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New neutrino mass sum rule from the inverse seesaw mechanism
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A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes
that lead to specific neutrino mass sum rules. One of these implies a lower bound on the effective
neutrinoless double beta mass parameter, even for normal hierarchy neutrinos. Here we propose a new
model based on the S, flavor symmetry that leads to the new neutrino mass sum rule and discuss how to
generate a nonzero value for the reactor angle 6,3 indicated by recent experiments, and the resulting

correlation with the solar angle 6,.
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L. INTRODUCTION

The discovery of neutrino oscillations have provided a
strong evidence of the nonvanishing neutrino masses,
although their nature (if they are Dirac or Majorana parti-
cles) has so far remained elusive. The observation of
neutrinoless double beta decay (0»283) would provide an
irrefutable confirmation of the Majorana nature of neutri-
nos [1]. Majorana neutrinos are characterized by a sym-
metric mass matrix whose parameters are restricted by the
experimental data: the neutrino oscillation parameters,
such as mixing angles and neutrino squared mass differ-
ences [2,3], as well as the limits on the 0v2 83 effective mass
parameter [4,5]. Indeed, upcoming Ov 383 experiments are
expected to improve the sensitivity by up to about 1 order
of magnitude [6-9].

The general neutrino mixing matrix containing the three
mixing angles and the CP violating phases can be parame-
trized in different equivalent ways [10-12]. A particular
ansatz of the mixing matrix is the tribimaximal mixing
matrix (TBM) [13], which, despite the fact of the nonzero
value of the 0,3 angle indicated by recent experiments
[14-17], can still be used as a good first approximation,
especially so taking into account that it can receive cor-
rections from charged lepton diagonalization and/or from
renormalization effects, depending on its scale of validity.

Several flavor models based in non-Abelian discrete
symmetries predict a two-parameter neutrino mass matrix,
which imply a particular mixing matrix form, as is pointed
out in [13]. In Ref. [18] it was noted that in these models
only the following mass relations can be obtained:
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where y and ¢ are free parameters that characterize each
specific model. For previous studies on the mass sum rules
(1) and (2) see [19]. A classification of all models predict-
ing TBM mixing that generate mass relations similar to the
first three are given there. The last case is completely new,
and here we will present a model from first principles,
implementing the inverse seesaw mechanism [20,21] as
well as a non-Abelian flavor symmetry [22], along the lines
of Ref. [23], but adopting S,, instead of A;. Non-Abelian
discrete flavor symmetries may also arise from the break-
ing of a continuous symmetry [24-27] or in orbifold con-
structions [28-30].

The inverse seesaw scheme constitutes the first example
of a low-scale seesaw scheme [31] with naturally light
neutrinos. The particle content is the same as that of the
Standard Model except for the addition of a pair of two
component gauge singlet leptons, v§ and S.,! within each
of the three generations, labeled by i. The isodoublet
neutrinos »; and the fermion singlets S; have the same
lepton number, opposite with respect to that of the three
singlets »{ associated with the “right-handed” neutrinos.
In the », v°, S basis the 9 X 9 neutral lepton mass matrix
M, has the form

“4)

"Note that here S; is used for fermion singlets.
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0 mh o0
M,=|mp 0 M| (5)
0 M u

where mp and M are arbitrary 3 X 3 complex matrices,
while u is symmetric due to the Pauli principle. Note that,
in the limit as w — 0, the lepton number symmetry is
recovered, making the three light neutrinos strictly mass-
less. Thus the smallness of neutrino mass is natural, in the
sense of *t Hooft [32], as it is protected by U(1), . Note also
that the idea behind the so-called inverse seesaw model can
also be realized within other extended gauge groups such
as left-right symmetry [33,34]. Moreover, in specific mod-
els, the smallness of x may arise dynamically [35].

Following the seesaw diagonalization method in [36]
one sees that, in the limit as w — 0, U the matrix that
diagonalizes M, consists of a maximal block rotation,
corresponding to the Dirac nature of the three heavy lep-
tons made up of »¢ and S;, followed by the two rotations in
the light and heavy sector, respectively.

As a result of diagonalization one obtains the effective
light neutrino mass matrix as

m, ~mEMT uM " "mp, (6)

with the entry w being very small. The diagram illustrating
the mass generation through the inverse seesaw mechanism
is shown in Fig. 1.

It is straightforward to show that if mp and u are both
proportional to the identity, and

X y y

MNMTBM= y x+z y—z| )

y y—z x+tz

in the basis where the charged lepton mass matrix is
diagonal, here there is a specific (complex) relation among
the parameters x, y, and z [37], leaving only two free
complex parameters, and we obtain the mass sum rule in
Eq. (4).

In Sec. Il we give our model. In Sec. III we present
the predictions regarding the lower bound on the 023
amplitude and discuss possible departures from tribimax-
imality, including a finite 6,3 value. In Appendix C we
present details on the symmetry structure, Yukawa cou-
plings as well as the scalar potential of the model.

FIG. 1. Inverse seesaw mechanism.
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II. THE MODEL

Here we follow Table I given in Ref. [23], where
some possible schemes realizing the TBM pattern are
summarized for the inverse seesaw case. From these we
will implement case (1), since the other two cases, (2) and
(3), correspond to the mass sum-rule relations (C) and (A),
respectively, which already have model realizations in the
existing literature,

A0 0
MpxI, —uxI  Mox|0 B C| ®
0 C B

In contrast to Ref. [23] here we adopt the S, flavor sym-
metry, instead of A,.

To obtain the S4-based inverse seesaw model we assign
the charge matter fields as in Table I. Three right-handed
neutrinos vy are introduced, as are three SU(2) fermion
singlets S;, i = 1, 2, 3, the latter transforming as the 3,
(note that »“ and vy are conjugates, and hence have the
opposite lepton number). All fermion fields in Table I
transform as the triplet 3; and the Higgs doublet as the
trivial singlet 1;.

On the other hand, to generate the desired mass matrix
structures we introduce five flavon fields, ¢, ¢/, ¢;, @],
and ¢/ supplemented by the extra symmetries Z3 and Z,,
whose assignments are given in Table II. The presence of
these extra Abelian symmetries in the theory ensures the
presence of adequate zeros in the neutrino mass matrix.
We include in the model a scalar field o, which breaks
the lepton number through its vacuum expectation value
(VEV). Such a field gives mass to the § field.”> We keep
renormalizability of the Lagrangian by adding a Frogatt—
Nielsen fermion y and its conjugate y°, both singlets under
the weak SU(2) gauge group [39-42]. In Table II we
present the relevant quantum numbers of the matter fields
in the theory under these extra symmetries.

The renormalizable Lagrangian relevant for neutrinos is
L, = Yp,Livg,h + Y,’jijVRiqu’),,k + Y,/,ijVR,Sj(M

while the renormalizable Yukawa terms involving the mes-
senger fields is

L, =M xx+Lhy + x‘lgd; + x“Igd] + xIrp).
(10)

After integrating out the messenger fields y, the effective
Lagrangian for charged leptons takes the form

“Regarding the possible presence of a Majoron note that it can
be made compatible in two ways, either by making the Majoron
invisible through the addition of singlets (see, for example,
extensive generic discussions of this point in the review in
[38]) or by explicit soft symmetry breaking in the scalar potential
that avoids it altogether. These technical details are outside the
scope of this paper.
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TABLE I. Fields and transformation properties under SU(2), the S, flavor symmetry, and global lepton number U;(1).
L VR Ig h N b, b, i b 7 g X X
SU(_2) 2 1 1 2 1 1 1 1 1 1 1 1 1
Sy 3 3 3, 1, 3 3 1, 3, 3, 1; 1, 3 3,
U(l), -1 1 1 0 -1 0 0 0 0 2 1 -1
TABLE II. Fields and their transformation properties under the Z; and Z, flavor symmetries.
L VR Ig h S b, ¢, b ¢ ¢/ o X X
Z; w? W 1 1 1 w? w? W o o 1 0} w?
Z, + + + + - - - + - - - - +
i 7 Y7 N 111
Ly =2 (Lihe, + 3 (Lihe] + = (Lighe], (11) 1
A A A Upy=-—7%|1 o o 15
©“~ 5 , (15)
where A is the effective scale. This effective Lagrangian is 0 o

responsible for charged lepton mass generation, as shown
in Fig. 2.

To obtain the desired neutrino mixing matrix, we require
the flavon fields to have the following alignments:

<¢I/> = UV(L 0’ 0): <¢l> = Ul(lr 1: 1)’
(¢ =v(1, 1, 1),

where we also define (¢),) = v}, (¢]) = v/, (o) = v,,
and (h) = v. In Appendix C we report the form of the
potential (C2). We have verified that there exists a large
portion of the parameter space where the required alignment
is found to be a solution of the minimization of the potential.

With these alignments the three 3 X 3 blocks in Eq. (5)
and charged lepton matrices take the form

(mv, 0 0

(12)

=1 0 wv, 0 [
0 0 v,
[Ypv O 0
Mp = 0O Ypv O |,
0 0 Ypv
(Yiv, O 0
M= 0o Y, v, | (13)
0 Y, Y,
and
yi'vy yivr = yvp yiv v
M=y +ypr oyl v =y %
YV = Yvp yivi Ty yivy
(14)

The charged lepton mass matrix, Eq. (14), is diagonalized
by the “magic” matrix

where w® = 1 and 1 + @ + w? = 0. On the other hand, by
using Egs. (5) and (6) it is straightforward to obtain the
light neutrino mass matrix, which takes the form

L0 0
_ 0 a’+b? _ _ 2ab 16
MV = b —a2): =27 | ( )
0o - 2ab a?+b?

(h2_a2)2 (bz_uZ)Z

where a=Y v, /(/uv,Ypv) and b=Y,v,/(\/uv,Ypv).
In the basis where charged lepton mass matrix is diagonal,
the light neutrino mass matrix is diagonalized by the TBM
form, and the corresponding eigenvalues are given by
1 1 1
=, my = ——, my = —.
(a + b)? 2 (a—b)? a2
7)
With these eigenvalues we obtain the neutrino mass
sum rule

m

1 2 1
—_—=——, 18
/My /I’H,3 /My ( )
which is, indeed, of the type given in Eq. (4).
A
X N X o109
' '
1 1
1 1
] ]
1 1
1 1
1 1
1 1
1 1
> ¢ > ® > ¢ >
L X X I

FIG. 2. Charged lepton mass generation.
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III. PHENOMENOLOGY

A. Neutrinoless double beta decay

Using the symmetric parametrization of the lepton mixing matrix [10,11] we can obtain the general expression of the
mass parameter |m,,|, which determines the 0»28 decay amplitude as

_ 2
Ime | = | D UZm;
J

where ¢;; = cosf;; and s;; = sinf;;, m;, i = 1,2, 3, are the
neutrino masses, and we adopt the symmetric parametri-
zation where ¢, and ¢ 5 are the two Majorana phases.

By varying the neutrino oscillation parameters in their
allowed range, one can plot |m,,| in terms of the lightest
neutrino mass. Depending on which is the lightest neutrino,
one can have two different spectra, normal and inverse
hierarchy, respectively. In the latter case one has a lower
bound, on quite general grounds, as in this case there can
be no destructive interference between the light neutrinos.

In the present scheme, however, as noted in Ref. [18],
the neutrino mass sum rule can be interpreted geometri-
cally as a triangle in the complex plane, its area providing a
measure of the Majorana CP violation. Then, fixing the
(¢, x) parameters for each model one can, in principle,
determine the two Majorana CP violating phases; see
Ref. [18] for details.

As a result there is a lower bound on |m,,| even in
the case of normal hierarchy (for other schemes of this
type see, for example, Ref. [18] and references therein), as
illustrated in Fig. 3. Moreover, since the allowed ranges for
normal and inverse hierarchy are much more constrained in

Present 0023 bounds
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FIG. 3 (color online). |m,,| as a function of the lightest neu-
trino mass corresponding to the mass sum rule in Eq. (4). The
lower band in gray and upper band in blue correspond to generic
normal and inverse hierarchy regions, while the yellow (inside
the lower gray band) and green (inside the upper yellow band)
bands correspond to our flavor prediction varying the values of
oscillation parameters in their 30 C.L. range. The thin bands (in
red) correspond to the TBM limit. The band in the top corre-
sponds to the present bounds on Or2f. For references to the
experiments see [6-9,47].

2 2 2 2 lia 2 L
_ {|c12c13m1 + 57,07,mpe? 2 + s1ymses

2 0 2 2 2id 2 2igy,
lctyciamy + sycimae® 12 + siymye” |

i(a3 —20) | (PDG[lz])’

(19)
(symmetrical),

this model than in the generic case, it becomes possible to
distinguish the neutrino mass hierarchy even for lighter
neutrinos lying within the nondegenerate mass regime.

B. Quark sector

Quarks are introduced as in Table III where, different
from the lepton sector, we assign the first and second
families to a doublet representation of S, and the third
family to a singlet of S,, namely, QOp = (Q;, 0,) ~ 2,
qr, = (QRI’ QRZ) ~2, O, =03~1;, and qr, ~ 1,. We
add flavons ¢, g in doublet and singlet representations of
the S4,

L8 = (Y{Qgdg s + Y{Opdpdg, + Y{Opdg, s
+ Y{Opdpdr, + Y¢Qsbpdr,)h/A +He., (20)

7= (Y?QSMRSJ’S + YgQ_Dq;DuRD + YgQDuRD(Z)S
+ YZQ_D(ZDMRS + YgQ_S(Z’D”RD)ﬁ/A + H.c. (21)

As in the charged lepton sector the dimension five opera-
tors can be given in terms of renormalizable interaction by
introducing suitable messenger fields. Taking the VEV of
¢ p in the direction (we verified that it is a possible solution
of the potential)

(¢p)~ (—V3,1), (22)
the mass matrix for the quarks is
mtlt(d) + mg(d) _\/gmg(d) _ﬁmg(d)
M, = _\/gmg(d) mtlt(d) _ m;(d) mg(d) ,
_\/gmz(d) mz(d) mg(d)
(23)

which is very similar to the one proposed in Ref. [43]
where a fit of the quark masses and mixing has been
performed, and we refer to that paper for more detail.

C. Finite 6,3 value

As we have discussed so far, the model leads to the TBM
pattern. However, by coupling an extra S,;-doublet flavon
field one can obtain corrections from the charged lepton
sector, which induce nonzero values of 65 as recently
suggested by the Daya Bay experiment [14], the T2K
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TABLE III. Quark sector and their transformation properties under the Z; and Z, flavor symmetries.
Op Os Ug, UR dRD dRS ép bs
SU(_2) 2 1 1 1 1 1 1
Sy 2 1, 2 1, 2 1, 2 1,
Z; o w w? w? o w w w
7, + + - - - - - -

[15], the Double Chooz [16], and the RENO [17] results,
including also recent reactor flux calculations.

For example, consider a flavon scalar doublet under Sy,
¢ ~ 2 and transforming as (w, +) under Z3 X Z,. In the
Lagrangian we must then include the term

(LiRhe.

This is a dimension five operator that can be obtained from
a renormalizable Lagrangian by means of the messenger
fields y, x© of Table I as shown in Fig. 2. Assuming that ¢
acquires the VEV (¢) = (u, u,), a natural vacuum align-
ment is u; = —\/guz, since this is consistent with the
previous alignments in Eq. (12). Using multiplication rules
in Appendix A one finds that the contribution from this
term to the charged lepton mass matrix is

(24)

—\/%vuz 0 0
oM, = 0 \/%vul + \/%vuz 0 )
0 0 —\/gvul + \/gvuz
(25)
0.035
I
I
0.030 }
B —
’ )aya Bay
© 0020 1
=] [
N= |
‘B 0015 !
|
|
0.010 i
I
I
0.005 ‘
|
|
0.000
026 0.28 030 0.32 0.34 0.36 0.38
sin2912

FIG. 4 (color online). The lavender region between the two
curves represents the correlation between the reactor and solar
neutrino mixing angles. The vertical red line corresponds to the
best global determination of the solar mixing angle, while the
vertical light red band corresponds to the 3¢ region for the solar
mixing angle. The horizontal dashed red line corresponds to the
central value of the RENO measurement for the reactor mixing
angle, the horizontal red line corresponds to the central value, and
the horizontal green band corresponds to the 20 of the Daya Bay
Collaboration.

which modifies the diagonal entries M, in the charged
lepton mass matrix, M;, so that the total M; + M, is no
longer diagonalized by U,. This way one can induce a
potentially “large” value for 63, as hinted by recent ex-
periments [15,16], and also potential departures of the
solar and atmospheric angles from their TBM values.
Moreover, in the presence of a nonzero #;;3 one finds
relations among these neutrino mixing angles. The most
interesting of these is the correlation involving the solar
and reactor angles, as illustrated in Fig. 4.3 The horizontal
green band represents the 20- Daya Bay measurement [14],
and its central value is indicated by the horizontal red line,
while the horizontal dot-dashed line indicates the central
value of the recent RENO measurement [17]. On the other
hand, the vertical band, delimited by dotted lines, corre-
sponds to the 3¢ region for sin*#,, found in the global
analysis in Ref. [2], and the vertical line corresponds to
the central value. The region in lavender shows the cor-
relation between the reactor and solar angles. We observe
that the deviation of ;3 from zero can be substantial
provided the departure of 6;, from its TBM value is
also large. Moreover, the model is consistent with the
measurements of the two recent reactor experiments,
only if the solar angle lies substantially BELOW the
TBM prediction (at 20).

Needless to stress, a nonzero 6,3 would also open the
way also for the phenomenon of CP violation in neutrino
oscillations, one of the central goals of the upcoming
generation of long baseline oscillation studies [44,45].
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APPENDIX A: §; GROUP

The S, group is the discrete group given by the four
objects’ permutations. It contains 24 elements and can be
obtained from two generators, S and 7, satisfying

St=13=1, ST?S =T. (Al)

The S, irreducible representations are two singlets, 1,
1,, one doublet, 2, and two triplets, 3;, 3,. The product
rules are given by (for more details see [46])

1, X1; = 144 ymoaz+1 Vv i
2 X 11' =2 V i,
3 X1; = s pmoaz+1 Y i

3,x2=3,+3, Vi
3,X3,=1,+2+3,+3,
2X2=1,+2+1,

3,3, =1,+2+3,+3, Vi (A2)

where we can introduce the notation [u X w]and {u X u}
for the symmetric and antisymmetric parts of w X u,
respectively:

[2X2]=1,+2  {2X2}=1,,
[31X31]=11+2+31, {31X31}:32 Vi (A3)
Given the following representations:
A, AI -~ 11, B, B/ -~ 12,
/ by
aj a;
( ), ( 5 ) - 2’ b2 ,
a a
by (A4)
b/l (6] C/l
by | ~ 3y, ) ¢ |~ 3
by & ¢

the conjugate representations transform in the same way, as
the representation matrices can be chosen all real.

For the product of one-dimensional representations the
Clebsch—Gordan coefficients are the trivial products of
representations, and also for the product of the 1, singlet
with any nontrivial representation

Abl Acl
Aa1
( ) ~ 2, Abz ~ 31, AC2 -~ 32.
Adz
Ab3 AC3
(A5)
For the product with the 1, singlet
Abl AC[
_Baz
( ) -~ 2, Abz -~ 32, AC2 -~ 31.
Bal
Ab3 AC3
(A6)

PHYSICAL REVIEW D 86, 056001 (2012)
The Clebsch—Gordan coefficients for the product 2 X 2 are

ajay + aay ~ 1, —ayay + aa) ~ 1,

a,ab + a,aj Y
ayay — aab
for 3; X 3,
3
I
D bib~1,,
J=1

byb% + b3b),

bb% + bsyb}

byb) + byb}
and for 3, X 3,

3

!~
chcj 1,
j=1

cych + c3¢h

(A7)

-5 (bab) = b3b%) ) ~2
42 (=2D1b] + bybh + b3bh) '
b3bly — b,b),
b,b}, — b3b!
byb! — b, b),

~3, ~3 (A3

1 / /
( T (cach = e5¢h) )
~2
1 (_ Iy Iy / ’
%( 2c ¢ + cach + c3¢5)
c3¢h — Czcg
cich + o3 | ~ 3, c1ch — c3ch

c1ch + erch crch — ¢
For the couplings 2 X 3; and 2 X 3,, we have, respectively,
axb,
—1(Bayby + ayb,)
%(\/gale — ab3)
( acy
%(\/gazcz —a,c,)
\ _%(\/5026‘3 + 01C3))
[ arb,
%(\/gazbz — aby)
\ - %(\/?_’@53 + a,b3)
acy
_%(\/galcz + ayc;)
\ %(\/30103 — ayc;3)
And finally, for the 3; X 3, product

3 L (2b,c; — bycy — bscs)
Soen (007G )2
= 75( 202 3€3)

b3C2 - b2C3 b2C3 + b3C2
bIC3 _b3C1> "’31, b1C3 +b3C1 "’32.

b2C1 _blC‘z b1C2+b2C1

~3,. (A10)

(Al1)

APPENDIX B: YUKAWA COUPLINGS

Each term in the Lagrangian for neutrinos and charged
leptons can be decomposed by components as
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/.LSSU': /.L(S]S] +5282+S3S3)0', (Bl)

YDE . VRl’l = YD([‘IVIR + L_2V2R + [431/313)]’1, (B2)

Y,(vg - S)p, =Y, [(v2rS3g + V3rS2) b1 + (V1rS3R

+ varS1)d,n T (V1rSok + V2rS1) P 13]
(B3)

Y, (vg - S)p), = Y, (v1gS) + vrSy + v3S3) ), (B4

%(EZR)hd)l = %[(L_zlm + Lybg)h;, + (Lylag

+ Lylip)hy, + (Lilg + Lolig)hepy, ],
(B5)
|

V(h) = pphth + A, (KT R)(hTh),

V(¢,) = m(dhe,) + S A{dld,dlo b

PHYSICAL REVIEW D 86, 056001 (2012)

Yi7 Yipr - ;
KZ(UR)hdﬁ = K][(lezze — Lylsp)hp) + (Lylsg

— Lslip)h¢p), + (Lolig — Libbp)h) ]
(B6)

/. mn _ _
yX’(LlR)fKM = yXl(Lllue + Lylhg + Lylig)h )] (B7)

APPENDIX C: SCALAR POTENTIAL

The most general renormalizable scalar potential is
(without writing the S, products explicitly)

V=V(h) + V(o) + V(g,) + V() + V(¢)

+ V() + V(e]) (CI)

+ V(. &5 b1 b1 1) + Vo, h by, 3, b b1, D)),

(C2)
with

V(o) = pyoto+ A (cto)oto),

V(¢S (bl b)) + ZA B b1 b))

V() = ms(b] d) + Y A{b] diof b1k + D kd(di) by + Hel,

V() = pa(e) ) + S Ao ¢

¢k + D k(b4 ) + Hel,

V(@) = ps(d o) + Y Ao b1 b1 b} + He,
i

V(o b by $l b1 b ¢)) = N7 (W) (0t o) + 277 (pL b, ) (0T o) + A7 (¢l B ) (ot o) + A7 (o] ) (ot )
+ A7 (¢ (ot o) + 217 (¢]T BN o),
V(o &1 b 1 81) = D kilbididibi + Y xldidiofhi + D kdbidbidihi + Y kdbibiblti + D ko] 6,0,

+ >kl b,bti + Dkl b,k + D kdd] dubil + Ywidd] b oL,
+ M bl o droki + DN 1o prodi + DA b o] d197);
+ I MBSl piihi + SN G 0 plk + SN b b1l

DR G Ty W R T AT T e W R T A

D R A AR W A U A Ry W R U R A

D R CAL AR A e W R U AT T W UAR A T
i i i

+ YN Gipid b+ DA bbb, Y+ DM bbb, B,

M b1l bub Y+ MBI Db + DN TS b b0}
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+ XA S bl gk + DMl didld ki + YA S dibl )

+ i_Af’”W{as} Gl pLd.} + IZ_M””WW AP ; SN {pipih b

+ iAf””’{wwm;}i + gl)lﬁ”’””’w;cﬁ;%m}i + giﬁ””w’{@@’%«ﬁ;}i
XS WS U AR WIS AT T A

+ iAf’”W’w%mm}i +le7””’{¢} Rar A v SArigle, bl
+ iAf“’W’wwwIcﬁ;}i + iAf"V’”’{¢I¢V¢Lf¢;}i + ﬁAﬁ’”’”’{¢l¢,¢;¢;}i
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+ AN BTl L) + Hee,
i

where Y A {};, 3.k {}; sums over all possible ways to
group the fields inside the brackets and make the product
of representations in order to obtain a singlet.

APPENDIX D: SCALE OF THE FLAVON
FIELD VEVS

In this appendix, we give an example for the possible
scale of the flavon fields. From the Lagrangian of the
charged leptons in Egs. (B5)-(B7) we take, for instance,
the Yukawa couplings to be of order one and all the field
VEV5s of the same order of magnitude, which we set at the
scale of TeV. For definiteness let us take the term in Eq. (BS)

(¢ 1

leTI""ng, (Dl)

where the scale A corresponds to the that of the mass of the
fields y. Taking y; ~ 1 in Eq. (D1) gives

(¢
A

Mr < 3.4% 1073,
v

~

(D2)

[OSHIE

Of course, we can always tune the Yukawa couplings in
order to change this ratio. The same is valid for the flavon
VEVs in Egs. (B6) and (B7).

Let us continue with this example: from the neutrino
sector, we have that the neutrino mass is of the order*

v? (100 GeV)?

SO AP it LA D3
Mo = BV 2 ™ FYe 3000 Gev)? (D3)

~103 uv,,

where we choose a mass for the right-handed neutrinos of
the order of 3 TeV. Then a neutrino mass matrix of 1 eV
would correspond to uv, ~ 1 KeV.

“We again set the Yukawa couplings to be order one.
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