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The extension of the standard model to SUð3ÞL � SUð3ÞR � SUð3ÞC is considered. Spontaneous

symmetry breaking requires two Higgs field multiplets with a strong hierarchical structure of vacuum

expectation values. These vacuum expectation values, some of them known from experiment, are used to

construct invariant potentials in the form of a sum of individual potentials relevant at the weak scale. As in

a previous suggestion one may normalize the most important individual potentials such that their mass

eigenvalues agree with their very large vacuum expectation values. In this case (for a wide class of

parameters) the scalar field corresponding to the standard model Higgs turns out to have the precise mass

value mHiggs ¼ vffiffi
2

p ¼ 123 GeV at the weak scale. The physical mass (pole mass) is larger and found to be

125� 1:4 GeV.
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I. INTRODUCTION

The imbedding of the standard model into a larger group
implies an extended Higgs structure. The corresponding
potential should give rise to spontaneous symmetry break-
ing leading to a large spectrum of scalar boson masses. The
aim of this article is to consider the structure one encoun-
ters by extending the standard model to E6 [1] or rather to
its maximal subgroup SUð3ÞL � SUð3ÞR � SUð3ÞC. This
group has to be combined with the discrete group Z3

exchanging left, right and color symmetries [2–7]. It has
been named trinification group by the author of Ref. [3].
The subgroup with Z2 (exchanging left and right) can
appear as an intermediate symmetry at and above the scale
where the gauge couplings g1 and g2 unite [8]. In this
model, one has to deal with masses and vacuum expecta-
tion values (vevs) of scalar fields which show an extreme
hierarchical structure extending over many orders of mag-
nitudes. To break the group down to the standard model,
two scalar matrix fields are necessary H and ~H. These two
3� 3 matrices of fields transform according to ð3�; 3Þwith
respect to SUð3ÞL and SUð3ÞR [8,9]. Thus, we have to deal
with 36 real scalar fields. With respect to the SUð2ÞL
subgroup, they form six complex Higgs doublets and six
complex singlets.

The vev of the first matrix (H), which couples directly to
the fermions, can be chosen diagonal. Its structure is
known from experiment: The element hHi11 describes the
vev v ¼ 174 GeV of the conventional Higgs field. The
hHi22 element is very small and of the order of the mass
of the b quark. For simplicity, we will set it to zero here.
The hHi33 element, on the other hand, is huge and its value

M is expected to be close to the scale of electroweak
unification, i.e., the meeting point of the gauge couplings
g1 and g2 which occurs at � 2� 1013 GeV.

The second matrix of scalar fields ~H is not directly
coupled to fermions [8,9]. It needs to have a sizable vev
for the element h ~Hi32 which we denote by ~M [4,8]. This vev

determines the masses of the right-handed vector bosons.
The experimental limit on right-handed currents provides
for a lower limit for ~M of a few TeV. Already the non-
vanishing ofM and ~M is sufficient to break the trinification
group down to the Glashow-Weinberg-Salam group.
Finally, the finite value for v leaves only the electromag-
netic Uð1Þe symmetry.
In a previous article, the fields of the matrixH have been

discussed leaving the matrix ~H aside [10]. The required
vevs of these fields could be obtained with the help of
logarithmic contributions for the SUð3ÞL � SUð3ÞR invari-
ant potentials. The input vevs mentioned above provide
for scalar masses and the 15 Goldstone bosons. The article
contains in addition the suggestion for a speculative
normalization of the potentials. This hypothesis led to a
prediction for the mass of the Higgs meson of the standard

model, namely to mHiggs ¼ v=
ffiffiffi
2

p ¼ 123 GeV [10]. After

the more recent experimental indications for a Higgs-like
structure in the 125 GeV region [11], this prediction
may have some significance. Therefore a more detailed
discussion is indicated. It should deal with all 36 fields and
should show, in an example, the full spectrum of now
36� 15 ¼ 21 scalars.
Invariants which combine H and ~H fields together now

play an essential role. Without those invariants, several
charged and neutral scalars would remain massless. In
general, the inclusion of such invariants will change the
previously obtained mass values from the single Higgs
field H. However, as we will see, it turns out that for the
special field, which corresponds to the standard model
Higgs, no noticeable changes occur for a large class of
parameters. Thus, the Higgs mass close to 123 GeV can
still be the consequence of the following assumption [10]:
the fields in H are determined by two separate potentials
according to the two relevant invariants. Each potential is*B.Stech@ThPhys.Uni-Heidelberg.DE
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normalized such that the mass obtained from it coincides
with the input vev to leading order in M. As a motivation,
we note that only with this assumption the difference
between vev and mass eigenvalue remains finite in the
large M limit.

At present it seems too difficult, at least for the author, to
obtain a potential valid for the high and the low scale
regions which provides for spontaneous symmetry break-
ing of the trinification group, fulfilling thereby all theoreti-
cal requirements for this multi-Higgs problem. However,
for the region of the weak scale, effective potentials can be
constructed which give some insight into the structure of
this Higgs system. Coming down from high scales which
involve very large masses, the effective potential at low
scales is certainly expected to include logarithmic terms of
the same order as the H4 and ~H4 terms. In fact, only the
inclusion of logarithmic terms allow the potentials to have
their minimum at the wanted places. Shifting the appro-
priate fields according to their vevs and neglecting terms
with inverse powers of M, one gets potentials of the tree
type. No powers of fields higher than 4 appear anymore and
the potential minimum remains unchanged. Moreover, the
important terms containing M and ~M occur with shifted
and unshifted fields of lower powers. This way the task is
simplified and one gets, at low scales, a model only slightly
different from the standard model. As we will see, the
potential constructed leads to the required spontaneous
symmetry breaking. All Higgs fields obtain masses in
agreement with experimental bounds.

II. SCALAR FIELDS WITH LOWAND VERY HIGH
SCALE VACUUM EXPECTATION VALUES

IN THE SAME REPRESENTATION

An interesting example of a scalar Higgs field in a
grand unified model is the field H27, the irreducible ‘‘27’’
representation of E6. In a nonsupersymmetric version
of E6 [8,9] the maximal subgroup of E6, the symmetry
SUð3ÞL � SUð3ÞR � SUð3ÞC (the trinification group) plays
an important role together with the symmetry Z3 which
allows the exchange of ‘‘left’’ with ‘‘right’’ and ‘‘color.’’
Apart from the breaking Z3 ! Z2, this symmetry holds
from the point of electroweak unification up to the com-
plete gauge group unification. In this region which starts at

� 2� 1013 GeV, the gauge couplings gn1 ¼
ffiffiffiffiffiffiffiffi
5=3

p
g1 and

g2 are identical.
Let us consider for the moment the color singlet part of

a single H27 multiplet field only, neglecting the influence
of the other fields. It is a 3� 3 matrix field Hi

k where the

index i transforms as an upper index with respect to
SUð3ÞL while the lower index k transforms according to
SUð3ÞR. The indices i ¼ 1, 2 are the SUð2ÞL indices of the
standard model. Hi

k contains 18 real fields.

The vev ofH can be chosen to be a diagonal matrix with
real and positive elements by absorbing transformation
matrices and phases by the fermion fields. In the following

we use H ¼ hþ if where h and f are matrices of real
fields:

hHi ¼ hhi ¼
v 0 0

0 b 0

0 0 M

0
BB@

1
CCA: (2.1)

Phenomenology tells us the values of v and b: v can be
identified with the vev of the Higgs field of the standard
model, v ¼ 174 GeV. This element couples to the top
quark. b couples to the bottom quark and is much smaller,
roughly equal to the mass of the bottom quark at the weak
scale. We will set b ¼ 0 for simplicity. The valueM on the
other hand must be huge. It is the mass of the heavy down
quark D, which is likely to be of the order of the scale
where the SUð3ÞL � SUð3ÞR � Z2 symmetry sets in
Ref. [8]: hHi33 ¼ M ’ mD � 2� 1013 GeV
For the fields in H, only two SUð3ÞL � SUð3ÞR invari-

ants with nonvanishing vev exist:

J1¼ðTr½Hy �H�Þ2; J2¼Tr½Hy �H �Hy �H�: (2.2)

Their vevs are hJ1i ¼ ðM2 þ v2Þ2 and hJ2i ¼ M4 þ v4,
respectively.
It is easily seen that a tree potential with the two

invariants (2.2) cannot produce the wanted vevs. To
have a potential with the required properties at the weak
scale, the logarithmic dependence on J1 and J2 must be
included. In contrast to the usually very small Coleman-
Weinberg term [12], one expects here the log term to
be of the same order as the tree part because of the
extremely long way down from the very heavy states.
Indeed, large log terms follow necessarily: Our require-
ments are satisfied by a linear combination of the two
separate potentials:

V1 ¼ 1

8
J1

�
log

J1
hJ1i � 1

�
and

V2 ¼ 1

8
J2

�
log

J2
hJ2i � 1

�
: (2.3)

Higher powers of the log terms can also be used. For
instance,

V1 ¼ 1

8

J1

1þ log J1
hJ1i

and V2 ¼ 1

8

J2

1þ log J2
hJ2i

: (2.4)

Equations (2.3) and (2.4) are equivalent in our treatment.
First and second derivatives at the minimum are the same
and thus lead to the same scalar particle spectrum. The
scalar potential taken as a linear combination of V1 and
V2 (with positive coefficients) has the wanted properties.
This potential is fully invariant and provides for the sponta-
neous symmetry breaking toUð1Þ �Uð1Þe. The derivatives
of this potential with respect to the 18 fields vanish at the
minimum and the 18� 18matrix for the second derivatives
at the minimum leads to two massive states, one massless
state and 15 Goldstone bosons. In Eqs. (2.3) and (2.4), the
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factors 1=8 serve as a normalization of the potentials.
They are chosen such that—to order M—the mass values
obtained from the second derivatives coincide with the
input vevs according to our postulate. This postulate insures
that the difference betweenmass and vev is not proportional
to the huge value M. It remains finite in the limit M ! 1.
The normalization will be of significance as shown below.

The potentials obtained so far cannot be used to calcu-
late radiative corrections. One has to extract a tree potential
which can then be improved by renormalization group
methods in the conventional way. To do this, an expansion
inM is necessary. It can be done after the shift of the fields
according to their vevs (h11 ! vþ h11, h

3
3 ! Mþ h33) is

performed. By neglecting inverse powers of M, the above
potentials then become polynomials with field configura-
tions up to the fourth power only. Moreover, the interesting
terms proportional to M2, v �M and v2 occur with fields
to second order only. The symmetry breaking properties
remain unchanged. The relevant scale for this potential is
the weak scale.

V1 ¼ ðh33Þ2M2 þ 2h11h
3
3vMþ ðh11Þ2v2 þOðH3Þ þOðH4Þ;

V2 ¼ ðh33Þ2M2 þOðH3Þ þOðH4Þ: (2.5)

Constant terms are left out and the field combinations of
third and fourth order are not shown explicitly. They are
not relevant at the minimum but are needed for re-
normalization. V1 and V2 of Eq. (2.5) can now be used as
the tree potential at the weak scale. It replaces the standard
model potential in the presence of a huge hierarchy. The
Higgs field h11 and the SUð2ÞL singlet field h33 are both real
fields.

As in Ref. [10], we make the assumption to use the two
potentials with equal weight because of their identity in the
limit v ! 0. The normalization is decisive and kept.

Vtree ¼ V1 þ V2: (2.6)

This potential has a minimum for zero values of all
(shifted) fields. The two massive states have the masses
(shown to order v2)

m2
Higgs ¼

1

2
v2 and M2

H ¼ 2M2 þ 1

2
v2 (2.7)

Thus, the prediction for the Higgs mass at the weak scale is
as in Ref. [10]

mHiggs ¼ 1ffiffiffi
2

p v ’ 123 GeV: (2.8)

However, the influence of the fields of the second Higgs
multiplet ~H can change this result. This is the subject of the
next section together with the attempt to obtain the full
mass spectrum of all scalars.

III. TWO SUð3ÞL � SUð3ÞR SCALAR
FIELD MULTIPLETS

The second multiplet of scalar fields ~H is required from
phenomenological considerations. In the model [8], it is
not directly coupled to the fermions, only via gauge vector
bosons. It can have its own paritylike symmetry: ~H ! � ~H.
Its vevs cannot be diagonalized anymore when keeping hHi
diagonal. For the breaking of the original left-right sym-
metry, the dominant vev has to be at the (3,2) position [4].

Defining ~H ¼ ~hþ i~f, one has

h ~Hi ¼ h~hi ¼
0 0 0

0 0 0

0 ~M 0

0
BB@

1
CCA: (3.1)

The value of ~M fixes the masses mWR
of new vector bosons

coupled to right-hand vector currents: mWR
=mWL

’ ~M=v.

These right-hand currents are, apart from their helicity
structure, of the same form as the well-known left-hand
currents. LHC experiments can discover these bosons if
their masses lie in the TeV region. In the following we take
v � ~M � M.
The wanted total potential should now provide masses

for all fields. One needs new invariants depending on ~H but
necessarily also invariants combining H and ~H fields.
Otherwise, one would have additional symmetries and
thus many massless scalar particles. Important invariants
which also respect the symmetry ~H ! � ~H are

J3¼Tr½ ~Hy � ~H�2; J4¼Tr½ ~Hy � ~H � ~Hy � ~H�;
J5¼Tr½ ~Hy � ~H �Hy �H�; J6¼Tr½ ~Hy �H �Hy � ~H�:

(3.2)

Their vevs are hJ3i ¼ hJ4i ¼ ~M4, hJ5i ¼ 0, hJ6i ¼ ~M2M2.
The invariant J5 can be directly added to the potential

(2.6) since all its 36 first derivatives vanish at the proposed
minimum. J6, on the other hand, has to be combined with
J3 or J4: the first derivatives of J4 � 2 ~M2=M2J6 are not
strictly zero at the minimum but vanish for large M. Thus,
this combination can be used. Therefore, a suitable and still
simple tree potential for the 36 scalar fields reads

Vtree ¼ 2ðh33Þ2M2þ2h11h
3
3vMþðh11Þ2v2þ r4

�
J4�2

~M2

M2
J6

�

þ r5J5þOððH; ~HÞ3ÞþOððH; ~HÞ4Þ: (3.3)

In this equation, the shifted fields (also ~h32 ! ~Mþ ~h32) have
to be used and, after expanding in powers ofM, the inverse
powers ofM have to be neglected. Similar to Eq. (2.6), the
combination of fields not contributing to the tree level
spectrum of particles are not shown explicitly. They are,
however, important for the scale dependence. The coeffi-
cients r4 and r5 have to be positive and not too small but are
otherwise arbitrary. The formula (3.3) is simple enough to
obtain analytically the eigenvalues and eigenvectors of the
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36� 36 matrix of second derivatives. The square of the
masses are

v2

2
; 2M2þv2

2
; ðM2þ ~M2Þr5ð2�Þ;

M2r5ð4�Þ; 4 ~M2r4; ð ~M2þv2Þr5ð2�Þ;
2 ~M2r4ð4�Þ; ~M2r5ð2�Þ; v2r5ð4�Þ; 0ð15�Þ: (3.4)

It is seen that the first and the second term are unchanged as
compared to Sec. II. The 15 zero mass Goldstone particles
will become the longitudinal parts of the gauge vector
bosons. The other masses depend on the parameters r4,
r5, M and ~M. Interestingly, there is one Higgs-like multi-
plet independent of M and ~M depending only on r5 and v.
It will be referred to as the ‘‘second Higgs.’’ The diago-
nalization of the 36� 36 matrix allows us to identify all
fields. After taking account of tiny mixings, the new field
h11 describes the field of the standard model-like Higgs and
the second Higgs consists of the (also slightly changed)

four fields ~h11, ~f
1
1,

~h21, ~f
2
1 from the matrix ~M. One can add

to the potential the invariant J7 ¼ Tr½ ~HyH�Tr½Hy ~H� and
also J3 in log form similar to V1. These contributions do
not affect the value of the Higgs mass. Thus, for a wide
class of potentials the result for the Higgs obtained here
and in Ref. [10] can remain valid.

But certainly, it is also possible to devise special poten-
tials which have quite different properties. There is then
less connection with the standard model.

IV. THE LOW SCALE REGION

Let us now look at the low scale region near the mass of
the Higgs. One can start from Eq. (3.3) which, if written in
detail, contains a large amount of different field configu-
rations. However, drastic simplifications occur after diago-
nalizing the 36� 36mass matrix and going withM and ~M
to infinity. This allows us to neglect 16 heavy fields [the 16
masses are given in Eq. (3.4)]. The rest of the fields consist
of the second Higgs (four states), which may or may not be
very heavy compared to the Higgs, and finally the Higgs
field h11 itself and the 15 massless Goldstone bosons. The
latter become the longitudinal components of the gauge
bosons. In the low scale limit, only the coupling to the top
and to the three low mass vector bosons Wþ, W�, Z need
to be considered.

The relevant part of the Lagrangian for this low scale
domain in the unitary gauge turns out to be

Lh ¼�1

4
h4� 1

2
vh3� 1

2
v2h2þgt �tthþðg2Þ2WþW�vh

þ 1

2
ððg1Þ2þðg2Þ2ÞZ2vh� r4ðj ~H1

1j2þj ~H1
2j2Þ2

� r5ðh2þ 2hvþv2Þðj ~H1
1j2þj ~H1

2j2Þ: (4.1)

For convenience, the field h11 is denoted by h. According
to our derivation, the sum of the first three terms in
Eq. (4.1) can be identified with the renormalized potential
for the Higgs field at the weak scale. The next three terms
describe the coupling of h to the top and to the vector
bosons Wþ, W�, Z. The final terms contain the fields of
the second Higgs which need only be considered if
their masses are relatively low. Since these fields have
no vev and are not directly coupled to fermions, their
neutral members are possible candidates for dark matter
particles.
It is seen that our model has the form of the standard

model except for the second Higgs and the larger number
of Goldstone bosons. The ratio between the h3 coupling
constant and the mass term is the same as in the standard
model. Only the h4 coupling is a factor 2 larger.
Introducing the scale dependent coupling coefficient �ð�Þ

Eq. (4.1) leads to the boundary condition �ð�0Þ¼1=8.
Here, �0 stands for the weak scale at which the matching
with h should be performed. It seems appropriate to take
for this scale the sum of the square of the four boson
masses caused by the Higgs particle: �2

0 ¼ m2
H þ 2m2

W þ
m2

Z ’ ð192 GeVÞ2. The Higgs mass and � are related ac-
cording to m2

Higgs ¼ 4�v2.

To get the physical mass of the Higgs (the pole mass)
in our model is clearly of interest. This requires us to
study the scale dependence of the mass in the low scale
region. A systematic analysis of Eq. (4.1) is required here
but has not been done. However, one can get an estimate
by using as an approximation the standard model result

for the connection between the scale-dependent MS cou-
pling constant �ð�Þ and the pole mass according to
Ref. [13]:

m2
Higgsjpole ¼

�ð�Þ
1þ �ð�Þ 4v

2: (4.2)

The scale-dependent correction term �ð�Þ can be
calculated from particle couplings and masses [13]. We
use in this expression for the mass of the top quark
mt ¼ 173 GeV and for the Higgs mass 123 GeV.
An estimate of the pole mass can now be obtained

by fixing �ð�0 ¼ 192 GeVÞ ¼ 1=8. Applying the renor-
malization group equations of the standard model and
taking � in the interval 110 GeV<�< 250 GeV one
finds from (4.2)

mHiggsjpole ¼ 125� 1:4 GeV:
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