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We critically examine interpretations of hypothetical supersymmetric LHC signals, fitting to alternative

wrong models of supersymmetry breaking. The signals we consider are some of the most constraining on

the sparticle spectrum: invariant mass distributions with edges and endpoints from the golden decay chain

~q ! q�0
2ð! ~l�l�qÞ ! �0

1l
þl�q. We assume a constrained minimal supersymmetric standard model

(CMSSM) point to be the ‘correct’ one, but fit the signals instead with minimal gauge mediated

supersymmetry breaking models (mGMSB) with a neutralino quasistable lightest supersymmetric

particle, minimal anomaly mediation and large volume string compactification models. Minimal anomaly

mediation and large volume scenario can be unambiguously discriminated against the CMSSM for the

assumed signal and 1 fb�1 of LHC data at
ffiffiffi
s

p ¼ 14 TeV. However, mGMSB would not be discriminated

on the basis of the kinematic endpoints alone. The best-fit point spectra of mGMSB and CMSSM look

remarkably similar, making experimental discrimination at the LHC based on the edges or Higgs

properties difficult. However, using rate information for the golden chain should provide the additional

separation required.
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I. INTRODUCTION

The Large Hadron Collider (LHC) is currently actively
engaged in searches for new physics, including supersym-
metry (SUSY). No signal has yet been found, and the CMS
and ATLAS experiments have significantly extended pre-
vious exclusion limits [1,2]. In the near future, as more data
are collected by the experiments, the observation of a
supersymmetric signal is quite plausible. In the event of
a signal, it will be important to extract as much empirical
information as possible about the sparticle spectrum, since
it contains clues about the mechanism of supersymmetry
breaking. We may hope to rule out one mechanism in favor
of another. One will want to bring all of the data that
robustly constrain the supersymmetry breaking mechanism
to bear in order to separate different models empirically.
However, the usual search variables (number of events past
certain cuts or total cross sections), while perfectly suited
to searching for supersymmetry, are blunt instruments
when it comes to measuring supersymmetric masses in
detail: they give only gross information about the overall
mass scale of the supersymmetric particles. Since this is
typically described by some parameter in the SUSY break-
ing mechanism, such measurements will not tend to be
very good at disentangling models. One needs to measure
observables which are sensitive to the mass spectrum of the
sparticles, reasonably accurate, and robust with respect to
experimental systematics such as how well one has

parametrized one’s detector. Arguably the best examples
of such observables come from SUSY cascade decays.
SUSY cascade decay chains give specific kinematics to
the final state particles, and particular kinematic variables
have been shown to contain a wealth of information about
the sparticle masses. Maxima and minima of invariant
mass distributions, if observed, have several advantages
in the inference of sparticle masses. They can be essen-
tially Standard Model background free, particularly if
flavor subtracted. Also, although the shape [3] of the
distributions themselves is subject to significant detector
corrections, which may require a lot of integrated luminos-
ity to model well, the endpoints of the distributions are
expected to be much less sensitive to such effects. For
example, the golden decay chain

~q ! q�0
2ð! ~l�l�qÞ ! �0

1l
þl�q; (1.1)

shown in Fig. 1 has been shown to be most useful [4]. The
presence of this cascade leads to events with two opposite-
sign same-flavor leptons, jets and missing energy.
The endpoints yield useful information coming from the

FIG. 1. The golden decay chain ~q ! �0
2qð! ~l�l�qÞ !

�0
1l

þl�q.
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invariant mass distributions of the dileptons mll, from the
jet and lepton pair mllq and from each lepton and the jet

mlq. Despite the fact that one obtains highly correlated

mass measurements from such endpoints, considering the
measurements in parallel helps discriminating different
models of supersymmetry breaking [5]. Even if additional
decay chains are identified in the data, they are not ex-
pected to add significant discriminatory power over the
dominant golden chain. It is by no means guaranteed that
the golden decay chain is present, however. For instance, it
only exists in about a quarter of the parameter space [6] of
the constrained minimal supersymmetric standard model
(CMSSM). In the case that the golden chain is not present,
one would use kinematic edge data from all chains that one
can identify. The resulting information is then likely to be
less constraining on the sparticle spectrum than the golden
chain. We then view studies assuming the observation of
the golden decay chain to be the most optimistic cases
as far as model discrimination goes. If two models cannot
be experimentally discriminated with this assumption,
it is extremely unlikely that they will be discriminated
between without the golden cascade. The kinematic data
have been further combined with cross-section information
in order to improve the precision of mass measurements
within particular models with more parameters than the
CMSSM [7].

Combining the power of the LHC and a linear collider
leads to much more information about the model than is
possible from LHC measured kinematic endpoints, and
constitutes a significant improvement on the information
obtained from the LHC alone [8]. Using SUSY signal
measurements from both a linear collider and the LHC in
order to measure a large part of the minimal supersymmet-
ric standard model (MSSM) spectrum may be possible,
allowing checks of unification relations in various models
[9–11]. The additional information coming from linear
collider data would be ideal to include in order to discrimi-
nate models, but in this paper we restrict ourselves to
potential LHC data, since the linear collider is not yet built.

Kinematic edge predictions resulting from golden chain
decays have been examined in the literature to see if
there could be model discrimination coming from their
measurement. In Ref. [12], it was seen whether the ratios
of the measurements would discriminate the CMSSM, an
intermediate-scale string model and a mirage unification
model. The parameters of the models were all scanned
over, but no experimental errors were taken into account.
In any case, it was concluded that there was no clear
separation between the models from using the edge varia-
bles, even for infinitely precise measurements. We go
beyond this work by examining different models, and by
fixing a benchmark model such that we can use the experi-
mental resolutions estimated by ATLAS, assuming a
certain integrated luminosity. In Ref. [13], the golden
decay chain was used in fits to the CMSSM.

Hypothetical invariant mass endpoints were fit using differ-
ent sparticle spectrum calculators in order to examine the
differences between them, quantifying the theoretical er-
ror. The best-fit values of each spectrum calculator were
within 95% confidence level limits of each other, assuming
a huge LHC luminosity (300 fb�1). A number of other
fitting groups have investigated the effects of LHC data
on global fits to the CMSSM, including the Fittino
Collaboration [14], SFitter [15] and Refs. [16,17]. Those
works focused more on the constraining power of the LHC
data on CMSSM fits. In Ref. [18], current indirect data on
B decays, electroweak observables and the dark matter
relic density were combined with direct sparticle search
limits in fits to the CMSSM, minimal anomaly mediation
(mAMSB), large volume scenario (LVS) and minimal
gauge mediated supersymmetry breaking (mGMSB) mod-
els (to be introduced below) in order to examine whether
current data show any preference for the model of super-
symmetry breaking. It was found that current indirect data
are too weak to select any of the models. On the other hand,
endpoint data taken from the golden cascade would be
enough to robustly constrain the CMSSM in 1 fb�1 of
integrated luminosity, at a particular benchmark point
studied by ATLAS, called SU3 [16]. Such robustness is
signaled by prior independence in Bayesian fits, indicating
that the data are sufficiently powerful to constrain the
model hypothesized. Reference [19] also examined fits
from the SU3 point golden cascade fits on the CMSSM
(with and without including cosmological data) as well as
models with more free parameters than the CMSSM.
Model comparison between the nonuniversal Higgs model,
the CMSSM and the CMSSM but with nonuniversal gau-
gino masses was examined using Bayesian techniques.
Some nonrobustness in the non-CMSSM models with
respect to changing the priors was discovered: there was
not enough power in the data to properly constrain the
models with larger parameter spaces.
Since the CMSSM may be robustly constrained by the

endpoint data, but models with more parameters may not,
in the present paper we answer the following question: is
kinematic edge data from 1 fb�1 of the 14 TeV LHC
constraining enough to allow us to distinguish between
simpler different models of supersymmetry breaking (i.e.,
with fewer parameters in the CMSSM)? This question will
require a numerical statistical analysis. Even if it is clear
analytically that a model can be chosen such that its mass
spectrum is close to the CMSSM, the question is: can it be
made close enough in terms of the errors on the observ-
ables to provide a viable fit? Conversely, even if two
models cannot exactly reproduce the same mass spectrum,
are the errors on the observables small enough such that the
two models are discriminated? We shall test robustness by
looking for a lack of prior dependence in the hypothesis
testing, and agreement between Bayesian and frequentist
inferences.
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II. SUSY BREAKING MODELS

In this section, we summarize the alternative hypotheses
of SUSY breaking that we shall use. The parameters of the
CMSSM are a flavor blind SUSY breaking scalar massm0,
a common gaugino massM1=2, a flavor blind SUSY break-

ing scalar trilinear coupling A0 and tan�, the ratio of the
MSSM Higgs vacuum expectation values. Below a grand
unification theory (GUT) scale of MGUT � 2� 1016 GeV,
the SUSY breaking terms of different flavors evolve sepa-
rately to the weak scale. In anomaly mediated SUSY
breaking [20], SUSY breaking is communicated to the
visible sector via the super-Weyl anomaly. In its original
manifestation, pure anomaly mediation suffers from nega-
tive slepton mass squared parameters, signaling a scalar
potential minimum inconsistent with a massless photon.
mAMSB assumes the existence of an additional contribu-
tion to scalar masses m0 at MGUT giving it a total of three
parameters: the vacuum expectation value of the auxiliary
field in the supergravity multiplet representing the overall
sparticle mass scale, maux, m0 and tan�. As advertised
above, mGMSB [21] also has three continuous parameters:
the overall messenger mass scale Mmess, a visible sector
soft SUSY breaking mass scale, � and tan�. It also con-
tains an additional discrete parameter, namely Nmess, the
number of SU(5) 5 � �5 representations of mediating
fields. The example of a moduli mediated model which
we consider is the large volume scenario derived in the
context of IIB flux compactification [22–25] whose
two extra-Standard Model parameters can be parametrized
by a universal scalar massm0 and tan�. At an intermediate
scale of 1011 GeV, the LVS has a universal gaugino mass

M1=2 ¼
ffiffiffi
3

p
m0 and a universal trilinear scalar coupling

A0 ¼ � ffiffiffi
3

p
m0.

In Sec. III following, we detail the predictions of the
golden cascade edges, as well as the expected precision
that would come from LHC measurements. We also spec-
ify the SU3 CMSSM benchmark. In Sec. IV, we summarize
the statistics we shall use to perform hypothesis testing on
the different SUSY breaking models, defining parameter
ranges for the fits. The results of the hypothesis tests are
given in Sec. V. We show that mGMSB cannot be discri-
minated from SU3 by the edge data alone. It is then
examined in more detail. We sum up and conclude in
Sec. VI.

III. KINEMATIC EDGES AT SU3

The ATLAS Collaboration has published a series of
studies on reconstructing SUSY benchmark points in the
supersymmetry section of Ref. [26]. We are specifically
interested in the study of the CMSSM SU3 benchmark
point and associated mass reconstruction using kinematic
endpoints from golden cascades. The input parameters for
the SU3 point are shown in Table I. SU3 is a point in the
bulk region of the parameter space with m�0

1
¼ 118 GeV

and m~g ¼ 720 GeV. Its spectrum contains the mass order-

ing m�0
1
<m~l < m�0

2
<m~q or m�0

1
<m�0

2
<m~l < m~q so

that the golden decay chain is active (in the latter case,

the �0
2 decay is three body as the

~l is off shell). We note that

the SU3 point has recently been ruled out by the ATLAS
experiment’s jets plus zero lepton missing transverse mo-
mentum search [1,27]. This does not matter for the pur-
poses of the present paper: one must simply bear in mind
that a heavier point will have decreased statistics, and
consequently will require more luminosity to discriminate
against other models.
In the golden decay chain in Fig. 1, one may construct

several Lorentz invariant quantities from the four momenta
of the visible particles: the quark and leptons. These are
predicted to have various maxima and minima, each pre-
dicted by the theory to be related to the masses of the
supersymmetric particles involved in the cascade decay.
We shall now detail this dependence, which differs depend-
ing on whether the �0

2 decays through a two-body decay

with an on-shell slepton (m�0
2
>m~l) or a three-body decay

(m�0
2
<m~l). We now detail each case in turn, collecting the

edge predictions from Refs. [5,28] for completeness.

A. Prediction of kinematic edges with
an on-shell slepton

One kinematic maximum that we use is the dilepton
mass edge. In terms of the sparticle masses, it is predicted
to be

m
edge2
ll ¼

ðm2
�0
2

�m2
~l
Þðm2

~l
�m2

�0
1

Þ
m2

~l

: (2.1)

There are two lq edges, in ascending order mlqðlowÞ and
mlqðhighÞ, respectively. They are defined to be the maximum

or minimum of various quantities for m�0
2
>m~l:

mlqðhighÞ ¼ max½mnr
lq ; m

far
lq �; (2.2)

mlqðlowÞ ¼ min½mnr
lq ðmaxÞ; mfar

lq ðmaxÞ; m0
lqðmaxÞ�; (2.3)

where the quantities on the right-hand side are defined
to be

mnr2
lq ðmaxÞ ¼

ðm2
~q �m2

�0
2

Þðm2
�0
2

�m2
~l
Þ

m2
�0
2

; (2.4)

TABLE I. Input parameters of the CMSSM SU3 benchmark
point.

Parameter m0 m1=2 A0 tan� sgn �

Value 100 GeV 300 GeV �300 GeV 6 þ1
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mfar2
lq ðmaxÞ ¼

ðm2
~q �m2

�0
2

Þðm2
~l
�m2

�0
1

Þ
m2

~l

; (2.5)

m02
lqðmaxÞ ¼

ðm2
~q �m2

�0
2

Þðm2
~l
�m2

�0
1

Þ
2m2

~l
�m2

�0
1

: (2.6)

The llq edge is defined as

m
edge2
llq ¼ max

2
4ðm2

~q �m2
�0
2

Þðm2
�0
2

�m2
�0
1

Þ
m2

�0
2

;
ðm2

~q �m2
~l
Þðm2

~l
�m2

�0
1

Þ
m2

~l

;
ðm2

~qm
2
~l
�m2

�0
2

m2
�0
1

Þðm2
�0
2

�m2
~l
Þ

m2
�0
2

m2
~l

3
5 (2.7)

unless m4
~l
< m2

~qm
2
�0
1

<m4
�0
2

and m4
�0
2

m2
�0
1

<m2
~qm

4
~l
, in which case the right-hand side is equal to ðm~q �m�0

1
Þ2. For the llq

threshold variable, the prediction is

mthr2
llq ¼ 1

4m2
~l
m2

�0
2

½2m2
~l
ðm2

~q �m2
�0
2

Þðm2
�0
2

�m2
�0
1

Þ þ ðm2
~q þm2

�0
2

Þðm2
�0
2

�m2
~l
Þðm2

~l
�m2

�0
1

Þ

� ðm2
~q �m2

�0
2

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

�0
2

þm2
~l
Þ2ðm2

~l
þm2

�0
1

Þ2 � 16m2
�0
2

m4
~l
m2

�0
1

r
�: (2.8)

This edge is the mllq minimum for all events for which 1ffiffi
2

p � mll=mllðmaxÞ � 1.

B. Prediction of kinematic edges with three-body �0
2 decay

Whenm�0
2
<m~l, the �

0
2 decays via a virtual

~l into leptons and �0
1, and in this case the above Eqs. (2.1), (2.2), (2.3), (2.4),

(2.5), (2.6), (2.7), and (2.8) should be altered to the following:

m
edge2
ll ¼ ðm�0

2
�m�0

1
Þ2; (2.9)

m2
lqðhighÞ ¼

ðm2
~q �m2

�0
2

Þðm2
�0
2

�m2
�0
1

Þ
2m2

�0
2

; (2.10)

mlqðlowÞ ¼
mlqðhighÞffiffiffi

2
p ; (2.11)

medge2
llq ¼

8<
:
ðm2

~q �m2
�0
1

Þ2 if m2
�0
2

>m~qm�0
1
;

ðm2
~q �m2

�0
2

Þðm2
�0
2

�m2
�0
1

Þ=m2
�0
2

otherwise;
(2.12)

mthr2
llq ¼ ðm�0

2
�m�0

1
Þ2

2
þ

m2
~q �m2

�0
2

4m2
�0
2

ð3m2
�0
2

�m2
�0
1

� 2m�0
2
m�0

1
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4

�0
2

þm4
�0
1

þ 4m�0
2
m�0

1
ðm2

�0
2

þm2
�0
1

Þ � 10m2
�0
2

m2
�0
1

r
Þ:

(2.13)

There is obviously less information than in the case where
the slepton is on shell, because there are less constraints
coming from four-momentum conservation. In particular,
we see that m~l does not feature in the equations, and there
is no information on its mass held in the kinematic edges.

C. ATLAS reconstruction of the edges

ATLAS have calculated the expected positions of the

m
edge
ll , m

edge
llq , mthr

llq, mlqðlowÞ and mlqðhighÞ mass distributions.

We recalculate these using the spectrum obtained for the

SU3 point from SOFTSUSY3.1.7 [29]. We take into account
the possibility thatm~l > m�0

2
leading to a three-body decay

[28].1 Since it is not possible to reconstruct the individual
squark masses or flavor, we consider m~qL to be the average

of the masses of the ~uL and ~dL squarks, as do ATLAS. In

1The presence of the two-body versus the three-body decay
can affect the shape of the distribution of the dilepton invariant
mass. We do not take this into account into our fits, considering
only the position of the edge and not its shape.
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Table II we show the positions of the edges as calculated by
ATLAS, and those which we obtain from SOFTSUSY3.1.7.
For the dilepton edges, the SOFTSUSY3.1.7 values are ap-
proximately 4 GeV higher than those given by ATLAS, and
for the edges and thresholds involving quarks the discrep-
ancy is larger, around 20–30 GeV. We have also checked
that all the models possess the necessary mass ordering for
all edges to exist simultaneously in at least some part of
their parameter space. For instance, in mAMSB this can be

achieved when maux=m0 � 10. At the test point, ~qL and ~lR
are the squarks and sleptons involved in the chain, and so
we use m~l ¼ m~lR

and m~q ¼ m~qL in Eqs. (2.1), (2.2), (2.3),

(2.4), (2.5), (2.6), (2.7), (2.8), (2.9), (2.10), (2.11), (2.12),
and (2.13). In general, one is unlikely to be able to deduce
the sublabels L or R in the decay chain from the measure-
ments alone. We check that allowing the labels to vary does
not change the hypothesis testing results in Sec. VD.

With the SU3 spectrum, ATLAS simulated 1 fb�1 of
LHC data at

ffiffiffi
s

p ¼ 14 TeV center-of-mass energy and
simulated the reconstruction of the positions of the edges
and thresholds. Full details are available in Ref. [26]. The
results of this reconstruction are shown in column three of
Table II, which shows the central values of the recon-
structed edges and an estimate of the total error which is
arrived at by combining in quadrature the estimated statis-
tical, systematic and jet energy scale errors. For each edge,
we further assume a theoretical error on the SOFTSUSY3.1.7

prediction of the edge of half of the difference between the
SOFTSUSY3.1.7 prediction and the number under the ATLAS

theory column of the table. We fit the four SUSY breaking
models listed in Sec. II to the reconstructed endpoints in
Table II. We have thus neglected the correlations in jet
energy scale and other systematic errors. This should be a
reasonable approximation for our purposes, and is conser-
vative in the sense that including the correlations would
actually decrease the total error volume. Thus, if we
conclude that two models may be discriminated by includ-
ing the errors independently, we may conclude that they
would also be discriminated by including the measurement
correlations.

IV. INFERENCE AND FIT DETAILS

Assuming some model hypothesisH, Bayesian statistics
help update a probability density function (PDF) pðmjHÞ
of model parameters m with data. The prior encodes our
knowledge or prejudices about the parameters. Since
pðmjHÞ is a PDF in m,

R
pðmjHÞdm ¼ 1, which defines

a normalization of the prior. One talks of priors being
‘‘flat’’ in some parameters, but care must be taken to refer
to the measure of such parameters. A prior that is flat
between some ranges in a parameter m1 will not be flat
in a parameter x 	 logm1, for example. The impact of the
data is encoded in the likelihood, or the PDF of obtaining
data set d from model point m: pðdjm;HÞ 	 LðmÞ. The
likelihood is a function of �2, i.e., a statistical measure of
how well the data are fit by the model point. One useful
quantity is the posterior; the PDF of the model parameters
m given some observed data d and assuming hypothesisH:
pðmjd;HÞ. Bayes’ theorem states that

pðmjd;HÞ ¼ pðdjm;HÞpðmjHÞ
pðdjHÞ ; (3.1)

where pðdjHÞ 	 Z is the Bayesian evidence, the probabil-
ity density of observing data set d integrated over all model
parameter space. The Bayesian evidence is given by

Z ¼
Z

LðmÞpðmjHÞdm; (3.2)

where the integral is over N dimensions of the parameter
space m. We note that the evidence depends upon the
ranges of m assumed.
In order to select between two models H0 and H1, one

needs to compare their respective posterior probabilities
given the observed data set d, as follows:

pðH1jdÞ
pðH0jdÞ

¼ pðdjH1ÞpðH1Þ
pðdjH0ÞpðH0Þ ¼

Z1

Z0

pðH1Þ
pðH0Þ ; (3.3)

where pðH1Þ=pðH0Þ is the prior probability ratio for the
two models, which we set to unity as we adopt the position
that no mechanism of mediation is a priori more likely
than any other. It can be seen from Eq. (3.3) that Bayesian
model selection revolves around the evaluation of the
Bayesian evidence. As the average of likelihood over the
prior, the evidence automatically implements Occam’s
razor. A theory with fewer parameters has a higher prior
density since it integrates to 1 over the whole space.
Indeed, a theory with the same number of parameters but
larger a priori parameter ranges will have a correspond-
ingly smaller evidence, for a similar reason, provided both
ranges cover the high likelihood region. There is thus a
preference for fewer parameters and smaller ranges, unless
the data strongly require there be more. Evaluation of the
evidence is a computationally intensive task, and specific
algorithms are required to make it practically possible. We
use the nested sampling approach of Ref. [31] to evaluate
the evidence. A by-product of this approach is that it also

TABLE II. This table shows the position of the endpoints and
thresholds for the SU3 CMSSM point in GeV. The column
labeled ‘‘ATLAS theory’’ is as predicted by ISAJET7.75 [30] and
used in the experiment’s simulations. The simulations of SUSY
signal events in 1 fb�1 of 14 TeV LHC collisions yielded the
values marked in the reconstruction column. The final column
shows the SU3 values predicted by SOFTSUSY3.1.7.

Mass distribution ATLAS theory Reconstruction SOFTSUSY3.1.7

m
edge
ll 100.2 99:7� 1:4 103.9

m
edge
llq 501 517� 33:7 532

mthr
llq 249 265� 23:7 265

mlqðlowÞ 325 333� 11:7 344

mlqðhighÞ 418 445� 19:0 446
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produces posterior inferences. This method is implemented
by the MULTINEST algorithm of Refs. [32,33] which we use
in this paper.

The natural logarithm of the ratio of posterior model
probabilities quantifies the level of discrimination between
two models:

� logZ ¼ log

�
pðH1jdÞ
pðH0jdÞ

�
¼ log

�
Z1

Z0

pðH1Þ
pðH0Þ

�
: (3.4)

We summarize the convention we use in this paper in
Table III.

In Bayesian model selection the results will always
depend to some extent on the priors. Rather than seeking
a unique ‘‘right’’ prior, one should check the independence
of conclusions with respect to a reasonable variation of the
priors. Such a sensitivity analysis is required to ensure that
the resulting model comparison is not overly dependent on
a particular choice of prior and the associated metric in
parameter space, which controls the value of the integral
involved in the computation of the Bayesian evidence.
Prior dependence has been studied in the CMSSM fitted
to indirect data in Ref. [34], where it was demonstrated that
the indirect data were not constraining enough to allow a
prior-independent determination of the preferred regions of
the parameter space. Prior dependence in parameter esti-
mation was also treated in Refs. [35,36], and in evidence
evaluation in Refs. [18,37].

We have considered two different prior PDFs in this
analysis. The first is the standard ‘‘linear prior’’ where
pðm1Þ ¼ pðm2Þ for m1;2 being two different points in the

parameter space of one of the models under consideration.
We shall contrast the results with linear priors versus those
with log priors: each parameterm with dimensions of mass
has a prior whose distribution is flat in logðmÞ, except for
A0 in the CMSSM. A0 ¼ 0 requires a different treatment
because of the singularity at 0 in logA0: we choose a prior
that is flat in logðjA0j þ CÞ. For this particular study, we
pick C ¼ 60 GeV, but the results are not at all sensitive to
the value chosen (indeed, we shall see that they are not
sensitive to the choice of log or flat priors—a much larger
change).

Before proceeding, we specify the parameter ranges
over which we sample for the different models. We con-
sider only the positive sign of�, as it is well known that the
kinematical edges we consider do not have the power to
distinguish the sign of �. It is unlikely that the LHC will

have enough data to distinguish different signs of �: given
current search constraints where soft SUSY breaking terms
are expected to be heavy, the sign of � may only have a
fairly small effect on aspects of the spectrum. It affects
heavier chargino and neutralino masses and mixings, and
the third family sfermion mixings, all of which will be
difficult to measure accurately at the LHC (but which may
well be accurately measured at a future linear collider).
The ranges over which we vary the continuous model
parameters are shown in Table IV.
We bound tan� from below by 2, as values lower than

this are in contravention of LEP2 Higgs searches, and from
above by 62, since such large values lead to nonperturba-
tive Yukawa couplings below the GUT scale and calcula-
bility is lost. In mGMSB the discrete parameter Nmess, the
number of messenger multiplets, is varied between 1 and 8.
Higher values ofNmess lead to problems with perturbativity
of gauge interactions at the GUT scale [21]. We wish to
avoid possible contributions from gravity mediation in our
mGMSB fits. Gravity mediated contributions will always

be present and of order F=MPl, where
ffiffiffiffi
F

p
is the super-

symmetry breaking scale, and we require these contribu-
tions to the soft masses to be less than 1 GeV. This implies
a maximum value of F of around 1019 GeV. Since the mass
scale � ¼ F=Mmess � 105 GeV, we restrict Mmess to be
less than 1014 GeV. In the CMSSM the unification scale is
the standard GUT scale MGUT 
 2� 1016 GeV, while for
the LVS the soft terms are defined at the intermediate string
scale ms 
 1011 GeV as in Ref. [25].
The constraints we use are all shown in Table II. We treat

the measurements Di of the observables as independent.
We also assume Gaussian errors on all measurements. The
pull of observable i is calculated by

si ¼ jci � pij
�i

; (3.5)

where ci is the central experimental value of observable i,
pi is the prediction of it by the model point and hypothesis
assumed and �i is the standard deviation incorporating
both experimental and theoretical uncertainties, added in
quadrature. The pull is a measure of how far the prediction
is from the central experimental value in comparison to the

TABLE III. The Jeffreys’ scale of hypothesis testing. Here the
‘‘log’’ represents the natural logarithm.

j� logZj Odds Probability Remark

<1:0 & 3:1 <0:750 Inconclusive

1.0 �3:1 0.750 Weak Evidence

2.5 �12:1 0.923 Moderate Evidence

5.0 �150:1 0.993 Strong Evidence

TABLE IV. Ranges for the parameters in mGMSB and
the large volume scenario. In mGMSB we also vary the
discrete parameter Nmess between 1 and 8. For all models, 2 �
tan� � 62.

CMSSM mAMSB

1 GeV � m0 � 2 TeV 1 GeV � m0 � 2 TeV
60 GeV � m1=2 � 2 TeV 20 TeV � maux � 100 TeV
�4 TeV � A0 � 4 TeV
mGMSB LVS

104 GeV � � � 106 GeV 1 GeV � m0 � 2 TeV
105 GeV � Mmess � 1014 GeV
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error. In the limit of large statistics, where the experimental
measurements have Gaussian probability distributions,
�2 ¼ P

is
2
i follows a well-known (‘‘�2’’) distribution.

The log likelihood of a prediction pi of an observable i
is given by

logLi ¼ � s2i
2
� 1

2
logð2�Þ � logð�iÞ: (3.6)

The combined log likelihood is the sum of the individual
log likelihoods,

logLtot ¼ X
i

logLi: (3.7)

We do not use any indirect observables in this paper. If an
edge or threshold is not present due to the mass ordering in
the spectrum, the likelihood of that point is set to zero.
Equation (3.7) amounts to assuming that the measurements
of each endpoint are independent. This is not strictly true:
jet-energy scale errors, for instance, will tend to correlate

m
edge
llq , mthr

llq, mlqðlowÞ and mlqðhighÞ. However, this is not

expected to be a large effect, and neglecting the resulting
correlation should yield a reasonable approximation.
Correlations between the sparticle masses coming
from the measurements are automatically taken into
account by Eqs. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7),
and (2.8).

Aside from the Bayesian evidence, we shall evaluate the
comparative quality of fit of each model via the p value of
their best-fit points. For a given model, the best-fit point in
parameter space is defined to be the one with the lowest �2.
The p value is constructed as follows: it is the probability
of obtaining �2 at least as large as the one actually ob-
served �2

o, assuming the best-fit point of the hypothesized
model

p ¼
Z 1

�2
o

1

2k=2�ðk=2Þ x
k=2�1e�x=2dx; (3.8)

where k is the number of degrees of freedom: the number
of observables minus the number of parameters in the
model. p values do not depend upon priors. However, in
common problems, the interpretation of the p value is
problematic because of the identification of the number
of degrees of freedom. One could always add additional
observables that are insensitive to the value of the model
parameters at the best-fit point, changing the value of p, for
instance. Also, the presence of physical boundaries may
spoil the interpretation of p as calculated in Eq. (3.8) [38].
Nevertheless, we use p values as a qualitative estimator of
the overall quality of the fit in each case: a small p value
indicates the fact that the model is not able to fit the data
well, and a p value closer to unity indicates that the model
may fit it. We calculate the p value by minimizing the �2

function using the minimizer MINUIT [39] (a particular
configuration of MULTINEST has also shown to be able to
perform this task [40]). We use the point sampled by

MULTINEST during the evidence calculation with the high-

est likelihood as a starting seed.
Since we are assuming that the LHC measurements

discover missing transverse momentum like signals, which
yield SUSY signals leading to the endpoints detailed in
Table II, we require a neutral MSSM particle that is stable,
at least on time scales required for it to traverse a LHC
detector. Therefore, in mAMSB, the CMSSM and the LVS
the neutralino must be the lightest supersymmetric particle
(LSP), or else we set the likelihood to zero. In mGMSB the

gravitino ~G is the LSP, and the collider signatures are to a
large part determined by the identity of the next-to-lightest
supersymmetric sparticle (NLSP). If the stau is the NLSP
we reject the point, assigning it a zero likelihood. If the
neutralino is the NLSP we consider its decay length. If
the (binolike) neutralino decays inside the detector, then
the classic diphoton and missing transverse energy of low
scale mGMSB is realized, in contradiction to the signals
that we assume from Ref. [26]. We therefore ensure that in
mGMSB the NLSP is the neutralino and that it is stable on
detector time scales. Specifically, we calculate the decay
length of the neutralino according to Ref. [41] where

Ldecay ¼ 1

��

�
100 GeV

mNLSP

�
5
�

�

100 TeV

�
2

�
�

Mmess

100 TeV

�
2
10�4 m; (3.9)

where �� is the photino component of the neutralino, since

in mGMSB the neutralino NLSP is predominantly photino-
like. If the decay length is less than 10 m we reject the
point. We also apply some simple direct search bounds,
adapted from Refs. [18,42,43]. If a sparticle mass fails to
satisfy these bounds, the corresponding point is assigned a
zero likelihood.
To calculate the MSSM spectrum we use SOFTSUSY3.1.7

which calculates the spectrum of the CMSSM, mAMSB
and mGMSB. By modifying the unification scale from
MGUT to mstring � 1011 GeV and by not enforcing gauge

coupling unification, SOFTSUSY3.1.7 can also provide the
spectrum in the LVS case. Parameter space points which do
not break electroweak symmetry correctly or have ta-
chyonic sparticles are assigned zero likelihood. However,
this disallowed part of parameter space is included in our
calculation of the prior volume and so will consequently
reduce the evidence. Points which have a charged LSP are
rejected.2

2Due to the small neutralino-chargino splitting in mAMSB we
must reject any points that would violate the long-lived charged
stable particle bounds from Tevatron, which requires �m ¼
m�þ

1
�m�0

1
> 50 MeV. In practice, we find that this bound

does not constrain the mAMSB parameter space since
mAMSB predicts larger splittings [44].
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V. FITS TO EDGE DATA

A. Hypothesis testing

The Bayesian evidence values calculated for the differ-
ent models and priors are shown in Table V. Although there
is a small dependence of the evidence upon the prior, there
is a much larger difference between the evidences of some
of the models and so we may expect to reliably discrimi-
nate between them on that basis. One would strongly
discriminate against the LVS and mAMSB in favor of
SU3 based either on the Jeffreys’ scale of Bayesian evi-
dence differences or on the p values. However, we see that
we would not discriminate between mGMSB and the
CMSSM using the evidence. Reassuringly, the p values
point in the same direction as the Bayesian evidence:
mAMSB and the LVS would be discriminated against,
but mGMSB and the CMSSM could not be distinguished
on the basis of edge data alone. The agreement of the
interpretation of the naive frequentist (p value) and
Bayesian (evidence) measures of hypothesis test is another
signal that the fits are fairly robust, together with their
approximate prior independence.

B. Best-fit points

The best-fit points along with their �2 values divided by
the number of degrees of freedom (�2=d:o:f:) and the
associated p value are shown in Table VI. The table
illustrates that SOFTSUSY3.1.7 is able to fit the �> 0
CMSSM to the assumed edge variables extremely well,
despite the fact that they were produced by a different
SUSY spectrum calculator. This is implied by the state-

ment that there are only small differences in the masses
of sparticles appearing in the golden decay chain between
the spectrum calculators anyway, as Ref. [13] shows.
Performing another fit for �< 0, we confirm our earlier
assertion that the edges we study are not sensitive to the
sign of�, obtaining a total �2 of 0.14 and a p value of 0.71.
Similar fits are obtained for the other models under study
for �< 0 as for �> 0, and so we simply show results of
the fits for �> 0. Non-LHC data may separate the two
signs of �: famously, the anomalous magnetic moment of
the muon is sensitive to it (and prefers �> 0 in the
CMSSM). Also, linear collider measurements of neutrali-
nos and charginos may accurately constrain all of the
parameters appearing in their mixing matrices, including
� [45]. While we display only the absolute best-fit point in
the table for mGMSB, there are in fact best-fit points for
N5 ¼ 3, 4 and 6 which have p values larger than 0.05,
indicating that one would not necessarily discriminate
against mGMSB with these values of N5 either.
We plot the spectra of the CMSSM and mGMSB best-fit

points in Fig. 2. The decays were calculated with HERWIG+

+-2.5.2 [46–48], and we display only those decays whose

branching ratios are higher than 10%. The figure shows
that the two best-fit spectra and decays are remarkably
similar, and could prove difficult to discriminate.
Although the heavier third generation squarks are some-
what heavier in mGMSB, they may be difficult to access
experimentally because decays to them from the gluino are
phase-space suppressed. Although, in the mGMSB panel,
the decay of �0

1 to gravitino (ejecting a photon) is shown,

the neutralinos are actually quasistable and so this decay
will not show up in the experiment. We find that the decay
length of the neutralino for the best-fit point is about
12.5 AU, due to the very high messenger scale. The split-
ting between gluino and first two generations of squark
(denoted ~qL and ~qR, respectively, in the figure) are smaller
for mGMSB, which could potentially make one of the jets
from gluino decay softer, so there could be a potential
discriminator in the hardness of this jet, or indeed the
multiplicity from gluino decays, if the jet is too soft to
make it past jet cuts. A feasibility study of experimental
separation between these two models would require a de-
tailed study, and is beyond the scope of this paper. Figure 3

TABLE V. Hypothesis testing statistics for the different mod-
els. The columns labeled Z show the Bayesian evidence for
either linear or logarithmic priors. The error on each entry of the
Bayesian logZ delivered by MULTINEST is �0:1.

Model logZ (linear) logZ (logarithmic) p value

CMSSM �28:1 �25:1 0.64

mGMSB �27:1 �25:8 0.83

mAMSB �55:7 �54:1 <10�10

LVS �47:0 �47:0 1:4� 10�9

TABLE VI. Best-fit points (defined as having the highest likelihood) for each model, along
with the associated value of �2=d:o:f: and p value. We have assumed that �> 0 for each point.

Model Parameters �2=d:o:f: p value

CMSSM m0 ¼ 92:1 GeV, m1=2 ¼ 300:6 GeV 0:22=1 0.64

A0 ¼ 984 GeV, tan� ¼ 12:3
mAMSB maux ¼ 28:46 TeV, m0 ¼ 255:5 GeV 52=2 <10�10

tan� ¼ 22:4
mGMSB Mmess ¼ 1:01014 GeV, � ¼ 1:78104 GeV 0:36=2 0.83

N5 ¼ 5, tan� ¼ 22:2
LVS m0 ¼ 359 GeV, tan� ¼ 4:75 44:2=3 1:4� 10�9
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displays the spectra and decays that have branching ratios
higher than 10% for the best-fit the LVS and mAMSB
points. A comparison of either model with the best-fit
CMSSM spectrum displayed in Fig. 2 displays some ob-
vious differences. In the LVS model, the two lightest
neutralinos have a different splitting to the CMSSMmodel,

and the ~lR � �0
2 mass splitting is also different. Also, the

squarks are much heavier in the LVS model. In the best-fit

mAMSB model, the ~lR is significantly heavier than in the
best-fit CMSSM model.

What leads to the similarities between the mGMSB and
CMSSM best-fit points’ spectra? In the CMSSM the soft
terms run from the GUT scale, while in mGMSB they run
from the messenger scale Mmess. We observe that the
messenger scale of the mGMSB best-fit point is as close
as possible to the GUT scale given the range assumed in
Table IV, Mmess ¼ 1� 1014 GeV. Working to one-loop
order, since the ratio of each MSSM group’s gaugino
mass Mi to its gauge coupling squared g2i does not run, if
there exists a renormalization scale � ¼ �0 for which

M3ð�Þ
g3ð�Þ2 ¼ M3ð�Þ

g2ð�Þ2 ¼
M3ð�Þ
g1ð�Þ2 ; (4.1)

then Eq. (4.1) applies for any �, in particular at the
weak scale. In the CMSSM, Eq. (4.1) is satisfied
because M3ðMGUTÞ¼M2ðMGUTÞ¼M1ðMGUTÞ as well as
g3ðMGUTÞ¼g2ðMGUTÞ¼g1ðMGUTÞ, whereas the mGMSB
soft SUSY breaking boundary conditions areMiðMmessÞ ¼
N5�g2i ðMmessÞf=ð16�2Þ [41], where f is a dimensionless
number depending upon parameter space (but not on the
gauge group i). The mGMSB gaugino masses thus explic-
itly satisfy Eq. (4.1) in a different way to the CMSSM
at � ¼ Mmess. Numerically, substituting � ¼ MZ into
Eq. (4.1) leads to the approximate pattern M3:M2:M1 �
6:2:1 for the weak-scale gaugino masses, which applies to
both mGMSB and the CMSSM.
The high-scale scalar mass boundary conditions in

mGMSB have more complicated expressions than in the
CMSSM, as they depend on the quadratic Casimir opera-
tors and gi. They are not universal at the GUT scale. We
find that the SUSY breaking right-handed slepton mass
parameter for the best-fit mGMSB point at the GUT scale
is 92.8 GeV, close to the CMSSM value of 92.4 GeV. The
left-handed slepton mass parameters are somewhat larger
as they are charged under SUð2Þ, but at the weak scale it is
the right-handed sleptons which are lightest and whose

FIG. 3 (color online). Spectra and decays in the best-fit points
of the LVS (top panel) and mAMSB (bottom panel). Here, the
neutralinos and charginos are displayed with tildes, unlike in the
rest of the paper.

FIG. 2 (color online). Spectra and decays in the best-fit points
of the CMSSM (top panel) and mGMSB (bottom panel). Here,
neutralinos and charginos are displayed with tildes, unlike in the
rest of the paper.
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mass parameters we use to calculate the edge positions.
This difference therefore does not affect the quality of the
fit. The mGMSB squark masses at the messenger scale are
significantly different to the CMSSM squark masses which
are given by m0. However, during the renormalization
group running, the squark masses are renormalized by
the contributions from the gluino, and thus at the low scale
the squark masses for both model points are similar to the
gluino mass. Finally, the trilinear A terms differ for
the CMSSM and mGMSB best-fit points, but they affect
the endpoints by less than 1%. We display the renormal-
ization of the most relevant mass parameters in Fig. 4.
Since �0

1 and �0
2 are approximately bino- and wino-

dominated, respectively, tuning � allows mGMSB to
match both gaugino masses to the ones required by our
benchmark CMSSM point in the 2:1 ratio that applies to
both models. The other messenger scale scalar masses are
fixed, but we may then tune Mmess to get one of them
[say, m~eRðMmessÞ] to match with its equivalent value in

the CMSSM benchmark. The other mass [in this case
m~qRðMmessÞ] is then predicted by mGMSB, and must re-

normalize (within an accuracy dictated by the measure-
ment errors) to the tree-level value in the CMSSM
benchmark model. We see from Fig. 4 that this is indeed
the case.

The pulls from each observable si are displayed in Fig. 5
for the best-fit mGMSB and CMSSM models. We see a

similar pattern for each of the observables except form
edge
ll ,

which is larger for mGMSB. However, it is clear that each
of the observables is well fit by each best-fit model, with no
one observable dominating the �2. Note that even though
mGMSB has a higher value of �2, it has a slightly higher p
value because it has less free continuous parameters, and
therefore a larger number of degrees of freedom.

We note that the edge information is not the only infor-
mation one would collect about the models to use to
discriminate them. Before sufficient statistics have been
collected to constrain the kinematic edges, we would have
rate data on the number of signal events passing cuts in
missing transverse momentum type searches. The produc-
tion rates of supersymmetric particles at the LHC typically
dominantly depend upon the squark and gluino masses,
since these are the strongly interacting particles with the
largest direct production cross sections. They then decay in
various ways into different channels. The rates for the
individual channels do have a complicated dependence
on the detailed MSSM parameters, but still all channels
are proportional to the total SUSY production cross sec-
tion, which is a function of squark and gluino masses only,
to a good approximation. Therefore the total SUSY pro-
duction cross section is a function of squark and gluino
masses, and we compare them at the best-fit points of the
CMSSM and mGMSB models in Table VII. We also show
the total next-to-leading order SUSY production cross
section as calculated by PROSPINO [49]. This is the cross
section without cuts or acceptance corrections, so the
measurable cross section will be some factor times smaller
(around 30 in some examples). We see from Table VII that
the CMSSM and mGMSB have similar squark and gluino
masses, resulting in a similar total SUSY LHC production
cross section. Thus, the models would likely require other

 0

 100

 200

 300

 400

 500

 600

 700

 0  5  10  15  20  25  30  35  40

G
eV

ln(µ/GeV)

mqL

M2
meR

M1

FIG. 4 (color online). Renormalization of CMSSM and
mGMSB best-fit points. We show the most relevant DR mass
parameters as a function of the renormalization scale �
for each model. The CMSSM model curves continue to
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 37, whereas the mGMSB model curves terminate
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 32.
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FIG. 5 (color online). Pulls in the best-fit points of the
CMSSM and mGMSB.

TABLE VII. Phenomenological properties of the best-fit
points. We show some aspects of the mass spectra and the total
next-to-leading order SUSY 14 TeV LHC production cross
section �NLO of the best-fit points. m~q is an averaged first family

squark mass, mh0 is the lightest CP even Higgs mass and mA0 is
the CP odd Higgs mass. The two branching ratios listed are the
ones relevant for the golden decay chain.

CMSSM mGMSB LVS mAMSB

m~g=GeV 716 686 1116 652

m~q=GeV 662 662 1019 660

�NLO=pb 22 25 1.7 29

m~�1 �m�0
1
=GeV 2.0 2.4 19 73

mh0=GeV 108 111 112 111

mA0=GeV 430 411 803 436

BRð~q ! qll�0
1Þ=% 2.5 1.2 3.4 19.4

BRð~q ! q���0
1Þ=% 20.1 29.1 2.5 19.2
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more detailed empirical information to tell them apart. If
we scaled up the masses of all sparticles at the mGMSB
and CMSSM points so that squarks and gluino masses are
similar to the LVS best-fit point, we would have a total
SUSY cross section of around 1=10th of the value that SU3
has. If the number of events which passed cuts just scaled
with the total SUSY cross section, we would then expect to
require 10 fb�1 of LHC data in order to achieve similar
fractional precisions on the endpoints as the ones assumed
in the present paper. Of course, a dedicated simulation of
LHC collisions would be required to calculate this number
more exactly and to verify that for heavier spectra mGMSB
is indeed able to emulate the CMSSM spectrum.

We also list some other properties of the best-fit points in
Table VII to see if they might be discriminated on the
basis of other observables. We also see that the Higgs
masses are different between the CMSSM and mGMSB
points. However, they are probably too similar for LHC
measurements: the lightest CP even Higgs mass difference
is just beyond the theoretical uncertainty in its prediction of
�3 GeV [13]. The 30 GeV difference in mA0 is unlikely to
provide discrimination, since ATLAS studies indicate that
even 300 fb�1 are not expected to yield a 5� discovery of
the A0 [50]. On the other hand, the total rate �NLO �
BRð~q ! qll�0

1Þ (which may be known to the �10% level)

for the dilepton channel in mGMSB is half that of the
CMSSM, ought to discriminate well between the two
models. �NLO � BRð~q ! q���0

1Þ may also be used to

discriminate between the two models well.

C. Posterior distributions for CMSSM and mGMSB

We now discuss some features of the posterior distribu-
tions for the models that are difficult to discriminate: the
CMSSM and mGMSB. We do not present the frequentist
bounds upon the parameters using ��2 because it has poor
coverage properties [38]. Figure 6 shows the 2D posterior
for log priors in the m0 �m1=2 plane for the correct

hypothesis for SUSY breaking, the CMSSM. It also shows
the 95% Bayesian confidence interval contours for both
sets of priors. The posterior is a localized single mode
distribution, and the two contours lie on top of one another,
demonstrating prior independence in this plane. This is not
the case for the trilinear couplings Ai which are not well
constrained by the edges because these parameters have
only a small effect on the mass spectrum to which our fits
are sensitive. Our posteriors are in agreement with previous
fits of the CMSSM using kinematic invariants [7,16,19].
Turning to mGMSB, Fig. 7 shows 1D posteriors for the

mass scale � and the logarithm of the messenger scale
log10ðMmessÞ in GeV. We see from the left-hand panel that
in contrast to the CMSSM, the posterior is strongly multi-
modal, irrespective of prior. This is because the physical
masses in mGMSB are proportional toNmess�, andNmess is
a discrete parameter. Each peak in the posterior for �
corresponds to a different value for Nmess, with lower
values of � being associated with higher values of Nmess,
since their product must be the mass scale given by the
edge measurements. In the right-hand panel, we display the

FIG. 6 (color online). Posterior PDF for the CMSSM in the
m0 �m1=2 plane with log priors. The dashed green (inner) and

dashed yellow (outer) contours show the 95% Bayesian con-
fidence intervals for log and flat priors, respectively.

FIG. 7 (color online). Posterior PDFs for mGMSB. The left-hand panel shows the 1D posterior for the mass scale � for both priors
and the right-hand panel shows the 1D posterior for the messenger massMmess assuming logarithmic priors. The right-hand panel also
shows the decomposition of the posterior according to messenger number Nmess ¼ 3, 4, 5.
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posterior of Mmess separated according to different values
of N5, as well as summed (‘‘Total’’). The Mmess posterior
extends down to 1011 GeV, having some substructure due
to overlapping modes. There is a positive correlation be-
tweenMmess andNmess. From this we can infer that value of
Nmess larger than 5 would only be favored with unfeasibly
high messenger scales. Low values of Mmess require lower
values of Nmess in order to fit the data. Indeed, the
MULTINEST algorithm identifies modes with Nmess ¼ 1, 2,
but these modes are of poor fit quality compared with those
of intermediate messenger number Nmess ¼ 3–6. This is a
salutary lesson that fitting a low dimensional model to
constraining data can still lead to a complicated mode
structure in the posterior.

D. Inclusion of medge
��

Reference [26] also included the possible measurement

of medge
�� , which is predicted by Eq. (2.1) with ~l ! ~�. This

variable has a very different shape to medge
ll since the �s

decay to neutrinos, thus some of their energy is missing
from any reconstruction. However, m�� still has a kine-
matic maximum (given by the events where the neutrinos’
momenta vanish) and ATLAS fits it from a background
subtracted event sample using a log normal distribution.
Since the distribution is not at all sharp, the errors on the

measurement of m
edge
�� are much larger than that on m

edge
ll .

ATLAS estimated that with 1 fb�1 of 14 TeV data, they
could measure

medge
�� ¼ 102� 20:2 GeV;

where we have added statistical and systematic errors in
quadrature. We perform the �2 fits again including this
constraint in order to see whether it can help discriminate
between mGMSB and the CMSSM, or whether it changes
any aspect of the fits. We also take into account the fact that

either ~qL=R or ~lL=R may take part in the golden decay chain,

and would be indistinguishable for equal masses. We per-
form this check by calculating the branching ratios via the
SUSY Les Houches Accord [51] and HERWIG++-2.5.2

[46–48]. The labels L or R are on the squark and slepton
are chosen to be the ones yielding the largest branching
ratios. These labels are then used for m~l and m~q in

Eqs. (2.1), (2.2), (2.3), (2.4), (2.5), (2.6), (2.7), (2.8), (2.9),
(2.10), (2.11), (2.12), and (2.13). The results are shown in
Table VIII. Performing the fits again but assuming the

labels are ~qL and ~lR yields identical results, within statis-
tical uncertainties, validating our previous hypothesis tests.

We see from Table VIII that m
edge
�� has not changed the

conclusions from the previous fits at all: the CMSSM and
mGMSB remain equally good fits, and the other two
models considered are heavily disfavored. The best-fit
points have not moved by much, except for A0 which has
a large uncertainty in the fit prediction: it is not very well

constrained by the edge data. The inclusion of medge
�� may

make the uncertainties on inferred parameters slightly
smaller in the posterior distributions of Sec. VC.
In principle, one could also attempt to constrain the

models using m��q and m�q endpoints, but ATLAS did

not simulate measurements for these observables and so
we do not use them here.

VI. CONCLUSIONS

We have evaluated the ability of the LHC, through the
measurement of kinematic end points in supersymmetric
signals, to distinguish between different models of super-
symmetry breaking with a small number of parameters.
We find that the mAMSB and the LVS models can be
unambiguously discriminated from our CMSSM bench-
mark model by the endpoints with just 1 fb�1 of data.
However, kinematic edges could not discriminate between
the best-fit CMSSM and mGMSB models, the spectra
of which turn out to be very similar (except for the grav-
itino mass, which is irrelevant for LHC signals because
the lightest neutralino is quasistable). Reassuringly, one
reaches these conclusions whether or not one uses
Bayesian or frequentist statistics to perform the hypothesis
test. This is additional confirmation that the sparticle spec-
trum is sufficiently constrained by the measurements in
these models, and is confirmation of the fact that if a fit has
sufficient data, a Bayesian interpretation will be approxi-
mately prior independent and give the same results as a
frequentist interpretation. A previous study [19] found a
significant prior dependence in models of SUSY breaking
that have more parameters than the CMSSM. This is not so

TABLE VIII. Best-fit points for each model including the m
edge
�� measurement, along with the

associated value of �2=d:o:f: and p value. We have assumed that �> 0 for each point.

Model Parameters �2=d:o:f: p value

CMSSM m0 ¼ 93:3 GeV, m1=2 ¼ 297:8 GeV 0:42=1 0.48

A0 ¼ 5 GeV, tan� ¼ 7:8
mAMSB maux ¼ 28:46 TeV, m0 ¼ 255:5 GeV 45:7=2 1:2� 10�10

tan� ¼ 22:4
mGMSB Mmess ¼ 1:01014 GeV, � ¼ 1:79104 GeV 0:71=2 0.30

N5 ¼ 5, tan� ¼ 12:2
LVS m0 ¼ 362 GeV, tan� ¼ 4:77 44:5=3 1:2� 10�9
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surprising given that the number of parameters would out-
number the number of experimental constraints. In that
case, we would not even be able to calculate the p value,
since the number of degrees of freedom would be negative,
and the system is under constrained.

The best-fit mGMSB and CMSSM spectra look remark-
ably similar, but the rate for the golden decay chain differs
by a factor of 2, and will provide the discrimination re-
quired between the two different models. It should also be
possible to use a future direct detection of dark matter
consistent with the CMSSM lightest neutralino mass in
order to discriminate against mGMSB, whose gravitino
LSP predicts zero direct detection cross section because
it interacts too weakly.3 One could also attempt to answer
the question: what subspace of the CMSSM parameter
space predicts observables that are close to those of
mGMSB? We would not expect mGMSB to be able to
mimic a focus-point spectrum with large m0 but moderate
m1=2 for example, since this would result in a rather

hierarchical mass pattern, which the relatively compressed
spectra of mGMSB may find hard to reproduce. It is also
true, however, that the focus point does not possess the
golden decay chain and so different observables to the ones
studied here would have to be examined.

Kinematic endpoints of cascade decays are arguably the
best tool for discriminating different SUSY breaking mod-
els from LHC data, since they are sensitive to the sparticle
spectrum and do not require several hundred fb�1 of inte-
grated luminosity in order to parametrize the detector
response well. In the case that cascades other than the
golden one assumed here are present and identifiable,
one would include their data. The fit is still likely to be
dominated by the constraints coming from the golden
cascade, however. The golden cascade utilized here may
not be present, even in the event of a SUSY signal at the
LHC. However, in that case other less constraining
cascades will be used but are unlikely to provide the
discriminating power that the golden one does. This study
is therefore an estimate of the maximum discriminatory
power one could have.
In summary, although kinematic endpoints deliver im-

portant information on the nature of SUSY breaking (dis-
criminating against mAMSB, the LVS, and the CMSSM),
there still may exist degeneracies between some models
(for example, mGMSB and the CMSSM SU3 benchmark
point). This degeneracy may be broken by using rate
information of the golden cascade.
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