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We consider a model based on the supersymmetric QCD theory with Nc ¼ 2 and Nf ¼ 3. The theory is

strongly coupled at the infrared scale �H. Its low-energy effective theory below �H is described by the

supersymmetric standard model with the Higgs sector that contains four isospin doublets, two neutral isospin

singlets and two charged isospin singlets. If �H is at the multi-TeV to 10 TeV, coupling constants for the F

terms of these composite fields are relatively large at the electroweak scale. Nevertheless, the

standard model-like Higgs boson is predicted to be as light as 125 GeV because these F terms contribute

to the mass of the standard model-like Higgs boson not at the tree level but at the one-loop level. A large

nondecoupling effect due to these F terms appears in the one-loop correction to the triple Higgs boson

coupling, which amounts to a few tens percent. Such a nondecoupling property in the Higgs potential realizes

the strongfirst-order phase transition,which is required for a successful scenario of electroweak baryogenesis.
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I. INTRODUCTION

Recently, the ATLAS and CMS experiments at the LHC
[1] have reported an excess in the gamma-gamma mode at
about 125 GeV, which may be a signal of the Higgs boson.
In the standard model (SM), a light Higgs boson is the
evidence of the weakly coupled Higgs sector. In models for
physics beyond the SM, however, the light Higgs boson
does not always correspond to a weakly coupled theory.
The scenario based on little Higgs models [2] is an ex-
ample of a strongly coupled theory with a light Higgs
boson, where the Higgs boson arises as a pseudo Nambu-
Goldstone boson originating from the breaking of some
strongly interacting global symmetry at the TeV scale, and
the Higgs boson mass is kept to be light.

Supersymmetry (SUSY) is one of the most attractive
candidates for the physics beyond the SM. SUSY can solve
the gauge hierarchy problem, as the quadratic divergence
in the radiative correction to the Higgs boson mass is
cancelled owing to the nonrenormalization theorem. In
addition, elementary scalar fields are automatically intro-
duced in the SUSY theory. The Higgs sector of the minimal
SUSY extension of the SM (MSSM) necessarily contains
two Higgs doublets. In the MSSM, the coupling constants
in the Higgs potential are determined by the electroweak
gauge couplings, and the mass of the SM-like Higgs boson
is less than the Z boson mass at the tree level. With
significant radiative corrections due to the large top
Yukawa coupling [3], the Higgs mass can be pushed up
to around 125 GeV in the case of very large stop masses or
very large left-right stop mixing.

Even within the framework based on SUSY, models with
strongly coupled light Higgs boson can be constructed. A
possible way is to introduce additional R-parity-even chiral
superfields which strongly couple to the Higgs sector but
the F terms of which do not contribute to the Higgs boson
four-point coupling. In this case, the SM-like Higgs boson
is kept to be light. The strong couplings have rich phe-
nomenological implications. First, radiative corrections
involving the strongly coupled new fields can raise the
SM-like Higgs boson mass to 125 GeV with rather natural
choice of the stop masses and mixing. Second, the strongly
coupled fields significantly contribute to the triple SM-like
Higgs boson coupling through loop effects, so that it
deviates by a few tens percent from the SM prediction
[4,5]. A similar nondecoupling effect tends to enhance
the first-order electroweak phase transition [6,7].
In the MSSM, it is not easy to make the first-order

electroweak phase transition (EWPT) strong enough to
satisfy the sphaleron decoupling condition [8], which is
required by the successful electroweak baryogenesis
[9,10]. The nondecoupling quantum effect of the additional
scalar bosons through strong F-term coupling with the
Higgs boson enhances the first-order EWPT, and the diffi-
culty in the MSSM can be significantly relaxed. The en-
hancement requires a light SM-like Higgs boson because
its mass works as a suppression factor, and the 125 GeV
Higgs boson is consistent with the scenario. For example,
the first-order EWPT can be strong enough in a SUSY
model whose Higgs sector contains four doublets and two
charged singlets [7]. In this model, the coupling among the
Higgs boson and the extra bosons in the scalar potential can
be taken to be strong, while the quartic self-coupling
constants of the Higgs boson are determined only by the
D term; i.e., by the electroweak gauge couplings, and the
Higgs mass remains light.
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When we explore a more fundamental picture of models
with strong couplings and a light Higgs boson, a quite
different landscape from the grand unified theory over
the grand desert presents itself to us. In models with strong
couplings, coupling constants tend to blow up quickly
through the renormalization group running. With suffi-
ciently strong coupling consistent with successful electro-
weak baryogenesis, the Landau pole appears at the energy
scale of multi-TeV to 10 TeV, which is much lower than the
grand unified theory scale, Oð1016Þ GeV. There should be
a cutoff scale below the energy scale where one comes
across the Landau pole. The physics above the cutoff scale
might be controlled by some strong dynamics.

The minimal SUSY fat Higgs model [11] is an example
of the theory above the cutoff scale of a SUSY model with
strongly coupled Higgs sector. This model is based on the
strong SUð2ÞH SUSY gauge theory with three pairs of
doublets, ðT1; T2Þ, ðT3; T4Þ and ðT5; T6Þ. Below the cutoff
scale, Higgs isospin doublets, Hu and Hd, and a neutral
singlet, N, appear as composite fields of Ti’s, and the other
composite fields are decoupled due to their heavy masses.
The low-energy effective theory is described by the super-
potential W ¼ �NðHdHu � v2

0Þ, where � is a coupling

constant and v0 is a dimensionful parameter. The effective
theory is identical to the nearly MSSM [12]. The quartic
coupling of the Higgs boson gets a j�j2 contribution
through the F term. Since the Higgs mass is dominated
by the j�j2v2 term with v ’ 174 GeV, the strong coupling
tends to enhance the Higgs mass. For � ’ 2 and tan� ’ 2,
the SM-like Higgs boson mass is as large as 200 GeV,
which weakens the first-order EWPT too much. Extensions
of the minimal SUSY fat Higgs model to Nc ¼ 3,
Nf ¼ 4 and Nc ¼ 4, Nf ¼ 5 are discussed in Ref. [13].

Compositeness in SUSY models is discussed in Ref. [14].
In this paper, we propose a new UV-complete model

whose low-energy effective theory accommodates strong
couplings and a light Higgs boson. The model is based on
SUð2ÞH SUSY gauge theory with three pairs of SUð2ÞH
doublets. This model leads to two pairs of Y ¼ þ1=2 and
Y ¼ �1=2 isospin doublet composite superfields as well as
several isospin singlet composite superfields in the low-
energy description, which cause flavor-changing neutral
currents. To avoid such dangerous flavor-changing neutral
currents, we here impose an additional Z2 parity on the
model, which is unbroken spontaneously. This Z2 parity
can supply a new candidate for dark matter, in addition to
the R parity. In our model, unlike the minimal SUSY fat
Higgs model, the Z2-even singlet field N can be heavy
enough to decouple from the low-energy effective theory,
but many composite fields remain light. The Higgs sector
contains two Z2-even doublets which are identical to the
MSSM-like Higgs doublets and various extra Z2-odd
superfields such as a pair of doublets, two charged singlets
and two neutral singlets. The SM-like Higgs boson mass of
125 GeV can be realized in a natural way because the F

terms of the Z2-odd superfields contribute to the mass not
at the tree level but at the one-loop level. On the other hand,
nondecoupling contributions of these fields in radiative
corrections affect the triple Higgs boson coupling signifi-
cantly [5], and can make the first-order EWPT strong
enough through the large F-term coupling constants [7].
In Sec. II, we present the basic framework of SUð2ÞH

SUSY QCD theory with the Z2 parity, whose low-energy
description gives a composite SUSY Higgs model. In
Sec. III, we investigate general features of the composite
SUSY Higgs sector. Generally, F terms involving a large
coupling � contribute to the SM-like Higgs boson mass at
the tree level, giving rise to a SM-like Higgs boson much
heavier than 125 GeV, as in the minimal SUSY fat Higgs
model. In Sec. IV, we consider an extended model where
we obtain the SM-like Higgs boson as light as 125 GeV in a
natural way. It turns out that its low-energy effective theory
describes the phenomenological model in Ref. [7].
Section V is devoted to the conclusion.

II. BASIC FRAMEWORK

We introduce a new SUð2Þ gauge group, denoted by
SUð2ÞH, and six chiral superfields, denoted by Tiði ¼
1; 2; . . . ; 6Þ, which are doublets of SUð2ÞH. Ti’s are also
charged under SM gauge groups SUð2ÞL �Uð1ÞY . We
further assign a Z2 parity to them. SM charge and Z2 parity
assignments to Ti’s are described in Table I. Regarding
SUð2ÞH gauge group, this model is nothing but the SUSY
QCD theory with two colors and three flavors, which is
investigated in Ref. [15]. SUð2ÞH gauge coupling becomes
strong at an infrared scale, denoted by �H. The most
general tree-level superpotential that is invariant under
SUð2ÞH � SUð2ÞL �Uð1ÞY � Z2 symmetry is given by

Wtree ¼ 1

2
m1 tr

�
T2
2 �T1

2

�T2
1 T1

1

 !
T1
1 T1

2

T2
1 T2

2

 !�

þm3T3T4 þm5T5T6

¼ m1T1T2 þm3T3T4 þm5T5T6; (1)

where we assume m1; m3; m5 <�H so that the theory
remains the SUSY QCD theory with Nc ¼ 2 and Nf ¼ 3

at the scale �H. T
a
1 and Ta

2 ða ¼ 1; 2Þ respectively indicate
the ath components of the SUð2ÞH doublets T1 and T2.
In the right-hand side of the first line, the first matrix

TABLE I. SM charge and Z2 parity assignments on the
SUð2ÞH doublets, Ti.

Field SUð2ÞL Uð1ÞY Z2

T1

T2

� �
2 0 þ

T3 1 þ1=2 þ
T4 1 �1=2 þ
T5 1 þ1=2 �
T6 1 �1=2 �
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transforms as ð2�; 2�Þ and the second one does as (2,2)
under SUð2ÞH � SUð2ÞL. The trace of their product is thus
invariant under SUð2ÞH � SUð2ÞL.

Below�H, the theory is described in terms of composite
chiral superfields,M0

ij ¼ TiTjði � jÞ, which are singlets of
SUð2ÞH. Following the arguments in Ref. [15], we see that
we have the following dynamically generated superpoten-
tial below �H:

Wdyn ¼ � 1

�3
�ijklmnM0

ijM
0
klM

0
mn; (2)

where � is some dynamically generated scale. Thanks to
holomorphy, the net effective superpotential is simply the
sum of Wdyn and Wtree:

Weff ¼ Wdyn þWtree

¼ Wdyn þm1M
0
12 þm3M

0
34 þm5M

0
56: (3)

Since we cannot determine the Kähler potential only
from holomorphy, we take advantage of naı̈ve dimensional
analysis (NDA) [16]. Before using NDA, we note that the
terms in Wtree are exactly proportional to m1=�H, m3=�H,
m5=�H because of holomorphy. In NDA, it is assumed that
the other couplings in the effective Lagrangian are Oð1Þ in
unit of �H and that the effective theory also becomes
strongly coupled at the scale �H. Therefore the effective
Lagrangian at �H is expressed as

Leff ’ 1

ð4�Þ2
�Z

d4��2
HK̂

�
M0

�2
H

;
D�

�H

;
M0y

�2
H

;
�D _�

�H

�

þ
Z

d2��3
H

�
Ŵ

�
M0

�2
H

;
D�

�H

�
þ m1

�H

M0
12

�2
H

þ m3

�H

M0
34

�2
H

þ m5

�H

M0
56

�2
H

�
þ H:c:�; (4)

where the SM gauge interactions are omitted. We rewrite
the theory in terms of canonically normalized composite
fields, Mij, which are given by

Mij ’ 1

4��H

M0
ij at the scale �H; (5)

and obtain the following canonical effective superpotential
below �H expressed in terms of Mij ’s:

Weff ’���ijklmnMijMklMmnþ��M12þ��M34þ�M56;

(6)

where �, ��, ��, � satisfy at the scale �H

�ð�HÞ ’ 4�; (7)

��ð�HÞ ’ m1�H

4�
; ��ð�HÞ ’ m3�H

4�
;

�ð�HÞ ’ m5�H

4�
:

(8)

Below the scale �H, the physical couplings that corre-
spond to �, ��, ��, � are regulated by the following
renormalization group equations:

�
d

d�

�
1

�2

�
’ � 9

16�2
; (9)

�
d

d�
� ’ 3

32�2
�2�; �

d

d�
�� ’ 3

32�2
�2��;

�
d

d�
�� ’ 3

32�2
�2��:

(10)

Figure 1 shows the renormalization group running of the
physical coupling � from the scale �H to lower scales.
For example, if �H ’ 10 TeV, � at the scale MZ is �2.
The runnings of ��, ��, � are not so drastic and can be
neglected.
We rewrite the composite superfields Mij in the follow-

ing way to clarify their SM charges:

Hu �
M13

M23

 !
; Hd �

M14

M24

 !
;

�u �
M15

M25

 !
; �d �

M16

M26

 !
;

N � M56; N� � M34; N� � M12;

�þ � M35; �� � M46; 	 � M36; 
 � M45:

(11)

Their SM charges and Z2 parities are summarized in
Table II. The effective superpotential is then written as

Weff ¼ �fNðHuHd þ v2
0Þ þ N�ð�u�d þ v2

�Þ
þ N�ð�þ�� þ v2

�Þ � NN�N� � N�	


þ 	Hd�u þ 
Hu�d ��þHd�d ���Hu�ug;
(12)

10.10.010.001
0

2

4

6

8

10

12

14

10.10.010.001

H

FIG. 1 (color online). The scale dependence of the physical
coupling �.
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where v2
0, v

2
�, v

2
� are defined as

v2
0 � �=�; v2

� � ��=�; v2
� � ��=�: (13)

We note that all the three-point couplings are of the same
magnitude in this model.

III. STRUCTURE OF THE EFFECTIVE THEORY

First of all, we look for vacua of the Higgs potential in
the effective theory. We study in the SUSY limit and then
with soft SUSY-breaking terms. In the SUSY limit, the
absolute minima of the superpotential (12) are determined
from the tadpole conditions: ð@=@�ÞWeff ¼ 0 for each field
� at the tree level. Since we are only interested in charge-
conserving vacua, we set Hþ

u ¼ H�
d ¼ �þ

u ¼ ��
d ¼

�þ ¼ �� ¼ 0 and study whether the tadpole conditions
can be satisfied. Charge-conserving vacua are determined
from the following tadpole conditions:

0 ¼ 1

�

@Weff

@N�

¼ �NN� � 	
þ v2
�; (14)

0 ¼ 1

�

@Weff

@N
¼ �H0

uH
0
d � N�N� þ v2

0; (15)

0 ¼ 1

�

@Weff

@N�

¼ ��0
u�

0
d � N�N þ v2

�; (16)

0 ¼ 1

�

@Weff

@	
¼ H0

d�
0
u � N�
; (17)

0 ¼ 1

�

@Weff

@

¼ �H0

u�
0
d � N�	; (18)

0 ¼ 1

�

@Weff

@H0
u

¼ �NH0
d � 
�0

d; (19)

0 ¼ 1

�

@Weff

@�0
u

¼ �N��
0
d þ 	H0

d; (20)

0 ¼ 1

�

@Weff

@H0
d

¼ �NH0
u þ 	�0

u; (21)

0 ¼ 1

�

@Weff

@�0
d

¼ �N��
0
u � 
H0

u; (22)

0 ¼ D

¼ � 1

2
g1ðH0y

u H0
u �H0y

d H0
dÞ �

1

2
g1ð�0y

u �0
u ��0y

d �0
dÞ;
(23)

0 ¼ Da¼3

¼ � 1

2
g2ð�H0y

u H0
u þH0y

d H0
dÞ

� 1

2
g2ð��0y

u �0
u þ�0y

d �0
dÞ; (24)

Since no symmetry forbids the term m1T1T2 in the funda-
mental Lagrangian, we assume v2

� � 0. Then the only

solution to Eqs. (14) and (19)–(22) is H0
d ¼ �0

d ¼ H0
u ¼

�0
u ¼ 0, i.e., the electroweak symmetry is unbroken in the

absolute SUSY vacua. At this point, our model distinc-
tively differs from the minimal SUSY fat Higgs model
[11], where nonanomalous Uð1ÞR charges are assigned to
forbid the term m1T1T2 so that the electroweak symmetry
breaking does occur in the SUSY limit. The D terms are all
zero in the absolute SUSY vacua because we have H0

d ¼
�0

d ¼ H0
u ¼ �0

u ¼ 0. The conditions in Eqs. (14)–(16)

determine the vacuum expectation values (VEVs) of N,
N� and N� as follows:

hNihN�i ¼ v2
�; hN�ihN�i ¼ v2

0; hN�ihNi ¼ v2
�:

(25)

We assume v2
0 � 0 and v2

� � 0 as no symmetry forbids

these terms. We then have hN�i � 0, which leads to 
 ¼
	 ¼ 0 through Eqs. (17) and (18). Note that the Z2 parity is
unbroken in the absolute SUSY vacua.
Since the conditions in Eq. (25) have only one solution

and the other neutral components are derived to be zero, we
conclude that there is only one charge-conserving absolute
SUSY vacuum provided v2

0, v
2
� and v2

� are all nonzero.

This vacuum respects the electroweak symmetry and the
Z2 parity. The nonzero VEVs of N, N� and N� give rise to
effective � terms.
Let us proceed to the case with soft SUSY-breaking

terms. For simplicity, we only introduce soft SUSY-
breaking mass terms and B� term for Hu and Hd, which
we denote by m2

Hu
, m2

Hd
and B�. We redefine the phases of

T3 and T5 to make B� and v2
0 real and positive. We further

rotate the phase of ðT1; T2Þ so that the product of the
VEVs of N� and N� is real. We expand the potential
with respect to Hu, Hd, N, N� and N�, with setting �u ¼
�d ¼ �þ ¼ �� ¼ 	 ¼ 
 ¼ 0. The tree-level potential
is then expressed as

TABLE II. Properties of the composite fields under the SM
gauge groups and the Z2 parity.

Field SUð2ÞL Uð1ÞY Z2

Hu 2 þ1=2 þ
Hd 2 �1=2 þ
�u 2 þ1=2 �
�d 2 �1=2 �
�þ 1 þ1 �
�� 1 �1 �
N, N�, N� 1 0 þ
	 , 
 1 0 �
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V ¼ m2
Hu
Hy

uHu þm2
Hd
Hy

dHd þ B�HuHd þ H:c:

þ j�j2jNj2ðjHuj2 þ jHdj2Þ þ j�j2jHuHd

� N�N� þ v2
0j2 þ j�j2jNN� � v2

�j2

þ j�j2jNN� � v2
�j2 þ

1

8
g21ðHy

uHu �Hy
dHdÞ2

þ 1

8
g22ðHy

u�aHu þHy
d�

aHdÞ2: (26)

Using the SUð2ÞL gauge symmetry, we takeHþ
u ¼ 0. Then

the condition ð@=@Hþ
u ÞV ¼ 0 leads to H�

d ¼ 0, as in the

MSSM. From the conditions ð@=@H0�
u ÞV ¼ ð@=@H0�

d ÞV ¼
ð@=@H0

uÞV ¼ ð@=@H0
dÞV ¼ 0, we have

1

4
ðg21þg22ÞðjH0

uj2�jH0
dj2ÞH0

uþðm2
Hu

þj�j2jNj2

þj�j2jH0
dj2ÞH0

uþðj�j2N�N��j�j2v2
0�B�ÞH0�

d ¼ 0;

(27)

� 1

4
ðg21þg22ÞðjH0

uj2�jH0
dj2ÞH0

uþðm2
Hd

þj�j2jNj2

þj�j2jH0
uj2ÞH0

dþðj�j2N�N��j�j2v2
0�B�ÞH0�

u ¼ 0;

(28)

H0
uH

0
d ¼ real; (29)

by using the fact that B�, v2
0 and the VEV of N�N�

are real. Since the VEV of H0
uH

0
d is real, we can take the

VEVs of H0
u and H0

d both real by using the Uð1ÞY gauge

symmetry. We hereafter denote these VEVs by vu and vd,
respectively. The conditions: ð@=@NÞV ¼ ð@=@N�ÞV ¼
ð@=@N�ÞV ¼ 0 and their complex conjugates lead to

Nðv2
u þ v2

dÞ þ N�
�ðNN� � v2

�Þ þ N�
�ðNN� � v2

�Þ ¼ 0;

(30)

N�
�ðN�N� þ vuvd � v2

0Þ þ N�ðNN� � v2
�Þ ¼ 0; (31)

N�
�ðN�N� þ vuvd � v2

0Þ þ N�ðNN� � v2
�Þ ¼ 0; (32)

N�N�
�v

2
�; N

�N�
�v

2
� ¼ real: (33)

We derive the mass spectrum in the presence of soft
SUSY-breaking terms. For simplicity, we here assume that
v2
� and v2

� are also real and positive. We assume that

jvuj; jvdj �
ffiffiffiffiffiffi
v2
0

q
,

ffiffiffiffiffiffiffi
v2
�

q
,

ffiffiffiffiffiffiffi
v2
�

q
and we make a perturbative

expansion of the masses with respect to v2
u and v2

d. At the

zeroth order of v2
u and v2

d, the VEVs of N, N� and N�,

denoted by hNi0, hN�i0 and hN�i0, are given by

hNi0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
�v

2
�

v2
0

vuut ; hN�i0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
v2
0v

2
�

v2
�

vuut ;

hN�i0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
v2
0v

2
�

v2
�

vuut ;

(34)

which are the same as those in the SUSY limit. These
VEVs respectively correspond to the SUSY-conserving
masses of ðHu;HdÞ, ð�u;�dÞ and ð�þ;��Þ. In the follow-
ing discussion, we use the VEVs of N0; N0

� and N0
� as the

parameters of the model, instead of v2
0, v

2
� and v2

�. The

VEVs of N, N� and N� at the first order of v2
u and v2

d,

denoted by hNi1, hN�i1 and hN�i1, satisfy the following
relations:

ðhN�i0Þ2 þ ðhN�i0Þ2 hNi0hN�i0 hNi0hN�i0
ðhNi0Þ2 þ ðhN�i0Þ2 hN�i0hN�i0

ðhNi0Þ2 þ ðhN�i0Þ2

0
BB@

1
CCA

hNi1
hN�i1
hN�i1

0
BB@

1
CCA ¼

�hNi0ðv2
u þ v2

dÞ
0

0

0
BB@

1
CCA: (35)

We next study the mass spectrum of the Z2-even Higgs
sector. At the first order of v2

u and v2
d, the conditions (26)

and (27) reduce to

1

4
ðg21 þ g22Þðv2

u � v2
dÞvu þ ðm2

Hu
þ j�j2jhNi0

þ hNi1j2 þ j�j2v2
dÞvu þ fj�j2ðhN�i1hN�i0

þ hN�i0hN�i1Þ � B�gvd ¼ 0; (36)

� 1

4
ðg21 þ g22Þðv2

u � v2
dÞvd þ ðm2

Hd
þ j�j2jhNi0

þ hNi1j2 þ j�j2v2
uÞvd þ fj�j2ðhN�i1hN�i0

þ hN�i0hN�i1Þ � B�gvu ¼ 0: (37)

They give the same conditions for the electroweak sym-
metry breaking as in the next-to-MSSM [17] if we define
the effective B� term as

B�eff � B�� j�j2ðhN�i1hN�i0 þ hN�i0hN�i1Þ: (38)

We comment on the range of �H favored by the natural-
ness. NDA implies that the Lagrangian contains the fol-
lowing Kähler potential:

L eff �
Z

d4�
�H

4�
ðN þ N� þ N�Þ (39)

with a Oð1Þ factor for each coupling. We now turn on the
effects of soft SUSY breaking. We introduce a singlet
chiral superfield X whose F term, FX, has a nonzero
VEV. We couple X to the other superfields by contact
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interactions suppressed by the scale M, where M is
identified with the Planck scale in the case of gravity
mediation and with the messenger scale in the case of
gauge mediation.1 The soft SUSY-breaking scale is given
by FX=M. With soft SUSY-breaking effects, we have the
following Kähler potential that gives extra contributions to
the tadpole terms in Eq. (6):

Leff �
Z

d4�
Xy

M

�H

4�
ðN þ N� þ N�Þ þ H:c:

¼ Fy
X

M

Z
d2�

�H

4�
ðN þ N� þ N�Þ þ H:c: (40)

These extra contributions affect the VEV of N, which is
given by

hNi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

�ðMZÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
�0
��

0
�

�0

s
; (41)

where �0, �0
� and �0

� are the sums of the tadpoles in Eq. (6)

and the extra contributions from soft SUSY-breaking
effects, which are expressed as

�0 ¼ �þ a
Fy
X

M

�H

4�
;

�0
� ¼ �� þ a�

Fy
X

M

�H

4�
;

�0
� ¼ �� þ a�

Fy
X

M

�H

4�
;

(42)

where a, a� and a� are all Oð1Þ. On the other hand,
to break the electroweak symmetry without unnatural
cancellation between the effective � term �ðMZÞhNi and
the soft SUSY-breaking terms m2

Hu
and m2

Hd
, we require

that �ðMZÞhNi be smaller than about 1 TeV, which is
equivalent to ffiffiffiffiffiffiffiffiffiffiffiffiffi

�0
��

0
�

�0

s
&

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðMZÞ

p � 1 TeV: (43)

To satisfy the above condition in the presence of soft
SUSY-breaking effects, it is required thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jFX

M
j�H

4�

s
&

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðMZÞ

p � 1 TeV: (44)

Assuming that the soft SUSY-breaking scale FX=M is
about 1 TeV and �ðMZÞ is Oð1Þ, we obtain the following
estimate on the upper bound of �H suggested by the
naturalness:

�H & 4�� 1 TeV: (45)

Now that we know the favorable range of �H, we discuss
the mass of the SM-like Higgs boson, mh, which depends
on �H via �ðMZÞ. In the decoupling limit, mh is given at
the tree level by [17]

m2
h ’ M2

Zcos
2ð2�Þ þ �ðMZÞ2v2sin2ð2�Þ: (46)

Here we introduce tan� � vu=vd as usual. Since the nat-
uralness suggests �H & 10 TeV, we have �ðMZÞ> 1:9,
according to Fig. 1. Therefore, to realize the Higgs boson
mass of 125 GeV, we need large tan� so that the contri-
bution from the second term in Eq. (46) is suppressed.
Finally we comment on how the SM Yukawa couplings

of appropriate magnitudes can be derived in this model,
especially for the Oð1Þ top quark Yukawa coupling. We
adopt the mechanism proposed in Refs. [11,18]. First we
introduce two additional SUð2ÞH doublets, T7 and T8,
which have the tree-level mass term below:

W7 ¼ m7T7T8; (47)

where m7 >�H is assumed. Above the scale m7, our
model is described by the SUSY QCD theory with two
colors and four flavors and is in the superconformal win-
dow. We assume that this theory approaches the infrared
fixed point at some scale �4 >m7 and becomes nearly
conformal. At the scale m7, the fields T7 and T8 decouple
and the theory becomes the SUSY QCD theory with two
colors and three flavors. Through renormalization group
evolutions, the wavefunctions of Ti’s receive large correc-
tions of

Z ’
�
m7

�4

�
�
; (48)

where � denotes the anomalous dimension at the infrared
fixed point, which equals to ð3Nc � NfÞ=Nf ¼ 1=2 for the

Nc ¼ 2 andNf ¼ 4 SUSYQCD theory. By introducing new

SUð2ÞH singlets with SUSY-conserving massMf ��H and

integrating them out, it is possible to have the following
higher-dimensional superpotential at the scale �H:

Wf ¼ 1

Mf

Z�1hiju ðT1T3; T2T3ÞQiUj þ 	 	 	 ; (49)

where hiju denotes the Yukawa coupling in the fundamental
theory, whose value is at most Oð1Þ and the factor of Z�1

comes from the wavefunction renormalization of Ti’s.
Therefore the fundamental theory may not contain any
Landau pole below the Planck scale, and the theory can be
UV-complete. We find that, below the scale�H, the term in
Eq. (49) reduces to the following term:

Wf ’ �H

4�Mf

Z�1hiju HuQiUj þ 	 	 	 (50)

by usingNDA.We can cancel the suppression factor of 1=4�
by the enhancement factor of Z�1 with appropriate values of

1Notice that since the superfields N, N� and N� are compo-
sites of the fundamental superfields Ti’s, which are charged
under the SUð2ÞH gauge group, gauge mediation can induce
soft SUSY-breaking terms for N, N� and N� even if they are
gauge singlets.
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�4 and m7. In particular, we can derive the Oð1Þ top quark
Yukawa coupling below �H.

IV. A NATURAL MODEL FOR THE LIGHT HIGGS
BOSON FROM SUSY STRONG DYNAMICS

In this section, we present a simple UV-complete model
where the SM-like Higgs boson strongly couples to other
fields in the Higgs sector, but its mass is naturally as light
as 125 GeV. This model arises as the low-energy effective
theory of the SUSY QCD theory with Nc ¼ 2 and Nf ¼ 3

with an additional SUð2ÞH singlet chiral superfield. The
singlet induces a large SUSY-conserving mass for N, so
that N decouples from the theory below �H and the term
NHuHd disappears from the effective superpotential. The
effective theory has a similar structure to the ‘‘Four Higgs
doublets and two charged singlets’’ (4HD�) model [7].

We introduce a SUð2ÞH singlet chiral superfield, S,
which is neutral under the SM gauge groups and is
Z2-even. The superpotential involving S generally takes
the following form2:

�W ¼ ðy1T1T2 þ y3T3T4 þ y5T5T6ÞSþMS

2
S2 þ �

3
S3:

(51)

The coupling constants y1, y3 and y5 are assumed to be at
most Oð1Þ at the scale �4, so that they remain finite up to
the Planck scale. For simplicity, we here assume y5 
 y1,
y3.

3 At scales below �4, they are enhanced by the same
mechanism as the Yukawa couplings described in the
previous section; renormalization group running from the
scale �4 to m7 enhances them by the factor of Z�1. We
assume that MS is of the order of �H. Then S can be
integrated out in the effective theory below �H. We obtain

�W ¼ � y25Z
�2

2MS

ðT5T6ÞðT5T6Þ: (52)

After using NDA, this becomes the following term in the
effective superpotential:

�Weff ’ � y25Z
�2

2MS

�2
H

ð4�Þ2 N
2 ¼ �MN

2
N2; (53)

where MN is defined as

MN � y25Z
�2

MS

�2
H

ð4�Þ2 : (54)

Since the factor of Z�2 compensates the suppression factor
of 1=ð4�Þ2, we have the relation: MN ��H when y5
is Oð1Þ.

We study how the term in Eq. (53) modifies the model
with the relation MN ��H. First we look for charge-
conserving absolute SUSY vacua, using the conditions
Eqs. (14)–(24), but Eq. (15) is replaced with

0 ¼ �H0
uH

0
d � N�N� þ v2

0 �
MN

�
N: (55)

From Eqs. (14) and (19)–(22), we again have H0
d ¼ �0

d ¼
H0

u ¼ �0
u ¼ 0. It follows that 	 ¼ 
 ¼ 0. We obtain the

following relations:

NN� ¼ v2
�; N�N� ¼ v2

0 �
MN

�
N; N�N ¼ v2

�:

(56)

Let us take those values ofm1,m3 andm5 which satisfy the
following relations:

m2
5 * 4��Hm1=�ðMZÞ; m2

5 * 4��Hm3=�ðMZÞ;
(57)

�ðMZÞm5�H

4�
� �2

H; (58)

or equivalently

�2 * ��M
2
N=�ðMZÞ; �2 * ��M

2
N=�ðMZÞ; (59)

�ðMZÞ� � M2
N; (60)

where the scale dependences of �, �� and �� are negli-
gible. The VEVof N is then approximately given by

hNi ’ �

MN

¼ �v2
0

MN

; (61)

and eventually the VEVs of N� and N� are given by

hN�i ’ 1

�

��

�
MN ¼ 1

�

v2
�

v2
0

MN;

hN�i ’ 1

�

��

�
MN ¼ 1

�

v2
�

v2
0

MN: (62)

Since N has the large SUSY-conserving mass of order �H,
we may integrate it out in the effective theory below �H.
We then obtain the following superpotential:

Weff ¼ �fN�ð�u�d þ v2
�Þ þN�ð�þ�� þ v2

�Þ �N�	


þ 	Hd�u þ
Hu�d ��þHd�d ���Hu�ug

þ �2

2MN

ðHuHd þ v2
0 �N�N�Þ2: (63)

We expand the fields N� and N� around their VEVs and
replace them respectively with hN�i þ n� and hN�i þ n�,
where n� and n� denote their physical components. The
superpotential is then expressed as

2The possible tadpole term for S can be eliminated by shifting
the value of S.

3When y1 and y3 are as large as y5, we have to take into
account the mixings among N, N� and N� in the effective
theory. This complicates the model, although it does not affect
the main results of our discussion.
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Weff ¼�

��
v2
�

�v2
0

MNþn�

�
ð�u�dþv2

�Þþ
�
v2
�

�v2
0

MNþn�

�

�ð�þ��þv2
�Þ�

�
v2
�

�v2
0

MNþn�

�
	


þ	Hd�uþ
Hu�d��þHd�d���Hu�u

�

þ �2

2MN

�
HuHdþv2

0�
v2
�v

2
�

�2v4
0

M2
N

� v2
�

�v2
0

MNn�� v2
�

�v2
0

MNn��n�n�

�
2
; (64)

which can be rewritten as

Weff ¼ ��ðHuHd � n�n�Þ ����u�d

���ð�þ�� � 	
Þ þ �fHd�u	 þHu�d


�Hu�u�
� �Hd�d�

þ þ n��u�d

þ n�ð�þ�� � 	
Þg þ 	 	 	 ; (65)

where the effective � terms are given as

� ¼ � �2

MN

�
v2
0 �

v2
�v

2
�

�2v4
0

M2
N

�
’ ��2v2

0

MN

;

�� ¼ �v2
�

v2
0

MN; �� ¼ �v2
�

v2
0

MN: (66)

For �, we make an approximation using the relations in
Eqs. (59) and (60). Notice that we have j�j * j��j, j�j *
j��j because of the relation in Eq. (59).

So far, we have shown that
(i) N can be integrated out from the effective theory

below�H so that there is no three-point coupling for
Hu and Hd.

(ii) The VEVofN still gives the effective� term, which
can take an appropriate value.

(iii) The VEVs of N� and N� can be of the same order
as or smaller than that of N so that�u;d and�

� do

not decouple.

Consequently, the model can reduce to the ‘‘Four Higgs
doublets and two charged singlets’’ (4HD�) model [7],
with additional superfields n� and n� which have little

impact on the main features of the model because their
tree-level couplings to the MSSM Higgs fields,Hu andHd,
are suppressed by powers of 1=�H.
Before discussing the mass of the SM-like Higgs boson,

we again comment on the range of �H that is favored by
the naturalness. The naturalness of the electroweak sym-
metry breaking requires that the effective � term for Hu

and Hd be smaller than about 1 TeV

�ðMZÞhNi ¼ � & 1 TeV: (67)

Additionally, in order that the fields �u;�d and �� re-
main in the effective theory, the terms of �� and ��

should be smaller than 1 TeV

�ðMZÞhN�i ¼ �� & 1 TeV;

�ðMZÞhN�i ¼ �� & 1 TeV: (68)

On the other hand, soft SUSY-breaking terms in the Kähler
potential

L eff � Fy
X

M

Z
d2�

�H

4�
ðN þ N� þ N�Þ þ H:c: (69)

give extra contributions to the tadpoles in Eq. (5), as we
have discussed in Sec. III. The VEVs of N, N� and N� are
then given by

TABLE III. Benchmark sets of model parameters.��,�� and
the relevant B terms are set to be zero for simplicity. For
the MSSM parameters, we fix �m2

~tL
¼ �m2

~tR
¼ 1000 GeV, the

left-right mixing parameter Xt ¼ At þ� cot� ¼ 500 GeV,
� ¼ 200 GeV, mA ¼ 500 GeV and tan� ¼ 3. Masses are
given in GeV.

Set �m�0
u
¼ �m��

u
�m�0

d
¼ �m��

d
�m�� �m�þ �m	 �m


A 50 350 50 350 50 350

B 50 400 50 400 50 400

C 50 450 50 450 50 450

5 10 15

117

121

125

129

2.5 2.2 2.1 2. 1.9 1.8

FIG. 2 (color online). The SM-like Higgs boson mass mh.
The solid, dashed, and dotted curves correspond to the bench-
mark sets A, B, and C given in Table IIIrespectively. The
MSSM parameters are fixed as �m2

~tL
¼ �m2

~tR
¼ 1000 GeV, Xt ¼

500 GeV, � ¼ 200 GeV, mA ¼ 500 GeV and tan� ¼ 3.

TABLE IV. The cutoff scale �H and the coupling constant �
for realizing mh ¼ 125 GeV in each benchmark set.

Set �H[TeV] �ðmZÞ
A 3.8 2.1

B 6.4 2.0

C 10.2 1.9
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hNi ’ �0

MN

; hN�i ’ 1

�ðMZÞ
�0
�

�0 MN;

hN�i ’ 1

�ðMZÞ
�0
�

�0 MN; (70)

where �0, �0
� and �0

� contain the extra contributions from

soft SUSY-breaking effects and can be written as

�0 ¼ �þ a
Fy
X

M

�H

4�
; �0

� ¼ �� þ a�
Fy
X

M

�H

4�
;

�0
� ¼ �� þ a�

Fy
X

M

�H

4�
;

(71)

where a, a� and a� are all Oð1Þ. In order to solve the
gauge hierarchy problem, the soft SUSY-breaking scale
FX=M is at most 1 TeV. Soft SUSY breaking then always
respects the condition Eq. (67). To satisfy the conditions
Eqs. (68) in the presence of soft SUSY-breaking effects, we
need to have

�H & 4�� 1 TeV: (72)

As we know the range of �H that is favored by the
naturalness and that gives not so heavy�u;�d and�

�, we
calculate the mass of the SM-like Higgs boson mh. The
mass depends on the coupling constant � through radiative
corrections involving the scalar and fermion components
of Z2-odd fields�

�,�þ
u ,�

�
d , 	 and 
. Hencemh depends

on �H through the scale dependence of �. Here we con-
sider the case with �� ¼ �� ¼ 0 for simplicity. The
charginos still obtain masses from the VEVs of the Higgs
fields. In this simple case, the Z2-odd scalars do not mix
with each other. Thus the corrected mass of the SM-like
Higgs boson is approximately expressed as

m2
h ’m2

Zcos
22�þ ðMSSM-loopÞ þ�4v2

8�2

�
0
@c4� lnm

2
�þm2

��
d

m2
�0

u
m2

	

m4
~�0�
1
m4

~�00
1

þ s4� ln
m2

��m2
��

u
m2

�0
d

m2



m4
~�0�
2
m4

~�00
2

1
A;

(73)

where m��
u
ðm��

d
Þ and m�0

u
ðm�0

d
Þ are the masses of

charged scalars and neutral scalars from Z2-odd doublet
�uð�dÞ, m�� and m	;
 are the scalar masses of Z2-odd

charged singlets and Z2-odd neutral singlets respectively,
m~�0�

1;2
are the Z2-odd chargino masses, and m~�00

1;2
are the

Z2-odd neutralino masses. The mass eigenstates of the
neutralinos and charginos in this simple case are written

as ~�00
1 ¼ ð~	; �~�0

dÞT , ~�00
2 ¼ ð~
; �~�0

uÞT , ~�0þ
1 ¼ ð ~�þ; �~�þ

d ÞT , and
~�0�
1 ¼ ð ~��; �~��

u ÞT . The Z2-odd scalar masses can be typi-
cally expressed by m2

�0 ¼ �m2
�0 þ ðk0g02 þ kg2 þ c�2Þv2,

where �m2
�0 denotes the soft SUSY-breaking scalar mass.4

For the soft SUSY-breaking masses, we consider three
benchmark sets of parameters shown in Table III. When
the contribution coming from the Higgs VEV dominates
the mass, significant nondecoupling effects can arise [4,5].
Since we are interested in such nondecoupling cases, some
soft SUSY-breaking parameters are taken to be as light as
50 GeV.
The SM-like Higgs boson mass for benchmark parame-

ter sets are shown in Fig. 2. Here we fix the parameters
in the stop sector as �m2

~tL
¼ �m2

~tR
¼ 1000 GeV and the left-

right mixing parameter as Xt ¼ At þ� cot� ¼ 500 GeV.
The MSSM Higgs parameters are fixed as � ¼ 200 GeV,
mA ¼ 500 GeV and tan� ¼ 3. With this parameter set, the
SM-like Higgs boson mass in the MSSM is evaluated as
mh ’ 102:3 GeV [19]. In our model, the SM-like Higgs
boson mass can get significant contributions from loop
diagrams involving the Z2-odd fields due to the large
coupling constant �, in addition to the loop contributions
from top quark fields. The size of the corrections depends
on the soft SUSY-breaking parameters. As shown in Fig. 2,
the SM-like Higgs boson massmh can reach to 125 GeV by
the radiative corrections.
In Table IV, the values of �H and � corresponding to

mh ¼ 125 GeV are displayed. Once these values are fixed,
we can find out the mass spectrum for the Z2-odd particles
in each benchmark as shown in Table V. Since they are
noncolored particles, linear colliders can have an advan-
tage on the direct searches for them.
As shown in Ref. [7], the F terms from the couplings

among the MSSM-like Higgs doublets, the Z2-odd dou-
blets and the charged singlets can significantly enhance the
first-order electroweak phase transition if the coupling
constant is as large as �� 2. The Z2-odd neutral singlets
can also contribute to making the phase transition stronger
by the precise enhancement mechanism. Then the spha-
leron decoupling condition required by successful electro-
weak baryogenesis is satisfied more easily. On the
benchmark points chosen in the analysis, the first-order
electroweak phase transition is strong enough.

TABLE V. The mass spectrum of the Z2-odd particles for mh ¼ 125 GeV in each benchmark set. Masses are given in GeV.

Set m��
u

m��
d

m�0
u

m�0
d

m�� m�þ m	 m
 m~�0�
1

m~�0�
2

m~�00
1

m~�00
2

A 353.6 371.7 140.2 493.5 354.1 371.2 369.2 356.2 117.6 352.7 117.6 352.7

B 331.9 417.2 134.2 516.0 332.5 416.7 414.9 334.7 110.3 331.0 110.3 331.0

C 315.6 464.0 129.7 546.0 316.2 463.7 462.1 318.5 104.9 314.6 104.9 314.6

4Because ��
u (��

d ) and �0
u(�

0
d) are the components of �u

(�d), �m2
��

u
¼ �m2

�0
u
and �m2

��
d

¼ �m2
�0

d

are satisfied.
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V. CONCLUSIONS

We have shown that the SUSY QCD theory withNc ¼ 2
and Nf ¼ 3 with one fundamental singlet S can give the

strongly coupled Higgs sector containing four isospin dou-
blets, two charged singlets and two neutral singlets as the
low-energy description. Since the cutoff scale�H is as low
as multi-TeV to 10 TeV, the coupling constant � in the
Higgs sector is as large as �2. In our model, however, the
SM-like Higgs boson is naturally light because the F terms
do not contribute to its mass at the tree level, while radia-
tive corrections involving strongly coupled fields in the
Higgs sector are large enough to raise the SM-like Higgs
boson mass to 125 GeV.

We comment on collider signatures of our model. The
model contains many new Z2-odd charged and neutral
scalars and fermions with masses of several hundred
GeV. The lightest one is definitely stable because of the
Z2 parity.

5 At the LHC, Z2-odd particles are pair-produced
through electroweak interactions, and decay into two
lightest Z2-odd particles, two lightest R-parity-odd parti-
cles and several SM particles. (For early studies, see
Ref. [20].) The most clear signatures of the model are
events with two or three leptons and large missing trans-
verse momentum. The results from the searches for slep-
ton, chargino and neutralino direct productions by ATLAS
collaboration [21] apply to our model. The current bound
[21] is mild and our benchmark spectra of Table V may not
have been excluded yet.

At the tree level, the SM-like Higgs boson couples to
MSSM particles in the same way as the MSSM. It also
couples to Z2-odd particles through large coupling constant
�, but its decay width and branching ratios at the tree level
are not altered if the mass of the light Z2-odd particle is

larger than half the SM-like Higgs boson mass. The
branching ratio into two photons can be significantly
affected by loop corrections involving Z2-odd charged
scalars and fermions that strongly couple to the SM-like
Higgs boson. They can enhance or suppress the branching
ratio depending on the parameters. Also, the triple cou-
pling for the SM-like Higgs boson, which has been studied
in Refs. [4,5], receives large corrections from loops involv-
ing Z2-odd doublets and singlets. It thus significantly
deviates from the SM prediction, and such deviation can
be observed through future collider experiments.
Finally we comment on a possible extension of the

model. In the present model, the large coupling constant
� with the 125 GeV SM-like Higgs boson can make the
first-order electroweak phase transition strong enough to
enable electroweak baryogenesis [7]. In addition, the light-
est Z2-odd field can be another source of dark matter than
the lightest R-parity-odd field as long as it is electrically
neutral. Furthermore, the model can be extended to explain
the tiny neutrino masses. By introducing Z2-odd right-
handed neutrino superfields whose Majorana masses are
at the TeV scale, the tiny neutrino masses can be generated
at loop levels [22,23]. With this extension of the model, we
may be able to build the testable theory in which baryon
asymmetry of the Universe, dark matter and the tiny neu-
trino masses can be simultaneously explained from the
UV-complete SUSY strong dynamics around multi-TeV
to 10 TeV without excessive fine-tuning. We leave these
topics for future studies.
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