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The leading hadronic contribution to the muon anomalous magnetic moment is given by a weighted

integral over euclidean momentum of the hadronic vacuum polarization. This integral is dominated by

momenta of order the muon mass. Since the finite volume in lattice QCD makes it difficult to compute the

vacuum polarization at a large number of low momenta with high statistics (combined with the fact that

one cannot compute it at zero momentum), a parametrization of the vacuum polarization is required to

extrapolate the data. A much used functional form is based on vector meson dominance, which introduces

model dependence into the lattice computation of the magnetic moment. Here we introduce a model-

independent extrapolation method, and present a few first tests of this new method.
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I. INTRODUCTION

Recently, there has been an increased interest in the lattice
computation of the hadronic contributions to the anomalous
magnetic moment a� of the muon [1–6]. The aim is to

provide a first-principles computation of the hadronic con-
tributions to a� from lattice QCD assuming the Standard

Model, with full control of the error. Since the experimental
value of a� is known with great accuracy [7], this would

provide an interesting test of the Standard Model if the
theoretical computation can be carried out with a compa-
rable precision [8].

The dominant hadronic contribution comes from the had-
ronic vacuum polarization, and can be written as [1,9]1

aHLO� ¼ 4�2
Z 1

0
dQ2fðQ2Þð�ð0Þ ��ðQ2ÞÞ; (1.1a)

fðQ2Þ ¼ m2
�Q

2Z3ðQ2Þð1�Q2ZðQ2ÞÞ
1þm2

�Q
2Z2ðQ2Þ ; (1.1b)

ZðQ2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q4 þ 4m2

�Q
2

q
�Q2

2m2
�Q

2
; (1.1c)

�ðQ2Þ ¼ X
i¼u;d;s

q2i�iðQ2Þ; (1.1d)

where �iðQ2Þ, defined by

���;iðqÞ ¼ ð�q2��� þ q�q�Þ�̂iðq2Þ;
�ðQ2Þ ¼ �̂ðq2 ¼ �Q2Þ; (1.2)

in which

���;iðqÞ ¼
Z

d4xeiqxhJi�ðxÞJi�ð0Þi; (1.3)

with J�i ¼ �ci��c i, is the (flavor-diagonal) vacuum polar-

ization for quark flavor i. In Eq. (1.1d), qi is the electric
charge of quark i in units of the electron charge,� is the fine-
structure constant, and m� is the muon mass. Disconnected

contributions are expected to be small [10] and have been
neglected in Eq. (1.1d).2 Of course, Eq. (1.1a) also applies to
the electron and tau magnetic moments, if one replaces the
muon mass by the electron or tau mass.
In principle, the integral in Eq. (1.1a) could be approxi-

mated by a sum, if lattice values of �ðQ2Þ at sufficiently
many low values of Q2 (of order m2

�, the region that

dominates the integral) could be computed with high preci-
sion. At present, this is not yet possible. Instead, all lattice
computations of aHLO� rely on fitting the lattice data to a

functional form for �ðQ2Þ, which is then used to compute
the integral. The most commonly used approach to date has
been to choose a functional form inspired by vector-meson
dominance (VMD), with either only a contribution from the
� pole (possibly dressed up with pion loop contributions
[3]), or with contributions from the � and the �0 [5], where
the � mass is fixed to its value as independently determined
on the same ensemble of gauge-field configurations.
However, this introduces a model-dependent element in

what is supposed to be a first-principles computation in
lattice QCD. This results in a systematic error afflicting
lattice computations of aHLO� which is difficult to quantify.3

*Permanent address: Department of Physics, Universitat
Autònoma de Barcelona, E-08193 Bellaterra (Barcelona), Spain.

1Our sign convention for �ðQ2Þ is opposite to that of Ref. [3].

2The methods developed in this article apply if both connected
and disconnected parts are included. To the extent that the
disconnected part is numerically negligible, we can apply our
method to the connected part only as well. For estimates of
disconnected contributions, see Ref. [4].

3As already discussed in Ref. [3], chiral perturbation theory is
of little help in this case.

PHYSICAL REVIEW D 86, 054509 (2012)

1550-7998=2012=86(5)=054509(10) 054509-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.054509


While VMD fits to�ðQ2Þ look very good, and lead to quite
small statistical errors, aHLO� is extremely sensitive to the

behavior of the fitted�ðQ2Þ at very small Q2,4 and thus to
any systematics affecting the small-Q2 behavior of�ðQ2Þ.
Therefore, it would be very nice if a functional form of
�ðQ2Þ could be constructed that is solely based on known
mathematical properties of the vacuum polarization, and
which can be systematically improved if data with higher
precision become available.

It turns out that such a method exists. It is based on the
well-known observation that the vacuum polarization can
be expressed in terms of a positive spectral function
through a (once-subtracted) dispersion relation. This
makes it possible to express the vacuum polarization
�ðQ2Þ in a form for which a convergent sequence of
Padé approximants (PAs) is known to exist. Moreover,
the convergence is uniform for any compact region in the
complex plane excluding the cut along the negative real
axis. This includes, in particular, any finite interval in
euclidean Q2 between 0 and 1. Since the contribution
from say the region Q2 � 3 GeV2 to a� is much smaller

than currently attainable errors, this is sufficient to employ
this observation for the computation of a�. Our goal is to

present an exploration of this observation, using examples
of available data for �ðQ2Þ.

This article is organized as follows. In Sec. II we review
elements of the necessary mathematical theory, beginning
with the observation that �ðQ2Þ can be written in terms of
a Stieltjes function, for which a converging sequence of
PAs is known to exist. In Sec. III we explain how we will
apply this construction in order to carry out fits to numeri-
cal data for�ðQ2Þ. Section IV reports on two examples of
such fits. We discuss future prospects of this approach in
our concluding section.

II. STIELTJES FUNCTIONS
AND PADÉ APPROXIMANTS

In this section, we review the necessary elements of the
theory of multi-point Pade approximants (PAs) for func-
tions that can be written as a Stieltjes integral with a finite
radius of convergence. A good review about PAs in general
is Ref. [11]; for multi-point PAs we refer to Refs. [12,13].

A. Stieltjes functions

Consider the function

�ðzÞ ¼
Z 1=R

0

d�ð�Þ
1þ �z

; (2.1)

with �ð�Þ some real, bounded, nondecreasing function on
the interval ½0; 1=R�, taking infinitely many values on that
interval. The function�ðzÞ then is a Stieltjes function, and

it is analytic everywhere in the complex plane except on
the negative real axis for z � �R. The function�ðz ¼ Q2Þ
decreases monotonically as a function of Q2 for Q2 2
ð�R;1Þ.
The vacuum polarization �ðQ2Þ can be expressed in

terms of � through a once-subtracted dispersion relation

�ðQ2Þ ¼ �ð0Þ �Q2�ðQ2Þ;

�ðQ2Þ ¼
Z 1

4m2
�

dt
�ðtÞ

tðtþQ2Þ ;
(2.2)

where �ðtÞ is the spectral function, which, of course,
satisfies the constraint �ðtÞ � 0 for 4m2

� � t <1.5 This
can be seen by changing variables � ¼ 1=t in the integral,
taking R ¼ 4m2

�, and choosing

d�ð�Þ¼�ð1=�Þd�; �ðtÞ¼ lim
	!0

1

�
Im�̂ðtþ i	Þ; (2.3)

where �ðQ2Þ ¼ �̂ðt ¼ �Q2Þ.
Let us consider an ordered sequence of positive values

Q2
i of the variable Q2, with i 2 f1; . . . ; Pg and 0 � Q2

1 <
Q2

2 < . . .<Q2
P, and assume that the function �ðQ2Þ is

known at these points. We may now construct a sequence
of Stieltjes functions as follows. We begin by defining a
function �1ðQ2Þ by writing �ðQ2Þ as

�ðQ2Þ ¼ �ðQ2
1Þ

1þ ðQ2 �Q2
1Þ�1ðQ2Þ : (2.4)

Then �1ðQ2Þ is also a Stieltjes function [12]. Moreover,
�1ðQ2Þ is positive on the interval ½�R;1Þ, and, on that
interval, has an upper bound6

�1ðQ2Þ��1ð�RÞ� 1

RþQ2
1

; Q22½�R;1Þ: (2.5)

This follows from the requirement that �ðQ2Þ not have a
singularity on the real axis for Q2 >�R, which implies
that

lim
Q2#�R

ðQ2
1 �Q2Þ�1ðQ2Þ � 1: (2.6)

Clearly, a sequence of Stieltjes functions �iðQ2Þ, i 2
f1; . . . ; Pg, can be constructed by iteration:

�i�1ðQ2Þ ¼ �i�1ðQ2
i Þ

1þ ðQ2 �Q2
i Þ�iðQ2Þ ; i 2 f2; . . . ; Pg;

(2.7)

which on the interval ½�R;1Þ satisfy

4At values of order m2
�, which dominate the integral in

Eq. (1.1a).

5Positivity of �ðtÞ follows, for instance, from the fact that it is
proportional to the eþe� ! hadrons cross section.

6For the lower bound, recall that �1 monotonically
decreasing.
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0 � �iðQ2Þ � �ið�RÞ ¼ 1

RþQ2
i

�
1� �i�1ðQ2

i Þ
�i�1ð�RÞ

�
;

i 2 f2; . . . ; Pg; (2.8)

where �i�1ð�RÞ ¼ limQ2#�R�i�1ðQ2Þ.
Equation (2.4) defines �1ðQ2

2Þ in terms of �ðQ2
2Þ and

�ðQ2
1Þ. Likewise, in general,�i�1ðQ2

i Þ can be expressed in
terms of the values�ðQ2

j Þ, j 2 f1; . . . ; ig by using Eq. (2.7)
recursively.

Applying Eq. (2.7), the original function �ðQ2Þ can be
written as a continued fraction

�ðQ2Þ ¼ �ðQ2
1Þ

1þ ðQ2�Q2
1
Þ�1ðQ2

2
Þ

1þ
. .
.

ðQ2�Q2
P�1

Þ�P�1ðQ2
P
Þ

1þðQ2�Q2
P
Þ�PðQ2Þ

: (2.9)

As already observed above,�1ðQ2
2Þ; . . . ;�P�1ðQ2

PÞ can be
expressed in terms of the values of the function �ðQ2Þ at
the points Q2

2; . . . ; Q
2
P.

B. Multi-point Padé’s

A rational (or Padé) approximation to the function
�ðQ2Þ can be constructed by setting �PðQ2Þ in Eq. (2.9)
equal to its lower bound (i.e., zero), or its upper bound,
given by Eq. (2.8). A rational approximation RN

MðQ2Þ is the
ratio of two polynomials of degrees N and M

RN
MðQ2Þ ¼

P
N
n¼0 anQ

2nP
M�1
n¼0 bnQ

2n þQ2M
: (2.10)

We will refer to RN
MðQ2Þ as an ½N;M� PA.7

If we choose �iðQ2Þ ¼ 0, the expression in Eq. (2.7)
yields a [0, 0] PA for �i�1ðQ2Þ. Working back to the
original function, this choice leads to a PA for the function
�ðQ2Þ. If the number of points Q2

i , i 2 f1; . . . ; Pg is even,
P ¼ 2k, starting with �PðQ2Þ ¼ 0 yields a ½k� 1; k� PA.
Indeed, for a ½k� 1; k� PA we need to solve for k coeffi-
cients an and k coefficients bn in Eq. (2.10), for a total of

P ¼ 2k, determined by the values �ðQ2
i Þ, i 2 f1; . . . ; Pg.

Likewise, for P ¼ 2kþ 1 odd, the procedure yields a
½k; k� PA. In short, from �PðQ2Þ ¼ 0 one obtains a
½bðP� 1Þ=2c; bP=2c� PA, where bxc denotes the integer
part of x.
These ‘‘standard’’ multi-point PAs were studied in

Refs. [12,13]. By construction, they are exact at the values
Q2 ¼ Q2

i , i.e., the PA takes precisely the values �ðQ2
i Þ at

these values of Q2. Moreover, these PAs converge to the
function�ðQ2Þ. More precisely, if we consider a sequence
of standard multi-point PAs constructed from the values of
�ðQ2Þ at a collection of points �R<Q2

1 <Q2
2 < . . .<

Q2
P < Q2� <1 with limP!1Q2

P ¼ Q2�, the PAs converge
uniformly on any closed and bounded domain in the com-
plexQ2-plane excluding the cut�1<Q2 � �R [13], for
P ! 1.
If we choose �PðQ2Þ equal to the upper bound of

Eq. (2.8), the expression in Eq. (2.7) yields a [0, 1] PA
for �P�1ðQ2Þ. Again working back to the original func-
tion, this choice also leads to a PA for the function �ðQ2Þ.
Now if the number of values Q2

i , i 2 f1; . . . ; Pg is even,
P ¼ 2k, this yields a ½k; k� PA. The counting argument is
analogous to that above, but now this PA has, by construc-
tion, a pole at Q2 ¼ �R, which provides the extra infor-
mation needed to find the 2kþ 1 coefficients in Eq. (2.10)
for this case. Likewise, for P ¼ 2kþ 1 odd, the procedure
yields a ½k; kþ 1� PA. In short, in this case we obtain a
½bP=2c; bðPþ 1Þ=2c� PA. These ‘‘complementary’’ multi-
point PAs are also exact at the values Q2 ¼ Q2

i ; they
were introduced in Ref. [13].
If, givenP values�ðQ2

i Þ, i 2 f1; . . . ; Pg, the standard PA
is written as

RbðP�1Þ=2c
bP=2c ðQ2Þ ¼ APðQ2Þ

BPðQ2Þ ; (2.11)

defining the polynomials APðQ2Þ and BPðQ2Þ, the comple-
mentary PA can be written as Ref. [13]

RbP=2c
bðPþ1Þ=2cðQ2Þ ¼ ðRþQ2

PÞBP�1ð�RÞAPðQ2Þ þ ðQ2 �Q2
PÞBPð�RÞAP�1ðQ2Þ

ðRþQ2
PÞBP�1ð�RÞBPðQ2Þ þ ðQ2 �Q2

PÞBPð�RÞBP�1ðQ2Þ : (2.12)

As already mentioned, both these PAs are exact at the
points Q2

i . Moreover, the complementary PAs have a pole
at Q2 ¼ �R, as can be seen from Eq. (2.12). Between the
points Q2

i and Q2
iþ1, as well as between �R and Q2

1 and
between Q2

P and 1, the standard and complementary PAs
provide an upper and lower bound to the original function
�ðQ2Þ.8 Which is the lower bound and which the upper

bound alternates as one progresses through these Pþ 1
intervals from �R to 1 [12,13].

C. Parametrization

All the poles of our standard PAs should have their poles
on the negative real axis, at locations Q2 � �R. Indeed,
one can prove [11,13] that these PAs can be written in the
form

RbðP�1Þ=2c
bP=2c ðQ2Þ ¼ a0 þ

XbP=2c
n¼1

an
bn þQ2

; (2.13)

7Redundancy between the coefficients an and bn is removed
by choosing one of them equal to 1. Here we choose bM ¼ 1.

8These bounds are optimal [12,13].
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with a0 ¼ 0 for P even, and

an > 0; n 2 f1; . . . ; bP=2cg;
bbP=2c > bbP=2c�1 > . . .> b1 � R:

(2.14)

Once these parameters have been obtained for the
½bðP� 2Þ=2c; bðP� 1Þ=2c� and ½bðP� 1Þ=2c; bP=2c� PAs,
the complementary ½bP=2c; bðPþ 1Þ=2c� PA can be ob-
tained from Eq. (2.12).

III. FIT STRATEGY

In the situation of an actual fit to values of �ðQ2Þ
obtained from a numerical computation, these values are
only known within some statistical errors. That implies that
we do not know any points of the function exactly.
Therefore, obviously, a multi-point sequence of PAs as
described in Sec. II cannot be constructed. Instead, we
will be fitting a fixed number of data points on a given
interval, and the sequence of PAs we will find as a result of
these fits is not a multi-point sequence in the sense of the
theorem. However, the fact that �ðQ2Þ, according to the
theorem, can be described by a converging sequence im-
plies that PAs of the form

�ðQ2Þ ¼ �ð0Þ �Q2

�
a0 þ

XN
n¼1

an
bn þQ2

�
; (3.1)

provide a valid functional form to which to fit the data.
A number of PAs can be estimated by fitting this form to
the data as a function of increasing N. For a0 ¼ 0
the parameters to be fitted are �ð0Þ and the an and bn
for n 2 f1; . . . ; Ng, and we obtain an ½N � 1; N� PA. When
also a0 is fitted we obtain an ½N;N� PA.

In practice, errors on the data will limit how large we can
take N in Eq. (3.1). For each value of N,9 the value of 
2

per degree of freedom will tell us how well Eq. (3.1) with
given N fits the data. In particular, one would expect that
with an increasing number of data points with decreasing
errors, one would need to consider larger values of N to
obtain a good fit.

With a given data set, adding more poles makes it harder
to precisely determine the corresponding extra fit parame-
ters as we increase N. However, as we will see, aHLO� turns

out to be quite stable as a function of N, because this
quantity is rather insensitive to the higher poles.

As in Ref. [3], we will mostly explore fits in which we
take the values ofQ2 for which we fit the PAs from the data
for �ðQ2Þ in an interval between Q2 ¼ 0 and Q2 ¼
1 GeV2. For each of our fits, we will compute the quantity

aHLO;Q
2�1

� ¼ 4�2
Z 1 GeV2

0
dQ2fðQ2Þð�ð0Þ ��ðQ2ÞÞ;

(3.2)

with fðQ2Þ defined in Eq. (1.1b). This of course misses the
part of the integral between 1 GeV2 and 1, but this part is
of order a percent of the low-Q2 contribution. Since our
goal here is to test the Padé approach to fitting �ðQ2Þ for
Q2 � 1 GeV2, we have restricted ourselves to the expres-
sion in Eq. (3.2) for comparisons between different fits.
We have not explored the complementary PAs defined in

Sec. II B yet, but we anticipate that they may become
useful in the future, when more precise data become
available.

IV. TESTS

In this section, we explore fits to two different data sets.
One set is the data for �ðQ2Þ with light quark mass equal
to 0.0124 in lattice units (on a 243 � 96 lattice with lattice
spacing a � 0:09 fm, using ‘‘fine’’ configurations from the
MILC collaboration [14]) that was also studied in Ref. [3]
(see Table I of that paper). The other set is data obtained
using the MILC ‘‘super-fine’’ gauge configurations with
lattice spacing a � 0:06 fm on a 643 � 144 lattice with
light quark mass equal to 0.0018 and a strange quark mass
equal to 0.018, in lattice units. For both data sets the lattice
strange quark mass is approximately equal to the physical
strange quark mass. We will always assume that the theory
of Sec. II applies to these data, i.e., that lattice artifacts are
small enough to be ignored. In practice, rotational invari-
ance is broken on the lattice. Since �ðQ2Þ is extracted
from Eq. (1.2) using a lattice definition of the momentum
components Q� [3], breaking of rotational invariance

causes �ðQ2Þ to show small deviations from the mono-
tonic decrease that follows from Eq. (2.2).
For each data set we carry out both correlated and

uncorrelated fits, and compare those with each other. It
turns out that this raises interesting questions about the
behavior of the data and the fits at very low Q2.

A. a¼ 0:09 fm data at mlight=mstrange ¼ 0:4

For our first example we consider the amlight ¼ 0:0124

data that were also considered in Ref. [3]; this value of the
light quark mass corresponds to about 2=5 times the physi-
cal strange quark mass. For these data, m� ¼ 476 MeV
and m� ¼ 962 MeV. In Tables I and II we show the result

of a sequence of PA fits, with Table I showing correlated
fits, and Table II showing uncorrelated fits. For the corre-
lated fits we fitted data on the interval 0<Q2 � 0:6 GeV2,
because this interval yields the smallest values for the 
2

per degree of freedom. For the uncorrelated case, we fitted
the data for �ðQ2Þ on the interval 0<Q2 � 1 GeV2, as
was done in Ref. [3].

9Strictly speaking, there are two PAs for each value of N, one
with a0 ¼ 0 and one with a0 a fit parameter.
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Table I shows that the value for aHLO;Q
2�1

� becomes very
stable for PA fits starting at [1, 1]. For the [1, 1] PA

2=dof ¼ 1:07, indicating a good fit. For higher PAs,
the value of 
2 does not change, being very insensitive to
the location of the second pole. It follows that the values of
the parameters characterizing the second pole are not well
determined, as can be seen in the table. However, the value

of aHLO;Q
2�1

� is completely insensitive to the second pole.

The explanation for this is that the integral for aHLO;Q
2�1

� is
dominated by the Q2 region around m2

�, and thus very

insensitive to the precise location of PA poles at large
negative values of Q2.

The fit marked ‘‘VMD’’ is obtained by holding the
parameter b1 fixed at the square of the � mass in what
would otherwise be a [0, 1] PA fit. It is thus not one of the
sequence of PAs introduced in Sec. II. According to the
theory there is no reason one should expect the parameter
b1 to be equal to the square of the � mass, as borne out by
the values for b1 found in the PA fits of Table I.10 For the
correlated VMD fit a fitting interval 0<Q2 � 0:35 GeV2

leads to the lowest 
2 per degree of freedom. With

2=dof � 2, the VMD fit is not very good. It is already
much better for the [0, 1] PA, in which the constraint on b1
is relaxed, and it decreases further, to an acceptable value,
for the [1, 1] PA.

Table II shows similar fits, but here all fits are uncorre-
lated. All errors have been estimated using a linear
fluctuation analysis starting from the uncorrelated 
2,
starting from the full data covariance matrix [15]. These
errors agree with errors computed under a single-
elimination jackknife. In these PA fits we have relaxed
the constraint b1 � 4m2

� ¼ 0:906 GeV2 (on this data
set), but one notes that the values of b1 are consistent
with this bound within errors. Both correlated and uncor-
related [1, 1] PA fits are shown in Fig. 1.
The uncorrelated VMD fit reproduces ‘‘fit A’’ of

Ref. [3], including the error.11 One notes that the uncorre-
lated PA fits lead to results consistent with those of Table I,
but with much larger errors. The uncorrelated VMD fit is
not consistent with what we would expect to be the best fit,

aHLO;Q
2�1

� ¼ 350ð8Þ � 10�10; (4.1)

from the [1, 1] PA of Table I.
We may also compare the values in the tables with

values obtained from a fit with a fourth order polynomial
in Q2, which are

aHLO;Q
2�1

� ¼ 410ð91Þ � 10�10; ðuncorrelatedÞ;
aHLO;Q

2�1
� ¼ 346ð8Þ � 10�10; ðcorrelatedÞ:

(4.2)

TABLE II. VMD and PA fits to the a ¼ 0:09 fm, amlight ¼ 0:0124 data for�ðQ2Þ of Ref. [3] with Q2 � 1 GeV2. Uncorrelated fits;
errors computed by a linear fluctuation analysis.


2=dof 1010aHLO;Q
2�1

� �ð0Þ ai bi a0

VMD 4:37=18 413(8) 0.0980(7) 0.0536(10) 0.9256 (fixed) � � �
[0, 1] 3:58=17 373(37) 0.0971(12) 0.0569(25) 1.10(16) � � �
[1, 1] 3:36=16 424(116) 0.0979(22) 0.033(14) 0.6(4) 0.007(6)

[1, 2] 3:35=15 443(293) 0.098(4) 0.02(10) 0.4(1.7) � � �
0.058(12) 2(11)

[2, 2] 3:35=14 445(432) 0.098(4) 0.02(29) 0.4(4.2) 0.0(4)

0.1(3.8) 4(141)

TABLE I. VMD and PA fits to the a ¼ 0:09 fm, amlight ¼ 0:0124 data for �ðQ2Þ of Ref. [3] with Q2 � 0:6 GeV2, except for the
VMD fit, for which the fit interval is Q2 � 0:35 GeV2. Correlated fits; 
2 errors.


2=dof 1010aHLO;Q
2�1

� �ð0Þ ai bi a0

VMD 5:86=3 363(7) 0.0962(6) 0.0471(9) 0.9256 (fixed) � � �
[0, 1] 11:4=8 338(6) 0.0960(5) 0.0600(7) 1.287(27) � � �
[1, 1] 7:49=7 350(8) 0.0963(6) 0.049(4) 1.09(9) 0.0028(12)

[1, 2] 7:49=6 350(8) 0.0963(6) 0.049(4) 1.09(9) � � �
2(17) 2ð8Þ � 103

[2, 2] 7:49=5 350(7) 0.0963(6) 0.049(4) 1.09(9) 0.0012(10)

2.4(1.4) 1:4ð0:8Þ � 103

10See Sec. IVC for further discussion.

11The parameters �ð0Þ and a1 are not the same as the parame-
ters A and fV of Ref. [3].
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The first line is in agreement with Ref. [3], and was fitted
with 0<Q2 � 1 GeV2, as in Table II, and the second is
from a correlated fit on the interval 0<Q2 � 0:6 GeV2, as
in Table I. The latter fit has a 
2=dof of 7:48=6, less good
than the [1, 1] fit in Table I. Both are in good agreement
with Eq. (4.1), given the size of the errors.

B. a¼ 0:06 fm data at mlight=mstrange ¼ 0:1

For our second example, we consider the vacuum
polarization computed on MILC configurations at a ¼
0:06 fm and amlight ¼ 0:0018, which is about 1=10 times

the physical strange quark mass. For these data, m� ¼
220 MeV and m� � 800 MeV.12 Correlated fits are

shown in Table III, where we fitted the data for 0<Q2 �
0:53 GeV2 (which corresponds to the 20 data points with
the lowest values of Q2). The 
2 values per degree of
freedom of the fits in Table III are slightly smaller than
one, except for the VMD fit, for which 
2=dof is about
two. We find that the value of 
2=dof increases if we fit
over a larger range of Q2 values, and we will therefore
take the results of Table III as our optimal results (for
more on this point, see the discussion in Sec. IVC).
Uncorrelated fits are shown in Table IV, where, in line
with Sec. IVA, fits were carried out on the interval 0<
Q2 � 1 GeV2.

It is again not surprising that the correlated fits become
less good if one fits over a larger range in Q2. In order to
improve the description of the data at largerQ2, most likely
more poles would be needed. However, as before, it is clear
from the tables that, given the quality of the data, it is very

hard to fit a second pole. The value of aHLO;Q
2�1

� is again
completely insensitive to the location of the second pole.13

We show the [1, 1] fits of Tables III and IV in Fig. 2. As
in Fig. 1 one notes the sensitivity of the fit near Q2 ¼ 0;

this explains the different values for aHLO;Q
2�1

� shown in
the tables.
From the [1, 1] PA fit of Table III we take what we would

expect to be our best result for this data set:

aHLO;Q
2�1

� ¼ 572ð41Þ � 10�10: (4.3)

In Fig. 3 we show correlated and uncorrelated [1, 1] PA
fits, now taking the range 0<Q2 � 0:53 GeV2 as our
fitting range also for the uncorrelated fit. We note that the
uncorrelated fit appears to do better than the uncorrelated
[1, 1] PA fit shown in Fig. 2 at the lowest Q2 value, but
much less well than the correlated fit for Q2 > 0:53 GeV2.
Accordingly, uncorrelated fits are quite sensitive to the

fitting range. For instance, the central value of aHLO;Q
2�1

�

from the uncorrelated fit shown in Fig. 3 is 42% larger than
from a similar fit on the range 0<Q2 � 1 GeV2 (shown in
Table IV). A correlated fit on the latter range gives a central
value which is only 3% larger than the value in Eq. (4.3),
i.e., it is within the error given in that equation.14

In Ref. [3] also polynomial fits with third- and fourth-
order polynomials were considered, and it is thus inter-
esting to compare PA fits with polynomial fits. For the
data of this subsection, the radius of convergence,
4m2

� ¼ 0:194 GeV2.15 Therefore, fitted polynomials can-
not be interpreted as estimates of the Taylor expansion of
�ðQ2Þ around Q2 ¼ 0, as long as we use a fitting interval
with upper bound larger than 4m2

�.
We show third- and fourth-order polynomial fits, as

well as [1, 1] and [1, 2] PA fits in Table V, as a function
of the number of data points in the fit (20 points corre-
sponds to the fitting interval 0<Q2 � 0:53 GeV2 used in
Table III). All fits shown are correlated. Both ‘‘Poly 3’’ and
‘‘PA [1, 1]’’ are four-parameter fits, while ‘‘Poly 4’’ and
‘‘PA [1, 2]’’ are five-parameter fits. The 
2=dof for all fits
is good, except for fits with 26 data points, for which it
shows a steep increase.
We observe that Poly 3, PA [1, 1] and PA [1, 2] fits all

lead to values for aHLO;Q
2�1

� which are stable within the
error given in Eq. (4.3). For the Poly 4 fit, however, this
spread is much larger. Adding a fit parameter by going
from Poly 3 to Poly 4 fits leads to significant changes in the

central value for aHLO;Q
2�1

� , whereas going from PA [1, 1]
to PA [1, 2] fits the central values do not change much. In

FIG. 1 (color online). [1, 1] fits of Tables I (correlated, solid
curve) and II (uncorrelated, dashed curve) compared with data.
Solid points have been included in the correlated fit while both
solid and open points have been included in the uncorrelated fit.

12We thank Doug Toussaint for providing us with an unpub-
lished rough estimate of the � mass for this data set.

13We even considered [2, 3] and [3, 3] fits, with the conclusion
being the same.
14Despite the fact that for a correlated fit on the range 0<
Q2 � 1 GeV2 the value of 
2 is about 2.5 per degree of freedom.
15The radius of convergence for the case of Sec. IVA is much
larger, which is why we chose to make this comparison in this
subsection.
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other words, if we would do a correlated Poly 4 fit to 20

data points, for which we would find aHLO;Q
2�1

� ¼
535ð45Þ � 10�10, the error would be underestimated be-
cause of the spread of values for the Poly 4 fit shown in
Table V, while the error shown in Eq. (4.3) encompasses

the full range of aHLO;Q
2�1

� PA results shown in Table V.
The Poly 4 and PA [1, 2] fits with 20 data points are shown
in Fig. 4.

C. Discussion of fits

In this subsection wewill discuss the fit results presented
in Tables I through IV in more detail. We begin with the
a ¼ 0:09 fm results of Tables I and II.

It is important to emphasize again that the VMD fits are
not part of the sequence of PAs introduced in Sec. II,
because in the VMD fits the pole at Q2 ¼ �b1 is held
fixed at the estimated (squared) � mass on this ensemble.
The actual QCD spectral function has a cut on the negative
axis starting at Q2 ¼ �4m2

�; any poles reside on the
second Riemann sheet, away from the negative axis.16

While positivity of the spectral function implies that
�ðQ2Þ can be expressed in terms of a Stieltjes function,
with a convergent sequence of PAs given by Eq. (2.13),
there is no reason that any of the poles of these Padé’s
should be equal to (the real part of) any pole representing

a resonance in QCD. In particular, in the PA fits, the
parameter b1 should not be taken equal to the square of
the �mass, but instead it should be left as a free parameter.
We included the VMD fits in Tables I and II in order to
compare them with the PA fits.
First, we note that the correlated VMD fit in Table I

is a rather poor fit, with a high 
2=dof, and there is no

TABLE IV. PA fits to the a ¼ 0:06 fm, amlight ¼ 0:0018 data for �ðQ2Þ with Q2 � 1 GeV2. Uncorrelated fits; errors from linear
fluctuation analysis. For the [1, 2] and [2, 2] fits, b1 is at the limit 4m2

� ¼ 0:1936 GeV2 (for this ensemble), which was enforced in
those fits.


2=dof 1010aHLO;Q
2�1

� �ð0Þ ai bi a0

VMD 37:2=51 685.2(7.8) 0.1236(6) 0.0631(7) 0.64 (fixed) � � �
[0, 1] 13:9=50 555(22) 0.1208(8) 0.0666(7) 0.85(4) � � �
[1, 1] 12:0=49 645(66) 0.1221(13) 0.047(5) 0.54(11) 0.0071(21)

[1, 2] 11:4=48 788(482) 0.123(4) 0.015(20) 0.2(4) � � �
0.063(14) 1.4(9)

[2, 2] 11:3=47 837(627) 0.124(5) 0.018(5) 0.2(5) 0.022(9)

0.22(6) 3.9(6)

TABLE III. PA fits to the a ¼ 0:06 fm, amlight ¼ 0:0018 data for �ðQ2Þ with Q2 � 0:53 GeV2. Correlated fits; 
2 errors.


2=dof 1010aHLO;Q
2�1

� �ð0Þ ai bi a0

VMD 38:6=18 646(8) 0.1222(6) 0.0595(8) 0.64 (fixed) � � �
[0, 1] 14:3=17 550(20) 0.1203(7) 0.0646(16) 0.83(5) � � �
[1, 1] 13:9=16 572(41) 0.1206(8) 0.052(16) 0.68(20) 0.005(7)

[1, 2] 13:9=15 572(37) 0.1206(8) 0.052(14) 0.68(19) � � �
1(6) 0:3ð1:0Þ � 103

[2, 2] 13:9=14 572(38) 0.1206(8) 0.052(14) 0.68(18) 0.003(27)

1(31) 0:4ð6:0Þ � 103

FIG. 2 (color online). [1, 1] PA fits of Tables III (correlated,
solid curve) and IV (uncorrelated, dashed curve) compared with
data. Solid points have been included in the correlated fit while
both solid and open points have been included in the uncorre-
lated fit.

16Only in the limit of an infinite number of colors do the poles
move toward the negative real axis, and the vacuum polarization
becomes a meromorphic function.
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agreement between the correlated and uncorrelated VMD
fits. The quality of the correlated fits improves when we
add more parameters, first by varying b1 and then by add-
ing in the parameter a0, by which time 
2=dof � 1.

The next observation is that the correlated fits do not get
better by adding a second pole to the PA. The minimum
value of 
2 stays the same, and consequently, the parame-
ters of the second pole are very poorly determined. We
have checked that this does not depend on the fitting range
employed. A possible explanation is that the lattice data for
the vacuum polarization do not quite follow the behavior
predicted by Eq. (2.2), because of the breaking of rotational
invariance on the lattice (c.f., discussion at the beginning of
this section). This can be seen from the fact that the data
points in Fig. 1 show small deviations from a smooth,
monotonically-decreasing behavior. However, we note

that the value of aHLO;Q
2�1

� is completely insensitive to
the parameters of the second (and higher) poles. Our best

correlated fit value for aHLO;Q
2�1

� is given in Eq. (4.1).

Moving to the uncorrelated fits of Table II, we observe

that the values for aHLO;Q
2�1

� for all fits in that table are
consistent with each other, because of the rapid increase of
errors with the order of the PA. Furthermore, all uncorre-
lated and correlated PA fits are consistent with each other
as well, but clearly the correlated fits have much smaller
errors.
It is instructive to compare the best correlated fit, the

[1, 1] PA fit, with the uncorrelated VMD fit, because both
have very small errors, and provide a good fit, as can be
seen in Fig. 5. Both fits are good fits, but they lead to values

for aHLO;Q
2�1

� which are not consistent with each other. The
statistical error on the uncorrelated VMD fit is very small,
but this fit has an unknown systematic error because of its
model dependence. This may explain the discrepancy with
the correlated [1, 1] PA fit. The latter may be expected to
have a much smaller systematic error, since it is an esti-
mate that should agree within errors with a member of a
converging sequence of PAs, and clearly already provides a
good fit also in the largerQ2 region that was not included in
the fit (the horizontal axis of Fig. 5 covers about twice the
fitted region 0<Q2 � 0:53 GeV2).

However, for the computation of aHLO;Q
2�1

� the region
Q2 	m2

� ¼ 0:011 GeV2 dominates, and it is clear that the

data do not distinguish between these two fits in that
region. While the rapid increase of the goodness of fit
seen in Table I from the VMD fit to the [1, 1] fit can be
taken as an indication that correlated fits unbiased by
model dependence are promising, we conclude that it is

not possible to exclude either value of aHLO;Q
2�1

� on the
basis of these data.
Similar remarks apply to the fits shown in Tables III and IV.

Correlated PA fits all have 
2=dof � 1, unlike the corre-
lated VMD fit for which 
2=dof � 2. In both cases, the
correlated and uncorrelated VMD fits do not agree within
errors (which, we recall, are purely statistical). The value

we obtain for aHLO;Q
2�1

� is larger than that obtained in
Sec. IVA; we believe that this is mostly due to a smaller
pion mass, with m� � 220 MeV for this data set, while
m� � 480 MeV for the a ¼ 0:09 fm data set.

FIG. 3 (color online). [1, 1] correlated (solid curve) and un-
correlated (dashed curve) fits as in Table III, fitted on interval
0<Q2 � 0:53 GeV2. Solid points have been included in the
fits, open points have not been included.

TABLE V. Correlated PA and polynomial fits to the data of Table III, as a function of the fitting interval. The first column shows the
number of data points in the fit, with 20 points corresponding to the fitting interval 0<Q2 � 0:53 GeV2 of Table III. The column

‘‘Poly n’’ shows results from a fit to a polynomial of degree n; að1Þ� stands for 1010aHLO;Q
2�1

� .

Poly 3 Poly 4 PA [1,1] PA [1,2]

# points 
2=dof að1Þ� 
2=dof að1Þ� 
2=dof að1Þ� 
2=dof að1Þ�

16 9:6=12 543(35) 9:5=11 483(244) 9:7=12 564(55) 9:7=11 565(41)

18 11:4=14 526(33) 10:5=13 596(79) 11:2=14 541(46) 11:5=13 561(21)

20 13:1=16 536(23) 13:1=15 535(45) 13:9=16 572(41) 13:9=15 572(37)

22 16:5=18 541(23) 15:9=17 513(44) 18:5=18 566(37) 18:5=17 566(33)

24 16:6=20 537(18) 16:4=19 521(41) 19.4/20 583(34) 19:4=19 583(33)

26 30:7=22 505(16) 23:6=21 580(32) 26:8=22 557(31) 26:7=21 560(27)
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V. CONCLUSION

In this article, we presented a new, model-independent
method for fitting the hadronic vacuum polarization�ðQ2Þ
as a function of euclidean momentum Q2 to data obtained
from a lattice QCD computation. The method is based on
the theory of PAs to a Stieltjes function, and yields, in
principle, a converging sequence of PAs to the vacuum
polarization.

These PAs can be used to obtain lattice estimates for the
leading hadronic contribution to the anomalous magnetic
moment of the muon from Eq. (1.1a). By comparing
successive PAs in the sequence, one should be able to

check the convergence in practice. This would allow for
a fully model-independent determination of the leading
hadronic contribution aHLO� , and thus help eliminate an

unknown systematic error present in all lattice computa-
tions of aHLO� to date.

In comparison with the VMD fits which have been em-
ployed in the literature, these PAs contain more parameters
(the [0, 1] PA already contains three parameters, whereas the
simplest VMD ansatz contains only two). One thus typically
expects larger statistical errors given certain lattice data.
However, the PA approach avoids model-dependent as-
sumptions, and hence removes the unknown systematic
error associated with the VMD approach.
We have explored this new framework on two state-of-

the-art ensembles of gauge configurations, at different
lattice spacings and pion masses. From these explorations,
we conclude that this newmethod looks promising, but that
better data at very low values ofQ2 will be needed in order
to control the extrapolation necessary for a reliable com-
putation of aHLO� from the integral in Eq. (1.1a).

Our explorations show that given current lattice data for
�ðQ2Þ, there is a significant difference between our best
PA fits (which are four-parameter [1, 1] PAs), and VMD
fits.17 For instance, the difference between the values of

aHLO;Q
2�1

� obtained from the correlated [1, 1] PA fit of
Table I and the uncorrelated VMD fit of Table II and
Ref. [3] is about 15–20%, much larger than the statistical
fit error on each of these values. While it is tempting to
view the value from the correlated [1, 1] PA fit as the more
reliable one, it is clear from Fig. 5 that more data points
with higher precision at low Q2 are needed in order to
reduce this uncertainty.
There are of course other systematic errors as well,

including finite volume effects. In order to study those,
simulations at larger volumes will be needed; at present it
is not possible to assess what role they play in the results
we obtained.
Our explorations also showed that with these data it is

very difficult to fit the parameters characterizing the sec-
ond and higher poles of the PAs. In order to test the
convergence of the sequence of PAs fitted to �ðQ2Þ, it
would be desirable to investigate this issue, which is pos-
sibly related to breaking of rotational invariance at nonzero
lattice spacing, in more detail in the future. This issue
appears to have no direct effect on the value of

aHLO;Q
2�1

� , which we found to be very insensitive to the
location and residues of the second and higher poles.
In conclusion, the new method presented here

looks promising, but data for �ðQ2Þ with more values at

FIG. 5 (color online). [1, 1] fit of Table I (correlated, solid
curve) and VMD fit of Table II (uncorrelated, dashed curve)
compared with data. Solid points have been included in the
correlated fit while both solid and open points have been
included in the uncorrelated fit.

FIG. 4 (color online). Comparison of correlated [1, 2] PA (solid
curve) and 4th-order polynomial (dashed curve) fits, both fitted on
the interval 0<Q2 � 0:53 GeV2. Solid points have been in-
cluded in the fits, open points have not been included.

17We recall that VMD fits cannot be viewed as low-order PA
fits, because there is no a priori relation between PA poles and
QCD resonance parameters; consequently, the first pole should
not be chosen equal to the square of the � mass, as is done in
most VMD fits.
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Q2 	m2
� and with higher statistics will be necessary in

order to attain the high precision determination of aHLO�

needed for a meaningful comparison with experiment.
Work in this direction is in progress.
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