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We explore the consequences of heavy quark spin symmetry for the charmed meson-antimeson system

in a contact-range (or pionless) effective field theory. As a trivial consequence, we theorize the existence

of a heavy quark spin symmetry partner of the Xð3872Þ, with JPC ¼ 2þþ, which we call Xð4012Þ in
reference to its predicted mass. If we additionally assume that the Xð3915Þ is a 0þþ heavy spin symmetry

partner of the Xð3872Þ, we end up predicting a total of six Dð�Þ �Dð�Þ molecular states. We also discuss the

error induced by higher order effects such as finite heavy quark mass corrections, pion exchanges and

coupled channels, allowing us to estimate the expected theoretical uncertainties in the position of these

new states.
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I. INTRODUCTION

The discovery of the Xð3872Þ resonance [1] might have
confirmed a well-known theoretical expectation of had-
ronic physics, heavy meson molecules [2–6]. The
Xð3872Þ, with a mass of mX ¼ 3871:57� 0:25 MeV [7],
is extremely close to the D0� �D0 threshold (mD0 þmD�0 ¼
3871:73� 0:21 MeV), a feature suggesting that its nature
is mostly molecular, where the role of other more compact
components (e.g., tetraquark, c �c) will be less important in
comparison. The JPC quantum numbers of the Xð3872Þ are
either 1þþ or 2�þ [8–10], with a slight experimental
preference for the second set of quantum numbers [10].
However, only the 1þþ assignment is compatible with the
molecular interpretation. If the 2�þ possibility turns out to
be the correct one, the Xð3872Þwould be much more exotic
than expected. In this regard, the analysis of Hanhart et al.
[11] suggests that the experimental data, though too scarce
to draw definitive conclusions, might indeed be more
compatible with 1þþ after all (see, however, Ref. [12] for
a different opinion). Meanwhile, in the bottom sector, the
recent discovery of the Zbð10610Þ and Zbð10650Þ isovector
states by Belle [13,14] also provides two new strong can-
didates for molecular states, as the Zb’s lie close to the B

� �B
and B� �B� thresholds respectively.

Actually, not all the heavy meson molecules are neces-
sarily as shallow as the Xð3872Þ or the two Zb resonances.
Several theoretical works have suggested the molecular
interpretation of other XYZ states: the Xð3915Þ [15] and
the Yð4140Þ [16] have been identified as aD� �D� andD�

s
�D�
s

bound state respectively by different theoretical
approaches [17–19]. The Yð4260Þ [20] has even been
proposed to have the three body structure J=�K �K [21].
Moreover other states have been predicted, especially in
the isoscalar bottom sector [22–24], but have not yet been
experimentally confirmed or discarded.

Heavy meson molecules are a natural thing to expect on
the basis of the similarity between the meson-meson inter-
action and the nuclear force that binds the deuteron [2,4].
From this analogy, we expect that the effective field theory
(EFT) formulation of nuclear physics [25–29] will also
represent a constructive approach to the description of
heavy meson systems at low-energies. As in the nucleon-
nucleon system, the low energy interaction between a pair
of heavy mesons is mediated by pion exchanges, which in
turn are constrained by chiral symmetry. In contrast, the
nature of the short range interaction remains unknown, but
we can parametrize it in terms of contact-range operators
between the nucleon and heavy meson fields. However, in
the case of heavy meson molecules there is a particularly
simplifying feature: pion exchanges are weaker than in the
nuclear case, owing to the smaller light quark content of
the heavy mesons in comparison to the nucleons. This
means that pions are amenable to a perturbative treatment
in a larger range of energies than in the nucleon-nucleon
system. From this it is expected that the EFT description of
heavy meson molecules will simplify at lowest order to a
contact range theory, at least for a certain binding energy
window [30]. A nice illustration of this idea is provided by
X-EFT [31], which considers the low energy description of
the Xð3872Þ state as a D0 �D0� molecule.
On a different level, the presence of a charm quark/

antiquark in the heavy meson and antimeson conforming
the Xð3872Þ dictates that heavy quark spin symmetry
(HQSS) [32–35] is relevant for this system. In the context
of the EFT description of heavy meson molecules, HQSS
constrains the form of the contact range operators of the
theory in a very specific way [36]. What this means is that
there should be HQSS partners of the Xð3872Þ, in analogy
with the theorized HQSS partners of the Zbð10610Þ and
Zbð10650Þ that have been already discussed in
Refs. [37,38]. The purpose of this paper is to investigate
the HQSS structure of charm meson-antimeson (D,D� and
�D, �D�) molecules, with the intention of identifying the*m.pavon.valderrama@ific.uv.es
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possible HQSS partners of the Xð3872Þ. For that we will
assume that certain XYZ states are molecular, in particular
the Xð3915Þ [15]. This identification will span a total of six
states, some of which have also been predicted in other
schemes.

The article is structured as follows: in Sec. II we present
the EFT description of heavy meson molecules that we
advocate, which is in turn inspired on the ideas of Ref. [30].
We explore the consequences of this EFT in Sec. III, where
we deduce from HQSS the existence of the 2þþ D� �D�
partner of the Xð3872Þ, and of other four additional states if
we identify the Xð3915Þ as a 0þþ D� �D� molecule. In
Sec. IV we probe the robustness of the previous results
by considering the effect of subleading order contributions,
namely finite heavy quark mass corrections, pion ex-
changes and particle coupled channel effects. In Sec. V,
we briefly discuss some HQSS constraints on the total
decay widths of the states found in this work. In Sec. VI
we discuss the significance of the results. Finally, the
technical details of the manuscript can be consulted in
Appendices A, B, and C

II. THE EFT DESCRIPTION AT LOWEST ORDER

In this section we review the EFT framework that we use
for the description of heavy meson-antimeson molecules at
lowest order. The presentation is simple and schematic,
centered in the conceptual issues rather than the specific
details, which can be consulted in Ref. [30]. The EFT we
are advocating is in fact identical to the one presented in
Ref. [38] for the isovector bottom sector. Following the
findings of Ref. [30], we assume pion exchanges and
particle coupled channel effects to be a subleading correc-
tion entering at next-to-leading order and next-to-next-
to-leading order (N2LO) respectively. Nevertheless, we
will perform explicit calculations to test these assumptions.

A. Overview of the EFT formalism

The EFT approach provides the possibility of construct-
ing generic and systematic descriptions of arbitrary low
energy processes. They are particularly useful when the
system we are interested in cannot be easily explained in
terms of a more fundamental description at higher ener-
gies. The EFT idea is simple: we identify the fields and
symmetries that are relevant at low energies and construct
all possible interactions compatible with them. Even
though the number of interactions is infinite, they can be
classified according to their importance at low energies by
means of power counting, the ordering principle of EFT. If
Q is the soft (low energy) scale of the system we are
describing and �0 the hard (high energy) scale, power
counting allows us to express any physical quantity as a
power series in terms of the small parameter x0 ¼ Q=�0.

For illustrating this idea let us consider a physical quan-
tity A that we want to compute in the EFT framework. This
quantity receives in principle contributions from all the

relevant diagrams involving the low energy fields and
compatible with the low energy symmetries:

AðQ;�0Þ ¼
X
D

AðDÞðQ;�0Þ: (1)

However, the different diagrams have different scaling
properties that can be used for ordering the sum above.
For example, we have the canonical dimension of A, which
is defined as

AðDÞð�Q; ��0Þ ¼ �dAAðDÞðQ;�0Þ; (2)

and is the same for all the EFT contributions to A. But the
interesting scaling property is power counting, which
refers to the behavior under a transformation of the type
Q ! �Q

AðDÞð�Q;�0Þ ¼ ��DAðDÞðQ;�0Þ; (3)

where �D is the order of the contribution D, which is
bounded from below (i.e., �D � �0). The sum of diagrams
above can be reorganized as an expansion in terms of
increasing scaling dimension:

AðQ;�0Þ ¼
X
���0

Að�ÞðQ;�0Þ; (4)

where, for simplicity, we have get rid of the D subscripts
and superscripts. For each order � there is only a finite
number of diagrams that contributes to the quantity A.
Combining the scaling laws of Eqs. (2) and (3) we obtain
a well-defined power series for A

AðQ;�0Þ ¼ �dA
0

X
���0

�
Q

�0

�
�
Âð�Þ

�
Q0

Q

�

¼ �dA
0

X
���0

x�0Â
ð�Þ
�
Q0

Q

�
; (5)

with Âð�Þ a dimensionless quantity that we expect to be of

the order of unity (i.e., Q0). Notice that Âð�Þ does not

depend on the hard scale �0 and is related to Að�Þ via
Eqs. (2) and (3). In the formula above, Q0 is an auxiliary

soft scale we use to express Âð�Þ as a function of a dimen-
sionless ratio. Provided there is a clear scale separation in
the system, that is, �0 � Q, the power series above will be
convergent. Not only that, if we consider only contribu-
tions from diagrams with � < �max, the error of the EFT

calculation will be x�maxþ1
0 . In this work we will only

perform calculations at the lowest order and we expect a
relative error of the order of x0 in the calculations to follow.
If we are interested in the low energy description of

heavy meson-antimeson bound states, the relevant physical
object we want to expand is the (nonrelativistic) potential
between the heavy meson and antimeson:
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V ¼ X�max

�¼�0

Vð�Þ þOðx�maxþ1
0 Þ: (6)

The expansion starts at order �0 � �1, where x0 is the
ratio of the soft and hard scales of the system. The low
energy degrees of freedom we consider are the heavy
meson and antimeson fields and the pion field. The pion-
meson vertices are constrained by chiral symmetry and the
corresponding Feynman rules can be derived from heavy
hadron chiral perturbation theory [39]. In turn HQSS gen-
erates strong constraints on the form of the heavy meson-
antimeson interactions [36]. This means that the EFT
potential includes two kind of contributions: contact range
interactions, i.e., four meson vertices, and pion exchanges.
The set of soft scales Q includes in principle the pion mass
m� and the center-of-mass momenta ~p and ~p0 of the meson
and antimeson. The hard scale �0 can represent the
momentum scale at which we expect the low energy sym-
metries to break down, i.e., the chiral symmetry breaking
scale �� ¼ 4�f� � 1 GeV (with f� the pion decay con-

stant) for chiral symmetry and the heavy quark mass mQ

for HQSS, but it can also stand for the momentum scale at
which the composite structure of the heavy mesons starts to
be resolved.

At lowest (or leading) order (Q0) the heavy meson-
antimeson EFT potential is local and only depends on the
momentum exchanged by the meson and antimeson

h ~pjVð0Þj ~p0i ¼ Vð0Þð ~p� ~p0Þ; (7)

where we have

Vð0Þð ~qÞ ¼ Cð0Þ
0 þ �

g2

2f2�

ð ~a � ~qÞð ~b � ~qÞ
~q2 þm2

�

: (8)

As can be seen, the potential is the sum of a contact and a
finite range contribution. The contact range operatorC0 is a
free parameter of the theory. The finite range contribution
is the well-known one pion exchange (OPE) potential,
where g ’ 0:6 is the axial coupling between the heavy
meson and the pion (we have particularized its value for
the charmed meson case, see Refs. [40,41] for a determi-
nation), f� ’ 132 MeV the pion decay constant, and ~q the
momentum exchanged by the heavy meson and antimeson.

The sign � and the polarization operators ~a and ~b depend
on whether the initial/final states is P �P, P �P�, P� �P, or P� �P�.
A more detailed account can be found in Appendices A, B,
and C, where the leading order (LO) potential is derived.

A problem with the EFT potential above is its behavior
for larger values of the exchanged momentum, j ~qj � m�.
In this limit the LO potential tends to a constant value. At
higher orders in the EFT expansion the problem worsens
and the potential actually diverges. This feature can be
easily deduced from power counting

Vð�Þð�QÞ ¼ ��Vð�ÞðQÞ; (9)

which admits a solution of the type Vð�Þð ~qÞ / j ~qj� for
j ~qj � m�. Of course, if we are only considering tree level
amplitudes involving no heavy meson-antimeson loops,
then there is no conceptual problem with the previous
divergences: the EFT potential is only expected to make
sense at low energies. However, if we iterate the potential
in the Schrödinger or Lippmann-Schwinger equation (a
necessary step for the description of bound states) the
divergences will require renormalization.
In nonrelativistic EFTs the renormalization process is

straightforward. First, we begin by regularizing the poten-
tial:

h ~pjV�j ~p0i ¼ f

�
~p

�

�
h ~pjVj ~p0if

�
~p0

�

�
; (10)

where V� is the regularized potential that we will employ
in actual calculations, V is the unregularized (i.e., the
original) potential, fðxÞ a regulator function and � an
ultraviolet cutoff. In the calculations to follow, we will

use a gaussian regulator of the type fðxÞ ¼ e�x2 . At this
point physical predictions can still depend strongly on the
value of the cutoff, a problem we must solve. Thus there is
a second step in the renormalization process: we allow the
contact range operators to depend on the cutoff. At lowest

order this implies that Cð0Þ ¼ Cð0Þð�Þ. If we have included
all the counterterms required by power counting, they will
be able to absorb all the divergences of the theory. The
calculations will still contain a residual cutoff dependence,
but this does not represent a problem: its size is expected to
be a higher order effect, at least for a judicious choice of
the cutoff. Even though there is not a well-established
criterion for choosing the cutoff, calculations in nuclear
EFT suggest that the optimal value of the cutoff should
never be much larger than the hard scale �0 [42]. Here, for
avoiding the breakdown of the low energy symmetries in
loops, we advocate the slightly more stringent condition
� � �0. We employ the actual values � ¼ 0:5 GeV and
1 GeV, for which we have checked that the results do not
change considerably. This indicates that renormalization
has been correctly implemented.

B. Power counting and bound states

The description of bound states requires the iteration of
the EFT potential in the bound state equation

j�Bi ¼ G0ðEÞVj�Bi; (11)

where j�Bi is the wave function,G0ðEÞ ¼ 1=ðE�H0Þ the
resolvent operator and V the potential. If we require the
bound state equation to be compatible with the power
counting of the EFT potential, then successive iterations
of the G0V combination must be of the same order:

O ðVÞ ¼ OðVG0VÞ: (12)
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By taking into account that the G0 operator scales as Q in
loops,1 we can see that only the order Q�1 contribution to
the potential should be iterated. Thus the presence of
shallow bound states or large scattering lengths in a two-
body system requires the non-perturbative treatment of a
piece of the effective potential. There exists a problem
then: the EFT potential we obtain from heavy hadron chiral
perturbation theory starts at order Q0 and is therefore
incompatible with the EFT description of a low energy
bound state.

The solution is to redefine power counting by promoting
the C0 contact range operator from order Q0 to Q�1

[43–47]. This is equivalent to assuming that the C0 opera-
tor is contaminated by a low energy scale. We can confirm
this assumption a posteriori by solving the bound state
equation with the C0 operator alone: if we regularize the
EFT potential with a cutoff�, and set the value of C0ð�Þ to
reproduce the position of the bound state, we obtain the
generic result

1

C0ð�Þ �
�

2�

�
�B � 2

�
�

�
; (13)

where � is the reduced mass of the two-body system and
�B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�EB

p
the wave number (with EB the bound state

energy). Of course, the exact form of the relation depends
on the specific regularization scheme employed—the ex-
pression above corresponds to power divergence subtrac-
tion [43,44]—but will be in the line of the previous form.
From the equation above it is evident that we can only have
C0 �Q�1 as long as the cutoff � scales like OðQÞ. Note
that this is consistent with our requirement that all involved
momenta should be soft and smaller than the charm quark
mass to make sense of HQSS.

C. The EFT potential at lowest order

As we have seen, the S-wave LO interaction (OðQ�1Þ)
between a heavy meson (H ¼ P, P�) and antimeson ( �H ¼
�P, �P�) only contains contact operators (i.e., four heavy
meson vertices). The contact range interactions are in turn
constrained by HQSS and depend on the particle channel
under consideration (H �H ¼ D �D, D �D�=D� �D, D �D), the
total isospin I and the value of the JPC quantum numbers.
In particular HQSS limits the number of independent LO
counterterms to two per isospin channel at LO [36]. We
will only consider the isoscalar I ¼ 0 channels, to which
the Xð3872Þ and the Xð3915Þ belong, in the isospin sym-
metric limit.

The HQSS contact range interaction can mix different
particle channels with the same JPC quantum numbers.
Therefore, for writing the LO potential we consider the
set of particle coupled channel basis

B ð0þþÞ ¼ fjP �Pi; jP� �P�ð0Þig; (14)

B ð1þ�Þ ¼
�
1ffiffiffi
2

p ðjP �P�i þ jP� �PiÞ; jP� �P�ð1Þi
�
; (15)

B ð1þþÞ ¼
�
1ffiffiffi
2

p ðjP �P�i � jP� �PiÞ
�
; (16)

B ð2þþÞ ¼ fjP� �P�ð2Þig; (17)

where the number in parenthesis in the jP� �P�ðSÞi states is
the total intrinsic spin S to which the vector meson-
antimeson system couples. In this basis, the EFT potential
is independent of momentum and reads (see Appendices A,
B, and C)

VLOð ~q; 0þþÞ ¼ C0a

ffiffiffi
3

p
C0bffiffiffi

3
p

C0b C0a � 2C0b

 !
; (18)

VLOð ~q; 1þ�Þ ¼ C0a � C0b 2C0b

2C0b C0a � C0b

 !
; (19)

VLOð ~q; 1þþÞ ¼ C0a þ C0b; (20)

VLOð ~q; 2þþÞ ¼ C0a þ C0b; (21)

where C0a and C0b are the two independent counterterms
that we expect from HQSS for a given isospin sector. This
contact potential V behaves as OðQ�1Þ, but for avoiding
confusions with the notation we have renamed Vð�1Þ to
VLO, as the negative exponent could be confused by the
inverse of the potential. As can be appreciated, the 1þþ and
2þþ cases are uncoupled and their potential is identical, a
strong hint that we should expect a 2þþ D� �D� partner of
the Xð3872Þ.
At this point we notice that the heavy pseudoscalar and

vector mesons P and P� are only degenerate in the heavy
quark limitmQ ! 1. For finitemQ there is a mass splitting

between the heavy mesons

MP� �MP ¼ �Q; (22)

that scales as 1=mQ. As a consequence of this gap, the two

H �H thresholds in the 0þþ and 1þ� coupled channel hap-
pen at different energies. If we are interested in low-lying
bound states, the energy difference between the two thresh-
olds may actually be considerably larger than the binding
energy of the state. Within the EFT framework this means
that we may very well be entitled to ignore the coupled
channel effects. The momentum scale associated with the
coupled channels is

1This can be trivially checked by considering the rescaling
transformation

Z d3 ~q

ð2�Þ3 G0ð�2EÞ ¼ �
Z d3 ~q

ð2�Þ3 G0ðEÞ;
where the energy rescales as �2 as we are considering a non-
relativistic system.
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�Cð0þþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�ð2�QÞ

q
; (23)

�Cð1þ�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2��Q

q
; (24)

for the 0þþ and 1þ� cases respectively, where � is the
reduced mass of theH �H heavymeson system and�Q is the

energy gap. In the particular case of the charm mesons,
direct evaluation yields �Cð0þþÞ � 750 MeV and

�Cð1þ�Þ � 520 MeV. If we have a 0þþ D �D (1þ� D� �D)

bound state at threshold, the corresponding 0þþ D� �D�
(1þ� D� �D�) component will have a wave number at least
of the order of the hard scale �0 � 0:5–1 GeV. Thus there
is no problem in ignoring the coupled channel structure and
treating the two particle channels in the 0þþ and 1þ� cases
as independent. From a more formal EFT viewpoint what
we are doing is to consider the coupled channel momentum
scale as �C �OðQ0Þ, from which we expect the G0 op-
erator involved in the particle mixing to scale like Q3 (see
for instance Ref. [30]). This translates into a suppression of
particle coupled channel effects by two orders in the chiral
expansion: if we count the C0b operator as Q�1, then
particle coupled channels do not enter until order Q, that
is, at least one order beyond pion exchanges.

Taking into account that we can distinguish between
different particle channels in the EFT, the LO potentials
for the 0þþ and 1þ� cases finally simplify to

VLO
P �P

ð ~q; 0þþÞ ¼ C0a; (25)

VLO
P� �P� ð ~q; 0þþÞ ¼ C0a � 2C0b; (26)

VLO
P� �P=P �P� ð ~q; 1þ�Þ ¼ C0a � C0b; (27)

VLO
P� �P� ð ~q; 1þ�Þ ¼ C0a � C0b; (28)

where we have added the particle channel as a subscript for
distinguishing states with the same JPC quantum numbers.
Even though the particle coupled channel structure of the
0þþ and 1þ� molecules can be ignored in the LO descrip-
tion of these states, we expect the 0þþ and 1þ� P� �P� states
to have a strong tendency to decay to P �P and P �P�, re-
spectively. On the contrary, the 2þþ P� �P� will have a
smaller partial decay width to a heavy meson-antimeson
pair, as this process does not happen via a Q�1 counter-
term, and therefore will be suppressed by one order in the
EFT expansion.

D. Bound states at lowest order

Finally, for completeness, we briefly discuss the solution
of the bound state equation for the contact range potentials
that appear in the LO description of heavy molecular
states. Even though well-known, it will be of help for the
calculations in the next section. We solve the bound state
equation with the regularized potential V� that reads

h ~pjVLO
� j ~p0i ¼ f

�
~p

�

�
C0ð�Þf

�
~p

�

�
; (29)

where fðxÞ is the regulator, and C0 the appropriate counter-
term for each JPC=particle channel combination. For this
potential, the wave function admits the ansatz

h ~pj�Bi ¼ N
2�

p2 þ �2
f

�
~p

�

�
; (30)

whereN is a normalization constant, � the reduced mass
of the two body system and � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�EB

p
the wave

number of the state, with EB the binding energy. Direct
substitution into the bound state equation [Eq. (11)] yields

� 1

C0ð�Þ ¼
Z d3 ~q

ð2�Þ3 f
2

�
~q

�

�
2�

q2 þ �2
: (31)

This is the eigenvalue equation of the contact range theory.
For the H �H system there are six of these equations corre-
sponding to the six possible S-wave states: in each case, we
simply need to particularize the values of C0 and � as
appropriate. For further details we refer the reader to
Ref. [24], where the equations above were derived and
discussed in the context of heavy meson-antimeson
molecules.

III. THE PARTNERS OF THE Xð3872Þ
We start by considering the 1þþ D �D� state, the Xð3872Þ,

within the EFT formalism described in the previous sec-
tion. From HQSS we expect that the heavy meson-
antimeson interaction in the 1þþ D �D� and 2þþ D� �D�
channels will be identical. In terms of the EFT potential
we have

VLOð1þþÞ ¼ VLOð2þþÞ; (32)

as deduced from Eqs. (20) and (21). From this, we auto-
matically anticipate the existence of a isoscalar 2þþ D �D�
bound state with a binding energy similar to that of the
Xð3872Þ.
To pinpoint the exact location of the 2þþ partner of the

Xð3872Þ we begin by determining the counterterm combi-

nation C0a þ C0b. We will use a gaussian regulator fðxÞ ¼
e�x2 and the cutoff values� ¼ 0:5 GeV and 1 GeV. As we
are working in the isospin symmetric limit,2 we can con-
sider the Xð3872Þ to be a D �D� bound state with a binding
energy of BXð1þþÞ ’ 4:2 MeV, from which we obtain
C0a þ C0b ¼ �1:94 fm2 (� 0:79 fm2) for � ¼ 0:5 GeV
(1 GeV). Now we can predict that the mass of the 2þþ state
lies in the vicinity of 4012 MeV (a value rather indepen-
dent of the cutoff), corresponding to a binding energy of
5 MeV. We call this state the Xð4012Þ, and stress that this
prediction is independent of any assumptions about the

2In what follows, we use the isospin averaged masses mD ¼
1867:2 MeV and m�

D ¼ 2008:6 MeV.
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molecular nature of any other XYZ states, relying on HQSS
alone. We mention in passing that isospin breaking effects,
even though crucial for understanding certain decay prop-
erties of the Xð3872Þ (see, for example, Refs. [48,49]),
have not an appreciable effect in the spectroscopy
problem.3

For predicting states beyond the Xð4012Þ, we have to
identify a particular XYZ state as a further molecular
partner of the Xð3872Þ. In this way we will be able to
determine the two contact range couplings (C0a and C0b)
and obtain the full spectrum of molecular states. Two
interesting candidates are the Xð3915Þ [15] and the
Xð3940Þ [50,51], from which the first is the most promis-
ing. The Xð3915Þ has been theorized to be a 0þþ or 2þþ
D �D� molecule in Refs. [17,18]. Even though the work of
Refs. [17,18] cannot discriminate between the 0þþ or 2þþ
quantum numbers,4 HQSS suggests that the most probable
JPC value is 0þþ instead of 2þþ, as the latter would imply a
remarkable violation of HQSS. On the contrary, the ac-
commodation of the Xð3940Þ [50,51] within the HQSS
pattern of molecular states faces a problem. The Xð3940Þ
decays strongly to D �D�, a feature compatible with the
expected properties for a 1þ� D� �D� axial state. However,
the production mechanism for the Xð3940Þ is more com-
patible with a positive C-parity state than with a negative
C-parity one: this state is produced in the reaction eþe� !
J=�Xð3940Þ, most probably via an intermediate virtual
photon (eþe� ! �� ! J=�X), suggesting that the
C-parity is positive. Nonetheless this is not a definitive
conclusion, and it may happen that the Xð3940Þ resonance
is being produced via two virtual photons, see for example

Refs. [52,53] for a case in which this process is less sup-
pressed than naively expected.
At this point we notice that the identification of the

Xð3915Þ as a D� �D� molecular state, though more promis-
ing than that of the Xð3940Þ, is not free of problems either.
In particular, the binding energy of the corresponding
heavy vector meson-antimeson system is of the order of
�100 MeV, which translates into a wave number of
�450 MeV. This means that the Xð3915Þ lies not too far
away from the limits of what can be described within the
EFT. Its wave number indicates that a description in terms
of mesons alone may be incomplete and that the explicit
inclusion of shorter range components (e.g., tetraquark or
charmonium-like) may be necessary.5 However, the EFT
framework is very helpful and convenient in this regard.
Abusing the limits of the EFT translates into a noticeable
cutoff dependence and a lack of convergence of the EFT
expansion, that is, subleading order corrections will be able
to completely alter the LO results. As wewill explain in the
next paragraph, the cutoff dependence is numerically
small, and as we will check in the next section, the sub-
leading order corrections are moderate, but nonetheless
under control. All this indicates that the Xð3915Þ is proba-
bly more amenable to an EFT treatment than naively
expected.
From the assumption that the Xð3915Þ is a 0þþ molecule

we can determine the counterterm combination C0a �
2C0b and consequently the location of the six possible
HQSS partners of the Xð3872Þ. The masses of the molecu-
lar states resulting from the previous identification can be
consulted in Table I. We obtain a 0þþ D �D, 1þ� D �D� and
1þ� D� �D� state which we call Xð3710Þ, Xð3820Þ, and
Xð3955Þ. The errors in Table I refer to uncertainties owing
to violations of HQSS in the charm sector (see Sec. IVA
for a detailed explanation). The location of these three

TABLE I. Predicted masses (in MeV) of the Xð3872Þ HQSS partners for two different values
of the gaussian cutoff. We use as input 3871.6 and 3917.4 MeV for the Xð3872Þ and Xð3915Þ
masses, respectively. From this we find that the value of the LO couplings are C0a ¼ �3:53 fm2

and C0b ¼ 1:59 fm2 for � ¼ 0:5 GeV and C0a ¼ �1:06 fm2 and C0b ¼ 0:27 fm2 for
� ¼ 1 GeV. Errors in our predicted masses are obtained by varying the strength of the contact
interaction in each channel by 	15%, which corresponds to the expected violations of HQSS
for the charm quark mass.

JPC H �H 2Sþ1LJ VC E � ¼ 0:5 GeV E (� ¼ 1 GeV) Exp [7]

0þþ D �D 1S0 C0a 3706� 10 3712þ13
�17 -

1þþ D� �D 3S1 C0a þ C0b Input Input 3872

1þ� D� �D 3S1 C0a � C0b 3814� 17 3819þ24
�27 -

0þþ D� �D� 1S0 C0a � 2C0b Input Input 3917

1þ� D� �D� 3S1 C0a � C0b 3953� 17 3956þ25
�28 3942

2þþ D� �D� 5S2 C0a þ C0b 4012� 3 4012þ4�9 -

3If we take into account isospin breaking within the formalism
of Ref. [49], we find that the position of the Xð4012Þ moves by
about �1MeV (to 4013 MeV). In this calculation we have
ignored the I ¼ 1 counterterm in the JPC ¼ 1þþ channel, which
(in absence of additional information) is considered to be of
order Q0 and hence subleading.

4Branz et al. [18] notice that the (little) known decay proper-
ties of the Xð3915Þ are compatible with both assignments.

5This is based on the observation that the mean quadratic
separation of the mesons is

ffiffiffiffiffiffiffiffihr2ip ¼ 0:5–0:8 fm depending on
the cutoff.
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hadronic molecules is rather independent of the cutoff. If
(instead of a gaussian regulator) we use a sharp cutoff,
there are small variations of about�1 MeV in the location
of the states. Curiously, the Xð3955Þ state we obtain is not
far away from the aforementioned Xð3940Þ molecular
candidate. A possible identification is suggestive but con-
tingent on the eventual determination of the quantum
numbers (especially the C-parity) of the Xð3940Þ.

IV. SUBLEADING ORDER CORRECTIONS

In this section we explore the impact of the main sub-
leading order contributions. For this we must take into
account the existence of two different, unrelated expan-
sions in the EFT formalism we are proposing. The first is
the expansion in terms of inverse powers of the heavy
quark mass and the second the standard power counting
expansion. In the previous section we have assumed exact,
instead of approximate, HQSS. The existence of 1=mQ

deviations from the heavy quark limit implies that the
location of the molecular partners of the Xð3872Þ will be
subjected to uncertainties. Apart from this, the power
counting expansion indicates that we should take into
account two important subleading order corrections ap-
pearing at orderQ0 andQ1 respectively: the OPE potential
and the particle coupled channel effects. As wewill see, the
induced shifts in the position of the molecular states from
these subleading interactions will in general agree with
(and in the case of the OPE potential be smaller than) the
a priori EFT expectations, thus confirming the robustness
of the molecular spectrum we have deduced so far.

A. The 1=mQ corrections

The LO potentials for the 1þþ and 2þþ heavy meson
molecules—the Xð3872Þ and the theorized Xð4012Þ—are
only identical in the heavy quark limit. Thus the existence
of the Xð4012Þ may be contingent on the size of HQSS
violations stemming from the finite charm quark mass. In
general, we expect the heavy meson-antimeson potentials
of Eqs. (20), (21), and (25)–(28) to deviate from the heavy
quark limit by a quantity of the order of

VLO
ðmQ¼mcÞ ¼ VLO

ðmQ¼1Þ

�
1þO

�
�QCD

mc

��
; (33)

where mc is the charm quark mass (� 1:5 GeV) and
�QCD � 200 MeV, translating into an expected 15% vio-

lation of HQSS for the LO contact range potentials. The
exceptions are the potentials of the 1þþ D �D� and 0þþ
D� �D� channels, as they are fixed to reproduce the position
of the Xð3872Þ and Xð3915Þ states.

Assuming this 15% uncertainty in the contact range
interactions, we obtain the error bars of Table I. As can
be seen, the prediction of the 2þþ partner of the Xð3872Þ is
robust with respect to this theoretical error source. Other
molecular states show moderate uncertainties of the order

of 10–20MeV in the binding energies. As wewill see in the
following subsections, these uncertainties are a bit smaller
(but yet of the same order) as the subleading order correc-
tions coming from pion exchanges and the particle coupled
channels.

B. One pion exchange

A possible issue with the present EFT treatment of the
Xð3915Þ as a D� �D� molecule is whether the OPE potential
is really perturbative in this case. With a wave number of
� ’ 450 MeV, the wave function of the Xð3915Þ probes
the intermediate distances where the tensor component of
the OPE potential is stronger than the central one. In this
regard and according to the arguments in Ref. [30], we
expect tensor OPE to become nonperturbative at a critical
center-of-mass momentum of kcrit ’ 420 MeV for the 0þþ
D� �D� channel.6 Consequently the Xð3915Þ lies at the edge
of the domain of validity of the EFT description we are
using, in which pion exchanges are perturbative (i.e.,
small), and may require a more sophisticated EFT with
nonperturbative pions. If we were predicting the binding
energy of this molecular state, the previous observation
would translate into a large uncertainty in the calculations
of the order of 100%. The cause of this uncertainty will be
high energy fluctuations in the meson-antimeson loops
generated by the pion exchanges. However, as the binding
energy is used as the input of the calculation, the uncer-
tainty can manifest either in the value of the C0a and C0b

counterterms, thus subjecting the predictions of Table I to
large uncertainties, or in a failure of the theory to converge
once subleading order corrections are included.
Yet there are two mitigating circumstances that may

increase the expected breakdown scale of the present
EFT calculation, thus turning the predictions much more
reliable. On the one side, the critical momenta above which
the tensor OPE is no longer perturbative [30] are subjected
to considerable uncertainties stemming from the far-from-
perfect separation of scales in heavy meson molecules. In
particular the value of the critical momenta may be up to
50% larger than expected, in which case the Xð3915Þ will
lie well within the range of applicability of the EFT with
perturbative pions. On the other, we are limiting ourselves
to the spectroscopy problem. It is worth noticing in this
respect that the spin-spin structure of the C0b contact
operator is very similar to the one we obtain from pseudo-
scalar meson exchange for the non-tensor piece of the
interaction. We thus expect the C0b operator to be able to
partially absorb the shift in the binding energy generated
by the pion exchanges. However, the effect is restricted to
the central component of OPE, which is much better
behaved than the tensor one at short distances. Of course,
the definitive test is to recalculate the position of the

6As we will comment later, this number is subjected to large
uncertainties.
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predicted molecular states after the nonperturbative inclu-
sion of the OPE potential.

The distinctive feature of the OPE potential is that it can
mix different partial waves. For the nonperturbative calcu-
lation we follow the formalism of Ref. [24], where we
considered the partial wave decomposition of tensor OPE
in detail for the P �P� particle channel. The extension to the
P� �P� case is trivial and only entails a change in the partial
waves that are actually coupled, which can be consulted in
Table II. For determining the value of the C0a and C0b

counterterms we fix the binding energies of the Xð3872Þ
and Xð3915Þ, respectively. This procedure generates again
a total of six molecular states, four of them predictions, as
can be seen in Table II. We can appreciate that the binding
energies of the states are relatively stable with respect to
the iteration of the OPE potential. The most affected state
is the 0þþ D �D molecule, the Xð3710Þ state, for which the
binding energy can increase by almost 10 MeV for � ¼
1 GeV with respect to the pionless case. Curiously, for this
state there is no OPE contribution to the finite range
potential: two pseudoscalar objects cannot exchange a
single pion, so the first nontrivial contribution to the finite
range potential comes from two pion exchange, which we
have not considered here. The dynamics of this state is
solely controlled by the C0a counterterm. In this regard,
when the contact range potential is adjusted to reproduce
the binding energies of the Xð3872Þ and Xð3915Þ states in
presence of the OPE potential, the change in the value of
the C0a coupling is not counterbalanced by a pion ex-
change contribution in the 0þþ D �D case. Hence, we find
a larger shift in the location of this molecular state in
comparison to the others.

Indeed we find relatively small shifts in the energy of
states other than the Xð3710Þ (see Tables I and II). The
aforementioned observation seem to confirm the suspi-
cions about the role of the C0b operator which could
effectively accommodate most of the OPE effects.
Equivalently, the inclusion of the OPE potential produces
a larger change in theC0b coupling than in the C0a one, and
actually we find that the bulk of the change in C0b is given
by the size of the contact piece of OPE

C0b ! C0b � g2

2f2�
; (34)

where g2=2f2� � 0:4 fm2, see Appendix C for details.
The natural conclusion of the previous calculations is

that OPE is indeed perturbative in heavy meson molecules.
There is, however, a caveat: if the spectroscopy problem is
rather insensitive to the OPE potential, how can we appre-
ciate whether OPE is perturbative or not in the molecular
states? A partial answer is that C0b is only expected to
absorb effects coming from central OPE, but not from
tensor OPE, which is the problematic piece. But there is
another answer, that lies in the observation that nonpertur-
bative OPE would entail a significant change in the power
counting of the contact range operators. As happens in
nuclear EFT, the LO counterterms that are able to renor-
malize the scattering amplitude with perturbative pions
[43,44] are not enough to renormalize the corresponding
nonperturbative formulation [54]. In particular, for heavy
meson EFT we have that while perturbative OPE requires
two counterterms (C0a and C0b), for nonperturbative OPE
this number is at least five [30]. As the shifts in the binding
energies are only weakly cutoff dependent, we do not
require new counterterms and we can confidently conclude
that OPE is perturbative.
We mention in passing that an alternative possibility to

check whether OPE is perturbative is the description of
bound state properties that depend on the existence of a
D-wave component of the wave function, which is a typi-
cal signature of the tensor force. It turns out that D-wave
probabilities of the molecular states are quite small (from
1–4%, with a strong cutoff dependence7). Unfortunately, it
looks difficult to find experimental observations that could
depend on (and consequently constrain) the D-wave com-
ponents of the molecular wave functions. Nevertheless, the
small size of the D-wave probabilities is consistent with

TABLE II. Predicted masses (in MeV) of the Xð3872Þ HQSS partners when the OPE potential
is included. We display results for two different values of the gaussian cutoff. Now, we
find C0a ¼ �3:46 fm2 and C0b ¼ 1:98 fm2, and C0a ¼ �0:98 fm2 and C0b ¼ 0:69 fm2, for
� ¼ 0:5 and 1 GeV, respectively.

JPC H �H 2Sþ1LJ E (� ¼ 0:5 GeV) E (� ¼ 1 GeV) Exp [7]

0þþ D �D 1S0 3708 3720 -

1þþ D� �D 3S1 � 3D1 Input Input 3872

1þ� D� �D 3S1 � 3D1 3816 3823 -

0þþ D� �D� 1S0 � 5D2 Input Input 3917

1þ� D� �D� 3S1 � 3D1 3954 3958 3942

2þþ D� �D� 1D2 � 5S2 � 5D2 � 5G2 4015 4014 -

7One should keep in mind that the D-wave probability is not
per se an observable quantity, meaning that we should not be
worried by its moderate cutoff dependence.
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the expectation of them to be a second order correction in
perturbation theory.

C. Particle coupled channels

As previously discussed particle coupled channel effects
are suppressed by two orders in the EFT expansion. From
this we expect coupled channel effects in the binding
energies of the 0þþ and 1þ� states to scale as

j�EBj ’ jEBj
�
�B

�C

�
2
; (35)

where EB is the binding energy, �B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2�EB

p
the wave

number of the bound state and �C the typical momentum
scale of the coupled channel under consideration, which
we consider to be a hard scale �C ��0. The estimation
above translates into an uncertainty of around 30 MeV
(40 MeV) for the 0þþ (1þ�) coupled channel, where we
have employed the wave number of the deepest bound state
within the coupled channel. It should be noticed that in the
case of the D� �D� molecular states the energy shift is
complex, as the 0þþ (1þ�) state can decay into a D �D
(D� �D) meson-antimeson pair.

In contrast to the OPE corrections, the counterterm
structure stemming from HQSS is not expected to be
able to absorb the kind of divergences associated with
the coupled channel calculations, meaning that the actual
error in the calculation will probably saturate the previous
bound. We can check the EFT a priori estimates given
above by means of a concrete calculation in which the
particle coupled channel effects are fully taken into ac-
count. However, as we will see, this task is not trivial,
specifically in what regards to the choice of the appropriate
regularization scheme. To illustrate this point we can study
the perturbative estimate of the binding energy shift in-
duced by coupled channel dynamics. If we consider a small
change in the potential

V ! V þ �V; (36)

the perturbative correction to the binding energy is ex-
pected to be

�E ¼ h�j�Vj�i; (37)

where j�i is the wave function of the bound state. In the
case of particle coupled channels, the �V operator reads

�V	 ¼ V	
G0;
ðEÞV
	; (38)

where	 represents the channel we are interested in,
 � 	
the other channel, and V	
 the transition potential from

channel 	 to 
, which is proportional to the C0b contact
operator. We can distinguish two cases, depending on
whether the unperturbed energy E is (a) above or
(b) below the 
 channel threshold. The most interesting
case is (a), corresponding to the modification of the 0þþ or
1þ� D� �D� molecular state energies (	 channel) by the 0þþ
D �D or 1þ� D �D� states (
 channel), which lie in the

continuum for the energies relevant for the 	� channel
states. A direct calculation yields

�E	 ¼
�
C	
ð�Þ

Z
�

d3 ~p

ð2�Þ3 �	ð ~pÞ
�
2



Z
�

d3 ~q

ð2�Þ3
2�

k2
 � ~q2 þ i�
; (39)

where �	ð ~pÞ is the wave function of the 	 bound state,
k2
 ¼ ��2

	 þ�2
C the momentum of the heavy meson-

antimeson pair above the threshold, �	 the wave number
of the 	 bound state below threshold and �C the coupled
channel momentum scale. The integrals are assumed to be
regularized with a cutoff � and an arbitrary regulator
function that we have not specified yet. The C	
 transition

contact operator can be identified with 2C0b (
ffiffiffi
3

p
C0b) in the

0þþ (1þ�) molecular state.
As can be seen, if�< k
, a natural thing to expect if the

momentum separation of the coupled channels is a hard
scale, the perturbative correction to the binding energy is
effectively suppressed by a factor of k2
 ��2

C:

�E	 ¼ 2�

k2


�
C	
ð�Þ

Z
�

d3 ~p

ð2�Þ3 �	ð ~pÞ
�
2



Z
�

d3 ~q

ð2�Þ3
�
1þ ~q2

k2

þ ~q4

k4

þ . . .

�
; (40)

that is, by two powers in the counting. However, we can
also appreciate that the �E	 correction is strongly scale
dependent. On the one hand, if we consider that the wave
function behaves as

�	ð ~pÞ / 1

~p2 þ �2
	

; (41)

we see that the integral in the first line of the expression for
the energy shift of Eq. (39) diverges as �:

Z
�

d3 ~p

ð2�Þ3 �	ð ~pÞ / �: (42)

On the other, the integral related to the decay into the
continuum state 
 in the second line of Eq. (39) diverges
as �. However, had we re-expanded the propagator
1=ðk2
 � ~q2Þ in inverse powers of k
 (as mandated by

power counting), the power-law divergence would have
worsened to �3, see Eq. (40). Putting all the pieces to-
gether (and ignoring the propagator re-expansion), the total
divergence in the energy shift is given by C2

	
�
3.

This divergent behavior tells us that we are required to
include counterterms to absorb them.8 The problem is that

8It is important to comment at this point that the different
divergences we are discussing correspond to particular choices
of how to expand in terms of power counting. The full, non-
perturbative coupled channel calculation is free of divergences.
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the counterterms renormalizing the coupled channel dy-
namics are higher order. In principle theC0b operator could
do the job, but we need to take into account that this contact
operator is already determined by the condition of repro-
ducing the binding energy of a molecular state. Thus, we
do not expect C0b to balance for the particle coupled
channel effects. The renormalization group behavior of
C0b is approximately given by

C0bð�Þ / 1

��
; (43)

for large �, see Eq. (13). This means in turn that C0b can
absorb the piece proportional to �2 of the coupled channel
divergence,�

C	
ð�Þ
Z
�

d3 ~p

ð2�Þ3 �	ð ~pÞ
�
2 / �0; (44)

since C	
 is proportional to C0b. Thus, we are left with a

residual cutoff dependence of� in the best case. The worst
case scenario is however when the cutoff and the coupled
channel scale coincide, ���C, in which case the

-channel integral peaks. This can be easily appreciated
if we use a sharp cutoff regulator

2�2
Z d3 ~q

ð2�Þ3
�ð�� j ~qjÞ
k2
 � ~q2 þ i�

¼ �
�
�þ i

�

2
k
�ð�� k
Þ

�
þ k


2
log

���������� k

�þ k


��������; (45)

where the real part of the integral diverges at � ¼ k
 �
�C, a very puzzling situation (see a related discussion in
Ref. [55]). Of course, the problem can be solved by using a
smoother regulator, as the gaussian scheme that we have
been employing along this work. In this case the real
part integral will show a maximum (but not diverge) at
���C. This signals the transition from a power counting
in which�C is a hard scale to a different one in which it is a
soft scale.

All this indicates that one should presumably add new
counterterms at OðQÞ to soften the cutoff dependence and
make the EFT renormalizable again. At this point it is worth

mentioning that the EFT treatment of coupled channel
dynamics has been only discussed for the case in which
�C is a soft scale [56,57]. However, the corresponding
analysis for the �C ��0 case has not been done yet and
will be left for future research [58]. Independently of the
exact form of the power counting for coupled channel
dynamics, it is clear that higher orders will introduce new
unknown constants that cannot be fixed at the moment
owing to the scarce experimental data available.
Nevertheless, here we will present full nonperturbative
results including coupled channel effects. Even though the
energy shifts thus obtained will be cutoff (and regulator)
dependent, they will not vastly deviate from the a priori
estimates of Eq. (35), reinforcing the (qualitative) reliability
of the LO predictions. Of course, had we included all the
relevant OðQÞ counterterms (and known the entire experi-

mental spectrum of Dð�Þ �Dð�Þ states), the deviations would
have decreased. Furthermore, we notice that coupled chan-
nel effects produce changes in C0a and C0b comparable in
magnitude to those we should expect from violations of
HQSS, that is, about 15% for the charm quark mass.
The nonperturbative calculation of the coupled channel

effects is presented in Table III. As in previous cases, we
have adjusted the C0a and C0b counterterms to reproduce
the Xð3872Þ and Xð3915Þmasses. We have searched for the
poles of the scattering amplitude in the first and second
Riemann sheets (we refer to Ref. [59] for further details on
this subject). The former are to be interpreted as bound
states, while the latter correspond to the location of reso-
nant states in the complex plane, where the real part of the
pole position is the mass and the imaginary part is half the
decay width (Epole ¼ M� i

2 �). As can be seen in Table III,

the location of the 1þ� D �D� and D� �D� states have been
shifted by about 80–85 and 25 MeV, respectively. The
correction to the binding energy of the D �D� state is large,
saturating and even exceeding the EFT expectation. In the
case of the 0þþ D �D partner of the Xð3915Þ, the shift in
the position of the state is of 40–50MeV, of the order of the
EFT expectation. Had we use a sharp cutoff instead of a
gaussian one, the location of the bound and resonant states
would have drastically changed for � ¼ 0:5 GeV. This is

TABLE III. Predicted masses and widths (in MeV) of the Xð3872Þ HQSS partners when
coupled channels effects are included. The contact terms are adjusted to reproduce the Xð3872Þ
and Xð3915Þ masses, while OPE effects are neglected. We find C0a ¼ �4:16 fm2 and C0b ¼
2:21 fm2, and C0a ¼ �1:14 fm2 and C0b ¼ 0:35 fm2, for � ¼ 0:5 and 1 GeV, respectively.

JPC H �H E� i�=2 (� ¼ 0:5 GeV) E� i�=2 (� ¼ 1 GeV) Exp [7]

0þþ D �D, D� �D� 3658 3669 -

1þþ D� �D Input Input 3872

1þ� D� �D, D� �D� 3730 3739 -

0þþ D �D, D� �D� 3917� i
2 23 3917� i

2 50 3917� 3� i
2 28

þ10
�9

1þ� D� �D, D� �D� 3979� i
2 24 3979� i

2 39 3942� 9� i
2 37

þ27�17

2þþ D� �D� 4012 4012 -
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not surprising in view of Eq. (45) and the related discus-
sion. However, for larger cutoffs such as � ¼ 1 GeV,
variations are significantly smaller and the results are
similar to those obtained in the gaussian cutoff scheme.

To further check the uncertainties affecting our results,
we have also considered the alternative option of using the
counterterm values of the original uncoupled calculation to
estimate the coupled channel effects, in which case we
obtain the results of Table IV. In this second scheme we
observe that the change in the position of the states agrees
much better with the EFT expectations: the energies of the
1þ� D �D� and D� �D� states consistently change by about
35 MeV, while in the 0þþ D �D and D� �D� states we end up
with an energy shift of about 20–25 MeV. The reason for
the additional stabilization of the calculations may be that
we are not forcing the reproduction of the Xð3915Þ in a
cutoff window in which we may not be expected to obtain
this state (owing to the large coupled channel corrections).
In this case the Xð3915Þ state, which we do not adjust now,
shifts its mass to around 3940 MeV, with a width of about
15–30 MeV, depending on the value of the cutoff. If we
consider that the uncertainties coming from the 1=mQ

corrections are of the order of 15–30 MeV, the properties
of the 0þþ D� �D� state could certainly be accommodated
with the existing experimental data for this resonance
(M ¼ 3917� 3 and � ¼ 28þ10

�9 MeV [7]).

V. HQSS AND DECAY PROPERTIES

The dynamics of the molecular states studied in this
work is solely determined, within our approach, by the

re-interaction of the open charm channels Dð�Þ �Dð�Þ. We
have ignored hidden charm channels like, for example,
the J=�! or �c!. We expect these latter channels to
have little effect on the inner structure and masses of the
molecular states, as suggested by explicit calculations
performed in Refs. [60–62]. Yet, within the EFT approach,
it has been customary to ignore hidden charm channels in
the study of the Xð3872Þ resonance, see e.g., Ref. [36].
Analogously, the hidden bottom channels have also been
ignored in the recent studies [37,38] of the Zð10610Þ and

Z0ð10650Þ molecular states in the bottom sector.
Nevertheless, the hidden charm channels can play an im-
portant role in the decay of some of the states described
here, especially if they are placed below the open charm

Dð�Þ �Dð�Þ thresholds. Moreover, the J=� meson provides a
clear experimental signature and thus its decay modes are
often used in the detection of the XYZ states. The detailed
study of the hidden charm decays of the molecular states
described here is beyond the scope of this work and we left
it for future research.
However, the generic decay properties of the molecular

states can be discussed at the qualitative level in the basis
of HQSS. If we ignore phase space effects, HQSS predicts
[37,38] for the total widths:

�ð1þþÞ ¼ �ð2þþÞ ¼ 3

2
�D �Dð0þþÞ � 1

2
�D� �D� ð0þþÞ; (46)

�D �D� ð1þ�Þ ¼ �D� �D� ð1þ�Þ; (47)

where we denote each molecular state by its quantum
number JPC and additionally its particle content if neces-
sary. As noticed in Ref. [38], the relations above can also
be obtained within the EFT framework we advocate by
promoting the C0a and C0b couplings to complex values.
In this way, one can implicitly take into account the
multiple decay channels of the molecular states (as with
an optical potential). In contrast with the bottom sector,
where the previous relationships were derived, we expect
however noticeable corrections to Eqs. (46) and (47) in
the charm sector. The reason is that both HQSS violations
and phase space corrections are larger in the charm sector
than in the bottom one. The relations above involve total
widths and do not necessarily hold for decays into open
charm channels, where phase space corrections are crucial
and indeed forbid some decays. For instance, if we pay
attention to Eq. (46), and since �D �Dð0þþÞ ¼ 0 for an
open charm decay into D� �D�,9 we will have to conclude

TABLE IV. Predicted masses and widths (in MeV) of the Xð3872Þ HQSS partners when
coupled channels effects are included. The contact terms are fixed to the values given in the
caption of Table I (i.e., they are adjusted to reproduce the Xð3872Þ and Xð3915Þ masses
neglecting coupled channel effects). Moreover, OPE interactions are not taken into account
either.

JPC H �H E� i�=2 (� ¼ 0:5 GeV) E� i�=2 (� ¼ 1 GeV) Exp [7]

0þþ D �D, D� �D� 3690 3694 -

1þþ D� �D Input Input 3872

1þ� D� �D, D� �D� 3782 3782 -

0þþ D �D, D� �D� 3939� i
2 12 3937� i

2 31 3917� 3� i
2 28

þ10
�9

1þ� D� �D, D� �D� 3984� i
2 17 3982� i

2 29 3942� 9� i
2 37

þ27�17

2þþ D� �D� 4012 4012 -

9Note that in the infinitely heavy quark limit the D and D�
mesons are degenerated. Thus, the D� �D� decay channel could be
open depending on the binding energies.
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that �ð1þþÞ ¼ �ð2þþÞ ¼ �D� �D� ð0þþÞ ¼ 0. However, we
find a partial decay width of the order of tens of MeV for
the Xð3915Þ state into D �D.

Nonetheless, a clear implication of the relationships
above is that the Xð4012Þ should be a relatively narrow
state, just like the Xð3872Þ. In addition, if we assume
�ð1þþÞ and �ð2þþÞ to be much smaller than the other
decay widths, then we can estimate the total width of the
Xð3710Þ resonance to be a third of the Xð3915Þ width
(�D� �D� ð0þþÞ ¼ 28þ10

�9 according to the PDG [7]), yielding

�D �Dð0þþÞ � 10 MeV. For the Xð3815Þ and Xð3955Þ reso-
nances the situation is similar: HQSS without phase space
considerations predicts them to have the same width, but if
one takes into account the large D� �D contribution to the
Xð3955Þ, the Xð3815Þ should be narrower than its partner.

VI. DISCUSSION AND CONCLUSIONS

In this work we have argued that the application of
HQSS to the charmed meson-antimeson system, combined
with the identification of the Xð3872Þ and Xð3915Þ reso-
nances as isoscalar D �D� and D� �D� molecules, implies the
existence of four molecular partners of these two states
(Table I). This prediction is subjected to a series of un-
certainties, namely the approximate nature of HQSS (es-
pecially for the charm sector), the effect of the OPE
potential and the impact of the particle coupled channel
dynamics. We have estimated the size of these corrections
within the EFT framework and concluded that the HQSS
pattern of molecular states is rather stable (Tables II, III,
and IV). In contrast, the exact location of the molecular
partners is subjected to moderate uncertainties of up to
40–50 MeV for the most bound cases, in agreement with
the EFT expectations.

The determination of theDð�Þ �Dð�Þ family of bound states
hinges on the assumption that the Xð3872Þ and the Xð3915Þ
states are molecular. In this regard we find it worth com-
menting that, while the identification of the Xð3872Þ as a
1þþ loosely bound D �D� state is a widely accepted hy-
pothesis, the case for the molecular nature of the Xð3915Þ
is less compelling but nevertheless still compatible with the
experimental information available for this resonance.
Thus we expect the conclusions solely derived from the
Xð3872Þ to be more solid and less speculative than those
depending on the Xð3915Þ.

In this regard the tentative 2þþ D� �D� partner of the
Xð3872Þ, which we have called the Xð4012Þ in reference
to its predicted mass, see Table I, is probably the most
robust and model independent prediction of the present
work. The Xð4012Þ is not affected by particle coupled
channel effects and its mass only varies mildly, by about
2–3 MeV, when the OPE potential is included. Perhaps in
the real world the 1=mQ effects may be larger than we have

estimated or there may be a further and unexpected sub-
leading correction that turns out to be large. In this case the
Xð4012Þ state might move slightly up above the D� �D�

threshold and become virtual or might descend to a lower
mass region. Be as it may, we are quite confident about the
existence of a molecular state with these quantum numbers
close to the D� �D� threshold.
The prediction of new Dð�Þ �Dð�Þ states beyond the

Xð4012Þ requires the identification of a further XYZ state
(besides the Xð3872Þ) as a charmed meson-antimeson
molecule. The Xð3915Þ is a good candidate, which we
assume to be a 0þþ D� �D� bound state. Of course we notice
that the molecular interpretation of the Xð3915Þ [17–19],
while plausible, is not so well-established. Consequently
the three additional 0þþ D �D and 1þ� D �D� and D� �D�
states we obtain from the Xð3915Þ, which we call the
Xð3710Þ, Xð3820Þ, and Xð3955Þ, respectively, see Table I,
should be granted a more conjectural status. Nevertheless,
we notice that the only necessary condition for the exis-
tence of molecular states different than the Xð3872Þ and
Xð4012Þ is that C0b � 0.
Other theoretical approaches have also predicted several

D� �D� molecular-like states, but usually with a mass spec-
trum incompatible with HQSS. In the quark model of
Ref. [63] there are six hidden charm diquark-antidiquark
states arranged in a pattern similar to the one we find. In
particular there is a tetraquark 0þþ state at 3723 MeV that
could be identified with the Xð3710Þ state we obtain.
However, the 2þþ state appears at 3952 MeV and is iden-
tified with the Xð3940Þ resonance [50,51]. Unless a con-
siderable violation of HQSS is taking place, this tensor
state is too tightly bound to be considered the HQSS
partner of the Xð3872Þ. Curiously, the two 1þ� hidden
charm diquark-antidiquark states of Ref. [63] are located
at a similar depth below the D� �D� and D �D� thresholds
respectively and therefore respect the HQSS expectations.
Another interesting theoretical approach for the study of

hidden charm resonances is the hidden gauge formalism,
using an extension of the SUð3Þ chiral Lagrangians to
SUð4Þ that implements a particular pattern of SUð4Þ flavor
symmetry breaking. Within this framework, Gamermann
et al. [60] have obtained a 0þþ D �D molecular state in the
vicinity of 3700 MeV, that is to be identified with the
Xð3710Þ D �D molecular state we predict. The extension
of the hidden gauge to axial states [61] predicts (among
others) a negative C-parity state at 3840 MeV, not far way
from the 3815–3820 MeV mass range we obtain for the
1þ� D �D� state. Finally, the related exploration of reso-
nances generated by the interaction of two vector mesons
in Ref. [62] predicts a series of 0þþ, 1þ� and 2þþ D� �D�
states. The 0þþ D� �D� resonance is found in the region
around 3940 MeV. Though not identical, this figure does
not differ much from the mass of the Xð3915Þ resonance
that we employ as input. The 1þ� D� �D� state of Ref. [62]
matches rather well with the mass of the Xð3955Þ state
we obtain. However, the 2þþ D� �D� isoscalar resonance is
considerably different from the Xð4012Þ state: its mass and
width are M ¼ 3929� 3 MeV and � ¼ 29� 10 MeV
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respectively, where the dominant decay channel is D �D.
This mass, which is clearly incompatible with the HQSS
pattern, is the result of the remarkably strong vector-vector
interaction generated by the hidden gauge model.
Curiously, the properties of this tensor D� �D� resonance
are strikingly similar to those of the �c2ð2PÞ charmonium
state [64,65] (sometimes referred to as the Zð3940Þ): M ¼
3927:2� 2:6 and � ¼ 24� 6 MeV, decaying mostly to
D �D [7].

The comparison of the HQSS spectrum with experimen-
tally known states is however incomplete. In principle
there is so far no experimental evidence in favor of (or
against) the positive C-parity Xð3710Þ and Xð4012Þ states
we predict. Interestingly, the properties of the predicted
Xð3955Þmolecular state are not very different from what is
experimentally known about the Xð3940Þ resonance
[50,51], which have been observed to decay into D �D�
( just as would have been expected for a 1þ� D� �D� state).
There is a problem though in this identification: the
Xð3940Þ is suspected to be a positive C-parity state, while
the Xð3955Þ has negative C-parity. The reason is that the
usual production mechanism eþe� ! �� ! J=�X favors
the generation of positive C-parity XYZ states, owing to
the quantum numbers of the intermediate virtual photon
and the final J=�. This mechanism also implies that any
prediction about negative C-parity states will be more
difficult to confirm or discard experimentally. However,
even though not so probable, the production of the final
J=�X state may happen via two virtual photons, in which
case the XYZ resonance may have negative C-parity. This
alternative production mechanism is not always as sup-
pressed as expected, as demonstrated in Refs. [52,53] for
eþe� ! ���� ! J=�J=�. In principle, a similar mecha-
nism could take place in the Xð3940Þ state, in which case
the identification with a 1þ� D �D� molecule would be very
appealing, but it may also be possible that the Xð3955Þ
molecular state has simply not been observed yet.

We have also examined the role played by the OPE

potential in the Dð�Þ �Dð�Þ system (Table II). In agreement
with the conclusions of Ref. [30], we have verified that
pion exchanges can be treated perturbatively in the case of
isoscalar charm meson-antimeson molecules. Curiously,
the suppression of the OPE effects is larger than naively
expected in terms of the power counting. The remarkable
simplification is that the EFT framework we are proposing
consists entirely on contact range interactions at lowest
order. According to Ref. [30] this interesting simplification
will also apply in the isovector charm sector, as well as the
isovector bottom one [38]. In this regard nonperturbative
OPE seems to be only required in the case of isoscalar
bottom meson-antimeson molecules. This possibility, and
the corresponding EFT, was partially explored in Ref. [24]
for the B �B�=B� �B case. Lastly, particle coupled channel
dynamics are suppressed by two orders in the counting, as
expected, but a more complete analysis would be

welcomed, specially in what regards to regulator
dependence.
Even though all the previous states and their possible

identification with theoretically predicted or experimen-
tally known resonances are contingent on the validity of the
molecular hypothesis for the Xð3915Þ, the bottom line of
the approach we advocate is that, provided we identify at
least two molecular states representing two different com-
binations of the C0a and C0b counterterms, we will be able

to predict the full molecular spectrum of the Dð�Þ �Dð�Þ
system. If the Xð3915Þ identification proves erroneous in
the future, the finding of a different molecular state candi-
date could be used to obtain the remaining states. Owing to
the contact range character of the present EFT framework
at lowest order, the calculational effort involved in this task
will be minimal.
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APPENDIX A: THE EFFECTIVE LAGRANGIAN
AT LOWEST ORDER

In this appendix we write the EFT Lagrangian that
describes the strong interactions of heavy mesons and
antimesons containing a heavy quark Q or antiquark �Q,

respectively. We use the matrix field HðQÞ (Hð �QÞ) to denote
the following combination of the pseudoscalar and vector
heavy-meson (antimeson) fields

HðQÞ
a ¼ 1þ 6v

2
ðP�ðQÞ

a� �� � PðQÞ
a �5Þ; (A1)

Hð �QÞa ¼ ðP�ð �QÞa
� �� � Pð �QÞa�5Þ 1� 6v

2
; (A2)

where the pseudoscalar meson (antimeson) fields are rep-

resented by PðQÞ
a (Pð �QÞ

a ), while P�ðQÞ
a (P�ð �QÞ

a ) is employed for
their vector HQSS partners (see, for example, Ref. [66] for
further details). Finally, v is the velocity parameter. In
principle there should be a v subscript to indicate that we
are defining the fields for a specific value of v, but we have
omitted it to avoid complicating the notation. The fields are
isospin doublets (hence the index a), where for the pseu-
doscalar meson and antimesons we have

PðQ= �QÞ
a ¼ ðP0; PþÞ; (A3)

Pð �Q=QÞ
a ¼ ð �P0; P�Þ; (A4)
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plus the analogous expressions for the vector case. The
heavy quark/antiquark superindex changes depending on
whether we are considering charm or bottom meson fields
(in the charm case, D0 and Dþ contain the quark field,

while in the bottom case Bð0Þ and Bþ contain the antiquark
field). The heavy vector meson and antimeson are sub-
jected to the additional condition

v � P�ðQÞ
a ¼ 0; (A5)

v � P�ð �QÞa ¼ 0; (A6)

which in turn defines the three different polarizations of the
heavy vector mesons.

The fields HðQÞ
a and Hð �QÞa respectively transform as a

ð2; �2Þ and ð�2; 2Þ representation under the heavy quark spin
�SUð2ÞV isospin symmetry [67], that is

HðQÞ
a ! SðHðQÞUyÞa; (A7)

Hð �QÞa ! ðUHð �QÞÞaSy; (A8)

where S is the heavy quark spin transformation and U the
isospin one. The hermitian conjugate fields are

�H ðQÞa ¼ �0HðQÞy
a �0; (A9)

�H ð �QÞ
a ¼ �0 �Hð �QÞay�0; (A10)

and transform as [67]

�H ðQÞa ! ðU �HðQÞÞaSy; (A11)

�H ð �QÞa ! Sð �Hð �QÞUyÞa: (A12)

Of course, the Lagrangian should be invariant under the
previous symmetry transformations.

At leading order in the EFT expansion the Lagrangian
can be written as the sum of two contributions

L ð0Þ ¼ Lð0Þ
4H þLð0Þ

�HH (A13)

where the first one contains a 4-meson interaction vertex
and the second the meson-pion vertex. The 4-meson con-
tact range Lagrangian consistent with HQSS and chiral
symmetry [36] reads:

Lð0Þ
4H¼D0aTr½ �HðQÞaHðQÞ

a ���Tr½Hð �QÞb �Hð �QÞ
b ���

þD0bTr½ �HðQÞaHðQÞ
a ���5�Tr½Hð �QÞb �Hð �QÞ

b ���5�
þE0aTr½ �HðQÞa ~
baH

ðQÞ
b ���Tr½Hð �QÞr ~
sr �H

ð �QÞ
s ���

þE0bTr½ �HðQÞa ~
baH
ðQÞ
b ���5�Tr½Hð �QÞr ~
sr �H

ð �QÞ
s ���5�:

(A14)

where 
ab are the Pauli matrices, and a, b, r, and s are
isospin indices. We notice that for each isospin channel
(I ¼ 0, 1) we have only two independent constants.

On the other hand, at leading order in the chiral expan-
sion the HH� and �H �H� couplings are determined by the
Lagrangian [67]

Lð0Þ
�HH ¼ � gffiffiffi

2
p

f�
fTr½ �HðQÞbHðQÞ

a ���5�

þ Tr½Hð �QÞb �Hð �QÞ
a ���5�gð ~
 � @� ~�Þab þOð�2Þ

(A15)

where ~� is the relativistic field that describes the pion, g is
the PP�� coupling, and f� ’ 132 MeV the pion decay
constant. In the charm sector, g has been determined from
the D� meson decays in Refs. [40,41] yielding g ¼ 0:59�
0:01� 0:07, which we approximate by g ’ 0:6. In the
strict heavy quark limit, the latest lattice QCD results
suggest the value g ¼ 0:449� 0:047� 0:019, see
Refs. [68,69]. In the normalization above the pion field
has dimensions of [energy], while the heavy meson or

antimeson fields HðQÞ or Hð �QÞ have dimensions of

½energy�3=2: as usual in heavy quark physics, we employ
a nonrelativistic normalization for the heavy mesons that
differs from the usual relativistic convention by a factor offfiffiffiffiffiffiffiffi
MH

p
(see for instance Ref. [35]).

APPENDIX B: PROJECTING THE POTENTIAL
INTO THE PARTIALWAVE BASIS

In this appendix we delineate how to project the heavy
meson-antimeson potential into the partial wave basis. In
first place we define the nonrelativistic potential for the
transition (not necessarily elastic)

Hð1Þ �Hð2Þ ! Hð10Þ �Hð20Þ; (B1)

in terms of the tree-level scattering amplitude

T tree ¼ �iV ð1þ 2 ! 10 þ 20Þ; (B2)

where 1, 2, and 10,20 schematically represent the initial and
final state of each of the particles. For heavy meson-
antimeson scattering the initial (final) state is completely
represented by the momentum exchanged between the
particles ~p ¼ ~p1 � ~p2 ( ~p0 ¼ ~p0

1 � ~p0
2) and by the total

and third component of the spin of each of the particles,
which we can collectively call � ¼ fðS1m1ÞðS2m2Þg (�0 ¼
fðS01m0

1ÞðS02m0
2Þg). If we compute V ð1þ 2 ! 10 þ 20Þ in

terms of the usual Feynman rules (each vertex contributes
with iL, additional i factors for each pion propagator in the
case of OPE contributions, etc.), the relationship between
the nonrelativistic potential and the invariant scattering
amplitude is

h ~p0;�0jVj ~p;�i ¼ 1

4
V ð ~p; � ! ~p0; �0Þ: (B3)

Notice that the factor dividing the invariant scattering

amplitude is 4, instead of the usual 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M2M

0
1M

0
2

p
, owing
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to the
ffiffiffiffiffiffiffiffi
MH

p
normalization factor included in the heavy

meson/antimeson fields.
Now we specify the procedure for the partial wave

projection of the potential. To denote the different partial
waves we employ the spectroscopic notation 2Sþ1LJ,
where S, L, and J are the intrinsic, orbital, and total angular
momentum. With this, we define the states with good
angular momentum as follows

jp; JMLSi ¼ 1ffiffiffiffiffiffiffi
4�

p X
ML;MS

ðLSJjMLMSMÞ



Z

d�ðp̂ÞYL;ML
ðp̂Þj ~p; SMSi; (B4)

where p is the modulus of the center-of-mass (c.m.) mo-
mentum ~pð¼ p
 p̂Þ of theH �H pair and ðLSJjMLMSMÞ is
a Clebsch-Gordan coefficient. The normalization of the
states above can be determined from the normalization of
the plane wave basis, that is

h ~p0;S0M0
Sj ~p;SMSi ¼ ð2�Þ3�3ð ~p� ~p0Þ�S;S0�MSM

0
S
; (B5)

yielding

hp0; J0M0L0S0jp; JMLSi

¼ ð2�Þ3 �ðp
0 � pÞ

4�pp0 �JJ0�MM0�LL0�SS0 : (B6)

In this basis the partial wave projection of the potential
reads

VS0S
JL0Lðp0; pÞ

 hp0; JML0S0jVjp; JMLSi
¼ 1

4�

Z
d�ðp̂Þ

Z
d�ðp̂0Þ X

MLMSM
0
LM

0
S

ðLSJjMLMSMÞ


 ðL0S0JjM0
LM

0
SMÞY�

L0;M0
L
ðp̂0ÞYL;ML

ðp̂Þ

 X

m1m2m
0
1
m0

2

ðS1S2Sjm1m2MSÞðS01S02S0jm0
1m

0
2M

0
SÞ


 h ~p0; ðS01m0
1ÞðS02m0

2ÞjVj ~p; ðS1m1ÞðS2m2Þi; (B7)

where thanks to rotational invariance the above matrix
element is independent of the third component of the total
angular momentum M.

APPENDIX C: THE LOWEST ORDER HEAVY
MESON-ANTIMESON POTENTIAL AND ITS

PARTIALWAVE PROJECTION

The lowest order H �H potential contains a contact and a
finite range (pion exchange) piece. The EFT potential can
be derived from the tree-level scattering amplitudes result-

ing from the Lð0Þ
4H and Lð0Þ

�HH Lagrangians of Eqs. (A14)

and (A15). Even though the partial wave projection of the
contact piece is trivial, we will start with the OPE potential
in order to fix the notation. The tree-level invariant ampli-

tude can be obtained from the pion-meson Lð0Þ
�HH

Lagrangian of Eq. (A15), taking the schematic form in
the strict heavy quark limit,

V OPEð ~p0; ~pÞ / ð ~a � ~qÞð ~b � ~qÞ
~q2 þm2

�

; (C1)

where ~q ¼ ~p� ~p0 (that is, the potential is local) and ~a, ~b is
the corresponding polarization operator in each of the
H �H� vertices. The proportionality factor is g2=8f2� times
a sign that depends on the pseudoscalar or vector nature of
each of the particles in the initial and final states. The
modifications to take into account in the above equation
the mass difference between the pseudoscalar and vector
heavy mesons masses are also discussed in Refs. [24,30].
Since we will not be considering particle coupled channels
with the OPE interaction, this becomes an issue in this
work only for the D �D� ! D� �D channel. In that case
in Eq. (C1), m2

� should be substituted by �2
� ¼

m2
� � ðmD� �mDÞ2. Indeed, �2

� � 0, since there is a
very small absorptive contribution from the D �D� channel.
We will neglect it, as in Ref. [24], and in that case we will
consider only the real part of the potential. We now con-
tinue by Fourier transforming the amplitude above into
coordinate space. This step, though counterintuitive at first
sight, will enormously facilitate the calculation of the
partial wave projection of the potential in momentum
space. We remind the reader that the coordinate and mo-
mentum space potentials are related by

h ~p0;�0jVj ~p;�i ¼
Z

d3reið ~p� ~p0Þ� ~rh�0jVð~rÞj�i; (C2)

and we use the symbols � and �0 to encode all the spin
indices (see the previous appendix). Then we make use of a
well-known relationship

Z d3q

ð2�Þ3
ð ~a � ~qÞð ~b � ~qÞ
~q2þm2

�

e�i ~q�~r¼� ~a � ~r ~b� ~r
�
e�m�r

4�r

�
(C3)

from which we obtain the form of the OPE potential

VOPEð~rÞ / ~a � ~b

3
�3ð ~rÞ � ðvCðrÞ ~a � ~bþ vTðrÞS12ð ~a; ~bÞÞ:

(C4)

In this equation S12ð ~a; ~bÞ is the tensor operator, which we
define as

S12ð ~a; ~bÞ ¼ 3ð ~a � ~rÞð ~b � ~rÞ
r2

� ~a � ~b: (C5)

In turn, the central and tensor pieces of the potential, vc

and vT , are given by

vCðrÞ ¼ m3
�

12�

�
e�m�r

m�r

�
; (C6)
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vTðrÞ ¼ vCðrÞ
�
1þ 3

m�r
þ 3

ðm�rÞ2
�
: (C7)

Of course, we are interested in the partial wave projection

of the potential above, VS0S
JL0LðrÞ, since its partial wave

Fourier transform provides the multipole expansion of
the potential in momentum space [Eq. (B7)]

VS0S
JL0Lðp0; pÞ ¼ 4�iL�L0 Z þ1

0
drr2jLðprÞjL0 ðp0rÞVS0S

JL0LðrÞ;
(C8)

where jLðxÞ represent the spherical Bessel function of
order L. The advantage of this expression is that it can
be analytically evaluated with relative ease for the OPE
potential. After a bit of Racah algebra and taking into
account all the signs and factors we have obviated so far
(again, details can be consulted in Ref. [30]), we arrive at
the final expression for the OPE potential in the partial
wave basis

ðVOPEÞS0SJL0LðrÞ ¼ � g2

6f2�
~
1 � ~
2 �ðrÞ

4�r2
C12 þ g2

2f2�
~
1

� ~
2½vCðrÞC12 þ vTðrÞS12�; (C9)

where all the calculational complications are conveniently
hidden in C12 and S12, the partial wave projections of the

~a � ~b and S12ð ~a; ~bÞ operators: C12 and S12 depend on J, L,
L0, S and thus encode all the information required to
determine the coordinate space potential in a particular
partial wave.

The most compact way to write theC12 and S12 factors is
in matrix form, where the matrix is defined in a basis
formed by the set of partial waves with well-defined quan-
tum numbers JPC. We can illustrate this by considering all
the JPC combinations that contain S-waves, that is, the JPC

values we have studied in this work. First we consider the
set of 0þþ partial waves, defined as

B ð0þþÞ ¼ fD �Dð1S0Þ; D� �D�ð1S0Þ; D� �D�ð5D0Þg; (C10)

from which the C12 and S12 matrices are

C12ð0þþÞ ¼
0

� ffiffiffi
3

p
2

0 0 �1

0
BB@

1
CCA; (C11)

S12ð0þþÞ ¼
0

0 0ffiffiffi
6

p ffiffiffi
2

p
2

0
BB@

1
CCA; (C12)

where we have only shown the lower and diagonal com-
ponents as the matrices are symmetric. Next we move to
the 1þþ case, for which we have the particle states D �D�
and D� �D that we need to arrange in states with good
C-parity. We thus define

½D �D�ð�Þ� ¼ 1ffiffiffi
2

p ½D �D� � �D� �D�: (C13)

In this convention the intrinsic C-parity of these states is
independent of the isospin and equal to �. The 1þþ basis
thus reads

B ð1þþÞ ¼ f½D �D�ðþÞ�ð3S1Þ; ½D �D�ðþÞ�

 ð3D1Þ; D� �D�ð5D1Þg; (C14)

for which we obtain the matrices

C12ð1þþÞ ¼
�1

0 �1

0 0 �1

0
BB@

1
CCA; (C15)

S12ð1þþÞ ¼
0ffiffiffi
2

p �1ffiffiffi
6

p ffiffiffi
3

p
1

0
BB@

1
CCA; (C16)

The next case is 1þ�, in which we employ the basis

B ð1þ�Þ ¼ f½D �D�ð�Þ�ð3S1Þ; ½D �D�ð�Þ�

 ð3D1Þ; D� �D�ð3S1Þ; D� �D�ð3D1Þg; (C17)

and get the matrices

C12ð1þ�Þ ¼

1

0 1

�2 0 1

0 �2 0 1

0
BBBBB@

1
CCCCCA; (C18)

S12ð1þ�Þ ¼

0

� ffiffiffi
2

p
1

0 � ffiffiffi
2

p
0

� ffiffiffi
2

p
1 � ffiffiffi

2
p

1

0
BBBBB@

1
CCCCCA: (C19)

The most complex case is 2þþ, in which OPE mixes all
the possible particle channels. We thus work in the basis

Bð2þþÞ¼fD �Dð1D2Þ;½D �D�ðþÞ�ð3D2Þ;D� �D�ð1D2Þ;

D� �D�ð5S2Þ;D� �D�ð5D2Þ;D� �D�ð5G2Þg; (C20)

and obtain the matrices

C12ð2þþÞ ¼

0

0 �1

� ffiffiffi
3

p
0 2

0 0 0 �1

0 0 0 0 �1

0 0 0 0 0 �1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; (C21)
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S12ð2þþÞ ¼

0

0 1

0 0 0ffiffi
6
5

q
�3

ffiffi
2
5

q ffiffi
2
5

q
0

�2
ffiffi
3
7

q
3ffiffi
7

p � 2ffiffi
7

p �
ffiffiffiffi
14
5

q
� 3

7

6
ffiffiffiffi
3
35

q
12ffiffiffiffi
35

p 6ffiffiffiffi
35

p 0 � 12
7
ffiffi
5

p 10
7

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
:

(C22)

Now we consider the contact range piece of the poten-

tial, which can be easily derived from the 4-meson Lð0Þ
4H

Lagrangian of Eq. (A14). For that, we expand the Lð0Þ
4H

Lagrangian into its explicit representation in terms of
pseudoscalar and vector heavy meson fields (detailed ex-
pressions can be consulted in Ref. [30]). The subsequent
partial wave projection is straightforward (owing to the
simplification of working with S-waves only):

ðVCÞS0SJL0LðrÞ ¼
�ðrÞ
4�r2

ðD0a � E0a ~
1 � ~
2Þ�JS�J0S0�L0�L00

þ �ðrÞ
4�r2

ðD0b � E0b ~
1 � ~
2ÞC12; (C23)

from which the potentials of Eqs. (18)–(21) are derived,
Notice however that in Eqs. (18)–(21) we have specified

the potential according to the JPC quantum number of the
heavy meson-antimeson system. The relation between the
couplings of Eqs. (18)–(21) and the corresponding ones in

the Lð0Þ
4H Lagrangian is provided by the expressions

C0a ¼ D0a þ 3E0a; C0b ¼ D0b þ 3E0b; (C24)

where we have isolated the isoscalar contribution.10 If we
are considering the full potential resulting from the sum of
the contact range and OPE contribution

VS0S
JL0LðrÞ ¼ ðVCÞS0SJL0LðrÞ þ ðVOPEÞS0SJL0LðrÞ; (C25)

we see that the �ðrÞ contribution within the OPE potential
can be absorbed within the contact range piece by means of
the replacement

C0b ! C0b � g2

2f2�
; (C26)

which in fact is able to account for the bulk of the change of
this operator when we add the OPE potential, see the
related discussion in Sec. IV.

[1] S. K. Choi et al. (Belle), Phys. Rev. Lett. 91, 262001
(2003).

[2] M. Voloshin and L. Okun, JETP Lett. 23, 333 (1976).
[3] N. A. Tornqvist, Phys. Rev. Lett. 67, 556 (1991).
[4] N. A. Tornqvist, Z. Phys. C 61, 525 (1994).
[5] A. V. Manohar and M.B. Wise, Nucl. Phys. B399, 17

(1993).
[6] T. E. O. Ericson and G. Karl, Phys. Lett. B 309, 426

(1993).
[7] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010).
[8] K. Abe et al. (Belle), arXiv:hep-ex/0505038.
[9] A. Abulencia et al. (CDF), Phys. Rev. Lett. 98, 132002

(2007).
[10] P. del Amo Sanchez et al. (BABAR), Phys. Rev. D 82,

011101 (2010).
[11] C. Hanhart, Y. Kalashnikova, A. Kudryavtsev, and A.

Nefediev, Phys. Rev. D 85, 011501 (2012).
[12] R. Faccini, F. Piccinini, A. Pilloni, and A. Polosa,

arXiv:1204.1223.
[13] I. Adachi et al. (Belle), arXiv:1105.4583.
[14] A. Bondar et al. (Belle), Phys. Rev. Lett. 108, 122001

(2012).
[15] S. Uehara et al. (Belle), Phys. Rev. Lett. 104, 092001

(2010).

[16] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.
102, 242002 (2009).

[17] X. Liu and S.-L. Zhu, Phys. Rev. D 80, 017502 (2009).
[18] T. Branz, T. Gutsche, and V. E. Lyubovitskij, Phys. Rev. D

80, 054019 (2009).
[19] G.-J. Ding, Eur. Phys. J. C 64, 297 (2009).
[20] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett.

95, 142001 (2005).
[21] A.M. Torres, K. Khemchandani, D. Gamermann, and E.

Oset, Phys. Rev. D 80, 094012 (2009).
[22] X. Liu, Z.-G. Luo, Y.-R. Liu, and S.-L. Zhu, Eur. Phys. J.

C 61, 411 (2009).
[23] Z.-F. Sun, J. He, X. Liu, Z.-G. Luo, and S.-L. Zhu, Phys.

Rev. D 84, 054002 (2011).
[24] J. Nieves and M. Valderrama, Phys. Rev. D 84, 056015

(2011).
[25] S. R. Beane, P. F. Bedaque, W. C. Haxton, D. R. Phillips,

and M. J. Savage, At The Frontiers Of Particle Physics:
Handbook Of QCD (World Scientific, Singapore, 2002),
Vol 4.

[26] P. F. Bedaque and U. van Kolck, Annu. Rev. Nucl. Part.
Sci. 52, 339 (2002).

[27] E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).
[28] E. Epelbaum, H.-W. Hammer, and U.-G. Meissner, Rev.

Mod. Phys. 81, 1773 (2009).

10For the isovector states we get C0aðI ¼ 1Þ ¼ D0a � E0a and
C0bðI ¼ 1Þ ¼ D0b � E0b

HEAVY QUARK SPIN SYMMETRY PARTNERS OF THE . . . PHYSICAL REVIEW D 86, 056004 (2012)

056004-17

http://dx.doi.org/10.1103/PhysRevLett.91.262001
http://dx.doi.org/10.1103/PhysRevLett.91.262001
http://dx.doi.org/10.1103/PhysRevLett.67.556
http://dx.doi.org/10.1007/BF01413192
http://dx.doi.org/10.1016/0550-3213(93)90614-U
http://dx.doi.org/10.1016/0550-3213(93)90614-U
http://dx.doi.org/10.1016/0370-2693(93)90957-J
http://dx.doi.org/10.1016/0370-2693(93)90957-J
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://arXiv.org/abs/hep-ex/0505038
http://dx.doi.org/10.1103/PhysRevLett.98.132002
http://dx.doi.org/10.1103/PhysRevLett.98.132002
http://dx.doi.org/10.1103/PhysRevD.82.011101
http://dx.doi.org/10.1103/PhysRevD.82.011101
http://dx.doi.org/10.1103/PhysRevD.85.011501
http://arXiv.org/abs/1204.1223
http://arXiv.org/abs/1105.4583
http://dx.doi.org/10.1103/PhysRevLett.108.122001
http://dx.doi.org/10.1103/PhysRevLett.108.122001
http://dx.doi.org/10.1103/PhysRevLett.104.092001
http://dx.doi.org/10.1103/PhysRevLett.104.092001
http://dx.doi.org/10.1103/PhysRevLett.102.242002
http://dx.doi.org/10.1103/PhysRevLett.102.242002
http://dx.doi.org/10.1103/PhysRevD.80.017502
http://dx.doi.org/10.1103/PhysRevD.80.054019
http://dx.doi.org/10.1103/PhysRevD.80.054019
http://dx.doi.org/10.1140/epjc/s10052-009-1146-4
http://dx.doi.org/10.1103/PhysRevLett.95.142001
http://dx.doi.org/10.1103/PhysRevLett.95.142001
http://dx.doi.org/10.1103/PhysRevD.80.094012
http://dx.doi.org/10.1140/epjc/s10052-009-1020-4
http://dx.doi.org/10.1140/epjc/s10052-009-1020-4
http://dx.doi.org/10.1103/PhysRevD.84.054002
http://dx.doi.org/10.1103/PhysRevD.84.054002
http://dx.doi.org/10.1103/PhysRevD.84.056015
http://dx.doi.org/10.1103/PhysRevD.84.056015
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637
http://dx.doi.org/10.1146/annurev.nucl.52.050102.090637
http://dx.doi.org/10.1016/j.ppnp.2005.09.002
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773


[29] R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).
[30] M. P. Valderrama, Phys. Rev. D 85, 114037 (2012).
[31] S. Fleming, M. Kusunoki, T. Mehen, and U. van Kolck,

Phys. Rev. D 76, 034006 (2007).
[32] N. Isgur and M.B. Wise, Phys. Lett. B 232, 113

(1989).
[33] N. Isgur and M.B. Wise, Phys. Lett. B 237, 527

(1990).
[34] M. Neubert, Phys. Rep. 245, 259 (1994).
[35] A. V. Manohar and M.B. Wise, Cambridge Monogr. Part.

Phys., Nucl. Phys., Cosmol. 10, 1 (2000).
[36] M. T. AlFiky, F. Gabbiani, and A.A. Petrov, Phys. Lett. B

640, 238 (2006).
[37] M. Voloshin, Phys. Rev. D 84, 031502 (2011).
[38] T. Mehen and J.W. Powell, Phys. Rev. D 84, 114013

(2011).
[39] M.B. Wise, Phys. Rev. D 45, R2188 (1992).
[40] S. Ahmed et al. (CLEO Collaboration), Phys. Rev. Lett.

87, 251801 (2001).
[41] A. Anastassov et al. (CLEO Collaboration), Phys. Rev. D

65, 032003 (2002).
[42] E. Epelbaum and J. Gegelia, Eur. Phys. J. A 41, 341

(2009).
[43] D. B. Kaplan, M. J. Savage, and M. B. Wise, Phys. Lett. B

424, 390 (1998).
[44] D. B. Kaplan, M. J. Savage, and M.B. Wise, Nucl. Phys.

B534, 329 (1998).
[45] J. Gegelia, Phys. Lett. B 429, 227 (1998).
[46] M.C. Birse, J. A. McGovern, and K.G. Richardson, Phys.

Lett. B 464, 169 (1999).
[47] U. van Kolck, Nucl. Phys. A645, 273 (1999).
[48] D. Gamermann and E. Oset, Phys. Rev. D 80, 014003

(2009).
[49] D. Gamermann, J. Nieves, E. Oset, and E. R. Arriola,

Phys. Rev. D 81, 014029 (2010).
[50] K. Abe et al. (Belle), Phys. Rev. Lett. 98, 082001 (2007).

[51] P. Pakhlov et al. (Belle), Phys. Rev. Lett. 100, 202001
(2008).

[52] G. T. Bodwin, J. Lee, and E. Braaten, Phys. Rev. Lett. 90,
162001 (2003).

[53] G. T. Bodwin, J. Lee, and E. Braaten, Phys. Rev. D 67,
054023 (2003).

[54] A. Nogga, R. Timmermans, and U. van Kolck, Phys. Rev.
C 72, 054006 (2005).

[55] K. Khemchandani, A.M. Torres, H. Kaneko, H. Nagahiro,
and A. Hosaka, Phys. Rev. D 84, 094018 (2011).

[56] T.D. Cohen, B. A. Gelman, and U. van Kolck, Phys. Lett.
B 588, 57 (2004).

[57] V. Lensky and M. C. Birse, Eur. Phys. J. A 47, 142 (2011).
[58] J. Nieves, M. Pavon Valderrama, and E. R. Arriola (to be

published).
[59] J. Nieves and E. R. Arriola, Phys. Rev. D 64, 116008

(2001).
[60] D. Gamermann, E. Oset, D. Strottman, and M.V. Vacas,

Phys. Rev. D 76, 074016 (2007).
[61] D. Gamermann and E. Oset, Eur. Phys. J. A 33, 119

(2007).
[62] R. Molina and E. Oset, Phys. Rev. D 80, 114013 (2009).
[63] L. Maiani, F. Piccinini, A. Polosa, and V. Riquer, Phys.

Rev. D 71, 014028 (2005).
[64] S. Uehara et al. (Belle Collaboration), Phys. Rev. Lett. 96,

082003 (2006).
[65] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 81,

092003 (2010).
[66] A. F. Falk, H. Georgi, B. Grinstein, and M.B. Wise, Nucl.

Phys. B343, 1 (1990).
[67] B. Grinstein, E. E. Jenkins, A.V. Manohar, M. J. Savage,

and M.B. Wise, Nucl. Phys. B380, 369 (1992).
[68] W. Detmold, C.-J. D. Lin, and S. Meinel, Phys. Rev. Lett.

108, 172003 (2012).
[69] W. Detmold, C.-J. D. Lin, and S. Meinel, Phys. Rev. D 85,

114508 (2012).
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