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Lepton masses and mixing angles via localization of 5-dimensional fields in the bulk are revisited in the

context of Randall-Sundrum models. The Higgs is assumed to be localized on the IR brane. Three cases

for neutrino masses are considered: (a) The higher-dimensional neutrino mass operator (LH.LH),

(b) Dirac masses, and (c) Type I seesaw with bulk Majorana mass terms. Neutrino masses and mixing

as well as charged lepton masses are fit in the first two cases using �2 minimization for the bulk mass

parameters, while varying the Oð1Þ Yukawa couplings between 0.1 and 4. Lepton flavor violation is

studied for all the three cases. It is shown that large negative bulk mass parameters are required for the

right-handed fields to fit the data in the LH.LH case. This case is characterized by a very large Kaluza-

Klein (KK) spectrum and relatively weak flavor-violating constraints at leading order. The zero modes for

the charged singlets are composite in this case, and their corresponding effective 4-dimensional Yukawa

couplings to the KK modes could be large. For the Dirac case, good fits can be obtained for the bulk mass

parameters, ci, lying between 0 and 1. However, most of the ‘‘best-fit regions’’ are ruled out from flavor-

violating constraints. In the bulk Majorana terms case, we have solved the profile equations numerically.

We give example points for inverted hierarchy and normal hierarchy of neutrino masses. Lepton flavor

violating rates are large for these points. We then discuss various minimal flavor violation schemes for

Dirac and bulk Majorana cases. In the Dirac case with minimal-flavor-violation hypothesis, it is possible

to simultaneously fit leptonic masses and mixing angles and alleviate lepton flavor violating constraints

for KK modes with masses of around 3 TeV. Similar examples are also provided in the Majorana case.
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I. INTRODUCTION

One of the most interesting solutions of the hierarchy
problem is the Randall-Sundrum (RS) model [1] which
proposes a warped extra space dimension compactified on
an S1=Z2 orbifold. Two branes representing the UVand the
IR scales are located at the two end points of the orbifold.
In the simplest models, the Standard Model (SM) matter
and gauge fields are localized on the IR brane along with
the Higgs field. Massive Planck scale modes are exponen-
tially suppressed at the IR brane, due to the warped bulk
geometry, caused by the presence of a large negative
cosmological constant.1 Variations of this setup have
been considered in several different contexts.2

For example, introducing gauge fields in the bulk facil-
itates unification of couplings [4]. But this leads to large
corrections to the electroweak precision observables and
places a lower bound on the mass of the lightest-gauge
Kaluza-Klein (KK) mode to be around 25 TeV. This is

because the coupling of brane-localized fermions to the
gauge KK states is enhanced by a factor�8:5 compared to
the SM coupling [5–7]. A similar study in terms of oblique
parameters was reported in Refs. [8,9]. Boundary kinetic
terms for the gauge fields can lower the bound [10,11], but
this might spoil the unification. Alternatively, allowing the
fermions to propagate in the bulk eases the constraint of
25 TeV on the lightest KK mode, to about 10 TeV [12].
Having a bulk Higgs further eases the bound [7]. On the
other hand, scenarios with extended particle content and a
bulk custodial symmetry with a brane-localized Higgs
boson were found to lower the bounds on the KK gauge
boson mass to �3 TeV [13]. In Ref. [14], the authors
explored a mixed scenario where part of fermions, the
third-generation quarks, are localized on the IR brane. It
was shown that such a scenario would soften the correc-
tions to the � parameter. Finally, modifying the RS metric
near the IR boundary can also help in reduction of the
strong electroweak precision constraints [15,16].
Allowing fermions to propagate in the bulk has interest-

ing implications for flavor physics. The bulk profiles of the
fermion fields are determined by their bulk masses in a
manner similar to Arkani-hamed and Schmaltz mechanism
in Arkani-Hamed, Dvali, and Dimopolous (ADD) models
[17]. In the RS model, however, the warped geometry
facilitates the so-called ‘‘automatic’’ localization of fermi-
ons [6]. The profiles are also no longer Gaussian, but are
exponentially suppressed. It has been proposed that RS
could be a theory of flavor, where the fermion mass

*abhishek@cts.iisc.ernet.in
†vempati@cts.iisc.ernet.in
1The RS metric is given by

ds2 ¼ e�2�ðyÞ���dx
�dx� � dy2;

where �ðyÞ ¼ kjyj. For recent reviews on RS models, please see
Ref. [2].

2The phenomenology of RS models has been extensively
studied. A recent review on collider phenomenology concentrat-
ing on LHC can be found in Ref. [3].
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hierarchy can be explained in terms of a fewOð1Þ parame-
ters. This is analogous to the popular Froggatt-Nielsen
(FN) models [18,19] in four dimensions. While in the FN
model, it is the gauge and the heavy fermion sector which
determine the hierarchies in the Yukawa couplings; in the
RS case, it is the geometry of the bulk. The role of the FN
charges can be played by the 5-dimensional Dirac masses
for the bulk fermions. The expectation is that by taking
Oð1Þ bulk mass parameters as well as Yukawa couplings,
one would be able to explain the large hierarchies in the
quark and leptonic mass spectrum. While this is true in
general for quarks and charged lepton masses, as we will
see subsequently, in case of neutrino masses, the situation
is a bit more involved.

Flavor violation in the hadronic sector has been explored
by various authors [20–22]; a recent comprehensive analysis
can be found in Refs. [23,24]. In the present work, we are
interested in studying neutrino masses and mixing angles
within the RS context. One method of generating neutrino
masses in the RS model would be to allow only the right-
handed neutrino to propagate in the bulk, while the SM
particles are confined to the IR brane. This leads to a higher-
dimensional seesaw mechanism [25]. However, unlike the
case of ADD models, here, only the lightest KK modes
participate in the seesaw mechanism. Furthermore, lepton
flavor violating decay rates are extremely large in this case
pushing the lightest KK mode to be heavier than mkk *
25 TeV [26]. Neutrino mass models have also been ex-
plored in the alternative scheme where all the fermionic
fields are allowed to propagate in the bulk. In the present
work, we will concentrate on this setup and study the
neutrino mass phenomenology and lepton-flavor violation
[25–33]. We have assumed Higgs to be localized on the IR
brane. Fermion mass fits in scenarios with Higgs also prop-
agating in the bulk have been considered in RefS. [21,34].

In this RS setup (fermions in the bulk, Higgs localized on
IR brane), neutrino mass models can be divided broadly
into Dirac mass models or Majorana mass models. In the
case of Majorana fermions, the number of possibilities is
more than one. In the present work, we discuss three cases
in detail: (a) The higher-dimensional LH.LH operator,
(b) the Dirac neutrino case, and finally, (c) Majorana neu-
trinos with bulk seesaw terms. In these models, typically
two sets of parameters determine the charged leptonmasses
and neutrino masses and mixing angles. These are the
aforementioned set of bulk Dirac masses for the fermions
and then the Oð1Þ parameters containing the Yukawa cou-
plings. In each of these cases, we have numerically mini-
mized a �2 function containing the model parameters and
the leptonic masses and mixing data, to determine the best-
fit regions of the parameter space. The Yukawa couplings
are varied from 0.1 to 4, whereas the ranges for the bulk
parameters are judiciously chosen to be as wide as possible.

We found that in the (a) higher-dimensional LH.LH
operator case, the bulk mass parameters of the charged

singlets are required to be negative and extremely large.
This gets reflected into an extremely hierarchal Kaluza-
Klein mass spectrum of the first KK states of the SM
fermions. In fact, the best-fit regions are those with
Standard Model charged singlets being completely com-
posite.3 On the other hand, if one considers Dirac neutri-
nos, it is quite possible to fit the data naturally with the bulk
Dirac masses within reasonable ranges without any large
hierarchies. Both hierarchal and inverse hierarchal neu-
trino mass schemes can be fit in this case, though it is
much more difficult to find regions which satisfy inverse
hierarchal neutrino mass relations compared to normal
hierarchy. The bulk equations of motion in the presence
of a Majorana mass term are coupled and more compli-
cated than the Dirac or LH.LH case. We have solved them
numerically and given example points where data can be fit
easily either in the inverted or the normal hierarchy
scheme. We have not conducted an extended numerical
scan of the parameter space for the bulk Majorana case.
Fitting neutrino masses in any of the above models in RS

setup potentially leads to large lepton-flavor violation. A
detailed analysis was presented in Ref. [30], where the
authors discussed the implications of flavor physics in
the lepton sector with both the brane localized and the
bulk Higgs. Neutrinos were assumed to be of Dirac nature.
They observed that with a bulk Higgs, the branching
fraction for the process � ! e� requires a KK mass scale
of around �20 TeV to keep it below the present experi-
mental limits. Similar comments were made in Ref. [33] on
how the higher-dimensional operator case is not conduc-
tive for suppressing process like� ! eee, especially when
the KK mass is low. Higgs was allowed to propagate in the
bulk in this work. In the present work, we revisited the
flavor constraints for all the three cases, concentrating on
the best-fit regions in the LH.LH and the Dirac case. For
the LH.LH case, the couplings of SM fermions to KK
gauge bosons are universal in the best-fit region, leading
to no apparent constraint, at least at the leading order from
the tree-level flavor-violating decays. However, there are
large Yukawa couplings in this model which make it un-
attractive from perturbation theory point of view. The best-
fit region of the Dirac case is strongly constrained from
tree-level decays as well as loop-induced decays like � !
eþ �. In the brane localized Higgs scenario we are
considering here, the limits from dipole processes are
cutoff-dependent. But, for cutoff values close to the first
KK mass scale, the limits are comparably much stronger.
For the bulk Majorana case, too, the points we have con-
sidered display strong constraints from leptonic-flavor vio-
lation and are ruled out. One would thus need ways to
circumvent these strong limits from lepton-flavor violation.
We explored minimal flavor violation (MFV) ansatz

implemented in the RS scenario to evade the flavor

3This interpretation is based on the AdS/CFT correspondence.
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constraints in the Dirac and Majorana cases [31,35]. We
provide example symmetry groups where the flavor-
violating constraints can be removed for both the Dirac
and the Majorana cases.

The paper is organized as follows. In Sec. II, we discuss
lepton mass fits in three models of neutrino mass genera-
tion, the higher-dimensional LH.LH operator, the Dirac
case, and the bulk Majorana mass terms case spread over
three subsections. In Sec. III, we discuss the lepton flavor
violating constraints for the three cases of neutrino masses.
In Sec. IV, we discuss the minimal-flavor-violating
schemes for the Dirac and Majorana cases and show ex-
ample points where flavor-violating constraints are allevi-
ated. We close with a summary and outlook in the final
Sec. V.

II. LEPTON MASS FITS

The observed neutrino and charged lepton data is fit to
the set of theory parameters which determine the charged
lepton and neutrino mass matrices through a �2 minimi-
zation. Thus, the observables correspond to three charged
lepton masses, three mixing angles, and two (neutrino)
mass squared differences, while the bulk mass parameters
and Yukawa couplings form the set of theory parameters.
The number of theory parameters varies from model to
model, as discussed in the following subsections. We have
chosen the following central values for the observables
[36,37]:

We use the standard �2 definition for N observables
given by

�2 ¼ XN
i¼1

�
yexpi � ytheoryi

�i

�
2
; (1)

where, ytheoryi is the value of the ith observable predicted by
the model and yexpi is its corresponding experimental num-
ber measured with an uncertainty of �i. Since the values of
the charged lepton are measured to a very high accuracy, it
is difficult to fit masses to such high accuracy. Thus, we
incorporate up to �1:5% errors in the masses of charged
leptons.4 The �2 relevant to our study is

�2 ¼ ð�sol � 0:59Þ2
ð0:02Þ2 þ ð�atm � 0:79Þ2

ð0:12Þ2 þ ð�13 � 0:154Þ2
ð0:02Þ2

þ ð�m2
sol � 7:59� 10�23Þ2
ð0:2� 10�23Þ2

þ ð�m2
atm � 2:43� 10�21Þ2
ð0:2� 10�21Þ2 þ ðme � 0:00051Þ2

ð0:00001Þ2

þ ðm� � 0:1056Þ2
ð0:0001Þ2 þ ðm	 � 1:77Þ2

ð0:02Þ2 : (2)

As mentioned above, the fermion masses (and mass
squared differences) and mixing angles appearing in
Eq. (2) are functions of bulk parameters. The minimization
was performed using MINUIT [40]. For a given scan, MINUIT

looks for a local minima for the �2 around a certain input
guess value of the bulk masses and Yukawa parameters.
This scan is repeated by randomly varying the guess values
and in the process of looking for a global minima.

A. The LH.LH operator

In the absence of detailed specification of the mecha-
nism which generates neutrino masses, one can always
write an effective higher-dimensional operator at the
weak scale to account for nonzero neutrino masses. In
the Standard Model, this operator is simply the
ðLH:LHÞ=� operator, where � is the high scale at which
neutrino masses are generated. In the Randall Sundrum
model, one can write a similar operator for nonzero neu-
trino masses. The model has been earlier studied in
Refs. [21,28]. The 5-dimensional action for the RS model
with the Higgs localized on the IR brane is given by

S¼SkinþSYuk

Skin¼
Z
d4x

Z
dy

ffiffiffiffiffiffiffi�g
p ð �Lði 6D�mLÞLþ �Eði 6D�mEÞEÞ

SYuk¼
Z
d4x

Z
dy

ffiffiffiffiffiffiffi�g
p �




�ð5Þ LHLHþYE
�LEH

�
�ðy��RÞ;

(3)

where �ð5Þ � 2:2� 1018 GeV is the fundamental
5-dimensional reduced Planck scale and

DM ¼ @M þ�M þ ig5
2

	aWa
Mðx; yÞ þ

ig0

2
QYBMðx; yÞ

(4)

with�M ¼ ð�k=2e�ky���
5; 0Þ being the spin connection,

andQY is the hypercharge.M is the 5-dimensional Lorentz
index. R is the compactification radius, and 
 and YE are
the coupling of the neutrino mass operator and the Yukawa
coupling for the charged leptons, respectively. They are
3-dimensional matrices in flavor space, and we have sup-
pressed the generation indices in writing the above equa-
tion. L and E are the 5-dimensional fermionic fields which
transform as doublets and singlets, respectively, under the
Standard Model SUð2ÞW gauge group with the covariant
derivative given by Eq. (4) acting accordingly. mL and
mE are 5-dimensional Dirac masses of the L and E fields.
As we will see below, after Kaluza-Klein decomposition,
these masses determine the profiles of the zero and higher
KK modes in the extra dimension. Since the effective
operator is suppressed by the 5-dimensional Planck mass,
one can imagine that the neutrino masses are as a result of
some fundamental lepton-number violation beyond the
5-dimensional Planck scale.

4This approach is very similar to fermion mass fitting in grand
unified theories. See, for example, Refs. [38,39].
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The left and right components of the L and E fields have
different Z2 properties. These are chosen such that the
Z2-even zero modes correspond to the SM fields. We
assign the following Z2 parity for the Ll;r and the El;r

fields, where the subscripts ðl; rÞ correspond to the left-
and right-handed components of L and E.5

Z2ðyÞLlðx; yÞ ! Llðx; yÞ; Z2ðyÞLrðx; yÞ ! �Lrðx; yÞ
Z2ðyÞErðx; yÞ ! Erðx; yÞ; Z2ðyÞElðx; yÞ ! �Elðx; yÞ;
where Z2ðyÞ: y ! �y. The 5-dimensional fields can be
expanded in terms of the KK modes, with the expansion
given by [20,25]

Llðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞLðnÞ
l ðxÞfðnÞL ðyÞ;

Lrðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞLðnÞ
r ðxÞ�ðnÞ

L ðyÞ

Erðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞEðnÞ
r ðxÞfðnÞE ðyÞ;

Elðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞEðnÞ
l ðxÞ�ðnÞ

E ðyÞ;

(5)

where the exponential factor is chosen such that the fields
are canonically normalized. The profiles fL;E and �L;E are

determined by

ð@y þ cL�
0ÞfðnÞL;EðyÞ ¼ mðnÞe�ðyÞ�ðnÞ

L;EðyÞ
ð�@y þ cL�

0Þ�ðnÞ
L;EðyÞ ¼ mðnÞe�ðyÞfðnÞL;EðyÞ;

(6)

where the 5-dimensional masses mL;E are written in terms

of the fundamental scale as mL;E ¼ cL;E�
0 and �0 ¼

@y� ¼ k. The following orthonormality conditions are

used for the profiles fL;E and �L;E to arrive at Eq. (6):

1ffiffiffiffiffiffiffiffiffiffi
2�R

p
Z �R

��R
dye��ðnÞ

L;EðyÞ�ðmÞ
L;EðyÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2�R

p
Z �R

��R
dye�fðnÞL;EðyÞfðmÞ

L;EðyÞ ¼ �nm; (7)

The above equations decouple for the zero-mode solu-

tions where mðnÞ ¼ 0. The solution for the Z2-even part,
fLðyÞ is given as

fð0ÞL ðyÞ ¼ N0ðcLÞe�cL�
0y;

N0ðcLÞ ¼
ffiffiffiffiffiffiffi
�R

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2cLÞk

eð1�2cLÞk�R � 1

s
;

(8)

N0 being the normalization constant. The solution is the
same for profile of E, fEðyÞ, with cL replaced by cE. The
bulk wave functions are exponentials which peak towards
the UV (IR) for c > 1=2 (c < 1=2) as can be seen from
Eq. (8). Typically, particles lighter in mass like leptons
require c > 1=2, whereas heavier particles like top quark
are localized much closer to the IR brane with c < 1=2. For
the charged leptons and the neutrino masses, one would
expect all the corresponding ci to be >1=2. The KK
expansions (5) are put into the Yukawa part of the action
Eq. (3) leading to

SYuk¼
Z
d4x

Z �R

0
dy

1

�R

X
n;m

�
YE

�LðnÞðxÞfðnÞL ðyÞEðmÞðxÞfðmÞ
E ðyÞekR�Hþ 


�ð5Þf
ðnÞ
L ðyÞfðmÞ

L ðyÞLðnÞLðmÞHHe2kR�
�
�ðy��RÞ; (9)

where we have used H ! ekR�H to canonically normalize
the Higgs field and suppressed the subscripts ðl; rÞ for the
Z2-even fields. The odd fields are neglected as they are
removed from the boundary as a consequence of the Z2

symmetry. The charged lepton mass matrix and the neu-
trino mass matrix are determined when the zero modes of
the fields are taken. The charged lepton mass matrix,
corresponding to the Lð0ÞEð0ÞH operator in the action, is
given by

Mð0;0Þ
e ¼ vffiffiffi

2
p ~YE þO

�
fð0ÞL ð�RÞ v3

M2
KK

fð0ÞE ð�RÞ
�

~YE ¼ YE

R�
N0ðcLÞN0ðcEÞeð1�cL�cEÞkR�;

(10)

where the matrix ~YE can be considered equivalent to
the 4-dimensional dimensionless Yukawa couplings. The
neutrino mass matrix defined as the coefficient of the
Lð0ÞLð0ÞHH operator in the action is given as

Mð0;0Þ
�ij

¼ ~
ij

v2

2�ð5Þ þO
�

1

MKK

�
fð0ÞL ð�RÞv2

�ð5Þ

�
2
�

~
ij ¼ 
ije
2kR�fLi

ð�RÞfLj
ð�RÞ

¼ 
ij

R�
N0ðcLi

ÞN0ðcLj
Þeð2�cLi�cLj ÞkR�; (11)

where i, j are generation indices and MKK is the typical
mass of higher KK fermions. The corrections are from
higher-order KK modes and can be neglected. Before
fitting the mass matrices, we introduce new Oð1Þ Yukawa
parameters entering the mass matrices, which are
defined as

Y0
E ¼ 2kYE; 
0 ¼ 2k
: (12)

5The �5 required to define the left and right components
remains the same as in the 4-dimensional case.
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In terms of these new Yukawa parameters, the mass matrices are explicitly given as

ðMð0;0Þ
e Þij ¼ vffiffiffi

2
p ðY0

EÞijeð1�cL�cEÞkR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cLi

Þ
eð1�2cLi Þ�kR � 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cEj

Þ
e
ð1�2cEj Þ�kR � 1

vuut ;

ðMð0;0Þ
� Þij ¼ v2

2�ð5Þ ð
0Þijeð2�cLi�cLj ÞkR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cLi

Þ
eð1�2cLi Þ�kR � 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cLj

Þ
e
ð1�2cLj Þ�kR � 1

vuut :

(13)

The matrices are diagonalized as Uy
eLM

ð0;0Þ
e UeR¼

Diag½fme;m�;m	g� and U�M
ð0;0Þ
� UT

� ¼Diag½fm�1 ;m�2
;

m�3g� and UPMNS ¼ Uy
�UeL. The eigenvalues of the

charged lepton mass matrix and the mass-squared differ-
ences of the neutrino mass matrix and the UPMNS mixing
angles are fit to the data as per Table I. In this case,

there are three cLi
and three cEi

and fifteen Yukawa
parameters fitting three charged lepton masses, three
angles, and two mass squared differences. Given the de-
pendence of the leptonic mass matrices on the Yukawa
parameters, we have chosen them strictly to be of Oð1Þ
nature. By this, we mean they are varied roughly between

TABLE I. Experimental Data

masses (MeV) mass-squared (eV2) mixing angles

me ¼ 0:51þ0:0000007
�0:0000007 �m2

12 ¼ 7:59þ0:20
�0:21 � 10�5 �12 ¼ 0:59þ0:02

�0:015

m� ¼ 105:6þ0:000003
�0:000003 �m2

23 ¼ 2:43þ0:13
�0:13 � 10�3 �23 ¼ 0:79þ0:12

�0:12

m	 ¼ 1776þ0:00016
�0:00016 �13 ¼ 0:154þ0:016

�0:016

FIG. 1 (color online). Regions in ci for the LH.LH case which give best fit to lepton masses and mixing. The graphs in the upper row
show the region of parameter space for the bulk masses for doublets which fit small neutrino masses. Neutrino masses are assumed to
have normal hierarchy in this analysis. The graphs in the lower row show the region for the bulk masses for the charged singlets cEi

. We

have used log scale for cEi
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�4 and 4. Furthermore, in order to avoid regions where the
Yukawa parameters are unnaturally close to zero, we put a
lower bound on the Yukawas such that jYj lies between
�0:08 and 4.

Since the charged leptons and neutrinos have relatively
light mass spectrum compared to heavy quarks, one would
have expected that varying cL and cE between 1=2 and 1
would be sufficient to fit the data. However, in the present
context, such values for cE will not satisfy the data. This is
because the neutrino mass matrix depends only on cLi

, and

requiring the neutrino masses to be of the Oð10�1Þ eV
automatically sets cLi

to be around 0.9, close to the UV

brane. The charged lepton mass matrix, which in turn is
determined by both cLi

and cEi
, should off-set the effect of

cLi
and increase the effective 4-dimensional Yukawa cou-

pling by pushing it toward the IR brane. This can only be
achieved by taking large and negative values6 of the cEi

.

The range for the scan of the cL;E has been judiciously

chosen between 0.82 and 1.0 for bulk doublets and
�5� 107 < cE1

<�0:2, �108 < cE2
<�8000, and

�109 < cE3
<�9000 for first-, second-, and third-

generation charged singlets, respectively. A larger demo-
cratic range does not change the results significantly.

All the parameters, the fifteen Yukawa couplings, and
the six cL;E parameters are varied so as to minimize the

function in Eq. (2). The points which give a �2 between 1
and 8 are considered to give a good fit to the data. In Fig. 1,
we present the regions in cL1;2;3

and cE1;2;3
which have

minimum �2 assuming normal hierarchy for neutrino
masses. It is important to remember that Yukawa couplings
are also varied in obtaining this range in the cL;E parameter

space. From the figures, we see that the strong constraint of
neutrino masses limits the cLi

to be within a limited range.

On the other hand, cE seem to have much larger ranges
spanning orders of magnitudes. In particular, cE1

is virtu-

ally unconstrained from Oð�1Þ to Oð�106Þ. This is an
artifact of the unconstrained lightest neutrino mass,
m�1 . cE2

and cE3
have less freedom as they are constrained

by the mass-squared differences. The allowed ranges in the
cL;E which satisfy the minimum �2 requirement are sum-

marized in Table II.

It would be interesting to see distribution of the Yukawa
couplings Y0

E and 

0 for the best-fit regions of the parameter

space. The distributions are presented in Figs. 2 and 3. For
most of the Y0

E parameters, there is peaking at the two ends
of the range chosen, around 0.2 and 3.8. The exception is
the lower 2� 2 block of the Yukawa matrix, for which
there seems to be a flatter profile for the upper-row pa-
rameters ðY0

EÞ22 and ðY0
EÞ23 and a progressively increasing

distribution for the second-row parameters.
For almost all of the Y0

E parameters, peaking seems to be
happening at high values�3:8, except for ðY0

EÞ22. There are
also second peaks at very low values �0:2 for some of the
parameters. Distributions in 
0, on the other hand, show
peaks at very large value �3:8 for the first two generation
couplings and very low values �0:4 for 
0

33 and 
0
23. With

the exception of peaks, there is an underlying, though
highly subdued, ‘‘anarchical’’ nature in the distribution
of Y0

E Yukawa couplings.7 Thus, for a given choice
of Oð1Þ Yukawa couplings within our chosen range
(�4 to 4), it seems to be possible to find c values which
can fit the data well.8 From the allowed parameter space,
we have randomly chosen two sample points, which we
call Point A and Point B, and we provided the correspond-
ing observables in Table III. The corresponding Yukawa
couplings are given in Eqs. (14) and (15).
Yukawa coupling matrices for Point A:

Y0
E ¼

0:5023 1:9546 3:9730

3:2482 2:9629 2:7742

2:6865 2:0383 1:2369

2
664

3
775;


0 ¼
3:8933 3:9717 3:9818

3:9717 �2:6660 �1:1409

3:9818 �1:1409 1:4597

2
664

3
775:

(14)

Yukawa coupling matrices for Point B

TABLE II. Allowed range for the bulk parameters with minimum �2. Neutrino masses have normal hierarchy. Range of first KK

scale of the doublet(singlet) Mð1Þ
L (Mð1Þ

E ) corresponding to the bulk mass parameter is also given.

parameter range range of Mð1Þ
L (TeV) parameter range range of Mð1Þ

E (TeV)

cL1
0.87–0.995 1.49–1.59 cE1

�10:0 to �5:0� 106 7:9–3:9� 106

cL2
0.86–0.98 1.48–1.58 cE2

�1:0� 104 to �1:2� 108 7:9� 103–9:5� 107

cL3
0.84–0.92 1.47–1.53 cE3

�7:0� 105 to �1� 109 5:5� 105 7:9� 108

6One way to avoid large negative c parameters would be to
consider very large O(1) Yukawa parameters. The required
Yukawa couplings are in the range �Oð103–104Þ to make any
connection with data.

7Anarchy in the Yukawa distributions does not necessarily
mean anarchical structure in the mass matrix.

8Increasing the scan range for the Oð1Þ Yukawa couplings
from �10 to 10 does not change the gross features of the
distributions much. For example, Y0

E are peaked near the end
points, showing that the lepton masses in this case prefer large or
small Yukawa couplings. The 
0 distribution has the same
features scaled to 0 to 10 from 0 to 4. The ranges of the cL;E
do not change significantly.
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FIG. 3 (color online). The distribution of neutrino Yukawa couplings (
0) which give a good fit to the fermion mass data in the
LH.LH operator case. Neutrinos are assumed to follow normal hierarchy in this analysis. The binning is done with an interval of 0.2.

FIG. 2 (color online). The distribution of electron Yukawa couplings (Y0
E) which give a ‘‘good fit’’ to the charged fermion mass

data in the LH.LH operator case. Neutrinos are assumed to follow normal hierarchy in this analysis. The binning is done with an
interval of 0.2.
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Y0
E ¼

3:0571 0:6316 0:8978

1:4085 0:9952 3:5597

0:7971 0:9579 0:5539

2
664

3
775;


0 ¼
0:2315 �3:8320 0:3490

�3:8320 �0:6632 �1:1287

0:3490 �1:1287 0:0802

2
664

3
775:

(15)

In Appendix A, we have presented our results assuming
neutrinos have an inverse hierarchical mass ordering. We
find very few points which satisfy the data in this case. This
is because inverted hierarchical spectrum requires two
masses at the atmospheric neutrino scale with their mass
difference satisfying �m2

sol. Thus, the results are very

sensitive to the Oð1Þ Yukawa parameters. For a fixed
Yukawa, however, it is easy to find points. More discussion
is present in Appendix A.

The analysis presented so far has been purely phenome-
nological. Let us digress from the fermion fits for a mo-
ment to discuss the large negative c parameters. Such large
negative values for the bulk mass parameters are in conflict
with the 5-dimensional cutoff scale k. We have neglected
this conflict in fitting the data where we have considered
them to be purely phenomenological parameters which can
take any value.9 In terms of the bulk wave functions, the
large negative c values would mean that the zeromode

wave function fð0Þ � 1, which is not the case when we
choose the c parameters between 0 and 1.

It is preferable to understand the large negative c values
in terms of localization on the IR brane. The limit c ! �1
corresponds to the case where the fermions are completely
localized on the IR singular point [41]. In the limit c !
�1, fð0Þ ! 1 indicating full overlap of the bulk wave
function with the brane. The value of the c parameters also
affects the masses of the KK modes. These masses are
determined from Eq. (6) by consideringmn � 0 and choos-
ing appropriate boundary conditions for the 5-dimensional
fields. The resultant differential equation has solution in
terms of Bessel’s function which describe bulk wave func-
tions of the KK modes, whereas the masses are given in
terms of the zeros of the Bessel function [42]. The order of
the Bessel function is roughly given by jcj for large values
of c. In the asymptotic limit, the first KK mode has mass
� jcjke�kR�. Thus, we see that the phenomenologically
relevant first KK mode mass also grows as �c�IR, where
�IR � TeV, the IR cutoff. The masses of the first KK
modes are presented in Table II. The bulk wave function
of the KK mode tends to zero as jcj ! 1.
One might wonder if such large negative values of the

cEi
parameters would have some implications in terms of

the AdS/CFT correspondence [2,43]. The conformal field
theory interpretation for the bulk scalars has been studied
in Refs. [2,44] and for bulk fermions in Ref. [45]. The best-
fit cL;E parameters of LH.LH case given in Table II leads to

an unusual situation where the left-handed leptons are
almost completely elementary while the right-handed sin-
glets are completely composite. This can be easily verified
using the ‘‘holographic basis’’ of Ref. [46]. The composite

component of the cL is proportional to e�ðcL�0:5ÞkR�, which
goes to 0 when cL ! 0:99. Thus, the zero modes for the
doublets are elementary. For the cE fields, however, the
elementary component for the zero mode is given asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðcE � 0:5ÞðcE þ 1:5Þp

e�j1:5þcEjkR�. Thus, we see that the
zero modes for the charged singlets have a vanishing
elementary component and thus are dominantly composite
fields. The effective 4-dimensional Yukawa coupling of the

zero mode to the KK modes is given as Y0
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið0:5� cEÞ
p

. A
problematic feature of these models is that this coupling
enters the nonperturbative regime for cE large and nega-
tive. This nonperturbative coupling appears for all includ-
ing the first KK mode, which is phenomenologically
relevant. This nonperturbative feature is restricted to the
Yukawa coupling. The gauge coupling on the other hand
does not face this problem. In fact, as we shall see later
(Sec. V, Fig. 13), the coupling strength of the zero mode
fermions to gauge KK modes quickly approaches the
coupling of the brane-localized fermions to gauge bosons
for relatively moderate values of jcj parameter.

B. Dirac Neutrinos

Dirac neutrino mass models in the RS setting have been
extensively studied in the literature [30]. In Ref. [33], the
authors talked about the difficulty of fitting neutrino masses

TABLE III. Sample points with corresponding fits of observ-
ables for normal hierarchy in LH.LH case with Oð1Þ Yukawas.
The masses are in GeV.

Point A B

�2 2.07 5.5

cL1
0.9755 0.903

cL2
0.9162 0.93

cL3
0.87 0.8443

cE1
�692416:99 �17:35

cE2
�2647794:18 �946125:13

cE3
�80717122:21 �47941542:53

me 5:07� 10�4 5:08� 10�4

m� 0.1056 0.1056

m	 1.767 1.771

�12 0.58 0.589

�23 0.68 0.743

�13 .168 0.163

�m2
sol 7:49� 10�23 7:48� 10�23

�m2
atm 2:47� 10�21 1:99� 10�21

9We prefer to keep the k (and also the radius R) value fixed by
noting that only the charged singlets required large negative c
values. In case we shift the 5-dimensional cutoff scale to jcjk
keeping k fixed, the corresponding IR would shift to c�IR, thus
spoiling the solution to the hierarchy problem in this scenario.
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and mixing angles in the same scenario as quarks. Their
argument drew inspiration from the fact that neutrino mix-
ing angles are anarchic in nature. To address this issue, they
had a bulk Higgs, with the profile ‘‘sufficiently peaked’’
near the IR brane and introduced a ‘‘switching behavior’’ to
fit the charged fermion and the neutrino masses and mixing
angles. We, on other hand, approach this problem in the
same way as we have done in the LH.LH case of the
previous section. We look for regions in the parameter
space of the bulk masses which give good fits for a reason-
able choice of Oð1Þ Yukawa couplings. The particle spec-
trum of the Standard Model is extended by adding singlet
right-handed neutrino. Global lepton number is assumed to
be conserved. It can be violated by quantum gravity effects
which manifest at the 5-dimensional Planck scale.
However, for most of the present analysis, we require
lepton-number violation present to be highly suppressed.

The bulk and Yukawa actions in Eq. (3) now take the
form

Skin ¼
Z

d4x
Z

dy
ffiffiffiffiffiffiffi�g

p ð �Lði 6D�mLÞLþ �Eði 6D�mEÞE
þ �Nði 6D�mNÞNÞ

SYuk ¼
Z

d4x
Z

dy
ffiffiffiffiffiffiffi�g

p ðYN
�LNH þ YE

�LEHÞ�ðy� �RÞ;
(16)

where N stands for the 5-dimensional right-handed neu-
trino fields. The rest of the parameters carry the same
meaning as in the previous section. The components of
the N field are assigned the same Z2 properties as the E
field. We expand the N fields as

Nrðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞNðnÞ
r ðxÞfðnÞN ðyÞ;

Nlðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞNðnÞ
l ðxÞ�ðnÞ

N ðyÞ:
(17)

Using Eqs. (17) and (5), one can derive the equations of
motion and solutions similar to Eq. (8) for the profiles of N
fields. Substituting them, the zero-mode mass matrices for
the charged lepton and neutrinos take the form

Mð0;0Þ
e ¼ vffiffiffi

2
p ~YE;

~YE ¼ YE

R�
N0ðcLÞN0ðcEÞeð1�cL�cEÞkR�

Mð0;0Þ
� ¼ vffiffiffi

2
p ~YN;

~YN ¼ YN

R�
N0ðcLÞN0ðcNÞeð1�cL�cNÞkR�;

(18)

where we have neglected corrections from higher KK
modes. As before, we perform a scan over the parameter
space of the bulk fermion masses and order-one Yukawa
parameters to minimize the �2 in Eq. (2) for the masses and
mixing angles. To specify the parameters which are
scanned, it is useful to look at the explicit form of the
mass matrices equivalent to those of Eq. (13):

ðMð0;0Þ
e Þij ¼ vffiffiffi

2
p ðY0

EÞijeð1�cLi�cEj ÞkR�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cLi

Þ
eð1�2cLi Þ�kR � 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cEj

Þ
e
ð1�2cEj Þ�kR � 1

vuut
ðMð0;0Þ

� Þij ¼ vffiffiffi
2

p ðY0
NÞijeð1�cLi�cNj ÞkR�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cLi

Þ
eð1�2cLi Þ�kR � 1

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5� cNj

Þ
e
ð1�2cNj Þ�kR � 1

vuut ; (19)

where Y0
E;N ¼ 2kYE;N. Each of the ci parameters (i ¼

fL;N; Eg) which are three in number are varied along
with eighteen Oð1Þ Yukawa parameters, i.e., a total of 27
parameters are varied to fit the data and minimize the �2.
The c parameters are varied as follows: The doublets (cLi

)

and the charged singlets are varied between 0.02 and 1,

FIG. 4 (color online). The figures above correspond to the case in which neutrinos are of Dirac type. The points in the above figures
correspond to a �2 between 1 and 8. The plot represents the parameter space for the bulk masses of the doublets. This case corresponds
to the normal hierarchial case.
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while the neutral singlets are varied between 1 and 1.9. The
order-one Yukawa couplings, Y0

E;N , are varied randomly

between �4 and 4 with a lower bound jYj * 0:08. We
consider all the regions of the ci parameter space where the
�2 is between 1 and 8 as a good-fit region. In Figs. 4–6, we
present regions in the ci parameter space which give good
fit to the leptonic mass and mixing angles. A summary of
these regions is presented in Table IV.

The Dirac neutrino mass matrix in the RS model seems
to fit the data more naturally compared to the LHLH
discussed in the previous subsection. A large section of
the points fall in the regime ci > 1=2 indicating that they
are localized closer to the UV brane. The distributions of
the Yukawa couplings in the good-fit region, presented in
Figs. 7 and 8 show that most of them peak in the last bins

for all the Yukawas at (3.8–4.0). A secondary peak can also
been seen at the (0.2–0.4) bin for some of the Y0

N parame-

ters. Electron Yukawa couplings on the other hand do not
seem to show any such secondary peak. In this case, too,
the distribution of the Oð1Þ Yukawa couplings displays an
underlying anarchic nature, especially for the Y0

E. This will

prove useful in our analysis of minimal flavor violation
where the Oð1Þ Yukawa couplings and the bulk mass
matrices need to be simultaneously diagonalizable. In
Table V, we presented two sample points. Point A has all
the ci > 1=2, whereas Point B has cE2

, cE3
< 1=2. The

corresponding Yukawa couplings are given in Eqs. (20)
and (21).
As before, we use the holographic basis to comment on

the partial compositeness of the bulk fermions. The zero

FIG. 6 (color online). The plot represents the parameter space for the bulk masses of the neutrino singlets.

FIG. 5 (color online). The plot represents the parameter space for the bulk masses of charged singlets.

TABLE IV. Allowed ranges of bulk parameters with normal hierarchy of neutrino masses. The range of first KK scale corresponding
to the range of c values is also given.

parameter range Mð1Þ
L TeV parameter range Mð1Þ

E TeV parameter range Mð1Þ
� TeV

cL1
0.05–0.76 0.839–1.4 cE1

0.2–0.88 0.959–1.5 cN1
1.1–1.9 1.67–2.31

cL2
0.05–0.72 0.839–1.37 cE2

0.05–0.73 0.839–1.38 cN2
1.1–1.9 1.67–2.31

cL3
0.05–0.64 0.839–1.31 cE3

0.05–0.64 0.839–1.31 cN3
1.1–1.9 1.67–2.31
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modes of singlet right-handed neutrinos are dominantly
elementary, with an almost zero component of composite-
ness. The composite component for the zero modes of the
doublets and the charged singlets becomes smaller as the
corresponding c values become greater than 0.5.
Essentially, they have partially composite nature.

Yukawa Coupling Matrix for Point A:

Y0
E ¼

3:9502 �1:6538 0:5889
�0:7276 �2:0054 �3:9004
�1:4061 1:4756 1:5318

2
64

3
75;

Y0
N ¼

�3:8918 �3:9447 �3:8380
�2:6439 2:5796 3:9962
�0:9223 �1:3577 0:6417

2
64

3
75:

(20)

Yukawa Coupling Matrix for Point B:

Y0
E ¼

3:3847 1:8639 �1:3814
�1:8107 �0:7219 �0:9499
�2:5435 �1:0497 �3:3588

2
64

3
75;

Y0
N ¼

2:4435 �1:8006 �1:9575
0:4198 �3:1594 3:5905
�0:2505 1:3172 2:1521

2
64

3
75:

(21)

C. Bulk Majorana mass term

Singlet neutrinos typically accommodate Majorana
mass terms in addition to the Dirac mass terms. These
bare mass terms which break lepton number at a very
high scale play an essential role in the standard
4-dimensional seesaw mechanism to generate light neu-
trino masses. The seesaw mechanism with bulk Majorana
mass terms has been first considered in Ref. [29]. There
have been other works which have considered brane-
localized Majorana mass terms [35,41,47,48]. Our analysis
follows the work of Ref. [29] and extends it by computing
the numerical solutions. The part of the action which
contains the singlet right-handed neutrinos is given by

SN ¼
Z

d4x
Z

dy
ffiffiffiffiffiffiffi�g

p ðmM
�NNc þmD

�NN

þ �ðy� �RÞYN
�L ~HNÞ; (22)

whereNc ¼ C5
�NT withC5 being the 5-dimensional charge

conjugation matrix10 and mM ¼ cMk, with k being the

FIG. 7 (color online). The distribution of electron Yukawa couplings (Y0
E) which give a good fit to the fermion mass data in the Dirac

case. Neutrinos are assumed to follow normal hierarchy in this analysis. The binning is done with an interval of 0.2.

10C5 is taken to be C4.
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reduced Planck scale.11 The bulk Dirac mass for the right-
handed neutrino is parametrized as mD ¼ cNk. As before,
we consider all the mass parameters to be real. The bulk
singlet fields N have the following KK expansions:

NLðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞNðnÞ
L ðxÞgðnÞL ðyÞ;

NRðx; yÞ ¼
X1
n¼0

1ffiffiffiffiffiffiffi
�R

p e2�ðyÞNðnÞ
R ðxÞgðnÞR ðyÞ;

(23)

where gL and gR are profiles of the singlet neutrinos in the
bulk. They follow the following orthonormal conditions:

1

2�R

Z �R

��R
dye�ðgðnÞL gðmÞ

L þ gðnÞR gðmÞ
R Þ ¼ �ðn;mÞ: (24)

Using this, the eigenvalues equations for the gL;R fields

become [29]

FIG. 8 (color online). The distribution of neutrino Yukawa couplings (Y0
N) which give a good fit to the fermion mass data in the Dirac

case. Neutrinos are assumed to follow normal hierarchy in this analysis. The binning is done with an interval of 0.2.

TABLE V. Sample points with corresponding fits of observ-
ables for normal hierarchy in the Dirac case with O(1) Yukawas.
The masses are in GeV.

Parameter Point A Point B

�2 0.28 0.39

cL1
0.6263 0.7166

cL2
0.5932 0.6382

cL3
0.5293 0.6126

cE1
0.6704 0.5911

cE2
0.5541 0.1939

cE3
0.5131 0.2647

cN1
1.2233 1.2791

cN2
1.2692 1.1215

cN3
1.2948 1.2343

me 5:09� 10�4 5:09� 10�4

m� 0.1055 0.1055

m	 1.77 1.77

�12 0.59 0.589

�23 0.80 0.792

�13 0.153 0.153

�m2
sol 7:49� 10�23 7:49� 10�23

�m2
atm 2:39� 10�21 2:40� 10�21

11Majorana mass terms do not have the same interpretation in
the bulk as in 4 dimensions.
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ð@y þmDÞgðnÞL ðyÞ ¼ mne
�gðnÞR ðyÞ �mMg

ðnÞ
R ðyÞ

ð�@y þmDÞgðnÞR ðyÞ ¼ mne
�gðnÞL ðyÞ �mMg

ðnÞ
L ðyÞ;

(25)

where we have assumed the 5-dimensional wave functions
to be real. Unlike the Dirac and higher-dimensional LHLH
term cases, the present system of equations, in Eq. (25), are
not consistent with a zero-mode solution mn ¼ 0 for
mD � 0. This is because the zero-mode solutions,

/ e
ffiffiffiffiffiffiffiffiffiffiffiffi
c2N�c2M

p
� do not satisfy either Dirichlet or the more

general ð@y þmdÞgLðyÞ ¼ 0 boundary condition. Thus,

in the following analysis, we will consider the first KK
mode not to be the zero mode butmn ¼ mð1Þ. Furthermore,

Eq. (25) does not have simple analytical solutions, though
numerical solutions exist. We have obtained the numerical
solutions of gL;R by solving the second-order equations

derived from Eq. (25). The equation for the Z2-even part
takes the form

g00LðyÞ �
mnkRe

kRy

mne
kRy � cMk

g0LðyÞ

�
�
cNmne

kRyk2

mne
kRy � cMk

þ c2Nk
2

� ðmne
kRy � cMkÞ2

�
R2gLðyÞ ¼ 0: (26)

The second-order equation for the Z2-odd part gR is
given as

g00RðyÞ �
mnkRe

kRy

mne
kRy � cMk

g0RðyÞ

�
��cNmne

kRyk2

mne
kRy � cMk

þ c2Nk
2

� ðmne
kRy � cMkÞ2

�
R2gRðyÞ ¼ 0; (27)

where we have used the notation mD ¼ cNk and MM ¼
cMk introduced earlier. The primes on gLðyÞ and gRðyÞ
indicate derivatives on the profiles. For a given choice of
cN and cM, one would expect to numerically find solutions
using the above equations for gL;R as long as they satisfy

two conditions: (i)mð1Þ is also fixed such that the boundary
conditions are satisfied consistently; (ii) there are no sin-
gularities in coefficients of the differential equations in the
interval ½0; �R�. This second condition requires that for
unique solutions, only those values of cM and mn are
allowed for which mne

� �mM is nonzero. Note that this
condition is always true when cM is negative. For positive
cM, the allowed region is shown in Fig. 9, where all the
shaded region has mne

� �mM nonzero. As can be seen
from the figure, as cM increases, the KK mass scale also
increases. In Fig. 10, we show solutions to Eq. (26) for a
fixed value of cN ¼ 0:58. cM is varied from 0.55 to 1. From
the figure, it is clear that the profile becomes oscillatory as

cM becomes greater than cN . In fact, the solutions are
sinusoidal for cM ¼ 1 and cN ¼ 0. We now address the
question of fitting the lepton masses and mixing. The
charged lepton mass matrix has the same form as in earlier
sections:

mð0;0Þ
l ¼ vffiffiffi

2
p ~YE þO

�
v2

M2
KK

�
;

~YE ¼ YE

R�
N0ðcLÞN0ðcEÞeð1�cL�cEÞkR�:

(28)

Choosing gð1ÞL to be the Z2-even profile for the right-handed
neutrino, the Dirac mass matrix takes the form

mð0;1Þ
D ¼ YN

R�
N0ðcLÞeð1�cLÞkR�gð1ÞL ð�RÞ; (29)

where gð1ÞL ðyÞ is the solution to Eq. (26). The singlet
Majorana mass matrix is determined in the flavor space
by the choice of cN and cM for each of the generations. For
simplicity, for the present analysis, we take all of them
equal cNi

¼ cN and cMi
¼ cM for all the three genera-

tions.12 With this, singlet neutrino mass matrix becomes
proportional to the unit matrix MR ¼ 1mð1Þ. The light

neutrino mass matrix now takes the seesaw form given by

mð0;0Þ
� ¼ mð0;1Þ

D

1

MR

mð0;1ÞT
D þO

 ðmð0;kÞ
D Þ2
mðkÞ

!
; (30)

where higher-order corrections are from higher KK states.
To fit the neutrino masses and mixing angles, we neglect
higher-order corrections as before. Defining Y0

N ¼ 2kYN,
we have

mð0;0Þ
� ¼ Y0

Ne
ð1�cLÞkR�gLð�RÞðM�1

R ÞY0
Ne

ð1�cLÞkR�gLð�RÞ:
(31)

FIG. 9 (color online). Region of cM-m1 parameter space, for
positive cM for which the coefficients of the differential equation
in Eq. (26) are analytic in the interval ½0; �R�.

12This can be achieved by imposing an Oð3Þ symmetry on the
N fields.
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In Table VI, we present two sample points, one for inverted
hierarchy and another for normal hierarchy, which fit the
neutrino masses and mixing angles as well as charged
lepton masses with the accuracy we have specified in
Sec. II. Both these examples13 have cM < cN . The corre-
sponding Yukawa coupling matrices are presented in
Eqs. (32) and (33).
Yukawa parameters for inverted hierarchy

Y0
N ¼

2:73 1:81 :108
�0:83 0:975 :328
0:327 �0:679 :182

2
64

3
75

Y0
E ¼

3:44 �0:41 :87
0:62 1:583 0:332
2:74 0:55 2:33

2
64

3
75:

(32)

Yukawa parameters for normal hierarchy

FIG. 10 (color online). The Figure shows the form of the profile for solution to Eq. (26) for a fixed bulk dirac mass of 0.58 for the
right-handed neutrinos. We see that the profile becomes oscillatory as cM becomes greater than cN .

TABLE VI. Sample points with corresponding fits of observ-
ables for normal and inverted hierarchy schemes in bulk
Majorana case with O(1) Yukawas. The masses are in GeV.

Parameter Normal Inverted

Mkk 161.4 161.4

cMi
0.55 0.55

gð1ÞL ð�RÞ 3� 10�13 1:2� 10�12

cL1
0.58 0.59

cL2
0.56 0.57

cL3
0.55 0.55

cE1
0.735 0.735

cE2
0.5755 0.575

cE3
0.501 0.501

cNi
0.58 0.58

me 5:09� 10�4 5:08� 10�4

m� 0.1055 0.1055

m	 1.77 1.774

�12 0.58 0.58

�23 0.80 0.8

�13 0.13 0.13

�m2
sol 7:8� 10�23 7:8� 10�23

�m2
atm 2:4� 10�21 2:4� 10�21

13These solutions require that the profiles of the N fields have
very small values on the UV brane.

ABHISHEK M. IYER AND SUDHIR K. VEMPATI PHYSICAL REVIEW D 86, 056005 (2012)

056005-14



Y0
N ¼

2:56 1:69 1:26
�0:795 0:927 3:89
0:414 �0:859 2:86

2
64

3
75

Y0
E ¼

2:825 �0:41 :87
0:62 1:2008 0:332
2:74 0:55 2:31

2
64

3
75:

(33)

D. Brane-localized Majorana mass term

Following our discussion with a bulk Majorana mass
term, there could be special cases where the Majorana
mass term could be localized on either boundary. In this
case, the bulk profiles for the right-handed singlets Ni

remain unchanged. The eigenvalue equations are same as
in Eq. (6).

1. UV-localized mass term

The case with UV-localized Majorana mass term was
studied in Refs. [29,35]. The action in this case is given as

SN ¼
Z

d4x
Z

dy
ffiffiffiffiffiffiffi�g

p ð�ðyÞ �NNc þmD
�NN

þ �ðy� �RÞYN
�L ~HNÞ; (34)

where we have expressed mM ¼ �ðyÞ. Substituting the KK
expansions from Eq. (17), the effective 4-dimensional

neutrino mass matrix, in the basis �T ¼
f�ð0Þ

L ; Nð0Þ
R ; Nð1Þ

R ; Nð1Þ
L g, takes the form

Lm ¼ � 1

2
�TMN�;

MN ¼

0 Mð0;0Þ
� Mð0;1Þ

� 0

Mð0;0Þ
� MMaj

�ð0;0Þ MMaj

�ð0;1Þ 0

Mð0;1Þ
� MMaj

�ð0;1Þ MMaj

�ð1;1Þ MKK

0 0 MKK 0

2
6666664

3
7777775;

(35)

where Mð0;0Þ
� is defined in Eq. (19). Let fð1ÞN ð0Þ denote the

value of the profile of the first KK mode of N at the
UV brane, i.e., y ¼ 0 and fNð0Þ, defined in Eq. (8), is
the zero-mode profile of N evaluated at y ¼ 0. The indi-
vidual elements of Eq. (35) are then defined as

Mð0;1Þ
� ¼ vffiffi

2
p 1ffiffiffiffiffi

�R
p fNð�RÞY0

N; M
Maj

�ð0;0Þ ¼ 1
�R f

2
Nð0Þ; M

Maj

�ð0;1Þ ¼
1
�R f

ð1Þ
N ð0ÞfNð0Þ; MMaj

�ð1;1Þ ¼ 1
�R f

ð1Þ
N ð0Þfð1ÞN ð0Þ; and MKK is the

KKmass of first KKmode ofN. The small neutrino masses

can be fit by choosing cN � 0:32 for which MMaj

�ð0;0Þ �
1014 GeV. The charged leptons are fit by choosing
cL;E > 0:5. This scenario along with flavor implications

has been extensively dealt with in Ref. [35].

2. Pure Majorana Case

An interesting subcase of the bulk Majorana term would
be the situation where mD ¼ cNk ¼ 0. As we have seen

from the discussion in the previous section, in such a case,
the profile equations become oscillatory. The eigenvalue
equations now take the form

@yg
ðnÞ
L ðyÞ ¼ mne

�gðnÞR ðyÞ �mMg
ðnÞ
R ðyÞ

�@yg
ðnÞ
R ðyÞ ¼ mne

�gðnÞR ðyÞ �mMg
ðnÞ
L ðyÞ:

(36)

Contrary to the DiracþMajorana case of the previous
section, the above set of equations allow solutions for
zero modes, m0 ¼ 0. The solutions are given as

gLðyÞ ¼ N cos

�
mne

�

k
�mMy

�

gRðyÞ ¼ N sin

�
mne

�

k
�mMy

�
;

(37)

where N is the normalization factor given by N ¼ffiffiffiffiffiffiffiffiffiffi
�Rk

p
e�0:5�ð�RÞ. These solutions are consistent with the

boundary conditions. The neutrino mass matrix has a spe-
cific structure in this case, as there are contributions from
the first KK mode, which might be important. In the basis,

�T ¼ f�ð0Þ
L ; Nð0Þ; Nð1Þg the mass matrix takes the form

Lm ¼ � 1

2
�TM�;

M ¼
0 mð0;0Þ

D mð0;1Þ
D

mð0;0Þ
D 0 0

mð0;1Þ
D 0 mð1Þ

0
BBB@

1
CCCA:

(38)

From the above, we see that at the zeroth level, light
neutrino and singlet neutrinos form a pseudo-Dirac struc-
ture, leading to maximal mixing between these two states.
For the three flavor states, we would have three light states
which are sterile. We have not pursued the phenomenology
of this model further.

III. LEPTON-FLAVOR VIOLATION

We now study lepton flavor violating constraints on the
three neutrino mass models considered in the present work.
Lepton-flavor violation within the RS framework has been
studied in detail in Ref. [30]. The localization of the
fermions in the bulk at different places leads to nonzero
flavor mixing between the zero-mode SM fermions and
higher KK states, which contribute to flavor-violating pro-
cesses both at the tree and the loop level. The tree-level
flavor-violating decay modes of the form li ! ljlklk are

due to nonuniversal overlap of the zero-mode fermions
with the Z-boson KK modes. At the 1-loop level, penguin
graphs contribute to rare decays like lj ! li þ �. The SM

states mix with their heavier KK states on the IR brane, and
thus may give rise to significant contributions to dipole
processes, in particular. The present lepton flavor violating
(LFV) limits are very strong and are listed in Table VII.
In this section, we calculate the branching fractions for

the leptonic flavor-changing neutral current (FCNC). The
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effective 4-dimensional Lagrangian describing l ! l0
process is given by [30]

�Leff ¼ARðq2Þ 1

2m�

�eR�
��F���L

þALðq2Þ 1

2m�

�eL�
��F���R

þ4GFffiffiffi
2

p ½a3ð �eR���RÞð �eR��eRÞ

þa4ð �eL���LÞð �eL��eLÞþa5ð �eR���RÞð �eL��eLÞ
þa6ð �eL���LÞð �eR��eRÞ�þH:c: (39)

A. Tree-level decays

The breaking of the electroweak symmetry at the IR
brane mixes the zero-mode gauge boson with the higher

modes. To parametrize this mixing, let ðZð0Þ; Zð1ÞÞ and

ðZ0ð0ÞZ0ð1ÞÞ denote the gauge boson states before and after
diagonalization of the gauge boson mass matrix, respec-
tively. Assuming only one KK mode for simplicity, they
are related as [30]

Z0ð0Þ ¼ Zð0Þ þ ffiffiffiffiffiffiffiffiffiffiffiffi
2kR�

p m2
Z

M2
Zð1Þ

Zð1Þ

Z0ð1Þ ¼ Zð1Þ � ffiffiffiffiffiffiffiffiffiffiffiffi
2kR�

p m2
Z

M2
Zð1Þ

Zð0Þ;
(40)

where MZð1Þ is the mass of first KK excitation of the Z

boson. Owing to its flat profile, the Zð0Þ couples universally
to all three generations. However, the coupling of Zð1Þ,
whose profile is peaked near the IR brane, is generation-
dependent. This coupling depends on the localization of
the fermions along the extra dimension, thus giving rise to
nonuniversality. Let �T ¼ feM;�M; 	Mg be vector of fer-

mions in the mass basis. Let að1Þij be a 3� 3 matrix which

denotes the coupling of SM fermions in the mass basis to

Z0ð1Þ. It is given as

að1ÞijL;R ¼ gL;R ��L;R:D
y
L;R:

Ie 0 0
0 I� 0
0 0 I	

2
64

3
75:DL;R:�L;R 6Z0ð1Þ;

(41)

where gL;R is the SM coupling, DL;R are 3� 3 unitary

matrices for rotating the zero-mode (SM) fermions from
the flavor basis to the mass basis. I is the overlap of the
profiles of two zero-mode fermions and the first KK gauge
boson. It is given by

IðcÞ ¼ 1

�R

Z �R

0
dye�ðyÞðfð0Þi ðy; cÞÞ2
ð1ÞðyÞ: (42)


ð1ÞðyÞ denotes the profile of the first KK gauge boson. It is
plotted as a function of a generic bulk mass parameter c in
Fig. [13]. As we can see from this figure, the overlap
function IðcÞ becomes universal for c > 0:5 and for c &

�15. The of-diagonal elements of að1Þij represent the flavor-

violating couplings. The contribution to li ! ljlklk from

direct Zð1Þ exchange is suppressed compared to that of Zð0Þ.
The contributions to the coefficients aij3;:;6 in Eq. (39) due to

the flavor-violating coupling of Zð0Þ as well as direct Zð1Þ
exchange are given as

aij3 ¼ �2gRð
ffiffiffiffiffiffiffiffiffiffiffiffi
2kR�

p � IjÞ m2
Z

M2
Zð1Þ

að1ÞijR

aij4 ¼ �2gLð
ffiffiffiffiffiffiffiffiffiffiffiffi
2kR�

p � IjÞ m2
Z

M2
Zð1Þ

að1ÞijL

aij5 ¼ �2gLð
ffiffiffiffiffiffiffiffiffiffiffiffi
2kR�

p � IjÞ m2
Z

M2
Zð1Þ

að1ÞijR

aij6 ¼ �2gRð
ffiffiffiffiffiffiffiffiffiffiffiffi
2kR�

p � IjÞ m2
Z

M2
Zð1Þ

að1ÞijL :

(43)

The branching fractions for the tree-level decays are given
as [30]

BRð�!3eÞ¼2ðja�e
3 j2þja�e

4 j2Þþja�e
5 j2þja�e

6 j2
BRð	!3�Þ¼ f2ðja	�3 j2þja	�4 j2Þþja	�5 j2þja	�6 j2g

�BRð	!e��Þ
BRð	!3eÞ¼ f2ðja	e3 j2þja	e4 j2Þþja	e5 j2þja	e6 j2g

�BRð	!e��Þ
BRð	!�eeÞ¼ fja	�3 j2þja	�4 j2þja	�5 j2þja	�6 j2g

�BRð	!e��Þ
BRð	!e��Þ¼ fja	e3 j2þja	e4 j2þja	e5 j2þja	e6 j2g

�BRð	!e��Þ: (44)

Similarly, the relevant quantities for � ! e conversion in
Ti are given as

TABLE VII. Present Experimental Bounds on LFV Processes

Process Experiment Present upper bound

BRð� ! e�Þ MEG [49,50] 2:4� 10�12

BRð� ! eeeÞ MEG [49,50] 1:0� 10�12

CRð� ! e inTiÞ SINDRUM-II [51] 6:1� 10�13

BRð	 ! ��Þ BABAR/Belle [52] 4:4� 10�8

BRð	 ! e�Þ BABAR/Belle [52] 3:3� 10�8

BRð	 ! ���Þ BABAR/Belle [52] 2:0� 10�8

BRð	 ! eeeÞ BABAR/Belle [52] 2:6� 10�8
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a
�e
L;R ¼ � ffiffiffiffiffiffiffiffiffiffiffiffi

2kR�
p m2

Z

M2
Zð1Þ

a
ð1Þ�e
L;R

BRð� ! eÞ in Nuclei

¼ 2peF
2
pEeG

2
Fm

3
��

3Z4
effQ

2
N

�2Z�capt

½ja�e
R j2 þ ja�e

L j2�; (45)

where pe � Ee �m�. GF is the Fermi constant, and � is

the electromagnetic coupling. The most stringent con-
straint for �� e conversion comes from titanium (Ti4822).
Atomic constants are defined as QN ¼ vuð2Zþ NÞ þ
vdð2N þ ZÞ with N being the neutron number, Zeff ¼
17:61, form factor Fp ¼ 0:55, �capt ¼ 2:6� 106 s�1 for

titanium [53].

B. Dipole Transition lj ! li�

The dominant graph is due to scalar exchange in the
loop. One of them is due to Higgs exchange as shown in
Fig. 12. The amplitude for this process is given as

Mj!i� ¼ X
n;m

Z d4k

ð2�Þ4 �uiðp0Þ�iy
L Y0

E

p̂0 þMn

p̂02 �M2
n

e�� p̂þMn

p̂2 �M2
n

� vY0y
E

p̂þMm

p̂2 �M2
m

Y0
E�

j
RuiðpÞ

1

k2 �m2
H

��; (46)

where p̂ ¼ p� k, p̂0 ¼ p0 � k and q ¼ p� p0. �i
L;R ¼

Fi
L;RDL;R and Mn denotes the mass of the nth-mode KK

fermion. FL;E is a function of bulk masses which are taken

to be diagonal in the flavor space. It is given as

FL;R ¼
fcL1 ;cE1

ð�RÞ 0 0

0 fcL2 ;cE2
ð�RÞ 0

0 0 fcL3 ;cE3
ð�RÞ

2
664

3
775:
(47)

The amplitude for Eq. (46) can be rewritten as

Mðj ! i�Þ ¼ ðeDy
LFLY

0
EY

0y
E vY0

EFRDRÞijJðp̂; p̂0; qÞ:
(48)

The expression Jðp̂; p̂0; qÞ is the momentum integral in
Eq. (46). It is log-divergent owing to a double-independent
sum over two KK modes. We regularize it using a cutoff of

�� 4�Mð1Þ
kk � 15 TeV. The other dominant contribution

is due to Fig. 19 as discussed in Appendix B.
The branching fraction for the dipole decays lj ! li� is

given as

BR ðlj ! li�Þ ¼ 12�2

ðGFm
2
j Þ2

ðA2
L þ A2

RÞ; (49)

where the coefficient due to Figs. 12 and 19 is given as

AL ¼ 2
emj

16�2

1

M2
KK

vffiffiffi
2

p Dy
LFLðY0

NY
0y
N þ Y0

EY
0y
E ÞYEFRDR

(50)

and AR ¼ Ay
L. The other dipole contributions are discussed

in Appendix B. We now proceed to discuss the LFV rates
for the mass models discussed in Sec. II. The quantities,
like the KKmasses of fermions, the rotation matricesDL;R,

etc., which determine the LFV rates are functions of the
bulk mass parameters. We compute these quantities for
each point of the best-fit parameter space obtained earlier
for the LH.LH and the Dirac case and use it to constrain the
parameter space from flavor violation.

C. LH.LH Case

The contributions to trilepton decays from graphs like
Fig. 11 are highly suppressed in the parameter space of
interest. This is because the couplings of the zero-mode
fermions to the KK gauge boson become universal for the
fermions sufficiently localized toward IR and UV branes,
as can be seen in Fig. 13. However, there could be other
potentially large contributions. This comes from the large
mixing between zero-mode charged singlet states and the
first KK modes of the lepton doublets; the corresponding
Yukawa coupling is very large due to the large negative cE
values. An example of such a graph is shown in Fig. 14.
Exact value of the contribution, of course, depends on the

FIG. 12. Higgs-mediated j ! i�. The dot represents the mass
insertion. Flavor indices have been suppressed in the internal
charged KK lines. (L, R) represents the KK modes correspond-
ing to the left and right chiral zero modes.

FIG. 11. Tree-level contribution to � ! eee due to exchange
of Z0ð1Þ. The effective Zð0Þ contribution is proportional to this
graph.
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values of DL;R and other parameters. We have not consid-

ered these graphs in the present work. We note that for a
fairly degenerate bulk doublet masses, cLi

, the combination

of the matrices which enter in these graphs are aligned with
the zero-mode mass matrix for charged leptons. The best
parameter space does contain such regions where all the
cLi

are degenerate. We found several examples of that kind.

Another potential problem with the highly localized IR
charged singlets is the shift in the universal coupling
constant gR. This could effect Z ! ll branching fractions.
Models with custodial symmetries or very heavy KK gauge
bosons could avoid this problem. We have not addressed
this issue here.

Finally, contribution to lj ! li� due to loop diagrams of

the form in Fig. 20 are heavily suppressed owing to the
heavy KK mass scales corresponding to the charged sin-
glets. The corresponding masses are in shown in Table II.
Additionally, the large effective 4-dimensional Yukawa
couplings of the charged singlets to the KK modes make
it difficult to apply techniques of perturbation theory to
calculate graphs like those in Fig. 12 and 19.

D. Constraints on Dirac neutrinos

The Dirac case gives a good fit to the leptonic data for a
reasonable choice of Oð1Þ parameters. However, the pa-
rameter space is strongly constrained from flavor consid-
erations. In the parameter space of interest, the dominant
contribution to tree-level decays comes from Fig. 11. The
parameter space of the bulk doublets and charged singlets
consistent with tree-level contribution is shown in Fig. 15.
The lightest MZð1Þ mass required to satisfy all constraints
from tree-level processes �1:9 TeV. Fig. 15 shows the
points within the best-fit parameter space consistent with
all constraints from tree-level processes. As can be seen
from the figure, very few points pass the constraints. The
black point is allowed for a KK gauge boson scale of
1.9 TeV, whereas the green points are for mass of 3 TeV.
The constraints from dipole processes are far more severe.
Corresponding to the cL;E values in the best-fit parameter

space, the mass of the first KK excitation of the leptons
varied from approximately 850 GeV to 1400 GeV as
presented in Table IV. We found no points which satisfied
the constraints from � ! e�, 	 ! e� and 	 ! �� simul-
taneously. The constraint from � ! e� was most severe
and required a KK fermion mass scale Oð10Þ TeV to
suppress it below the experimental limit given in Table VII.

E. Constraints on scenarios with bulk Majorana mass

The tree-level decays only constrain the parameter space
of the bulk doublets and charged singlets as seen in Fig. 15.
Since the charged lepton mass fitting is independent of any
right-handed neutrino parameter, the constraints coming
from tree-level decays in the Dirac case are applicable in
this case as well.
The contribution to dipole decays of the form lj ! li�

due to charged Higgs shown in Fig. 19 is small. This is

because, as shown in Table VI, gð1ÞL ð�RÞ is required to be
small to fit neutrino masses. Thus, the dominant contribu-
tion to dipole decays in this case is due to the Higgs
exchange diagram shown in Fig. 12. These contributions
are calculated for the both the normal and inverted hier-
archy cases presented earlier and are given in Table VIII.
The branching fractions are evaluated for MKK �
1250 GeV which is the first KK scale of the doublet.

IV. MINIMAL FLAVOR VIOLATION

From the discussion above, it is clear that lepton flavor
violating constraints are strong on RS models with

FIG. 13 (color online). Coupling of two zero-mode fermions to
Z1 as a function of bulk mass parameter [42].

FIG. 14. Additional tree-level contribution to � ! eee. For a
fairly degenerate bulk doublet mass in the LH.LH case, this
contribution is negligible. For the Dirac case, this graph receives
wave-function suppression in addition to the KK scale suppres-
sion.

TABLE VIII. BR for dipole decays for the case with bulk
Majorana mass

Hierarchy BRð� ! e�Þ BRð	 ! ��Þ BRð	 ! e�Þ
Inverted 2:4� 10�5 1:9� 10�5 7:6� 10�6

Normal 1:4� 10�5 3:4� 10�5 1:3� 10�5
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fermions localized in bulk and Higgs localized on the IR
brane. In the Dirac and the bulk seesaw case, flavor viola-
tion rules out most of the best-fit parameter space. One
option to evade these bounds would be to increase the scale
of KK masses. As we have seen previously, in the LH.LH
case, the fits indicate a highly hierarchial KK spectrum for
singlet charged sleptons, with the lightest KK mode at
�102 TeV. The flavor violating amplitudes are highly
suppressed in this case, and thus there are no strong con-
straints on the model. However, the Dirac and the
Majorana cases whose best-fit regions have a lighter KK

spectrum would essentially be ruled out. The misalignment
between the Yukawa coupling matrix and bulk mass terms
which determine the profile is the cause of the large flavor-
violating transitions leading to strong restrictions on these
models. In Ref. [54], the authors imposed discrete symme-
tries to constrain FCNCs. In this work, we adopt the
minimal-flavor-violation ansatz which reduces the mis-
alignment by demanding an alignment between the
Yukawa matrices and the bulk parameters.
The ansatz of minimal flavor violation was first pro-

posed for the hadronic sector [55]. It proposes that new

FIG. 15 (color online). The black dot and the green region represent the parameter space permitted by tree-level constraints for a KK
gauge boson scale of 1920 and 3000 GeV, respectively.

FIG. 16 (color online). The plot represents the parameter space for the bulk masses of charged doublets for inverted hierarchy.
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physics adds no new flavor structures, and thus entire flavor
structure in nature is determined by the Standard Model
Yukawa couplings. In the leptonic sector, MFV in not
uniquely defined due to the possibility of the seesaw
mechanism. Several schemes of leptonic minimal flavor
violation are possible [56].

The proposal to use the MFV hypothesis in RS was first
introduced in Ref. [31] in the quark sector. There were
subsequent extensions in the leptonic sector by
Refs. [32,35]. The MFV ansatz assumes that the Yukawa
couplings are the only sources of flavor violation. In the RS
setting, this would require that the bulk mass terms should
now be expressed in terms of the Yukawa couplings [31].
The exact expression would depend on the particle content
and the flavor symmetry assumed.

A. Dirac Neutrino Case

In the presence of right-handed neutrinos, the flavor
group is SUð3ÞL � SUð3ÞE � SUð3ÞN; the lepton number
is conserved. The YE transforms as YE ! ð3; �3; 1Þ, and YN

transforms as YN ! ð3; 1; �3Þ. The Yukawa couplings are
aligned with the 5-dimensional bulk mass matrices. The
bulk masses can be expressed in terms of the Yukawas as

cL ¼ a1I þ a2Y
0
EY

0y
E þ a3Y

0
NY

0y
N cE ¼ bY0y

E Y0
E

cN ¼ cY0y
N Y0

N;
(51)

where a, b, c 2 < and Y0
E;N are as defined earlier as

Y0
E;N ¼ 2kYE;N . Owing to the flavor symmetry, we work

in a basis in which Y0
E is diagonal. We then rotate Y0

N by the
neutrino mixing matrix, Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrix, i.e., writing Y0

N ! VPMNSDiagðY0
NÞ

where the DiagðY0
NÞ ¼ Diagð0:709; 0:709; 0:75Þ. The cL

value chosen is 0.5802 for all three generations. The cN
values chosen are, respectively, 1.17241, 1.172, and
1.311. The bulk singlet mass parameters are cE ¼
ð0:7477; 0:58059; 0:401Þ.
The simplest Yukawa combination transforming as

(8, 1, 1) under the flavor group is given as

� ¼ Y0
NY

0y
N : (52)

Thus, the branching ratio (BR) for � ! e�, which is the
most constrained, is given as [35]

BR ð� ! e�Þ ¼ 4� 10�8ðY0
NY

0y
N Þ212

�
3 TeV

MKK

�
4
; (53)

FIG. 18 (color online). The plot represents the parameter space for the bulk masses of neutrino singlets for inverted hierarchy.

FIG. 17 (color online). The plot represents the parameter space for the bulk masses of charged singlets for inverted hierarchy.
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Y0
N ¼

0:586033 0:383951 0:115044
�0:335962 0:370429 0:53165
0:215349 �0:466953 0:516346

2
64

3
75: (54)

The (1, 2) element of�which is responsible for� ! e� is
0.006 which gives a contribution of 1:44� 10�12 for a
fermion KK mass of around 3 TeV.

B. Bulk Majorana mass term

Owing to the presence of a bulk Majorana mass term, we
choose the flavor group for the Lagrangian in Eq. (22) as
SUð3ÞL � SUð3ÞE �Oð3ÞN . YE transforms as YE !
ð3; �3; 1Þ, and YN transforms as YN ! ð3; 1; 3Þ. The bulk
Majorana term �NcN transforms as (1, 1, 6) under this flavor
group. In terms of the dimensionless Yukawa couplings,
Y0
E;N the bulk mass parameters can be expressed as

cL ¼ a1I þ a2Y
0
EY

0y
E þ a3Y

0
NY

0T
N cE ¼ 1þ bY0y

E Y0
E

cN ¼ 1þ cY0T
N Y0

N cM ¼ dI3�3; (55)

where a, b, c, d 2 <. cM ¼ 0:55 and cN ¼ 0:58 are
chosen for the right-handed neutrino bulk mass parameters.
The value of profiles for the singlets are chosen appropri-
ately at the boundary so as to fit the neutrino data using the
Oð1Þ Yukawa couplings. As before, we work in a basis in
which Y0

E is diagonal. In this basis, Y0
N ¼ VPMNSDiagðY0

NÞ.
This removes the dominant contribution to dipole decays
due to the Higgs exchange in Fig. 12. The contribution due
to Fig. 19 is very small owing to wave-function suppres-
sion of the singlet neutrinos. Thus, we see that the MFV
ansatz is successful in suppressing FCNCs for both the
Dirac and the bulk Majorana case.

V. SUMMARYAND OUTLOOK

Understanding neutrino masses and mixing is an impor-
tant aspect of most physics beyond the Standard Model
frameworks. The Randall-Sundrum setup, while solving
the hierarchy problem, could also form a natural setting to
explain flavor structure of the Standard Model Yukawa
couplings. The quark sector has already been explored in
this context in detail. While there have been several analy-
ses in the leptonic sector, in the present work, we have tried
to explore the same in a comprehensive manner, filling
the gaps wherever we found it necessary. Our aim had been
to determine quantitavely the parameter space of both the
Oð1Þ (dimensionless) Yukawa couplings as well as the bulk
mass parameters which can give good fits to the leptonic
data.
We have concentrated on the RS setup with the Higgs

field localized on the IR boundary. We have considered
three cases of neutrino mass models: (a) the LH.LH higher-
dimensional operator, (b) the Dirac case, and (c) the
Majorana case. The LH.LH fits require large negative c
parameters which reflect the composite nature of the
charged singlets. There is some parameter space in this
case where the flavor constraints are weak. However, the
model has very large effective 4-dimensional Yukawa cou-
plings between the zero-mode SM fermions and the KK
fermions, which makes it unattractive from a perturbation
theory point of view. We have also presented the distribu-
tions of the Yukawa couplings in the best-fit region. Most
of the individual Yukawa couplings are concentrated on the
higher side of the Oð1Þ range we have chosen. The Dirac
andMajorana cases offer large parameter space without the
need of large hierarchies in the c parameters. We have also
presented the distribution of the Yukawa couplings in the
Dirac case. We could not find strong correlations between
the Yukawa couplings and the c parameters. There are
strong constraints from the lepton flavor violating rare
processes. These can be circumvented by a suitable choice
of Yukawa couplings and c parameters guided by the MFV
ansatz. The Majorana case, in particular, allows for several
classes of MFV schemes, which will be explored in an
upcoming publication [57].

FIG. 19. ‘‘Charged’’ Higgs mediated j ! i�. The dot repre-
sents the mass insertion. Flavor indices have been suppressed
in the internal neutral KK lines. (L,R) represents the KK
modes corresponding to the left and right chiral zero modes,
respectively.

TABLE IX. Sample points for inverted hierarchy in LH.LH
case with O(1) Yukawas. The masses are in GeV.

Point A B

�2 7.48 6.61

cL1
0.8967 0.9162

cL2
0.8983 0.8920

cL3
0.8913 0.8945

cE1
�3758:1502 �2099:8993

cE2
�6005847:4955 �552577:8188

cE3
�32730342:0982 �23953472:2265

me 5:11� 10�4 5:09� 10�4

m� 0.1056 0.1056

m	 1.775 1.755

�12 0.584 0.55

�23 0.829 0.875

�13 0.148 0.160

�m2
sol 7:49� 10�23 7:46� 10�23

�m2
atm 1:90� 10�21 2:7� 10�21
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While we restricted ourselves to the Higgs located on the
IR brane; it can also be allowed to propagate in the bulk.
Lepton flavor violating amplitudes, however, are now
cutof-independent, which makes the computations more
predictive. But with the Higgs boson in the bulk, one has to
invoke other scenarios like supersymmetry to solve the
hierarchy problem.
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APPENDIX A: INVERTED MASS FITS

We present the results of the scan performed for inverted
hierarchy for both the LH.LH and the Dirac case. In the
case for the normal hierarchy, it was easier to find c values
and order-one Yukawa entries which satisfied all con-
straints. However, the choice of these parameters which
fit the data in the inverted case is very subtle. This is
because one requires two large mass eigenvalues in the
inverted case which must satisfy the �m2

sol constraint. This

requires a very careful choice of order-one Yukawa pa-
rameters. The parameter space for c values does not differ
much between the normal and the inverted case. For the
case of inverted hierarchy, we choose points which satisfy
0<�2 < 10. Sample points for the LH.LH case that fit the

data are given in Table IX, and the corresponding Yukawa
couplings are given in Eqs. (A1) and (A2). For the Dirac
case, we performed a scan only for c > 0:5. The results are
summarized in a similar fashion to the hierarchial case, in
Figs. 16–18, where the allowed parameter space in the bulk
parameters is shown. Two sample points that fit the data are
shown in Table X. The corresponding Yukawa couplings
are given in Eqs. (A3) and (A4).

1. LHLH case

Yukawa for Point A

Y0
E ¼

0:8249 0:8516 1:1111
1:3600 1:5956 1:8402
3:5831 3:5664 2:9092

2
64

3
75;


0 ¼
�3:5528 2:6612 1:4503
2:6612 3:8149 1:2903
1:4503 1:2903 �0:6682

2
64

3
75:

(A1)

Yukawa for Point B

Y0
E ¼

2:5874 0:5123 3:6064
3:9696 2:4876 1:9903
3:8604 1:1438 3:9712

2
64

3
75;


0 ¼
�3:6860 �3:6778 3:9987
�3:6778 2:1362 3:3252
3:9987 3:3252 �0:8497

2
64

3
75:

(A2)

2. Dirac Case

Yukawa for Point A

Y0
E ¼

2:2645 2:7691 0:4272
1:0499 �3:6695 �1:0818
�2:2402 �0:5400 �1:9176

2
64

3
75;

Y0
N ¼

�0:2202 �2:3054 1:5602
3:4794 �2:2140 0:2302
�2:0676 �1:7529 0:7888

2
64

3
75:

(A3)

Yukawa for Point B

FIG. 20. Contribution to the dipole graph due exchange of KK
gauge bosons and charged KK fermion lines.

TABLE X. Sample points for inverted hierarchy in Dirac case
with O(1) Yukawas. The masses are in GeV.

Parameter Point A Point B

�2 0.30 8.04

cL1
0.5565 0.51

cL2
0.5556 0.5316

cL3
0.5433 0.5012

cE1
0.7681 0.8092

cE2
0.6186 0.6498

cE3
0.5044 0.5674

cN1
1.2450 1.2765

cN2
1.2421 1.2755

cN3
1.2546 1.2941

me 5:1� 10�4 5:08� 10�4

m� 0.1055 0.1055

m	 1.769 1.81

�12 0.59 0.59

�23 0.80 0.72

�13 0.155 0.152

�m2
sol 7:49� 10�23 7:48� 10�23

�m2
atm 2:40� 10�21 2:16� 10�21
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Y0
E ¼

�3:7916 �0:3960 �2:5573
1:2699 �2:3757 3:2167
�3:5010 3:4430 2:8224

2
64

3
75; Y0

N ¼
�3:9443 �0:9714 0:1848
�2:5788 0:2609 3:3684
0:5020 �3:0268 �3:1765

2
64

3
75: (A4)

APPENDIX B: AMPLITUDES FOR DIPOLE TRANSITIONS

In this section, we review the other potential contributions to the dipole processes i ! j�.

1. Internal flip in neutrino KK line in Dirac case

This contribution (see Fig. 19) is absent for the LH.LH case as it involves neutral internal KK lines corresponding to the
right-handed neutrino. In the unitary gauge, the charged Higgs is nothing but the longitudinal component of theW boson.
This displays a similar divergence to Fig. 12, owing to the presence of the double KK sum.

Mj!i� ¼
�
FLY

0
NY

0y
N e

vffiffiffi
2

p Y0
EFE

�
ij

Z X
n;m

d4k

ð2�Þ4 �uiðp0Þð2k� � q�Þ ðp̂
0 þMnÞ

ðp̂02 �M2
NÞ

p̂þMn

p̂2 �M2
m

1

k2 �m2
H

1

ðk� qÞ2 �m2
H

ujðpÞ:

(B1)

2. Gauge contribution

Additional contributions arise due to KK gauge bosons in the loop as shown in Fig. 20.
The amplitude for Fig. 20 is given as

Mj!i� ¼
�
A0;n;l vffiffiffi

2
p Y0

EA
0;m;l

�
ij

X
n;m

Z d4k

ð2�Þ4 �uiðp0Þ p̂
0 þMn

p̂02 �M2
n

e�� p̂þMn

p̂2 �M2
n

p̂0 þMm

p̂02 �M2
m

ujðpÞ 1

k2 �m2
H

; (B2)

where A0;n;l represents the coupling of the zero-mode fermion to nth-mode fermion and lth-mode gauge boson. The
contribution from this sector is suppressed in both the Dirac and LH.LH case in the parameter space under consideration.
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