri-
cally find the evolution of the scale factor. This is done in
Fig. 1, where we have chosen an initial wave packet of the
form

�ða; 0Þ ¼ 2

�
8

�

�
1=4

ae�a2 : (75)

The parameters characterizingHLgravity are� ¼ 1, gr¼0,
and � ¼ 1=4. Note that haiðtÞ � 08 t. The singularity has
been excluded.

VII. CONCLUDING REMARKS

We have seen that in the HL theory of gravity, it is
possible to not only exclude the initial big bang singularity,
but also to uniquely determine the evolution of the wave
function of the universe given an initial wave packet. An
equivalent statement is that no boundary condition at
a ¼ 0 is necessary in a quantum cosmology in the context

FIG. 1. The evolution of the scale factor in the case of an
attractive potential. Twenty terms in the expansion Eq. (63) were
used in this numerical approximation.
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of HL gravity. In general, theories of gravity do not tell us
which boundary condition we must choose, so it is a
remarkable fact that one of these theories excludes this
ambiguity. Moreover, in HL quantum cosmology the evo-
lution of the expectation value of the scale factor resembles
the evolution found in usual quantum cosmology, the only
difference being the frequency of oscillation of the bounc-
ing universe. It is interesting to notice that the quantum
regime of the HL theory of gravity can also provide a
viable framework for the description of the ‘‘asymptotic

darkness’’ of the visible universe [37]. Our early universe
results are in a certain sense complementary to the asymp-
totic regime described in Ref. [37]. It is certainly worth-
while to further explore the connections between the two
approaches.
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