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We list all scalar and vector leptoquark states that contribute to the b ! s‘þ‘� effective Hamiltonian.

There are altogether three scalar and four vector leptoquarks that are relevant. For contribution of each

state we infer the correlations between effective operators and find that only two baryon number-violating

vector leptoquarks give rise to scalar and pseudoscalar four-fermion operators, whereas the scalar states

can contribute to those operators only when two states with same charge are present. We bound the

resulting Wilson coefficients by imposing experimental constraints coming from branching fractions of

B ! K‘þ‘�, Bs ! �þ��, and B ! Xs�
þ�� decays.
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I. INTRODUCTION

The b ! s‘þ‘� induced processes have been recog-
nized as very important probes of the Standard Model
and new physics. Rare decay Bs ! �þ�� has been sub-
ject to intensive experimental efforts [1] at Fermilab and
LHC and currently the upper bound on the branching ratio
has been set slightly above the Standard Model (SM)
prediction. Increasing statistics in this decay mode at the
LHC will soon allow to probe the SM prediction directly

[2]. Exclusive B ! Kð�Þ‘þ‘� and inclusive B ! Xs‘
þ‘�

decays with ‘ ¼ e, � offer many different observables to
be confronted against the theoretical predictions. Their
studies at the B-meson factories [3,4] and at the LHCb
experiment [5] indicate that all observables are, within
relatively large error bars, compatible with the predictions
of the SM [6].

The leptonic branching fraction, BrðBs ! �þ��Þ, is
very sensitive to physics beyond the SM where scalar or
pseudoscalar four-fermion operators are present, namely,
such contributions are helicity enhanced with respect to
the SM amplitude. Complementary information on those
operators can be extracted from the spectrum of semilep-
tonic B ! K‘þ‘� decay. Indeed, the leptonic and semi-
leptonic decay widths depend on orthogonal combinations
of (axial)-vector current and (pseudo)scalar four-fermion
operators [6]. Size of the vector and axial-vector current
operators can also be assessed by studying the transverse
asymmetries in B ! K�‘þ‘� decay [7].

Scalar and pseudoscalar operators are present in new
physics (NP) models where a color- and charge-neutral
scalar particle produces the lepton pair, as is the case in
supersymmetric extensions of the SM. Another possibility
to generate b ! s‘þ‘� at short distances is an exchange
of a color triplet particles that couple to a lepton-quark

pair. Such leptoquark states have spin either 0 and 1
and are present in grand unified theories [8], Pati-Salam
models [9], composite scenarios [10], or technicolor
models [11]. However, since a leptoquark naturally gen-

erates Fierzed operators of the form ð �s�‘Þð �‘�bÞ, the scalar
operators,

ð �sPLðRÞbÞð �‘‘Þ; ð �sPLðRÞbÞð �‘�5‘Þ; (1)

cannot be identified with exchanges of a scalar lepto-
quarks. In a similar way, a vector leptoquark exchange
does not necessarily induce vector current operators.
Leptoquarks have been studied extensively in the litera-

ture. For early model independent studies see e.g. [12],
while for some recent works see [13]. In this work we
complement the SM with a single leptoquark state and
assume all other degrees of freedom lie substantially higher
above the electroweak (EW) scale. The tree-level contri-
butions to b ! s‘þ‘� due to a single colored particle
exchange present a very constrained framework. A lepton
and a down-type quark combine into a color triplet current
to which a colored state with electric charge 2=3 or 4=3 can
couple. The two charge assignments of the leptoquark
correspond to fermion numbers F ¼ 0 and F ¼ 2 of the
bilinear, where F ¼ 3Bþ L, and B and L are baryon and
lepton numbers (see Fig. 1).
Our aim here is to consider one by one leptoquarks that

potentially contribute to the b ! s‘þ‘� transitions, deter-
mine correlations between effective operators affecting
the b ! s‘þ‘� effective Hamiltonian, and constrain the
underlying couplings from experimental data on Bs !
�þ��, B ! K‘þ‘�, and B ! Xs�

þ�� decays.

II. EFFECTIVE HAMILTONIAN

The effective Hamiltonian of dimension-6 at the mass
scale of b quark reads [14]*nejc.kosnik@ijs.si
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H eff ¼ � 4GFffiffiffi
2

p �t

�X6
i¼1

Cið�ÞOið�Þ

þ X
i¼7;8;9;10;P;S

ðCið�ÞOið�Þ þ C0
ið�ÞO0

ið�ÞÞ

þ CTOT þ CT5OT5

�
; (2)

where �t ¼ VtbV
�
ts. Effective operators that receive contri-

butions from leptoquarks are the two-quark, two-lepton
operators,

O9¼ e2

g2
ð�s��PLbÞð �‘��‘Þ;

O10¼ e2

g2
ð �s��PLbÞð �‘���5‘Þ; OS ¼ e2

16�2 ð�sPRbÞð �‘‘Þ;

OP¼ e2

16�2
ð �sPRbÞð �‘�5‘Þ; OT ¼ e2

16�2
ð �s���bÞð �‘���‘Þ;

OT5¼ e2

16�2
ð�s���bÞð �‘����5‘Þ: (3)

The chirally flipped operatorsO0
9;10;S;P are obtained from the

above ones by L $ R exchange. e ¼ ffiffiffiffiffiffiffiffiffiffi
4��

p
is the unit of

electric charge, g is the strong coupling, and PL;R ¼ ð1�
�5Þ=2. Four-quark operators O1...6 and radiative penguin
operators O7;8 can be found in Ref. [15]. Values of the

Wilson coefficients are calculated by means of matching
the full theory onto the effective theory at the electroweak
scale and subsequently solving the renormalization group
equations to run them down to scale �b ¼ 4:8 GeV. Decay
amplitudes are conveniently expressed in terms of effective
Wilson coefficients at the scale �b [16],

Ceff
7 ð�bÞ ¼ 4�

�s

C7 � 1

3
C3 � 4

9
C4 � 20

3
C5 � 80

9
C6;

Ceff
9 ð�bÞ ¼ 4�

�s

C9 þ Yðq2Þ; Ceff
10 ð�bÞ ¼ 4�

�s

C10;

C0;eff
7;8;9;10ð�bÞ ¼ 4�

�s

C0
7;8;9;10; (4)

where function Yðq2Þ was defined in [16]. For the SM
contributions we will use the next-to-next-to-leading loga-

rithm values Ceff;SM
7 ð�bÞ ¼ �0:304, Ceff;SM

9 ð�bÞ ¼ 4:211,

and Ceff;SM
10 ð�bÞ ¼ �4:103 [15,16]. Numerical values of

other parameters entering theoretical predictions can be
found in [6].

The diagrams in Fig. 1 will contribute to the Wilson
coefficients of operators (3). We will assume that a lepto-
quark state lies at a scale �1 TeV, still perfectly allowed
by limits set by the direct searches [17], where we also
perform the tree-level matching. For our purposes we can

neglect the anomalous dimensions of coefficients Cð0Þ
9 and

Cð0Þ
10 [18], whereas the anomalous dimensions of scalar and

pseudoscalarWilson coefficients run with the same anoma-
lous dimension as mbð�Þ [19]. Lepton flavor universality
of all beyond the SM contributions will be assumed
throughout this work in order to make a straightforward
interpretation of experimental constraint from BrðB !
K‘þ‘�Þwhere a result given in [4] is a combination of ‘ ¼
e and ‘ ¼ � modes.
In the following sections we will omit the ‘‘eff’’ label

when writing down beyond the SM contributions to the
effective Wilson coefficients.

III. OBSERVABLES AND THEIR STANDARD
MODEL PREDICTIONS

The Bs ! ‘þ‘� decay branching fraction in a general
NP model reads

BrðBs ! ‘þ‘�Þ

¼ �Bs
f2Bs

m3
Bs

G2
Fj�tj2�2

ð4�Þ3 	‘ðm2
Bs
Þ

�
�m2

Bs

m2
b

jCS � C0
Sj2
�
1� 4m2

‘

m2
Bs

�

þ
��������mBs

mb

ðCP � C0
PÞ þ 2

m‘

mBs

ðC10 � C0
10Þ
��������2
�
; (5)

where 	‘ðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

‘=q
2

q
. The above branching frac-

tion is sensitive exclusively to contributions of differences
between operators with left- and right-handed quark cur-
rents, C10 � C0

10, CS � C0
S, and CP � C0

P. The latter two

combinations are effectively constrained due to lifted
helicity suppression unless the relative phases of Wilson
coefficients allow cancellations between CSðCPÞ and
C0
SðC0

PÞ. In the SM only C10 is present in (5) and leads to

prediction [6]

Br ðBs ! �þ��ÞSM ¼ ð3:3� 0:3Þ � 10�9; (6)

whereas the latest 95% confidence level bound from the
LHCb experiment [1] is

Br ðBs ! �þ��Þexp < 4:5� 10�9: (7)

The decay branching fraction, BrðB ! K‘þ‘�Þ, on the
other hand, receives contributions from C7 þ C0

7, C9 þ C0
9,

C10 þ C0
10, CS þ C0

S, and CP þ C0
P, while we have ne-

glected contribution of the tensor operators that have small
contributions in leptoquark models, as will be shown
below. The decay width reads [20]

FIG. 1. Two possible charges of a leptoquark in b ! s‘þ‘�
diagram.
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�ðB ! K‘þ‘�Þ ¼ 2

�
A‘ þ 1

3
C‘

�
; (8)

where A‘ corresponds to the 
-independent component
of the spectrum, whereas C‘ stems from the component
proportional to cos2
, where 
 is the angle between �B and
‘� in the rest frame of the lepton pair. They are expressed
as integrals over the dilepton invariant mass between
q2min ¼ 4m2

‘ and q2max ¼ ðmB �mKÞ2,

A‘ ¼
Z q2max

q2
min

a‘ðq2Þdq2; C‘ ¼
Z q2max

q2
min

c‘ðq2Þdq2: (9)

The corresponding spectra are

a‘ðq2Þ¼Cðq2Þ
�
q2ð	2

‘ðq2ÞjFSðq2Þj2þjFPðq2Þj2Þ

þ�ðq2Þ
4

ðjFAðq2Þj2þFVðq2Þj2Þþ4m2
‘m

2
BjFAðq2Þj2

þ2m‘ðm2
B�m2

Kþq2ÞReðFPðq2ÞF�
Aðq2ÞÞ

�
;

c‘ðq2Þ¼Cðq2Þ
�
��ðq2Þ

4
	2

‘ðq2ÞðjFAðq2Þj2þjFVðq2Þj2Þ
�
;

where

FVðq2Þ ¼ ðC9 þ C0
9Þfþðq2Þ þ

2mb

mB þmK

ðC7 þ C0
7ÞfTðq2Þ;

FAðq2Þ ¼ ðC10 þ C0
10Þfþðq2Þ;

FSðq2Þ ¼ m2
B �m2

K

2mb

ðCS þ C0
SÞf0ðq2Þ;

FPðq2Þ ¼ m2
B �m2

K

2mb

ðCP þ C0
PÞf0ðq2Þ �m‘ðC10 þ C0

10Þ

�
�
fþðq2Þ �m2

B �m2
K

q2
ðf0ðq2Þ � fþðq2ÞÞ

�
:

The auxiliary functions are defined as

Cðq2Þ ¼ G2
F�

2�2
t

512�5m3
B

	‘ðq2Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
�ðq2Þ

q
;

�ðq2Þ ¼ q4 þm4
B þm4

K � 2ðm2
Bm

2
K þm2

Bq
2 þm2

Kq
2Þ:
(10)

Functions FX, where X ¼ V, A, S, P, corresponding to
different Lorentz structures in the effective Hamiltonian,
are products of the short distance Wilson coefficients and
appropriate hadronic form factors of B ! K transition,
defined as follows:

hKðkÞj�s��bjBðpÞi ¼
�
ðpþ kÞ� �m2

B �m2
K

q2
q�

�
fþðq2Þ

þm2
B �m2

K

q2
q�f0ðq2Þ; (11)

hKðkÞj�s���bjBðpÞi¼ iðp�k��p�k�Þ 2fTðq
2Þ

mBþmK

: (12)

The form factors we use were obtained by simulations of
QCD on the lattice [6,21] and using QCD sum rules on the
light cone [22]. Details about their parameterization and
numerical values have been discussed recently in [6],
where the following SM prediction has been made,

Br ðB ! K‘þ‘�ÞSM ¼ ð7:0� 1:8Þ � 10�7: (13)

Recently, BABAR experiment reported a combined mea-
surement of B0ðBþÞ ! K0ðKþÞ‘þ‘� [4]

BrðB!K‘þ‘�ÞBaBar¼ð4:7�0:6�0:2Þ�10�7; (14)

that is compatible with the SM prediction (13), while the
LHCb experiment [5] found a significantly smaller result
for neutral B decays to a muon final state

BrðB0 ! K0�þ��ÞLHCb ¼
�
3:1þ0:7

�0:6

�
� 10�7: (15)

Assuming lepton flavor universality, naı̈ve average of the
two constraints gives BrðB ! K‘þ‘�Þ ¼ ð3:8� 0:6Þ �
10�7, but since the two measurements are only marginally
compatible we consider in our analysis a range of allowed
values that covers both measurements

Br ðB ! K‘þ‘�Þexp ¼ ð2:5� 5:5Þ � 10�7: (16)

The inclusive decay B ! Xs�
þ�� will also play an

important role in constraining the vector operators Cð0Þ
9;10.

Using the formulas presented in [23] we get for the SM
prediction in the lower range of q2

Z 6 GeV2

1 GeV2

dBrðB ! Xs�
þ��Þ

dq2
dq2jSM ¼ 1:59ð17Þ � 10�6;

(17)

where we have kept explicit dependence on m5
b;pole,

contained in the normalization factor

B0 ¼ �B
4�2G2

Fj�tj2m5
b;pole

3ð4�Þ5 ¼ 3:41ð47Þ � 10�7; (18)

instead of normalizing it to the branching fraction of semi-
leptonic B ! Xc‘� decay. Leptoquark-induced additive
contributions to the above prediction will be calculated
by employing formulas presented in [24] in the approxi-
mation m‘ ¼ ms ¼ 0. The partial branching ratio at low
q2’s has been measured at the B-factories [3], resulting in
an average [23],

Z 6 GeV2

1 GeV2

dBrðB ! Xs�
þ��Þ

dq2
dq2jexp ¼ 1:6ð5Þ � 10�6:

(19)
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IV. SCALARS

Scalar leptoquarks typically originate from the scalar
representations of the unification group that are required to
break either the unification or the SM gauge group. We
distinguish Q ¼ 2=3 and Q ¼ 4=3 cases below.

A. Q ¼ 2=3 scalars

Charge 2=3 scalar leptoquarks can couple to leptons
and quarks when their chiralities are different, therefore
only �dL‘R or �dR‘L bilinears are allowed in the interac-
tion. Here and in the following d denotes one of the
down-type quarks. The two scalars that can form renor-
malizable vertices with these bilinears transform as dou-
blets under SUð2ÞL,

�ð7=6Þ � ð3; 2Þ7=6; �ð1=6Þ � ð3; 2Þ1=6: (20)

The SM quantum numbers have been specified as
ðSUð3Þc, SUð2ÞLÞY and the hypercharge is defined as
Y ¼ Q� T3. Both states conserve baryon (B) and lepton

numbers (L). The state �ð7=6Þ will couple to the right-
handed (RH) leptons in a gauge invariant term

L ð7=6Þ ¼ gR �Q�ð7=6Þ‘R þ H:c:; (21)

that contains a coupling of the T3 ¼ �1=2 component of

�ð7=6Þ to down-quarks and RH leptons. To keep the notation
clean, we have omitted flavor indices on the Yukawa cou-
plings gR and fields. Color indices are always contracted
between the leptoquark and the quark field. We integrate out

�ð7=6Þ and rotate the Yukawa couplings to the quark mass

basis by a redefinition Dy
LgR ! gR, where DL connects the

mass and gauge bases as d
gauge
L ¼ DLd

mass
L . The effective

Hamiltonian (2) will receive contributions to operators with
vector and axial-vector lepton currents

C9 ¼ C10 ¼ ��

2
ffiffiffi
2

p
GF�t�

ðgRÞs‘ðgRÞ�b‘
M2

�ð7=6Þ
: (22)

On the other hand, the state �ð1=6Þ couples via T3 ¼ 1=2
isospin component to the left-handed (LH) leptons as

L ð1=6Þ ¼ gL �dR ~�
ð1=6ÞyLþ H:c:; ~� � i�2�

�: (23)

Here ~�, defined with the help of the second Pauli matrix �2,
transforms as ð�3; 2Þ�1=6. This state leaves an imprint on

operators with RH quark currents and with vector and
axial-vector lepton currents

� C0
9 ¼ C0

10 ¼
��

2
ffiffiffi
2

p
GF�t�

ðgLÞs‘ðgLÞ�b‘
M2

�ð7=6Þ
: (24)

We have rotated the couplings to the mass basis by redefi-

nition Dy
RgL ! gL.

Notice that scalar and pseudoscalar operators are not
induced by those two states since each of them couples
exclusively either to LH or to RH leptons whereas opera-

tors Oð0Þ
S;P involve both lepton and quark chiralities.

However, if we expand our approach and allow for pres-
ence of both states we see that they weakly mix since the

quantum numbers of �ð7=6Þ
T3¼�1=2 and �ð1=6Þ

T3¼þ1=2 are equal in

the broken electroweak (EW) phase [25]. The mixing term
at the EW scale reads

L 7=6�1=6
mix ¼ �ðHy�ð7=6ÞÞðHy ~�ð1=6ÞÞ þ H:c:; (25)

where H is the Higgs doublet, and � is a dimensionless
parameter.1 The above mixing between the two otherwise
B and L conserving leptoquarks violates L by�2 and B by
2=3. Radiative generation of Majorana masses for neutri-
nos in a similar setting has been considered in [26]. The
EW symmetry breaking generates nondiagonal terms in

mass matrix for states ð�ð7=6Þ
T3¼1=2;�

ð1=6Þ
T3¼�1=2Þ

M2
�ð7=6Þ

��v2

2

�v2

2 M2
�ð1=6Þ

0
@

1
A; (26)

where v ¼ 246 GeV is the vacuum expectation value of
the Higgs field. The heavy and light mass eigenstates, �H,

�L, are mixtures of states �ð7=6Þ and �ð1=6Þ (without T3

labels from now on). To illustrate consequences in that
setting let us consider a case when M�ð1=6Þ � M�ð7=6Þ . The
mass eigenstates are

�H

�L

 !
¼

1 �v2

2j�M2j

� ��v2

2j�M2j 1

0
B@

1
CA �ð7=6Þ

�ð1=6Þ

 !
; (27)

to leading order in mixing parameter, j�jv2=j�M2j, where
j�M2j ¼ jM2

�ð1=6Þ �M2
�ð7=6Þ j. Consequently, the lighter of

the two states will decrease its mass by j�jv2=ð8 ffiffiffiffiffiffiffiffiffiffiffiffiffiffij�M2jp Þ
while mass of the heavier state will increase by the same
amount. In turn we generate, in addition to C0

9 and C0
10

in (24), an entire set of scalar, pseudoscalar, and tensor
operators:

CP ¼ CS ¼ ��

4
ffiffiffi
2

p
GF�t�

�v2ðgRÞs‘ðgLÞ�b‘
M2

�ð1=6ÞM
2
�ð7=6Þ

;

�C0
P ¼ C0

S ¼ ��

4
ffiffiffi
2

p
GF�t�

��v2ðgLÞs‘ðgRÞ�b‘
M2

�ð1=6ÞM
2
�ð7=6Þ

;

CT ¼ ðCS þ C0
SÞ=4; CT5 ¼ ðCS � C0

SÞ=4:

(28)

Same form of expressions for the Wilson coefficients (28)
and mixing matrix apply in the inverse mass hierarchy

case, with�ð7=6Þ light and�ð1=6Þ heavy, provided we relabel
ð7=6Þ $ ð1=6Þ and � $ ��. In this case also C9 and C10 of
Eq. (22) are present.

1We have neglected the diagonal couplings to two Higgses,
ðHyHÞð�y�Þ, with � ¼ �ð7=6Þ, �ð1=6Þ, that would merely shift
the diagonal mass parameters.

NEJC KOSNIK PHYSICAL REVIEW D 86, 055004 (2012)

055004-4



B. Q ¼ 4=3 scalars

This case corresponds to a scalar that couples to
‘‘clashing’’ fermion flows of quark and lepton fields.
Their chiralities are equal in this case due to the well
known identity ðc LÞC ¼ ðc CÞR, stating that a charge-
conjugate of left-handed field transforms as a right-handed
field under the Lorentz group. Scalar bilinears that partici-
pate in vertices are therefore �dCL‘L and �dCL‘R, with c C �
C �c T and C is a unitary, antisymmetric charge-conjugation
matrix in spinor space. We find a weak triplet and singlet
states that couple to those bilinears,

�ð1=3Þ � ð�3; 3Þ1=3; �ð4=3Þ � ð�3; 1Þ4=3: (29)

The isotriplet state couples exclusively to LH, whereas the
isosinglet couples to the RH fermions. They both form
vertices with two quarks which makes them baryon and
lepton number violating, B� L conserving leptoquarks.

The isotriplet �ð1=3Þ interaction with two fermionic dou-
blets contains the relevant term involving the T3 ¼ þ1
component

L ð1=3Þ ¼ gLffiffiffi
2

p �QCi�2� 	�ð1=3ÞLþ H:c:

¼ gL �d
C
L‘L�

ð1=3Þ
T3¼þ1 þ 	 	 	 : (30)

A vector of Pauli matrices � has been introduced. The
presence of LH fields in the above interaction implies
that only left-handed quark currents can be generated at
low scale. After performing a weak-to-mass basis transi-
tion, DT

LgL ! gL, and integrating out the state, we find

C9 ¼ �C10 ¼ �

2
ffiffiffi
2

p
GF�t�

ðgLÞb‘ðgLÞ�s‘
M2

�1=3

: (31)

For the isosinglet state �ð4=3Þ the interaction term with the
RH fermions reads

L ð4=3Þ ¼ gR �dCR‘R�
ð4=3Þ þ H:c:: (32)

On the effective Hamiltonian level operators with RH
quark currents are generated

C0
9 ¼ C0

10 ¼
�

2
ffiffiffi
2

p
GF�t�

ðgRÞb‘ðgRÞ�s‘
M2

�ð4=3Þ
; (33)

whereDT
RgR ! gR rotation has been performed along with

transition to the mass basis of fermions.
The above two scalars have same charge and can there-

fore mix. We can write down the off-diagonal Higgs-
induced isotriplet-isosinglet mixing as [25]

L 1=3�4=3
mix ¼ �ffiffiffi

2
p ð ~Hy� 	�ð1=3ÞHÞ�ð4=3Þ� þ H:c:; (34)

and find the same expression (27) for the resulting

eigenstates, provided we replace �ð7=6Þ ! �ð1=3Þ and

�ð1=6Þ ! �ð4=3Þ. In the limit M�ð4=3Þ � M�ð1=3Þ the scalar
and tensor coefficients are

CP ¼ CS ¼ �

4
ffiffiffi
2

p
GF�t�

�v2ðgRÞb‘ðgLÞ�s‘
M2

�ð4=3ÞM
2
�ð1=3Þ

;

�C0
P ¼ C0

S ¼ �

4
ffiffiffi
2

p
GF�t�

��v2ðgLÞb‘ðgRÞ�s‘
M2

�ð4=3ÞM
2
�ð1=3Þ

;

�CT ¼ ðC0
S þ CSÞ=4; CT5 ¼ ðC0

S � CSÞ=4:

(35)

In conclusion, we notice that a single scalar leptoquark
contributes to one of the following 4 operators

O ð0Þ
9 �Oð0Þ

10 (36)

of the b ! s‘þ‘� effective Hamiltonian. This is simply
due to absence of a scalar color-triplet state with couplings
to both chiralities of fermions, which are necessary to form
scalar or tensor operators. They are all chiral leptoquarks
[27] with regard to their couplings to down-type quarks and
charged leptons. Even in the presence of two scalar lep-
toquarks that are allowed to mix and thus give rise to scalar,
pseudoscalar, and tensor operators we find that Wilson
coefficients corresponding to those contributions are addi-
tionally suppressed by v2=M2

� and are therefore less

important at low energies.

V. VECTORS

Vector leptoquark states, if fundamental particles, are
typically the remnants of the underlying gauge bosons of
the broken unification group [27]. They can also be com-
posite states [10].

A. Q ¼ 2=3 vectors

Vector currents with 3Bþ L ¼ 0 always involve
fermions with equal chiralities, leading in this case to
�dL�

�‘L and �dR�
�‘R as the only two allowed bilinears

to which vector particles can couple to. There are two
vector leptoquarks that contain an appropriate charge 2=3
component,

Vð3Þ � ð3; 3Þ2=3; Vð1Þ � ð3; 1Þ2=3: (37)

First, the isotriplet state is B and L conserving and interacts
with LH fermions as

L ð3Þ ¼ gL �Q� 	 Vð3Þ
� ��Lþ H:c:; (38)

and will, after being integrated out, contribute to the left-
handed quark currents:

C9 ¼ �C10 ¼ �ffiffiffi
2

p
GF�t�

ðgLÞs‘ðgLÞ�b‘
M2

Vð3Þ
: (39)

Couplings have been redefined as Dy
LgL ! gL. The iso-

singlet state, Vð1Þ, on the other hand has couplings to both
LH and RH fermions, i.e. it is a nonchiral leptoquark,
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L ð1Þ ¼ ðgL �Q��Lþ gR �dR�
�‘RÞVð1Þ

� þ H:c:: (40)

In addition, B is not conserved as Vð1Þ can decay to two
down quarks. Because of both chiralities involved, this
state contributes to both RH and LH quark currents, as
well as to scalar and pseudoscalar operators,

C9 ¼ �C10 ¼ �ffiffiffi
2

p
GF�t�

ðgLÞs‘ðgLÞ�b‘
M2

Vð1Þ
;

C0
9 ¼ C0

10 ¼
�ffiffiffi

2
p

GF�t�

ðgRÞs‘ðgRÞ�b‘
M2

Vð1Þ
;

�CP ¼ CS ¼
ffiffiffi
2

p
�

GF�t�

ðgLÞs‘ðgRÞ�b‘
M2

Vð1Þ
;

C0
P ¼ C0

S ¼
ffiffiffi
2

p
�

GF�t�

ðgRÞs‘ðgLÞ�b‘
M2

Vð1Þ
:

(41)

B. Q ¼ 4=3 vectors

Similar as in the case of Q ¼ 2=3 scalars, vector lep-
toquarks with charge 4=3 form vertices with quarks and
leptons of different chiralities, i.e. �dCR�

�‘L and �dCR�
�‘R.

An isodoublet state

Vð2Þ � ð�3; 2Þ5=6; (42)

induces both LH and RH lepton couplings,

Lð2Þ ¼ gR �QCi�2V
ð2Þ
� ��‘R þ gL �d

C
R�

� ~Vð2Þy
� Lþ H:c:

¼ �Vð2Þ;T3¼þ1=2
� ½gRð �dCL��‘RÞ þ gLð �dCR��‘LÞ
 þ 	 	 	 :

(43)

The four possible combinations of these then enter the
Wilson coefficients as

C9 ¼ C10 ¼ ��ffiffiffi
2

p
GF�t�

ðgRÞb‘ðgRÞ�s‘
M2

Vð2Þ
;

�C0
9 ¼ C0

10 ¼
�ffiffiffi

2
p

GF�t�

ðgLÞb‘ðgLÞ�s‘
M2

Vð2Þ
;

CP ¼ CS ¼
ffiffiffi
2

p
�

GF�t�

ðgRÞb‘ðgLÞ�s‘
M2

Vð2Þ
;

�C0
P ¼ C0

S ¼
ffiffiffi
2

p
�

GF�t�

ðgLÞb‘ðgRÞ�s‘
M2

Vð2Þ
:

(44)

Processes that lead to B nonconservation are induced via

interaction terms of Vð1Þ with two quarks

L ð1Þ
qq ¼ �QCi�2 ~V

ð2Þ
� ��uR þ H:c:: (45)

VI. CONSTRAINTS ON LEPTOQUARK-INDUCED
EFFECTIVE INTERACTIONS

In each case studied in the previous sections the obtained
set of Wilson coefficients follows relations between vector
and axial leptonic currents, namely, we can always express

Cð0Þ
10 and Cð0Þ

P with Cð0Þ
9 and Cð0Þ

S , respectively, as

C10

C0
10

CP

C0
P

0
BBBBB@

1
CCCCCA ¼ �

C9

�C0
9

CS

�C0
S

0
BBBBB@

1
CCCCCA: (46)

Positive sign on the right-hand side applies for contribu-

tions of the scalars �ð7=6Þ, �ð1=6Þ and the vector state Vð2Þ,
whereas the negative sign is valid for Wilson coefficients

generated by the the scalars �ð4=3Þ, �ð1=3Þ, and vectors Vð2Þ

and Vð1Þ. The contributions of the seven leptoquark states
to the effective Hamiltonian are restated in Table I where
we have already employed the identity (46) to express all
Wilson coefficients in terms of complex C10, C

0
10, CS, and

C0
S that can be chosen independently (they can be found

in shaded columns of Table I). Because all the Wilson

TABLE I. Scalar and vector leptoquark tree-level contributions to ð�sbÞð �‘‘Þ effective
Hamiltonian. Third column (BNC) indicates whether baryon number is conserved. Wilson
coefficients in the shaded columns (C10, C

0
10, CS, and C0

S) are taken as independent. See text for

clarification on number of independent parameters for the last two states.

S LQ BNC O9 O10 OS OP O0
9 O0

10 O0
S O0

P

0 �ð7=6Þ ! C10 C10

�ð1=6Þ ! �C0
10 C0

10

�ð4=3Þ C0
10 C0

10

�ð1=3Þ �C10 C10

1 Vð3Þ ! �C10 C10

Vð1Þ �C10 C10 CS �CS C0
10 C0

10 C0
S C0

S

Vð2Þ C10 C10 CS CS �C0
10 C0

10 C0
S �C0

S
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coefficients are invariant under rescaling of the underlying
leptoquark couplings

ðgL;RÞs‘ ! �ðgL;RÞs‘ ð� 2 CÞ;
ðgL;RÞb‘ ! 1

��
ðgL;RÞb‘;

(47)

we can further eliminate one complex degree of freedom,
say C10, by employing

4C10C
0
10 ¼ �CSC

0
S: (48)

Only the vector states Vð1Þ and Vð2Þ implement the most

general framework where the current-current Oð0Þ
9;10 and

scalar/pseudoscalar Oð0Þ
S;P operators are present. Remaining

states have Cð0Þ
S ¼ Cð0Þ

P ¼ 0 and therefore contribute either

toC10 orC
0
10 [and theirC

ð0Þ
9 partners, see Eq. (46)] as can be

seen from (48). In fact, a combination of (pseudo)scalar and
tensor operators could also arise due to presence of two
scalar states with same electric charge, however, we have
demonstrated in the previous section those operators are
further suppressed by factor v2=M2

� and are therefore omit-

ted from Table I and from further study. Same table also
shows that leptoquarks that conserve baryon number and
therefore cannot trigger nucleon decay [28], are limited to
contributions to operators with vector and axial-vector lep-

tonic currents. These states,�ð7=6Þ,�ð1=6Þ, andVð3Þ, can lie at
or below the 1 TeV scale and therefore produce visible
effects in b ! s‘þ‘� processes. Effects of those states

and �ð4=3Þ are the focus of this section. We do not delve
into study of B-violating vector leptoquarks that require
more thorough analysis due to presence of many operators
as well as due to their potential effect on nucleon stability.

A. C9 ¼�C10

These two scenarios are realized by scalar �ð7=6Þ with
theþ sign and by vector Vð3Þ with the� sign. They cannot
be distinguished by the C9-independent constraint
BrðBs ! �þ��Þ, whereas the BrðB ! K‘þ‘�Þ and par-
tial branching fraction of B ! Xs�

þ�� decay depend
crucially on the relative sign between C9 and C10.
Beyond the SM contribution to the inclusive decay spec-
trum can be adapted from formulas in Ref. [24],

dBrðB!Xs�
þ��Þ

dŝ

¼2B0ð1� ŝÞ2½ð1þ2ŝÞfCSM
10 Re½C10


�Re½CSM
9 ðŝÞC�

10
þjC10j2g�6CSM
7 Re½C10

; (49)

where ŝ ¼ q2=m2
b;pole and the choice of sign should follow

C9 ¼ �C10. We show in Fig. 2 how the three experimental
constraints (7), (16), and (19), map onto the C10 plane
when we confront them with theoretical predictions.

Important information in these two cases comes from the
measured B ! K‘þ‘� while the effectiveness of
B ! Xs�

þ�� and the leptonic decay Bs ! �þ��
depends on relative sign between C9 and C10. In the

C9 ¼ C10 case (�
ð7=6Þ scalar leptoquark) the B ! K‘þ‘�

decay gives the strongest constraint, however large nega-
tive values of C10 are effectively excluded also by
Bs ! �þ�� due to positive interference with the SM.
This is a clear demonstration how decreasing experimental
bound on Bs ! �þ�� is becoming more and more

4 2 0 2 4
3

2

1

0

1

2

3

Re C10

Im
C

10

C9 C10

0 2 4 6 8 10

4

2

0

2

4

Re C10

Im
C

10

C9 C10

FIG. 2 (color online). Allowed regions in the complex C10

plane in the leptoquark scenario where C9 ¼ C10 (upper plot)
or C9 ¼ �C10 (lower plot). Blue region corresponds to
BrðBs ! �þ��Þ, whereas the light gray region and dashed lines
mark the BrðB ! K�þ��Þ and B ! Xs�

þ�� constraints,
respectively. The intersection of all three constraints is thickly
outlined. We observe complementarity of the three constraints in
the upper plot and their degeneracy in the lower plot.
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constraining even for vector and axial-vector operators.

The opposite relative sign between C9 and C10 (V
ð3Þ vector

leptoquark) allows for a finely tuned phase of C10

when one can effectively cancel contributions to
BrðB ! K‘þ‘�Þ and B ! Xs�

þ��. One can even de-
crease the two branching fractions and therefore the lower
end of the experimental predictions also become relevant
in this case.

The overlapping regions of the three constraints give for
the size of leptoquark contributions

jC9;10j &
(
4; C9 ¼ C10

6; C9 ¼ �C10

: (50)

B. C0
9 ¼�C0

10

Scalar leptoquarks that couple to the right-handed fer-

mions belong into this category. States �ð4=3Þ and �ð1=6Þ
will induce such contributions with þ and � sign, respec-
tively. Shift of the inclusive decay spectrum relatively to
the SM prediction can be written in these two cases as

dBrðB ! Xs�
þ��Þ

dŝ
¼ 2B0ð1� ŝÞ2ð1þ 2ŝÞjC0

10j2:
(51)

We have neglected the interference terms proportional to
ms and therefore the inclusive branching fraction is insen-
sitive to the phase of C0

9. One way to distinguish the two

scenarios is to measure precisely B ! K‘þ‘� that exhibits
striking sensitivity on the relative sign betweenC0

9 andC
0
10,

as shown on Fig. 3. The allowed regions satisfy

jCð0Þ
9;10j & 2; (52)

for both cases. However, a closer look at Fig. 3 reveals
that tension between the BrðBs ! �þ��Þ and
BrðB ! K‘þ‘�Þ in scenario C0

9 ¼ �C0
10 forces the

Wilson coefficients to develop CP violating imaginary
part. The constraint from Bs ! �þ�� is identical in
the two cases and excludes a sizeable portion of para-
meter space only in the case of flipped sign scenario
(C0

9 ¼ �C0
10). On the other hand, the inclusive decay is

less sensitive to the RH current operators since the inter-
ference terms between NP and the SM amplitude are
suppressed by ms.

VII. CONCLUSION

We have demonstrated in detail that color triplet bosons,
i.e., leptoquarks, can generate an entire set of effective
operators of b ! s‘þ‘� processes, including scalar and
pseudoscalar ones. There are in total 4 scalar and 3 vector
states that contribute to those operators at tree-level. Only
two vector, baryon number violating leptoquarks are
capable of inducing (pseudo)scalar effective operators
that are in general accompanied by vector and axial-vector
operators. This feature is simply due to a fact that all scalar
leptoquarks that couple to down-type quarks and charged
leptons are chiral, namely they can couple either to right-
or left-handed leptons. This is not the case for leptoquarks
that induce c ! u‘þ‘� process where a scalar state does
lead to scalar and tensor effective operators [29].
Remaining 1 vector and 4 scalar leptoquarks couple

to down-type quarks and leptons chirally and their
effects are limited to pairs of vector and axial-vector
effective operators. We have constrained their Wilson
coefficients by imposing the experimental constraints

4 2 0 2 4
3

2

1

0

1

2

3

Re C10
'

Im
C

10
'

C9
' C10

'

4 2 0 2 4

4

2

0

2

4

Re C10
'

Im
C

10
'

C9
' C10

'

FIG. 3 (color online). Allowed regions in the complex C0
10

plane in the scenario with C0
9 ¼ C0

10 (upper plot) or with C0
9 ¼

�C0
10 (lower plot). Blue region corresponds to BrðBs ! �þ��Þ,

whereas the gray region and dashed lines mark the
BrðB ! K�þ��Þ and B ! Xs�

þ�� constraints, respectively.
The intersection of all three constraints is thickly outlined.
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coming from BrðBs ! �þ��Þ, BrðB ! K‘þ‘�Þ, and
BrðB ! Xs�

þ��Þ½1 GeV2<q2<6 GeV2
. Importance of indi-

vidual constraints depends on the particular leptoquark
state. The most constraining measurement in almost all
cases is the BrðB ! K‘þ‘�Þ, while Bs ! �þ�� is also
becoming a sensitive probe of (axial-)vector operators.
Presence of these operators can be tested for in trans-
verse asymmetries of B ! K�‘þ‘� decays as shown in
[7,29]. Finally, all the considered leptoquark states con-
tribute to the electromagnetic [30] and chromomagnetic
operators of both chiralities, though contributions of this
sort involve many more leptoquark couplings and are
loop-suppressed compared to the effects studied in this
work.

We have found typical allowed values of leptoquark-
induced Wilson coefficients are of order 1, which corre-
sponds to strong constraint jðgLÞb‘ðgLÞs‘j, jðgRÞb‘ðgRÞs‘j &

few� 10�2, if leptoquark mass is set to 1 TeV. Note that
individual ðgL;RÞi‘, i ¼ s, b can still be large and allow

for, e.g., explanation of the anomalous muon magnetic
moment [13]. That very combination of couplings also
enters in direct searches for leptoquark pair production.
Consequently, final states with either two or no b-quark jets
are likely to be enhanced with respect to a channel with one
b-quark jet.
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