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Within the recently proposed ghost-free bigravity theory, we present the most general cosmological

solution for which the physical metric is homogeneous and isotropic, while the second metric is

inhomogeneous. The solution includes a matter source and exists for generic values of the theory

parameters. The physical metric describes a universe with an effective cosmological term mimicked by

the graviton mass, which causes the late time acceleration. When perturbed, this universe should rest

approximately homogeneous and isotropic in space regions small compared to the graviton Compton

length. In the limit where the massless graviton decouples, the solution fulfills the equations of the ghost-

free massive gravity.
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Considering theories with massive gravitons [1] is moti-
vated by the observation of the current acceleration of our
Universe [2], since the graviton mass can induce an effec-
tive cosmological term. Although such theories can exhibit
unphysical features, as for example the Boulware-Deser
ghost [3], the recent discovery of the special massive gravity
[4] and its bigravity generalization [5] which are ghost-free
[6] suggests that such theories can indeed be good candi-
dates for interpreting the observational data. This motivates
studying cosmological solutions with massive gravitons.

The first self-accelerating cosmologies in the ghost-free
massive gravity were obtained without matter and describe
the pure de Sitter universe [7]. The matter source was then
included but only for special values of the theory parame-
ters [8]. For these solutions the physical metrics is of the
Friedmann-Robertson-Walker (FRW) type, but the fiducial
metric is inhomogeneous. This means that background
perturbations can give rise to inhomogeneity, although
this effect should be suppressed by the smallness of the
graviton mass [9]. One more similar solution was found in
Ref. [9], where it was argued that solutions of this type
should be generic for massive gravity. The theory also
admits solutions for which both metrics are FRW, but these
show a nonlinear instability and seem to be unphysical [10].

The generalizations of results of Refs. [7,8] within the
ghost-free bigravity were obtained in Refs. [11,12]. For
these solutions, both metrics are dynamical but are not
simultaneously diagonal, and the second metric does not
share the translational symmetries of the first one. In the
bigravity, too, only special solutions of this type are
known—either without matter or for constrained values
of the theory parameters.

In what follows, we present the most general cosmo-
logical solution for which the physical metric is FRW but
the second metric is inhomogeneous. We construct this
solution within the ghost-free bigravity of Ref. [5], but it

describes the massive gravity case as well, since its second
metric becomes flat in the limit where the massless gravi-
ton decouples. The solution includes the matter source, it
exists for all values of the theory parameters, and its
physical metric describes a FRW universe that can be
spatially flat, open or closed, and which shows the late-
time acceleration due to the effective cosmological term
mimicked by the graviton mass.

I. THE GHOST-FREE BIGRAVITY

The generic bigravity theory [13] is defined on a space-
time manifold equipped with two metrics g�� and f��,

whose kinetic terms are chosen to be of the standard
Einstein-Hilbert form. To describe the ghost-free bigravity
[5], it is convenient to use the tetrad formulation [14], in
which the inverse of g�� and the f�� are parameterized as

g�� ¼ �ABe�A e
�
B; f�� ¼ �AB!

A
�!

B
�; (1)

with �AB ¼ diag½1;�1;�1;�1�. The action is

S ¼ � 1

16�G

Z
R

ffiffiffiffiffiffiffi�g
p

d4x� 1

16�G

Z
R

ffiffiffiffiffiffiffi�f
p

d4x

þ Sint þ Sm; (2)

where R and R are the Ricci scalars for g�� and f��,

respectively, and G and G are the corresponding gravita-
tional couplings. Sm describes the ordinary matter, which is
supposed to directly interact only with g��. The interaction

between the two metrics is parameterized as

Sint ¼ �

8�G

Z
Lint

ffiffiffiffiffiffiffi�g
p
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c3, c4 are parameters, and K
�
� ¼ �

�
� � 


�
� with


�
� ¼ e

�
A!

A
�: (5)

These expressions define the theory with two gravitons, one
of which is massless and the other one is massive, with the
mass m2 ¼ �ð1þ G=GÞ. One can introduce the angle �
such that the parameters�,G are expressed as� ¼ m2cos2�
and G ¼ Gtan2�.

Varying the action with respect to e
�
A and !A

� gives the
field equations [11],

G�
� ¼ m2cos2�T�

� þ 8�GTðmÞ�
�; (6)

G �
� ¼ m2sin2�T �

�: (7)

Here G
�
� and G�

� are the Einstein tensors for g�� and f��,

respectively, while

T
�
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�
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ffiffiffiffiffiffiffi�g
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These equations should be supplemented by the conserva-
tion condition for the matter energy-momentum tensor,

r
ðgÞ

�T
ðmÞ�

� ¼ 0, where r
ðgÞ

� is the covariant derivative with

respect to g��.

The field equations require that T�� ¼ g��T
�
� is sym-

metric, hence, so is 
�� ¼ g��

�
�, which implies that

e�A!B� ¼ e�B!A�; (10)

with !A� ¼ �AB!
B
�. The latter property guarantees that


�
�


�
� ¼ g��f�� and so 


�
� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g��f��
p

, in agreement
with the original formulation of the theory [5].

If G ! 0 then the massless graviton decouples and, if
only f�� becomes flat in this limit, the theory reduces to

the massive gravity of Ref. [4].

II. SPHERICAL SYMMETRY

Introducing the spherical coordinates x� ¼ ðt; r; #; ’Þ,
the most general expression for the two tetrads subject to
the condition (10) is [11]

e0 ¼ 1

Q

@

@t
; e1 ¼ 1

N

@

@r
; e2 ¼ 1

R

@

@#
;

e3 ¼ 1

R sin#

@

@’
; !0 ¼ aQdtþ cNdr;

!1 ¼ �cQdtþ bNdr; !2 ¼ uRd#;

!3 ¼ uR sin#d’; (11)

where Q, N, R, a, b, c, u are functions of t; r. It is
straightforward to compute 
�

� in (5) and obtain the
following nonzero components of 

�
� in (9):

00¼abþ2au�3aþc2þc4ðu�1Þ2ða�ab�c2Þ
þc3ðu�1Þðauþ2ab�3aþ2c2Þ;

## ¼uðuþaþb�3Þþc4uð1�uÞ½c2þða�1Þðb�1Þ�
þc3u½ðaþb�2Þuþc2þab�2a�2bþ3�; (12)

with rr obtained from 00 via a $ b, also ’’ ¼ ## , and

0r ¼cN

Q
½ðc3þc4Þu2þ2ð1�2c3�c4Þuþ3c3þc4�3�:

(13)

The interaction Lagrangian (4) reduces to

Lint¼uðuþ2aþ2b�6Þþc2þab�3a�3b

þ6þc3ðu�1Þ½ðaþb�2Þuþ2c2þ2ab�3a

�3bþ4��c4ðu�1Þ2ðc2þab�a�bþ1Þ: (14)

Noting that
ffiffiffiffiffiffiffi�f

p
=

ffiffiffiffiffiffiffi�g
p ¼ je�A jj!A

� j ¼ ðabþ c2Þu2, it is
straightforward to evaluate the two energy-momentum
tensors in (8).

III. HOMOGENEITYAND ISOTROPY

Let us assume the metric g�� and the matter distribution

to be homogeneous and isotropic. This can be achieved by
setting Q ¼ N ¼ aðtÞ and R ¼ aðtÞfkðrÞ with fkðrÞ ¼
fr; sinðrÞ; sinhðrÞg for k ¼ 0, 1, �1, respectively. We

choose the matter to be a perfect fluid with 8�GTðmÞ�
� ¼

diag½�ðtÞ;�PðtÞ;�PðtÞ;�PðtÞ�.
Since the Einstein tensor for g�� is diagonal, so should

be the energy-momentum tensor T
�
� on the right in (6);

therefore, one should have T0
r ¼ 0, which requires that

0r ¼ 0. Now, 0r in (13) will vanish if either c ¼ 0 or if
the expression between the brackets vanishes. We shall be
considering below the case where c � 0 and the metrics
are not simultaneously diagonal, since the c ¼ 0 case has
already been studied in detail [11].
If c � 0, then 0r in (13) will vanish if

u¼ 1

c3þc4
ð2c3þc4�1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c23�c3þc4þ1

q
Þ: (15)

Inserting this into the above formulas, we find that the
energy-momentum tensors in (8) become diagonal, with
constant 00 and rr components,

T0
0 ¼ Tr

r ¼ ðu� 1Þðc3u� u� c3 þ 3Þ � �;

T 0
0 ¼ T r

r ¼ 1� u

u2
ðc3u� c3 þ 2Þ � ~�:

(16)

The Bianchi identities for Eq. (6) then imply the conser-

vation condition r
ðgÞ

�T
�
� ¼ 0, whose only nontrivial com-

ponent is (we denote _� @t and
0 � @r)
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r
ðgÞ

�T
�
0 ¼ 2

_a

a
ðT0

0 � T#
# Þ ¼ 0: (17)

It is worth noting that a similar condition for T �
� follows

identically, due to the invariance of Sint under diffeomor-
phisms, so that there is no need to impose it separately.

Now, using the above formulas one finds

T0
0�T#

# ¼c3u�u�c3þ2

u�1
½ðu�aÞðu�bÞþc2�: (18)

In view of (17) this should vanish, so that either the first or
the second factor on the right should be zero. The former
case was considered in Refs. [8,11] (see also Ref. [15]).
However, the condition c3u� u� c3 þ 2 ¼ 0 constrains
the possible values of the parameters c3, c4 so that the
solutions obtained in this way are not general. We, there-
fore, abandon this condition in what follows and require
instead that

ðu� aÞðu� bÞ þ c2 ¼ 0: (19)

In view of this, one has T0
0 ¼ T#

# and T 0
0 ¼ T #

# , which

implies that both energy-momentum tensors are propor-

tional to the unit tensor, T
�
� ¼ ��

�
� and T �

� ¼ ~��
�
� . The

field Eqs. (6) and (7) then reduce to

G
�
� ¼ ��

�
� þ 8�GTðmÞ�

�; (20)

G �
� ¼ ~���

�; (21)

with � ¼ m2cos2�� and ~� ¼ m2sin2�~�. As a result, the
two metrics actually decouple one from another, and the
graviton mass gives rise to a cosmological term separately
for each metric. However, one has to remember that solu-
tions of (20) and (21) should, in addition, fulfill the con-
sistency condition (19).

The solution for g��—Eq. (20) for g�� comprise a

closed system, with no additional conditions imposed, so
that we can solve them. The metric is

ds2g ¼ a2ðtÞðdt2 � dr2 � f2kðrÞd�2Þ; (22)

and the Einstein equations reduce to

3
_a2 þ ka2

a4
¼ �þ �; (23)

where � is determined by the matter conservation condi-
tion, _�þ 3ð _a=aÞð�þ PÞ ¼ 0. This describes a universe
filled with ordinary matter and containing the cosmological
term mimicked by the graviton mass. At early times the
matter density � dominates, but at late times the cosmo-
logical term wins, which leads to the self-acceleration.

The solution for f��—Eq. (21) should determine the

metric

ds2f¼a2ðadtþcdrÞ2�a2ðbdr�cdtÞ2�U2d�2: (24)

Here a, b, c are free functions of t, r, but U ¼ uRðt; rÞ is
already fixed by the previous considerations. In addition, a,

b, c should satisfy the constraint (19). One could, there-
fore, wonder if the system is not overdetermined and the
freedom is enough to fulfill all conditions.
To see that the latter is indeed the case, we notice that

the function U can be considered as the new radial coor-
dinate. The temporal coordinate can also be changed in
such a way that in new coordinates T, U, the metric
becomes diagonal. The source term in (21) is invariant
under reparameterizations. Therefore, the problem re-
duces to solving the Einstein equations with the cosmo-

logical constant ~� to find a diagonal metric parameterized
by the Schwarzschild coordinate U. The solution is the
(anti-)de Sitter metric

df2 ¼ �2dT2 � dU2

�2
�U2d�2; (25)

where �2 ¼ 1� ~�U2=3. There remains the need to es-
tablish the correspondence between the T, U and t, r
coordinates and to fulfill the constraint (19).
Let us introduce 1-forms

�0¼�dT; �1¼dU

�
; �2¼Ud#; �3¼Usin#d’;

such that f�� ¼ �AB�
A
��

B
� . At the same time, f�� can

be expanded with respect to !A
� from (11). The two sets

of 1-forms may differ from each other by a local Lorentz
boost, so that

!0 ¼ �0 sec�þ �1 tan�; !1 ¼ �1 sec�þ �0 tan�;

(26)

where � is the boost parameter. Using the explicit expres-
sions for!A and �A and comparing the coefficients in front
of dt, dr in (26) give four conditions, which determine �,
a, b, c in terms of �, T, U. As a result, the consistency
condition (19) assumes the form

_UT0 � _TU0 � u2a2 þ ua
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AþA�

p
=� ¼ 0; (27)

with A� ¼ �2 _T þU0 � ð�2T0 þ _UÞ. This equation deter-
mines Tðt; rÞ.
Let us first consider the � ! 0 limit, when ~� ¼ 0 and

� ¼ 1, in which case exact solutions of (27) can be found.
For k ¼ 0, when U ¼ uar, we find

Tðt; rÞ ¼ C
Z t a2

_a
dtþ

�
u2

4C
þ Cr2

�
a; (28)

whereC is an integration constant. This solution agrees with
the one obtained in Ref. [9] for c3 ¼ c4 ¼ 0, u ¼ 3=2.
For k ¼ 1, one has U ¼ ua sinr and we find

Tðt;rÞ¼
Z t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2þu2Þð _a2þa2Þ

q
dtþCacosðrÞ: (29)

For k ¼ �1 and U ¼ ua sinhr, we obtain
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Tðt;rÞ¼
Z t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC2�u2Þð _a2�a2Þ

q
dtþCacoshðrÞ: (30)

If � � 1, then exact solutions are more difficult to find;

however, at least when ~� is small, the solution can be
constructed perturbatively as

T ¼ T0 þ
X
n�1

ð�~�=3ÞnTn: (31)

Here, T0 corresponds to zero-order expressions (28)–(30),
while the corrections Tn can be obtained by separating the
variables with the ansatz Tn ¼

P
nþ1
m¼0 fmðtÞgmðrÞ where

gðrÞ ¼ fr2; cosðrÞ; coshðrÞg for k ¼ 0, 1, �1, respectively.
For example, for k ¼ 0, one finds

T1 ¼ C
Z t a6

4 _a3
dtþ

�
Cr4

4
þ u2r2

8C
� u4

192C3

�
a3; (32)

with C being the same as in (28) and similarly for n > 1.
This completes out constructions, since all field equa-

tions and the consistency condition are now fulfilled.

IV. DISCUSSION

We have obtained the cosmological solution in the
ghost-free bigravity with matter, for generic values of the
theory parameters (provided that u in (15) is real). One can
choose c3, c4 such that �> 0. The metric g�� then de-

scribes a FRW universe, which can be spatially flat, open,
or closed. It is matter-dominated at early times, but at late
times it enters the accelerated phase due to the effective
cosmological term mimicked by the graviton mass. The
metric f�� is the static (anti—)de Sitter (25) parameterized

by T, U.
The two metrics are not simultaneously diagonal and do

not have the same Killing symmetries. In particular, the
translational symmetries of g�� are not shared by f��,

since the Stückelberg fields �0 ¼ Tðt; rÞ, �k ¼ Uðt; rÞ�

fsin# cos’; sin# sin’; cos’g are inhomogeneous functions
of xk. One can, therefore, expect the fluctuations around the
background solutions to be inhomogeneous, but this effect
will be sourced by terms proportional to m2 in Eqs. (6) and
(7) and so will be small in regions smaller than 1=m, in
agreement with the arguments of Ref. [9].
Setting the matter density to zero, the solution for g�� is

pure de Sitter, rewriting which in static coordinates repro-
duces the static bigravity solutions found in Ref. [12].
The solution exists for any value of �. When � ! 0,

then ~� ! 0, so that f�� becomes flat, while g�� still

describes the expanding universe. Therefore, we obtain in
this limit the solution of the ghost-free massive gravity
with flat reference metric [4], with the Stückelberg fields
expressed by (28)–(30).
Our solution, therefore, describes the most general

cosmology with a homogeneous and isotropic g�� and an

inhomogeneous f��, and it applies equally within the

bigravity and massive gravity contexts. The latter prop-
erty is quite special, since in general the metric f�� does

not necessarily become flat for � ! 0, while generic
massive gravity solutions do not always extend to the
bigravity [16].
All other known cosmological solutions can be obtained

by setting c ¼ 0 in Eqs. (11)–(14), in which case both
metrics are FRW. The corresponding bigravity solutions
do not always show the late-time acceleration and do not
cover the massive gravity case [11,17]. The massive grav-
ity cosmologies with two FRWmetrics do not extend to the
bigravity and show a nonlinear instability [10].
It seems, therefore, that our solution is the most sensible

physically, since it covers all possible cases and shows the
late-time acceleration expected for massive gravitons.
Note added.—When this text was being completed, there

appeared the article [18] on massive gravity (� ¼ 0) cos-
mologies whose analysis is partly similar to the above
discussion, although it does not give the explicit solution
for the Stückelberg scalars.
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