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A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes

that lead to specific neutrino mass sum rules. One of these implies a lower bound on the effective

neutrinoless double beta mass parameter, even for normal hierarchy neutrinos. Here we propose a new

model based on the S4 flavor symmetry that leads to the new neutrino mass sum rule and discuss how to

generate a nonzero value for the reactor angle �13 indicated by recent experiments, and the resulting

correlation with the solar angle �12.
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I. INTRODUCTION

The discovery of neutrino oscillations have provided a
strong evidence of the nonvanishing neutrino masses,
although their nature (if they are Dirac or Majorana parti-
cles) has so far remained elusive. The observation of
neutrinoless double beta decay (0�2�) would provide an
irrefutable confirmation of the Majorana nature of neutri-
nos [1]. Majorana neutrinos are characterized by a sym-
metric mass matrix whose parameters are restricted by the
experimental data: the neutrino oscillation parameters,
such as mixing angles and neutrino squared mass differ-
ences [2,3], as well as the limits on the 0�2� effective mass
parameter [4,5]. Indeed, upcoming 0��� experiments are
expected to improve the sensitivity by up to about 1 order
of magnitude [6–9].

The general neutrino mixing matrix containing the three
mixing angles and the CP violating phases can be parame-
trized in different equivalent ways [10–12]. A particular
ansatz of the mixing matrix is the tribimaximal mixing
matrix (TBM) [13], which, despite the fact of the nonzero
value of the �13 angle indicated by recent experiments
[14–17], can still be used as a good first approximation,
especially so taking into account that it can receive cor-
rections from charged lepton diagonalization and/or from
renormalization effects, depending on its scale of validity.

Several flavor models based in non-Abelian discrete
symmetries predict a two-parameter neutrino mass matrix,
which imply a particular mixing matrix form, as is pointed
out in [13]. In Ref. [18] it was noted that in these models
only the following mass relations can be obtained:
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where � and � are free parameters that characterize each
specific model. For previous studies on the mass sum rules
(1) and (2) see [19]. A classification of all models predict-
ing TBMmixing that generate mass relations similar to the
first three are given there. The last case is completely new,
and here we will present a model from first principles,
implementing the inverse seesaw mechanism [20,21] as
well as a non-Abelian flavor symmetry [22], along the lines
of Ref. [23], but adopting S4, instead of A4. Non-Abelian
discrete flavor symmetries may also arise from the break-
ing of a continuous symmetry [24–27] or in orbifold con-
structions [28–30].
The inverse seesaw scheme constitutes the first example

of a low-scale seesaw scheme [31] with naturally light
neutrinos. The particle content is the same as that of the
Standard Model except for the addition of a pair of two
component gauge singlet leptons, �c

i and Si,
1 within each

of the three generations, labeled by i. The isodoublet
neutrinos �i and the fermion singlets Si have the same
lepton number, opposite with respect to that of the three
singlets �c

i associated with the ‘‘right-handed’’ neutrinos.
In the �, �c, S basis the 9� 9 neutral lepton mass matrix
M� has the form
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M� ¼
0 mT

D 0
mD 0 MT

0 M �

0
@

1
A; (5)

where mD and M are arbitrary 3� 3 complex matrices,
while � is symmetric due to the Pauli principle. Note that,
in the limit as � ! 0, the lepton number symmetry is
recovered, making the three light neutrinos strictly mass-
less. Thus the smallness of neutrino mass is natural, in the
sense of ’t Hooft [32], as it is protected byUð1ÞL. Note also
that the idea behind the so-called inverse seesaw model can
also be realized within other extended gauge groups such
as left-right symmetry [33,34]. Moreover, in specific mod-
els, the smallness of � may arise dynamically [35].

Following the seesaw diagonalization method in [36]
one sees that, in the limit as � ! 0, U the matrix that
diagonalizes M� consists of a maximal block rotation,
corresponding to the Dirac nature of the three heavy lep-
tons made up of �c

i and Si, followed by the two rotations in
the light and heavy sector, respectively.

As a result of diagonalization one obtains the effective
light neutrino mass matrix as

m� �mT
DM

T�1�M�1mD; (6)

with the entry� being very small. The diagram illustrating
the mass generation through the inverse seesawmechanism
is shown in Fig. 1.

It is straightforward to show that if mD and � are both
proportional to the identity, and

M�MTBM ¼
x y y

y xþ z y� z

y y� z xþ z

0
BB@

1
CCA; (7)

in the basis where the charged lepton mass matrix is
diagonal, here there is a specific (complex) relation among
the parameters x, y, and z [37], leaving only two free
complex parameters, and we obtain the mass sum rule in
Eq. (4).

In Sec. II we give our model. In Sec. III we present
the predictions regarding the lower bound on the 0�2�
amplitude and discuss possible departures from tribimax-
imality, including a finite �13 value. In Appendix C we
present details on the symmetry structure, Yukawa cou-
plings as well as the scalar potential of the model.

II. THE MODEL

Here we follow Table I given in Ref. [23], where
some possible schemes realizing the TBM pattern are
summarized for the inverse seesaw case. From these we
will implement case (1), since the other two cases, (2) and
(3), correspond to the mass sum-rule relations (C) and (A),
respectively, which already have model realizations in the
existing literature,

MD / I ; � / I ; M /
A 0 0

0 B C

0 C B

0
BB@

1
CCA: (8)

In contrast to Ref. [23] here we adopt the S4 flavor sym-
metry, instead of A4.
To obtain the S4-based inverse seesaw model we assign

the charge matter fields as in Table I. Three right-handed
neutrinos �R are introduced, as are three SUð2Þ fermion
singlets Si, i ¼ 1, 2, 3, the latter transforming as the 31
(note that �c and �R are conjugates, and hence have the
opposite lepton number). All fermion fields in Table I
transform as the triplet 31 and the Higgs doublet as the
trivial singlet 11.
On the other hand, to generate the desired mass matrix

structures we introduce five flavon fields, ��, �
0
�, �l, �

0
l,

and �00
l supplemented by the extra symmetries Z3 and Z2,

whose assignments are given in Table II. The presence of
these extra Abelian symmetries in the theory ensures the
presence of adequate zeros in the neutrino mass matrix.
We include in the model a scalar field �, which breaks
the lepton number through its vacuum expectation value
(VEV). Such a field gives mass to the S field.2 We keep
renormalizability of the Lagrangian by adding a Frogatt–
Nielsen fermion � and its conjugate �c, both singlets under
the weak SUð2Þ gauge group [39–42]. In Table II we
present the relevant quantum numbers of the matter fields
in the theory under these extra symmetries.
The renormalizable Lagrangian relevant for neutrinos is

L� ¼ YDij
�Li�Rj

hþ Yk
�ij�Ri

Sj��k
þ Y0

�ij�Ri
Sj�

0
�

þ�ijSiSj�; (9)

while the renormalizable Yukawa terms involving the mes-
senger fields is

L � ¼ M���
c þ �Lh�þ �clR�l þ �clR�

0
l þ �clR�

00
l :

(10)

After integrating out the messenger fields �, the effective
Lagrangian for charged leptons takes the form

FIG. 1. Inverse seesaw mechanism.

2Regarding the possible presence of a Majoron note that it can
be made compatible in two ways, either by making the Majoron
invisible through the addition of singlets (see, for example,
extensive generic discussions of this point in the review in
[38]) or by explicit soft symmetry breaking in the scalar potential
that avoids it altogether. These technical details are outside the
scope of this paper.
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L l ¼ yl
�
ð �LlRÞh�l þ y0l

�
ð �LlRÞh�0

l þ
y00l
�

ð �LlRÞh�00
l ; (11)

where � is the effective scale. This effective Lagrangian is
responsible for charged lepton mass generation, as shown
in Fig. 2.

To obtain the desired neutrino mixing matrix, we require
the flavon fields to have the following alignments:

h��i ¼ v�ð1; 0; 0Þ; h�li ¼ vlð1; 1; 1Þ;
h�0

li ¼ v0
lð1; 1; 1Þ;

(12)

where we also define h�0
�i ¼ v0

�, h�00
l i ¼ v00

l , h�i ¼ v�,

and hhi ¼ v. In Appendix C we report the form of the
potential (C2). We have verified that there exists a large
portion of the parameter space where the required alignment
is found to be a solution of the minimization of the potential.

With these alignments the three 3� 3 blocks in Eq. (5)
and charged lepton matrices take the form

ð�Þ ¼
�v� 0 0

0 �v� 0

0 0 �v�

0
BB@

1
CCA;

MD ¼
YDv 0 0

0 YDv 0

0 0 YDv

0
BB@

1
CCA;

M ¼
Y0
�v

0
� 0 0

0 Y0
�v

0
� Y�v�

0 Y�v� Y0
�v

0
�

0
BB@

1
CCA; (13)

and

Ml ¼
y00l v

00
l ylvl � y0lv

0
l ylvl þ y0lv

0
l

ylvl þ y0lv
0
l y00l v

00
l ylvl � y0lv

0
l

ylvl � y0lv
0
l ylvl þ y0lv

0
l y00l v

00
l

0
BB@

1
CCA v

�
:

(14)

The charged lepton mass matrix, Eq. (14), is diagonalized
by the ‘‘magic’’ matrix

U! ¼ 1ffiffiffi
3

p
1 1 1

1 ! !2

1 !2 !

0
BB@

1
CCA; (15)

where!3 ¼ 1 and 1þ!þ!2 ¼ 0. On the other hand, by
using Eqs. (5) and (6) it is straightforward to obtain the
light neutrino mass matrix, which takes the form

M� ¼

1
a2

0 0

0 a2þb2

ðb2�a2Þ2 � 2ab
ðb2�a2Þ2

0 � 2ab
ðb2�a2Þ2

a2þb2

ðb2�a2Þ2

0
BBBB@

1
CCCCA; (16)

where a¼Y0
�v

0
�=ð ffiffiffiffiffiffiffiffiffiffi

�v�
p

YDvÞ and b¼Y�v�=ð ffiffiffiffiffiffiffiffiffiffi
�v�

p
YDvÞ.

In the basis where charged lepton mass matrix is diagonal,
the light neutrino mass matrix is diagonalized by the TBM
form, and the corresponding eigenvalues are given by

m1 ¼ 1

ðaþ bÞ2 ; m2 ¼ 1

ða� bÞ2 ; m3 ¼ 1

a2
:

(17)

With these eigenvalues we obtain the neutrino mass
sum rule

1ffiffiffiffiffiffi
m1

p ¼ 2ffiffiffiffiffiffi
m3

p � 1ffiffiffiffiffiffi
m2

p ; (18)

which is, indeed, of the type given in Eq. (4).

TABLE II. Fields and their transformation properties under the Z3 and Z2 flavor symmetries.

�L �R lR h S �� �0
� �l �0

l �00
l � � �c

Z3 !2 ! 1 1 1 !2 !2 ! ! ! 1 ! !2

Z2 þ þ þ þ � � � þ þ þ þ þ þ

TABLE I. Fields and transformation properties under SUð2Þ, the S4 flavor symmetry, and global lepton number Ulð1Þ.
�L �R lR h S �� �0

� �l �0
l �00

l � � �c

SUð2Þ 2 1 1 2 1 1 1 1 1 1 1 1 1

S4 31 31 31 11 31 31 11 31 32 11 11 31 31
Uð1ÞL �1 1 1 0 �1 0 0 0 0 0 2 1 �1

FIG. 2. Charged lepton mass generation.
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III. PHENOMENOLOGY

A. Neutrinoless double beta decay

Using the symmetric parametrization of the lepton mixing matrix [10,11] we can obtain the general expression of the
mass parameter jmeej, which determines the 0�2� decay amplitude as

jmeej ¼
��������
X
j

U2
ejmj

��������¼
8<
: jc212c213m1 þ s212c

2
13m2e

1
2i	21 þ s213m3e

1
2ið	31�2
Þj ðPDG½12�Þ;

jc212c213m1 þ s212c
2
13m2e

2i�12 þ s213m3e
2i�13 j ðsymmetricalÞ; (19)

where cij ¼ cos�ij and sij ¼ sin�ij,mi, i ¼ 1, 2, 3, are the
neutrino masses, and we adopt the symmetric parametri-
zation where �12 and �13 are the two Majorana phases.

By varying the neutrino oscillation parameters in their
allowed range, one can plot jmeej in terms of the lightest
neutrino mass. Depending on which is the lightest neutrino,
one can have two different spectra, normal and inverse
hierarchy, respectively. In the latter case one has a lower
bound, on quite general grounds, as in this case there can
be no destructive interference between the light neutrinos.

In the present scheme, however, as noted in Ref. [18],
the neutrino mass sum rule can be interpreted geometri-
cally as a triangle in the complex plane, its area providing a
measure of the Majorana CP violation. Then, fixing the
ð�; �Þ parameters for each model one can, in principle,
determine the two Majorana CP violating phases; see
Ref. [18] for details.

As a result there is a lower bound on jmeej even in
the case of normal hierarchy (for other schemes of this
type see, for example, Ref. [18] and references therein), as
illustrated in Fig. 3. Moreover, since the allowed ranges for
normal and inverse hierarchy are much more constrained in

this model than in the generic case, it becomes possible to
distinguish the neutrino mass hierarchy even for lighter
neutrinos lying within the nondegenerate mass regime.

B. Quark sector

Quarks are introduced as in Table III where, different
from the lepton sector, we assign the first and second
families to a doublet representation of S4 and the third
family to a singlet of S4, namely, QD ¼ ðQ1; Q2Þ � 2,
qRD

¼ ðqR1
; qR2

Þ � 2, Qs ¼ Q3 � 11, and qR3
� 11. We

add flavons �D;S in doublet and singlet representations of

the S4,

Ld
q ¼ ðYd

1
�QSdRS

�S þ Yd
2
�QD�DdRD

þ Yd
3
�QDdRD

�S

þ Yd
4
�QD�DdRS

þ Yd
5
�QS�DdRD

Þh=�þ H:c:; (20)

Lu
q ¼ ðYu

1
�QSuRS

~�S þ Yu
2
�QD

~�DuRD
þ Yu

3
�QDuRD

~�S

þ Yu
4
�QD

~�DuRS
þ Yu

5
�QS

~�DuRD
Þ~h=�þ H:c: (21)

As in the charged lepton sector the dimension five opera-
tors can be given in terms of renormalizable interaction by
introducing suitable messenger fields. Taking the VEV of
�D in the direction (we verified that it is a possible solution
of the potential)

h�Di � ð� ffiffiffi
3

p
; 1Þ; (22)

the mass matrix for the quarks is

MuðdÞ ¼
muðdÞ

1 þmuðdÞ
2 � ffiffiffi

3
p

muðdÞ
2 � ffiffiffi

3
p

muðdÞ
5

� ffiffiffi
3

p
muðdÞ

2 muðdÞ
1 �muðdÞ

2 muðdÞ
5

� ffiffiffi
3

p
muðdÞ

4 muðdÞ
4 muðdÞ

3

0
BBB@

1
CCCA;

(23)

which is very similar to the one proposed in Ref. [43]
where a fit of the quark masses and mixing has been
performed, and we refer to that paper for more detail.

C. Finite �13 value

As we have discussed so far, the model leads to the TBM
pattern. However, by coupling an extra S4-doublet flavon
field one can obtain corrections from the charged lepton
sector, which induce nonzero values of �13 as recently
suggested by the Daya Bay experiment [14], the T2K

FIG. 3 (color online). jmeej as a function of the lightest neu-
trino mass corresponding to the mass sum rule in Eq. (4). The
lower band in gray and upper band in blue correspond to generic
normal and inverse hierarchy regions, while the yellow (inside
the lower gray band) and green (inside the upper yellow band)
bands correspond to our flavor prediction varying the values of
oscillation parameters in their 3� C.L. range. The thin bands (in
red) correspond to the TBM limit. The band in the top corre-
sponds to the present bounds on 0�2�. For references to the
experiments see [6–9,47].
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[15], the Double Chooz [16], and the RENO [17] results,
including also recent reactor flux calculations.

For example, consider a flavon scalar doublet under S4,
�� 2 and transforming as ð!;þÞ under Z3 � Z2. In the
Lagrangian we must then include the term

ð �LlRÞh�: (24)

This is a dimension five operator that can be obtained from
a renormalizable Lagrangian by means of the messenger
fields �, �c of Table I as shown in Fig. 2. Assuming that �
acquires the VEV h�i ¼ ðu1; u2Þ, a natural vacuum align-

ment is u1 ¼ � ffiffiffi
3

p
u2, since this is consistent with the

previous alignments in Eq. (12). Using multiplication rules
in Appendix A one finds that the contribution from this
term to the charged lepton mass matrix is


Ml ¼
�

ffiffi
2
3

q
vu2 0 0

0
ffiffi
1
2

q
vu1 þ

ffiffi
1
6

q
vu2 0

0 0 �
ffiffi
1
2

q
vu1 þ

ffiffi
1
6

q
vu2

0
BBBBBB@

1
CCCCCCA;

(25)

which modifies the diagonal entries 
Ml in the charged
lepton mass matrix, Ml, so that the total Ml þ 
Ml is no
longer diagonalized by U!. This way one can induce a
potentially ‘‘large’’ value for �13, as hinted by recent ex-
periments [15,16], and also potential departures of the
solar and atmospheric angles from their TBM values.
Moreover, in the presence of a nonzero �13 one finds
relations among these neutrino mixing angles. The most
interesting of these is the correlation involving the solar
and reactor angles, as illustrated in Fig. 4.3 The horizontal
green band represents the 2� Daya Bay measurement [14],
and its central value is indicated by the horizontal red line,
while the horizontal dot-dashed line indicates the central
value of the recent RENO measurement [17]. On the other
hand, the vertical band, delimited by dotted lines, corre-
sponds to the 3� region for sin2�12 found in the global
analysis in Ref. [2], and the vertical line corresponds to
the central value. The region in lavender shows the cor-
relation between the reactor and solar angles. We observe
that the deviation of �13 from zero can be substantial
provided the departure of �12 from its TBM value is
also large. Moreover, the model is consistent with the
measurements of the two recent reactor experiments,
only if the solar angle lies substantially BELOW the
TBM prediction (at 2�).
Needless to stress, a nonzero �13 would also open the

way also for the phenomenon of CP violation in neutrino
oscillations, one of the central goals of the upcoming
generation of long baseline oscillation studies [44,45].

ACKNOWLEDGMENTS

This work was supported by the Spanish MEC under
Grants No. FPA2011-22975 and No. MULTIDARK
CSD2009-00064 (Consolider-Ingenio 2010 Programme),
by Prometeo/2009/091 (Generalitat Valenciana), by the EU
ITN UNILHC PITN-GA-2009-237920. S.M. is supported
by a Juan de la Cierva contract. E. P. is supported by
CONACyT (Mexico). A.D. R. is supported by Fundación
Carolina and would like to thank IFIC for the hospitality
while this work was carried out and Alfredo Aranda for his
helpful suggestions. L. D. is supported by a CSIC JAE
predoctoral grant.

FIG. 4 (color online). The lavender region between the two
curves represents the correlation between the reactor and solar
neutrino mixing angles. The vertical red line corresponds to the
best global determination of the solar mixing angle, while the
vertical light red band corresponds to the 3� region for the solar
mixing angle. The horizontal dashed red line corresponds to the
central value of the RENO measurement for the reactor mixing
angle, the horizontal red line corresponds to the central value, and
the horizontal green band corresponds to the 2� of the Daya Bay
Collaboration.

TABLE III. Quark sector and their transformation properties under the Z3 and Z2 flavor symmetries.

�QD
�QS uRD

uRS
dRD

dRS
�D �S

SUð2Þ 2 2 1 1 1 1 1 1

S4 2 11 2 11 2 11 2 11
Z3 ! ! !2 !2 ! ! ! !
Z2 þ þ � � � � � �

3Note also that the correlation is very sharp close to the TBM
limit.
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APPENDIX A: S4 GROUP

The S4 group is the discrete group given by the four
objects’ permutations. It contains 24 elements and can be
obtained from two generators, S and T, satisfying

S4 ¼ T3 ¼ 1; ST2S ¼ T: (A1)

The S4 irreducible representations are two singlets, 11,
12, one doublet, 2, and two triplets, 31, 32. The product
rules are given by (for more details see [46])

1i � 1j ¼ 1ðiþjÞmod2þ1 8 i; j;

2� 1i ¼ 2 8 i;

3i � 1j ¼ 1ðiþjÞmod2þ1 8 i; j;

3i � 2 ¼ 31 þ 32 8 i;

31 � 32 ¼ 12 þ 2þ 31 þ 32;

2� 2 ¼ 11 þ 2þ 12;

3i � 3i ¼ 11 þ 2þ 31 þ 32 8 i; (A2)

where we can introduce the notation ½���� and f���g
for the symmetric and antisymmetric parts of ���,
respectively:

½2� 2� ¼ 11 þ 2; f2� 2g ¼ 12;

½3i � 3i� ¼ 11 þ 2þ 31; f3i � 3ig ¼ 32 8 i: (A3)

Given the following representations:

A; A0 � 11; B; B0 � 12;

a1

a2

 !
;

a01
a02

 !
� 2;

b1

b2

b3

0
BB@

1
CCA;

b01
b02
b03

0
BB@

1
CCA� 31;

c1

c2

c3

0
BB@

1
CCA;

c01
c02
c03

0
BB@

1
CCA� 32;

(A4)

the conjugate representations transform in the sameway, as
the representation matrices can be chosen all real.

For the product of one-dimensional representations the
Clebsch–Gordan coefficients are the trivial products of
representations, and also for the product of the 11 singlet
with any nontrivial representation

Aa1

Aa2

 !
� 2;

Ab1

Ab2

Ab3

0
BB@

1
CCA� 31;

Ac1

Ac2

Ac3

0
BB@

1
CCA� 32:

(A5)

For the product with the 12 singlet

�Ba2

Ba1

 !
� 2;

Ab1

Ab2

Ab3

0
BB@

1
CCA� 32;

Ac1

Ac2

Ac3

0
BB@

1
CCA� 31:

(A6)

The Clebsch–Gordan coefficients for the product 2� 2 are

a1a
0
1 þ a2a

0
2 � 11; �a1a

0
2 þ a2a

0
1 � 12;

a1a
0
2 þ a2a

0
1

a1a
0
1 � a2a

0
2

 !
� 2; (A7)

for 31 � 31

X3
j¼1

bjb
0
j � 11;

1ffiffi
2

p ðb2b02 �b3b
0
3Þ

1ffiffi
6

p ð�2b1b
0
1 þ b2b

0
2 þb3b

0
3Þ

0
@

1
A� 2;

b2b
0
3 þ b3b

0
2

b1b
0
3 þ b3b

0
1

b1b
0
2 þ b2b

0
1

0
BB@

1
CCA� 31;

b3b
0
2 �b2b

0
3

b1b
0
3 �b3b

0
1

b2b
0
1 �b1b

0
2

0
BB@

1
CCA� 32; (A8)

and for 32 � 32

X3
j¼1

cjc
0
j � 11;

1ffiffi
2

p ðc2c02 � c3c
0
3Þ

1ffiffi
6

p ð�2c1c
0
1 þ c2c

0
2 þ c3c

0
3Þ

0
@

1
A� 2;

c2c
0
3 þ c3c

0
2

c1c
0
3 þ c3c

0
1

c1c
0
2 þ c2c

0
1

0
BB@

1
CCA� 31;

c3c
0
2 � c2c

0
3

c1c
0
3 � c3c

0
1

c2c
0
1 � c1c

0
2

0
BB@

1
CCA� 32: (A9)

For the couplings 2� 31 and 2� 32, we have, respectively,

a2b1

� 1
2 ð

ffiffiffi
3

p
a1b2 þ a2b2Þ

1
2 ð

ffiffiffi
3

p
a1b3 � a2b3Þ

0
BB@

1
CCA� 31;

a1c1
1
2 ð

ffiffiffi
3

p
a2c2 � a1c2Þ

� 1
2 ð

ffiffiffi
3

p
a2c3 þ a1c3Þ

0
BB@

1
CCA� 31;

a1b1
1
2 ð

ffiffiffi
3

p
a2b2 � a1b2Þ

� 1
2 ð

ffiffiffi
3

p
a2b3 þ a1b3Þ

0
BB@

1
CCA� 32;

a2c1

� 1
2 ð

ffiffiffi
3

p
a1c2 þ a2c2Þ

1
2 ð

ffiffiffi
3

p
a1c3 � a2c3Þ

0
BB@

1
CCA� 32: (A10)

And finally, for the 31 � 32 product

X3
j¼1

bjcj � 12;
1ffiffi
6

p ð2b1c1 � b2c2 � b3c3Þ
1ffiffi
2

p ðb2c2 � b3c3Þ
 !

� 2;

b3c2 � b2c3
b1c3 � b3c1
b2c1 � b1c2

0
@

1
A� 31;

b2c3 þ b3c2
b1c3 þ b3c1
b1c2 þ b2c1

0
@

1
A� 32:

(A11)

APPENDIX B: YUKAWA COUPLINGS

Each term in the Lagrangian for neutrinos and charged
leptons can be decomposed by components as
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�S � S� ¼ �ðS1S1 þ S2S2 þ S3S3Þ�; (B1)

YD
�L � �Rh ¼ YDð �L1�1R þ �L2�2R þ �L3�3RÞh; (B2)

Y�ð�R � SÞ�� ¼ Y�½ð�2RS3R þ �3RS2Þ��1 þ ð�1RS3R

þ �3RS1Þ��2 þ ð�1RS2R þ �2RS1Þ��3�;
(B3)

Y0
�ð�R � SÞ�0

� ¼ Y0
�ð�1RS1 þ �2RS2 þ �3RS3Þ�0

�; (B4)

yl
�
ð �LlRÞh�l ¼ yl

�
½ð �L2l3R þ �L3l2RÞh�l1 þ ð �L1l3R

þ �L3l1RÞh�l2 þ ð �L1l2R þ �L2l1RÞh�l3�;
(B5)

y0l
�
ð �LlRÞh�0

l ¼
y0l
�
½ð �L3l2R � �L2l3RÞh�0

l1
þ ð �L1l3R

� �L3l1RÞh�0
l2
þ ð �L2l1R � �L1l2RÞh�0

l3
�;
(B6)

y00l
�

ð �LlRÞh�00
l ¼ y00l

�
ð �L1l1R þ �L2l2R þ �L3l3RÞh�00

l �: (B7)

APPENDIX C: SCALAR POTENTIAL

The most general renormalizable scalar potential is
(without writing the S4 products explicitly)

V ¼ VðhÞ þ Vð�Þ þ Vð��Þ þ Vð�0
�Þ þ Vð�lÞ

þ Vð�0
lÞ þ Vð�00

l Þ (C1)

þ Vð��;�
0
�;�l; �

0
l; �

00
l Þ þ Vð�; h;��;�

0
�; �l; �

0
l; �

00
l Þ;
(C2)

with

VðhÞ ¼ �hh
yhþ �hðhyhÞðhyhÞ; Vð�Þ ¼ ���

y�þ ��ð�y�Þð�y�Þ;
Vð��Þ ¼ �1ð�y

���Þ þ
X
i

��
j f�y

����
y
���gi; Vð�0

�Þ¼ �2ð�0y
� �0

�Þ þP
i
��0
j f�0y

� �0
��

0y
� �0

�gi;

Vð�lÞ ¼ �3ð�y
l �lÞ þ

X
i

�l
if�y

l �l�
y
l �lgi þ

X
i

�ifð�l�lÞ�l þ H:c:gi;

Vð�0
lÞ ¼ �4ð�0y

l �
0
lÞ þ

X
i

�l0
i f�0y

l �
0
l�

0y
l �

0
lgi þ

X
i

�ifð�0
l�

0
lÞ�0

l þ H:c:gi;

Vð�00
l Þ ¼ �5ð�00y

l �00
l Þ þ

X
i

�l00
i f�00y

l �00
l �

00y
l �00

l gi þ H:c:;

Vð�; h;��;�
0
�; �l; �

0
l; �

00
l Þ ¼ �h�ðhyhÞð�y�Þ þ ���ð�y

���Þð�y�Þ þ ��0�ð�0y
� �0

�Þð�y�Þ þ �l�ð�y
l �lÞð�y�Þ

þ �l0�ð�0y
l �

0
lÞð�y�Þ þ �l00�ð�00y

l �00
l Þð�y�Þ;

Vð��;�
0
�; �l; �

0
l; �

00
l Þ ¼

X
i

�if�l�l�
0
lgi þ

X
i

�if�l�
0
l�

0
lgi þ

X
i

�if�l�l�
00
l gi þ

X
i

�if�0
l�

0
l�

00
l gi þ

X
i

�if�y
l ����gi

þX
i

�if�0y
l ����gi þ

X
i

�if�00y
l ����gi þ

X
i

�if�y
l ���

0
�gi þ

X
i

�if�00y
l �0

��
0
�gi

þX
i

�lll0l0
i f�y

l �
y
l �

0
l�

0
lgi þ

X
i

�ll0l0l0
i f�l�

0y
l �

0
l�

0
lgi þ

X
i

�llll0
i f�y

l �
y
l �l�

0
lgi

þX
i

�llll0
i f�0y

l �
y
l �l�

0
lgi þ

X
i

�ll0l0l0
i f�y

l �
0y
l �

0
l�

0
lgi þ

X
i

�llll0
i f�y

l �
y
l �l�

00
l gi

þX
i

�llll00
i f�y

l �
y
l �

0
l�

00
l gi þ

X
i

�ll0ll00
i f�y

l �
0y
l �l�

00
l gi þ

X
i

�ll0l0l00
i f�y

l �
0y
l �

0
l�

00
l gi

þX
i

�l0l0ll00
i f�0y

l �
0y
l �l�

00
l gi þ

X
i

�l0l0l0l00
i f�0y

l �
0y
l �

0
l�

00
l gi þ

X
i

�lll00l00
i f�y

l �
y
l �

00
l �

00
l gi

þX
i

�l0l0l00l00
i f�0y

l �
0y
l �

00
l �

00
l gi þ

X
i

�ll00ll00
i f�y

l �
00y
l �l�

00
l gi þ

X
i

�l0l00l0l00
i f�0y

l �
00y
l �0

l�
00
l gi

þX
i

�ll��
i f�l�l����gi þ

X
i

�ll0��
i f�l�

0
l����gi þ

X
i

�l0l0��
i f�0

l�
0
l����gi

þX
i

�ll00��
i f�l�

00
l ����gi þ

X
i

�l0l00��
i f�0

l�
00
l ����gi þ

X
i

�l00l00��
i f�00

l �
00
l ����gi
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þX
i

�ll��
i f�y

l �l�
y
���gi þ

X
i

�ll0��
i f�y

l �
0
l�

y
���gi þ

X
i

�l0l0��
i f�0y

l �
0
l�

y
���gi

þX
i

�ll00��
i f�y

l �
00
l �

y
���gi þ

X
i

�l0l00��
i f�0y

l �
00
l �

y
���gi þ

X
i

�ll��0
i f�l�l���

0
�gi

þX
i

�ll0��0
i f�l�

0
l���

0
�gi þ

X
i

�l0l0��0
i f�0

l�
0
l���

0
�gi þ

X
i

�l0l00��0
i f�0

l�
00
l ���

0
�gi

þX
i

�ll��0
i f�y

l �l�
y
��0

�gi þ
X
i

�ll0��0
i f�y

l �
0
l�

y
��0

�gi þ
X
i

�l0l��0
i f�0y

l �l�
y
��0

�gi

þX
i

�l0l0��0
i f�0y

l �
0
l�

y
��0

�gi þ
X
i

�ll00��0
i f�y

l �
00
l �

y
��0

�gi þ
X
i

�����0
i f�y

����
y
��0

�gi

þX
i

���0��0
i f�y

��0
��

y
��0

�gi þ
X
i

����0�0
i f�y

����
0y
� �0

�gi þ
X
i

�ll�0�0
i f�l�l�

0
��

0
�gi

þX
i

�l0l0�0�0
i f�0

l�
0
l�

0
��

0
�gi þ

X
i

�l00l00�0�0
i f�00

l �
00
l �

0
��

0
�gi þ

X
i

�ll00��0
i f�y

l �
00
l �

0y
� ��gi

þX
i

�ll�0�0
i f�y

l �l�
0y
� �0

�gi þ
X
i

�l0l0�0�0
i f�0y

l �
0
l�

0y
� �0

�gi þ
X
i

�l00l00��
i f�00y

l �00
l �

y
���gi

þX
i

�l00l00�0�0
i f�00y

l �00
l �

0y
� �0

�gi þ H:c:;

where
P

i�ifgi, Pi�ifgi sums over all possible ways to
group the fields inside the brackets and make the product
of representations in order to obtain a singlet.

APPENDIX D: SCALE OF THE FLAVON
FIELD VEVS

In this appendix, we give an example for the possible
scale of the flavon fields. From the Lagrangian of the
charged leptons in Eqs. (B5)–(B7) we take, for instance,
the Yukawa couplings to be of order one and all the field
VEVs of the same order of magnitude, which we set at the
scale of TeV. For definiteness let us take the term in Eq. (B5)

ylv
h�li
�

� 1

3
m; (D1)

where the scale� corresponds to the that of the mass of the
fields �. Taking yl � 1 in Eq. (D1) gives

h�li
�

� 1

3

m

v
� 3:4� 10�3: (D2)

Of course, we can always tune the Yukawa couplings in
order to change this ratio. The same is valid for the flavon
VEVs in Eqs. (B6) and (B7).
Let us continue with this example: from the neutrino

sector, we have that the neutrino mass is of the order4

m� ��v�

v2

v2
�

��v�

ð100 GeVÞ2
ð3000 GeVÞ2 � 10�3�v�; (D3)

where we choose a mass for the right-handed neutrinos of
the order of 3 TeV. Then a neutrino mass matrix of 1 eV
would correspond to �v� � 1 KeV.
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