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We study infrared conformality of the twelve-flavor QCD on the lattice. Utilizing the highly improved

staggered quarks (HISQ) type action which is useful to study continuum physics, we analyze the lattice

data of the mass and the decay constant of a pseudoscalar meson and the mass of a vector meson as well at

several values of lattice spacing and fermion mass. Our result is consistent with the conformal hypothesis

for the mass anomalous dimension �m � 0:4–0:5.
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I. INTRODUCTION

There has been a renewed interest in the study of the
QCD with a large number of the massless fermions in
fundamental representation (‘‘large Nf QCD’’) in the

context of walking technicolor having approximate scale
invariance and large anomalous dimension�m ’ 1 [1].1 The
model was proposed to cure the fatal flavor-changing
neutral current problem of the original technicolor and
predicted a technidilaton as a pseudo-Nambu-Goldstone
(NG) boson of the approximate scale invariance,2 based
on the ladder Schwinger-Dyson (SD) equation with non-
running (scale-invariant) gauge coupling. (See, for a review,
Ref. [7].) Such an approximate scale-invariant dynamics
may in fact be realized in the large Nf QCD: The perturba-

tive two-loop beta function predicts a nontrivial infrared
(IR) fixed point �� (0<�� <1) in the range of 9 � Nf �
16 in the asymptotically free SU(3) gauge theory [8,9],
where Nf is the number of massless flavor. The theory has

an intrinsic scale�, analogue of�QCD, which characterizes

scale-symmetry breaking (scale anomaly) in the ultraviolet
(UV) region (�>�) where the coupling runs as an asymp-
totically free theory, �ð�Þ � 1= logð�=�Þ, in the same way
as the ordinary QCD. However, the theory in the IR region
(0<�<�) governed by the IR fixed point respects ap-
proximate scale invariance due to the almost nonrunning
(walking) coupling (IR conformality), �ð�Þ ’ ��. If such
an IR fixed point survives the nonperturbative effects, it
would imply that the theory is in the deconfined and chiral-
symmetric phase, the so-called ‘‘conformal window’’

(though the theory has no conformality in the UV region),
which is expected to exist for a certain range of large Nf.

Actually, the conformal window and phase structure of
the largeNf QCDwas studied by the (improved) ladder SD

equation in a way to simply replace the coupling by the
two-loop running coupling having the IR fixed point men-
tioned above [10,11]: For 9 � Nf � 11, the IR fixed-point

coupling exceeds the critical coupling �� >�cr and hence
triggers the spontaneous chiral symmetry breaking (S�SB)
to give rise to the dynamical generation of the fermion
massmDð� 0Þ, which actually washes out the would-be IR
fixed point, since the fermions, once acquiring mass, are
decoupled from the beta function in the very IR region
below the scale of mD. The conformal window thus is
expected to be 12 � Nf � 16. If it is the case, the walking

technicolor should be realized in a slightly broken phase
very close to the conformal window, Nf � 12, such that

mD � �, with mD being on the electroweak scale order
and � being usually identified with the extended techni-
color scale. Although the IR fixed point actually disappears
at ��mDð� �Þ, the coupling is still almost nonrunning
as a remnant of the would-be IR fixed point for the wide
IR region mD <�<�, which is relevant to the physics
with the critical value �m ’ 1 valid all the way up to the
scale �.
In the conformal phase with the bare fermion mass mf,

the low-energy behavior of the hadron spectra should obey
the same scaling relation (hyperscaling relation) near the

IR fixed point,M�m1=ð1þ��Þ
f , whereM is the hadron mass

and �� is the mass anomalous dimension �m at the IR fixed
point. For small mf, we can expect that �m ’ �� in the

wide region all the way up to the scale � where the IR
conformality is operative. On the other hand, if the chiral
symmetry is spontaneously broken (not in the conformal
phase), the low-energy physics could be described by the
chiral perturbation theory (ChPT).

1For subsequent similar works without notion of scale invari-
ance and anomalous dimension, see Refs. [2,3]. For earlier work
on this line based on purely numerical analysis, see Ref. [4].

2The technidilaton may be identified with 125–126 GeV boson
observed recently at LHC [5]. More detailed discussions can be
seen in Ref. [6] which appeared after submission of this paper.
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As a powerful nonperturbative study of such a problem,
one can use lattice QCD simulations, which can, in prin-
ciple, determine the phase structure of the SU(3) gauge
theory with a various number of fermions through inves-
tigating nonperturbative running of gauge coupling, low-
energy spectra, chiral condensates, and so on. Furthermore,
when the theory is inside the conformal window, one can
also calculate critical exponents such as the mass anoma-
lous dimension. A similar analysis could be approximately
applied to the slightly broken phase (mD � mf � �)

reflecting the remnant of the conformality, which is vital
to the study of the walking technicolor.

In lattice calculation, there exists effects of the finite size
boundary and finite fermion masses, which breaks the
IR conformality explicitly and also deforms the ChPT.
In the case of the conformal phase, it may cause serious
uncertainties, since the IR scale is given by the inverse
lattice size L�1 or input mf but not by the intrinsic scale

�ð� mf; L
�1Þ which behaves as the UV scale where the

IR conformality breaks down, in sharp contrast to the
ordinary QCD where the IR scale is given by the intrinsic
scale �QCDð�mf; L

�1Þ. Actually, the finite mass mf as

well as finite size L can easily distort the hyperscaling
relation, while finite mf can also trigger the dynamical

mass mD of the fermion since the coupling should blow
up due to the decoupling of the fermion in the IR region
�<mf, thus mocking up the ChPT.

On the other hand, even in the chiral-broken phase, there
still can exist an approximate hyperscaling relation, as far
as mD � mf � �, as a remnant of the approximate scale

invariance, while there exist finite size effects and higher-
order contributions which make it difficult to understand
the ChPT particularly in the large Nf QCD. Here, we

should point out that the validity region of the ChPT is
extremely restricted near the conformal window where the
decay constant of�ðf�Þ in the chiral limit is expected to be
very small and, particularly, Nf is large. For the consis-

tency of the ChPT [12], it is required that the expansion
parameter [13–15] for the mass of �ðM�Þ is small,

X ¼ Nf

�
M�

4�f�

�
2
< 1; (1)

which, however, could become easily violated when simu-
lation is made for M� away from chiral limit.

There are many lattice results on the large Nf QCD in

recent years. In addition to the pioneered works [16–18] for
the study of the phase structures, there has been a lot of
progress on the lattice calculations such as the renormal-
ized running coupling, hadron spectra, finite temperature
transitions, etc. [19–30]. In particular, for the Nf ¼ 12 the

system has been widely investigated by the lattice ap-
proach focusing on determining the phase structure: A
recent large-volume analysis for the hadron spectra gives
the result favoring the chiral-broken phase [24], while
other groups with similar analyses using the same data

conclude that this model favors the conformal phase
[31,32]. Thus, it is controversial at present whether this
theory is in the conformal or the chiral-broken phase.
Another concern is the value of �ð� 6=g2Þ in simula-

tions. It is suggested that there are some phase structures
inherent to the lattice model even for a small number of
flavors. Actually, following earlier suggestions [9,11],
there have been some studies about the lattice phase dia-
gram in the large Nf QCD [21,29,33] which, in fact,

indicate a nontrivial lattice phase with a bulk transition at
� other than the critical value of�which is associated with
the IR fixed point we are interested in. Thus, it is important
to survey the � dependence for the investigation of the
low-energy physics.
In this work, we study the phase structure of the twelve-

flavor QCD. Preliminary results were given in Ref. [34].
We utilize the highly improved staggered quarks (HISQ)
type action [35,36] to reduce the discretization error. This
is the first attempt to use the HISQ-type action for the large
Nf QCD. A salient feature of our work is that we perform

simulations of Nf ¼ 12 in comparison with other cases of

Nf ¼ ð0Þ, 4, 8, 16 which we do simultaneously with the

same systematics based on the same HISQ-type action
[34,37]. We make simulations at two values of �ð� 6=g2Þ
(or two lattice spacings), with g being the bare gauge
coupling, to study the lattice-spacing dependence of the
data for the reason we described above. Our results suggest
that two coupling regions are consistent to be in the
asymptotically free region, where we discuss lattice spac-
ing dependence of the physical quantities.
We investigate several bound-state masses such as the

pseudoscalar meson � (corresponding to the exact NG
boson if it is in the broken phase) and vector meson � as
well as the decay constant of �, by varying the fermion
bare mass mf.

Concerning the controversy about the previous lattice
studies of Nf ¼ 12 QCD mentioned before, it should be

pointed out that there is a problem in judging whether this
theory is in the conformal or the chiral-broken phase from
the fit analysis using lattice data of the hadron spectra with
finite fermion bare mass mf, which fully depends on the

fitting forms of the ChPT fit in the chiral-broken phase as
well as on the hyperscaling relation in the conformal
hypothesis. Indeed, we do not know the systematics of
the corrections due to the finiteness of the mass mf and

the volume size L in either case, which could make some
confusion.
In the present work, we introduce an alternative quantity

for the scaling test of the conformal hypothesis with finite
volume in the analyses of the simulations for Nf ¼ 12

QCD. Using this method, it is possible to analyze the
data without any specific function form as a fitting function
to the data. We can discuss possible finite mass and finite
size corrections. We find that the results are consistent with
hyperscaling for �� � 0:4–0:5. This can be compared with
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the value �SD� ’ 0:80, the value calculated through the

ladder Schwinger-Dyson equation �SD� ’ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ��

�cr

q
[1,38] for two-loop �� ’ 0:754 and �cr ¼ �=4.3

Moreover, for concrete understanding of possible correc-
tions, we try to perform several fits with some correction
terms.

We also perform the ChPT analysis of our data. It turns
out that our data are far from satisfying the consistency
condition in Eq. (1).

Our paper is organized as follows. In Sec. II, we explain
our model and simulation setup. The results of the numeri-
cal simulations for the spectra are shown in Sec. III.
Further study of dimensionless ratios composed of these
measurements will be performed for the study of the hyper-
scaling. The consistency of the asymptotically free domain
is also discussed from the � dependence of these observa-
tions. Our main result is given in Sec. IV, where we
introduce a method for the scaling test for conformal
hypothesis and analyze the data using this method. We
deduce the anomalous dimension from our analysis. In
Sec. V, we perform the analysis based on the fit function
which includes the corrections to hyperscaling as sug-
gested by certain models. In Sec. VI, we briefly summarize
the results on the analysis of the S�SB scenario. The
summary and discussion are given in Sec. VII. In
Appendix A, we show the results for other spectra than
those discussed in the text. In Appendix B, we show the
numerical details of the fit results on the finite size hyper-
scaling. In Appendix C, the details of the fit analysis based
on the ChPT are shown.

II. THE BASIS METHODS FOR THE STUDY
OF THE CHIRAL PROPERTIES

A. Continuum theory

Our target is the SU(3) gauge theory with Nf ¼ 12 of

massless Dirac fermions in the fundamental representation.
Investigating the spectral quantities in mesonic channel of
the mass-deformed theory, we try to determine the phase
and the quantities which are characteristic to the associated
phase. We use the technique of lattice gauge theory, whose
continuum counterpart is briefly described here. The con-
tinuum Euclidean action reads,

S ¼
Z

d4x

�
1

2g2
TrF2

�� þ
X12
q¼1

�c qð� 	DþmfÞc q

�
; (2)

where c q denotes the 12-flavor fundamental fermions with

degenerate massmf. The flavor nonsinglet bilinear operators

Pa � �c�5	
ac for the pseudoscalar and ~Va

i � �c�4�i	
ac

for the vector channel are used to interpolate the bound state
with the particular quantum numbers under flavor and
Lorentz symmetries. Here, 	a is a generator of the SU(12)
flavor symmetry group. The ground-state mass, MH where
H ¼ � for the pseudoscalar (O ¼ Pa) or H ¼ � for vector
(O ¼ ~Va

i ) characterizes the asymptotic fall off GO � e�MHt

of the Euclidean correlation function with the zero-
momentum projection

GOðtÞ �
Z

d3 ~xh0jOðt; ~xÞOyð0; ~0Þj0i; (3)

calculated using the action Eq. (2). The pseudoscalar decay
constant is obtained through the matrix element of the pseu-
doscalar operator,

F� ¼ mf

M2
�

h0jPað0Þj�a; ~p ¼ ~0i; (4)

using partially conserved axial current relation.4

If the theory is in the conformal window, MH and F�

obey the conformal hyperscaling

MH / m
1

��þ1

f ; F� / m
1

��þ1

f ; (5)

where �� denotes the mass anomalous dimension at the
infrared fixed point. This relation is the fundamental scal-
ing appearing in the critical phenomena of the statistical
mechanics. In the context of the conformal window in the
large Nf QCD, see, for example, Ref. [40]. On the other

hand, if the theory is in the phase of S�SB, leading mass
dependence will be

M2
� / mf; F� ¼ c0 þ c1mf; (6)

with c0 � 0, and the vector meson mass does not vanish in
the chiral limit.
The spectra obtained in our lattice simulation will be

tested against these two hypothesis in the following
sections.

B. Lattice setup

A staggered fermion formulation is used to define the
lattice version of the Nf ¼ 12 SU(3) gauge theory. A

theory with three degenerate staggered fields with the
mass mf has the degree of freedom of the Nf ¼ 12 Dirac

fermions and matches with the theories with twelve degen-
erate flavors in the continuum limit from the asymptotic
free regime. Note that there is no problem of locality in this
lattice theory, as the rooting trick to tune the number of
flavors to Nf � 4n theory is not used here. At a nonzero

lattice spacing, where one can perform numerical compu-
tations, the 12-fold degeneracy does not hold, in general.
This nondegeneracy would manifest itself as the nondege-
neracy of the would-be degenerate 12
 12� 1 mesons in

3Using three-loop (four-loop) �� in the MS-bar scheme in this
expression, one obtains �SD� ’ 0:33ð0:37Þ. Note that �SD� can be

written as �SD� ’ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�1�loop

�
q

. This is also compared with

perturbative two-loop (�� ’ 0:77), three-loop (�� ’ 0:31), and
four-loop (�� ’ 0:25) calculations [39].

4We use the convention as F� ¼ ffiffiffi
2

p
f�, where f� ¼ 93

[MeV] in the real-life QCD.
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the continuum theory. As the number of the effective light
degrees of freedom is important to the critical phenomena,
such as the IR conformality near the infrared fixed point,
this nondegeneracy needs to be made much smaller than
other characteristic scales of the theory. This can be
achieved by taking the continuum limit or using the lattice
action which suppresses these effects at a given lattice
spacing.

We use a version of the HISQ [35,36] to simulate this
system. This action has the best continuum scaling among
the staggered actions used so far in the real QCD simula-
tions. For practical reasons, the tree-level improved
Symanzik gauge action instead of the one-loop tadpole
improved one is adopted. Exactly the same setting, called
HISQ/tree, but with the rooting for 2þ 1 flavor simulation,
has been used for the QCD thermodynamics and has lead
to an expectedly good reduction of the flavor-symmetry
violation in the pseudoscalar mass splitting [41]. We
actually observe excellent results for the flavor symmetry
in our Nf ¼ 12 simulations, which is briefly shown in

Appendix A.
We use three lattice volumes ðL; TÞ ¼ ð18; 24Þ, (24, 32),

and (30, 40) and two lattice spacings with � ¼ 3:7 and 4.0,
where L and T are spatial and temporal length of the finite
lattice and� ¼ 6=g2 with bare gauge coupling g. Note that
the aspect ratio T=L is kept fixed ¼ 4=3 while the volume
is changed. In this way, we only have one infrared scale
1=L, which is ideal for the finite-size scaling analysis. For
the quark mass mf, we take various values: mf ¼ 0:04,

0.05, 0.080, 0.1, 0.12, 0.16, 0.2, 0.24, where 0.04 and 0.24
are only for � ¼ 3:7 and 4.0, respectively. The gauge
configurations are generated by the hybrid Monte Carlo
algorithm using MILC code ver. 7 with some modifications
to suit our needs. The boundary condition is set periodic for
all except temporal boundary for fermions, which is made
antiperiodic. We accumulate 400–1200 thermalized trajec-
tories for each ensemble. Calculation of the mesonic cor-
relation functions is performed at every 2–10 trajectories,

thus, we have 70–400 samples for each ensemble. The
error analysis is performed with the standard jackknife
method with a suitable bin size 10–100 depending on the
ensemble parameter.
For comparison, we also analyze the Nf ¼ 4 theory

which is in the phase of S�SB, where the same lattice
action is used. Some detail of the Nf ¼ 4 simulation is

given in Ref. [37] and the forthcoming publication.

III. NUMERICAL RESULTS AND
PRIMARYANALYSIS

We measure the two-point correlation functions of the
staggered bilinear pseudoscalar operator which corre-
sponds to the NG mode associated with the exact chiral
symmetry of the staggered fermions. The corresponding
spin-flavor structure is (�5 � 
5), denoted by ‘‘PS’’ in
Ref. [42]. The random wall source is used for the quark
operator for the bilinear, which becomes a noisy estimator
of the point bilinear operator with spatial sum at a given
time slice t0. We combine quark propagators solved with
periodic and antiperiodic boundary conditions in the tem-
poral direction (see, e.g., Ref. [43]). In this well-known
technique, the temporal size is effectively doubled, which
enables us to have sufficient range for the fitting, which
only takes into account the ground state. Denoting such

a � correlator as CPSðtÞ, we use ~CPSð2tÞ ¼ CPSð2tÞ=2þ
CPSð2t� 1Þ=4þ CPSð2tþ 1Þ=4 for the analysis. This lin-
ear combination kills the constant oscillation mode, which
could originate from the single quark line wrapping around
the antiperiodic temporal boundary. The results of effective

mass calculated with ~CPSð2tÞ for L ¼ 30 are shown in
Fig. 1 (see those getting plateau from above). Effective
mass of the same� correlation function with the Coulomb-
gauge-fixed wall source is also plotted (ones getting pla-
teau from below). Note that the plateau starts early enough
to isolate the ground state even if the temporal size had
been T ¼ 24 (our smallest). The � mass is obtained by the
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FIG. 1 (color online). Effective mass of � at � ¼ 3:7ðLeftÞ and � ¼ 4ðRightÞ on ðL; TÞ ¼ ð30; 40Þ with ~CPS using two types of quark
sources. See the text.
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fit of the two-point correlators of ~CPS from a random source
with double period by a fit function

~C PSð2tÞ ¼ Cðe�M�2t þ e�M�ð2T�2tÞÞ; (7)

where M� is a mass of the � and the fit range is taken
½tmin; T�. Similarly we can obtain F� from this operator.
The values of tmin are taken as tmin ¼ 16–22 and 18–22 at
� ¼ 3:7 and 4, respectively.

We measure M� from the staggered vector meson op-

erator (�i�4 � 
i
4), denoted by ‘‘PV’’ in Ref. [42]. The
asymptotic form of the PV correlator may be written as

GPVðtÞ ¼ C1ðe�M�t þ e�M�ð2T�tÞÞ
þ C2ð�1Þtðe�Ma1

t þ e�Ma1
ð2T�tÞÞ; (8)

where Ma1 corresponds to the mass of the axial vector

meson. Since there exists a constant mode due to the

wrapping-around effect, we use ~GPVð2tÞ ¼ GPVð2tÞ=2þ
GPVð2t� 1Þ=4þGPVð2tþ 1Þ=4. Again, the results of ef-

fective mass calculated with ~GPV for L ¼ 30 are shown in
Fig. 2. The fitting range for the PV correlator is ½tmin; T�
with tmin ¼ 10–12, and 12–14 at � ¼ 3:7 and 4, respec-
tively, which is enough to isolate the ground state, i.e., �.

We obtainM� by the fit of the two-point correlators of ~GPV

by a simple fit function:

~G PVð2tÞ ¼ Cðe�M�2t þ e�M�ð2T�2tÞÞ: (9)

All the raw results of Nf ¼ 12 theory which are used in

the next sections are shown in Tables I, II, III, IV, V, and VI.
In these tables, we also show the number of the thermalized
trajectory for each parameter, by which we measure the
masses and the decay constant.

Besides these main channels, we study the masses of
mesons made with local operators, a non-NG channel
ð�5�4 � 
5
4Þ denoted by ‘‘SC,’’ and a vector meson
ð�i � 
iÞ denoted by ‘‘VT’’ in Ref. [42]. They are com-
pared against PS and PV in Appendix A, which indicates
the flavor-breaking effect of the HISQ is very small.

For a primary analysis, dimensionless ratios composed
of these measurements will be plotted against the � mass.
In the rest of this section, we write lattice spacing a
explicitly and consider M� as dimensionful quantity. As
a reference, we have calculated the Nf ¼ 4 case as plotted

in Fig. 3, which resembles a familiar QCD-type behavior.
The upward tendency of F�=M� toward the chiral limit is
consistent with the S�SB [Eq. (6)].
The left panel of Fig. 4 plots the same quantity for Nf ¼

12 at the largest two volumes and two bare gauge couplings
� ¼ 3:7 and 4. If we look at the results for � ¼ 3:7 (filled
symbol), F�=M� tends to be flat for smaller � masses,
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FIG. 2 (color online). Effective mass of the PV correlator ( ~GPV) at � ¼ 3:7ðLeftÞ and � ¼ 4ðRightÞ on ðL; TÞ ¼ ð30; 40Þ.

TABLE I. The results of the spectra on V ¼ 183 
 24 at � ¼
3:7. Ntrj means the total number of thermalized trajectories.

mf Ntrj M� M� F�

0.04 1000 0.3387(62) 0.4614(85) 0.0633(24)

0.05 1000 0.3830(38) 0.4899(71) 0.0750(22)

0.06 1200 0.4100(51) 0.5144(49) 0.0814(12)

0.08 1200 0.4922(17) 0.6139(33) 0.1027(11)

0.1 700 0.5717(17) 0.7084(33) 0.1185(6)

0.12 700 0.6485(16) 0.7905(38) 0.1333(11)

0.16 700 0.7878(13) 0.9546(20) 0.1590(9)

0.2 700 0.9209(10) 1.1041(32) 0.1838(8)

TABLE II. The results of the spectra on V¼183
24 at � ¼ 4.

mf Ntrj M� M� F�

0.05 1000 0.3993(67) 0.4529(88) 0.0573(9)

0.06 1200 0.4101(41) 0.4687(115) 0.0674(11)

0.08 1200 0.4551(22) 0.5438(44) 0.0878(10)

0.1 1200 0.5219(43) 0.6133(89) 0.1009(19)

0.12 1200 0.5960(18) 0.6955(40) 0.1149(10)

0.16 1000 0.7309(21) 0.8564(62) 0.1378(11)

0.2 700 0.8567(11) 0.9903(38) 0.1586(12)

0.24 700 0.9760(17) 1.1225(29) 0.1785(14)

LATTICE STUDY OF CONFORMALITY IN TWELVE- . . . PHYSICAL REVIEW D 86, 054506 (2012)

054506-5



which shows clear contrast toNf ¼ 4 case. The behavior is

consistent with the hyperscaling Eq. (5). The pseudoscalar
mass dependence of the ratio at larger mass can be realized
by the correction to the hyperscaling which may be differ-
ent from one quantity to another. For� ¼ 4 (open symbol),
there is no flat range without volume dependence.
Similar observation can be made for the other ratio

M�=M� shown in the right panel of Fig. 4. Here, the

flattening is observed for � ¼ 3:7 again, but the range is
wider than F�=M�. In this case, � ¼ 4 shows the flat-
tening, also. The difference of the constant is made pos-
sible due to a discretization effect.
In the following, further detailed study using these data

is performed. From the observation here, we note that the
region where hyperscaling is realized could be limited to
the smaller masses. Further, the scaling range of the �
decay constant may be narrower at � ¼ 3:7, and there may
be no scaling range for the decay constant at � ¼ 4.
Existence of the scaling for F� at � ¼ 3:7 and absence

at � ¼ 4 at the same aM� can be made possible if the M�

in the physical unit is larger (thus, the correction is no
longer negligible) for � ¼ 4, i.e., the lattice spacing de-
creases as � increases. In that case, the physical volume is
smaller for � ¼ 4, which gives a reason for the volume
effect observed only for � ¼ 4.
To see if the inequality of the lattice spacing

að� ¼ 3:7Þ> að� ¼ 4Þ holds, a matching between the
two data sets of M�=M� vs aM� is performed. We will

not use F�=M� for the matching due to the existence/
nonexistence of the volume effect for � ¼ 3:7=4. If an
aM� point which describes the same physics is found for
each � separately, it can be regarded that the ratio of the
lattice spacing asM� in physical units is the same for them.
We exploit the mass dependence at the tail for this matching.
To do that, first, the matching of the overall factor absorbing
the discretization error in the vertical direction needs to be
performed, which can be done by introducing a factor R to

TABLE III. The results of the spectra on V ¼ 243 
 32 at
� ¼ 3:7.

mf Ntrj M� M� F�

0.04 600 0.3054(31) 0.3569(86) 0.0621(15)

0.05 600 0.3549(16) 0.4377(44) 0.0750(7)

0.06 1000 0.3986(22) 0.4932(54) 0.0835(7)

0.08 800 0.4880(8) 0.5991(25) 0.1014(4)

0.1 800 0.5683(17) 0.6971(32) 0.1175(6)

0.12 700 0.6459(5) 0.7891(24) 0.1325(4)

0.16 700 0.7879(6) 0.9529(22) 0.1591(8)

0.2 700 0.9193(6) 1.1031(21) 0.1818(8)

TABLE IV. The results of the spectra on V¼243
32 at
� ¼ 4.

mf Ntrj M� M� F�

0.05 1000 0.3290(25) 0.3819(81) 0.0615(7)

0.06 1000 0.3677(13) 0.4353(43) 0.0714(7)

0.08 1000 0.4459(11) 0.5257(31) 0.0875(9)

0.1 1000 0.5210(7) 0.6165(27) 0.1014(4)

0.12 1000 0.5946(11) 0.6999(21) 0.1147(5)

0.16 700 0.7308(9) 0.8519(27) 0.1378(5)

0.2 700 0.8557(5) 0.9893(29) 0.1579(4)

TABLE V. The results of the spectra on V ¼ 303 
 40 at
� ¼ 3:7.

mf Ntrj M� M� F�

0.04 800 0.3028(14) 0.3713(39) 0.0637(6)

0.05 700 0.3504(11) 0.4302(20) 0.0741(5)

0.06 600 0.3990(15) 0.4864(28) 0.0835(5)

0.08 500 0.4869(8) 0.5949(15) 0.1017(5)

0.1 500 0.5670(7) 0.6925(16) 0.1167(3)

0.12 500 0.6460(7) 0.7866(18) 0.1328(4)

0.16 400 0.7877(6) 0.9542(15) 0.1586(5)

0.2 400 0.9199(8) 1.1068(30) 0.1828(8)

TABLE VI. The results of the spectra on V ¼ 303 
 40 at
� ¼ 4.

mf Ntrj M� M� F�

0.05 600 0.3167(27) 0.3671(56) 0.0634(8)

0.06 700 0.3648(14) 0.4357(17) 0.0732(6)

0.08 600 0.4499(8) 0.5301(13) 0.0901(5)

0.1 600 0.5243(7) 0.6150(16) 0.1027(6)

0.12 600 0.5966(10) 0.7027(29) 0.1149(7)

0.16 500 0.7308(8) 0.8508(21) 0.1380(7)

0.2 500 0.8569(6) 0.9941(14) 0.1586(6)

0 0.1 0.2 0.3 0.4 0.5
a Mπ

0.3

0.35

0.4

0.45

0.5

F
π/Μ

π

16^3 x 24

FIG. 3 (color online). Dimensionless ratio F�=M� as a func-
tion of aM� for Nf ¼ 4 at � ¼ 3:7. Due to the S�SB, the ratio

diverges in the chiral limit.
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multiply M�=M� for � ¼ 4 and to tune it to match the

plateau to that of � ¼ 3:7. Then, the remaining difference
which may appear at the tail is absorbed by the horizontal
matching factor r as r 	M�. Figure 5 is the same as Fig. 4,
after a crude matching is done with ðR; rÞ ¼ ð1:035; 1:1Þ.
In this particular definition of the lattice spacing and
with a crude analysis, the ratio of the lattice spacing is að�¼
3:7Þ=ð�¼4Þ�1:1, and thus að� ¼ 3:7Þ> að� ¼ 4Þ holds.
The fact that the lattice spacing decreases as � ¼ 6=g2

increases is consistent with being in the asymptotically
free domain, even if there is an infrared fixed point in the
beta function.

IV. FINITE-SIZE HYPERSCALING

A. Preliminary

In the conformal window with finite masses and volume,
the renormalization group analysis tells us the scaling

behavior for low-energy spectra which should obey the
universal scaling relations5 as


p � LMp ¼ fpðxÞ; (10)

where p distinguishes the bound state, p ¼ � or � in this
study, or


F � LF� ¼ fFðxÞ: (11)

The product of bound-state mass or decay constant and
linear system size falls into a function of a single scaling
variable6

x ¼ L 	m
1

1þ��
f ; (12)

where �� is the mass anomalous dimension at the IR fixed
point. We call these scaling relations ‘‘finite-size hyper-
scaling’’ (FSHS). The forms of the scaling functions fpðxÞ
are unknown in general. However, as the hyperscaling
relation Eq. (5) must be reproduced in large volumes, the
asymptotic form should be fðxÞ � x at large x.
Now we examine whether our measurements of bound

state mass and decay constant at different mf and L obey

FSHS. First, to visualize how the scaling works, we follow
the analysis given, for example, in the model of the SU(3)
with sextet fermions [47] and the SU(2) with adjoint

fermions [48]. Panels in Fig. 6 show 
� as functions of x ¼
L 	m1=ð1þ�Þ

f for several values of �. It is observed that the

data points align at around � ¼ 0:4, while they become
scattered for � away from that value. This indicates a
possible existence of FSHS with �� 0:4. A similar align-
ment is observed for 
F in Fig. 7 as well. In this case, one
finds the optimal scaling at around �� 0:5.
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0.22
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π

L=24
L=30

0 0.5 1 1.5

aMπ

1.1

1.15

1.2

1.25

1.3

M
ρ/M

π

L=24
L=30

FIG. 4 (color online). Dimensionless ratios F�=M� andM�=M� as functions of aM� for Nf ¼ 12 at � ¼ 3:7 (filled symbol) and 4.0
(open symbol) for the two largest volumes.
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raMπ

1.1

1.15

1.2

1.25

1.3

R
M
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π

L=24
L=30

FIG. 5 (color online). RM�=M� is plotted against raM� after a
crude matching with ðR; rÞ ¼ ð1; 1Þ for � ¼ 3:7 and ð1:035; 1:1Þ
for � ¼ 4. Legends are the same as Fig. 4.

5For reviews, see, e.g., Refs. [44–46].
6We adopt this definition, which corresponds to x1þ�� of

Ref. [45], to make its asymptotic form simpler.
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These results are in contrast to our results for theNf ¼ 4

system with the same lattice action with � ¼ 3:7, in which
the chiral symmetry is spontaneously broken. It is found in
Fig. 8 that the alignment is observed at � ¼ 1, which is
interpreted as a realization of Eq. (6). The� decay constant
does not exhibit alignment at any value of � allowed for the
unitarity requirement 0 � � � 2 [49–51] (Fig. 9).

B. Quantitative analysis

To quantify the ‘‘alignment,’’ we introduce an evaluation
function Pð�Þ for an observable p as follows. Suppose

j is a data point of the measured observable p at

xj ¼ Lj 	m1=ð1þ�Þ
j and �
j is the error of 
j. j labels

distinction of parameters L and mf. Let K be a subset of

data points fðxk; 
kÞg from which we construct a function

fðKÞðxÞ which represents the subset of data. Then, the
evaluation function is defined as

Pð�Þ ¼ 1

N

X
L

X
j2KL

j
j � fðKLÞðxjÞj2
j�
jj2 ; (13)

where L runs through all the lattice sizes we have, the sum
over j is taken for a set of data points which do not belong
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FIG. 6 (color online). 
� is plotted as a function of the scaling variable x for � ¼ 0:1, 0.4, and 0.7 from left to right for Nf ¼ 12 at
� ¼ 3:7. An alignment is seen for �� 0:4.

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

ξ F

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.2

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6
ξ F

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.5

0 2 4 6 8 10 12
x

0

1

2

3

4

5

6

ξ F

18^3 x 24
24^3 x 32
30^3 x 40

γ=0.8

FIG. 7 (color online). 
F as a function of x for � ¼ 0:2, 0.5, 0.8 from left to right for Nf ¼ 12 at � ¼ 3:7. An alignment is seen for
�� 0:5.
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FIG. 8 (color online). 
� is plotted as a function of the scaling variable x for � ¼ 0:5, 1.0, and 1.5 from left to right for Nf ¼ 4 at
� ¼ 3:7, where the S�SB occurs. An alignment found at � ¼ 1 is consistent with Eq. (6).
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toKLwhich includes all the data obtained on the latticewith
sizeL.N denotes the total number of summation.Here, we

choose for the function fðKLÞ a linear interpolation of the
data points of the fixed lattice size L for simplicity, which
should be a good approximation of 
 for large x.

This evaluation function takes a smaller value when the

data points are more closely collapsed to the line fðKLÞ and
thus provides a measure of the alignment. Pð�Þ varies as
the choice of parameter � and should show a minimum at a
certain value of � when the optimal alignment of data is
achieved. We take it as the optimal value of �.

We then estimate the uncertainty of the optimal � by
properly taking account of the statistical fluctuation of 
i

as well as its effect to the line fðKLÞ. For this purpose, we
employ the parametric bootstrap method, in which the data
point is simulated by a random sample generated by
Gaussian distribution with the mean 
j and the standard
deviation �
j. The distribution of � is thus obtained for a
large number of these samples, from which the variance of
� is estimated. The systematic error associated with the
interpolation will be estimated by choosing different func-
tional form with linear or quadratic splines as will be
discussed subsequently.

Our method for lattice study is similar to those used in
the literature [32,47,52], based on the study of the critical
phenomena in a finite-volume system [53].7 We incorpo-
rated the uncertainty of data points as the weights in the
evaluation function so that it is normalized to one when the
distance between the data points and the interpolated line is
equal to the standard deviation of the data point. The
unweighted version of the evaluation function has also
been examined in our analysis, which resulted in values
consistent with the optimal �.

In the evaluation function Eq. (13), the data points need

to be taken for a range of x ¼ L 	m1=ð1þ�Þ
f in which there is

an overlap of available data for all volumes, L ¼ 18, 24,
and 30. The maximum value of mf is chosen so that

M� & 1 is satisfied, and the minimum is chosen so that
the finite-volume effect on the mass of the bound state is
not too large. Therefore, for all the values of � to be
examined, we consider the range of mf as follows: The

minimum xmin should be such that mf ¼ 0:04 for the

largest volume L ¼ 30 at � ¼ 3:7, or mf¼0:05 at �¼4,

and the maximum xmax should be such that mf ¼ 0:2 for

the smallest volume L ¼ 18 at � ¼ 3:7, or mf ¼ 0:24 at

� ¼ 4. Around the optimal value of �, we have 12 data
points for � ¼ 3:7 and 11 for � ¼ 4 within the range
½xmin; xmax�. Note, however, we may need to incorporate
some neighboring data outside this range to obtain the

interpolated value fðKÞðxÞ by the spline functions.
The line marked by ‘‘all’’ in Fig. 10 plots the values of

the evaluation function using all data in xmin � x � xmax

for � ¼ 3:7. A clear minimum is observed, at which the
optimal alignment of the data is achieved. We repeat this
analysis for each observable and at each value of �. The
results are tabulated in the column labeled by ‘‘all’’ of
Table VII. Figures 11 and 12 plot the values of 
 for each
case as a function of x with the optimal �.
Let us now recall that from the naive analysis of the ratio

in Sec. III, the scaling region may be restricted to a range of
smaller masses. To capture such an effect, we need to study
systematically how the range of fermion mass affects the
evaluation function and the resulting optimal �. In this
regard, we define a window of the parameters x and L to
which the data are restricted in evaluating the evaluation
function and see if the results change against the choice of
the window.
We consider a window in the x direction which has a

span �x=2, where �x ¼ xmax � xmin and slide it with an
interval�x=4. There are three choices of windows denoted
by range 1, 2, and 3, which are ½xmin; xmin þ�x=2�,
½xmin þ�x=4; xmax � �x=4�, and ½xmax � �x=2; xmax�, re-
spectively. In these windows, the data are taken for all three
volumes. For the L direction, we have three windows: The
first window consists of data for L ¼ 18 and 24, the second
window for L ¼ 18 and 30, and the third window for
L ¼ 24 and 30. In these windows in L directions, the whole
x range ½xmin; xmax� is considered.
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FIG. 9 (color online). 
F as a function of x for � ¼ 0, 1, and 2 from left to right for Nf ¼ 4 at � ¼ 3:7. No alignment is seen in
this case.

7After submitting this paper, we were informed that a similar
method had been considered in the literature [54,55]. We thank
David Schaich for the information.
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The evaluation function Pð�Þ of the � mass for each
window is also plotted in Fig. 10. It is noted that the value
of Pð�Þ is Oð1Þ at the minimum. The optimal values
of � which minimize Pð�Þ are summarized in Table VII,

where the numerals in the parentheses include the statisti-
cal and systematic errors. The systematic error due to the
ambiguity of the interpolation is estimated by the differ-
ence of the optimal �’s obtained with linear and quadratic

 γ

1

10

100

1000

10000

P

all
range 1
range 2
range 3

0.3 0.4 0.5 0.6 0.7 0.8 0.3 0.4 0.5 0.6 0.7 0.8
 γ

1

10

100

1000

10000

P

L=18, 24
L=18, 30
L=24, 30

FIG. 10 (color online). (Left): The � dependence of the evaluation function P for M� at � ¼ 3:7 is shown. The vertical axis shows
the central values of P as a function of �. Each curve shows the results of Pð�Þ with the corresponding range. (Right): The results of
Pð�Þ using data sets with two different volumes as L ¼ 18, 24, L ¼ 18, 30, and L ¼ 24, 30, respectively, in which the whole x range is
considered.
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f where the values of � are 0.408, 0.560, and 0.479 for M�, F�,

and M�, respectively.

YASUMICHI AOKI et al. PHYSICAL REVIEW D 86, 054506 (2012)

054506-10



spline interpolations. The comparison of these Pð�Þ is
shown in Fig. 13. The minima for the quadratic spline
interpolation appear approximately at the same place as
those for the linear one. The systematic error is thus small,
and it is found to be always smaller than the statistical error
in the analysis with the whole data points.

Let us first look at the case of M� at � ¼ 3:7 in
Table VII. We do not observe the window dependence
beyond the error bars, and thus 
� is well-described by a
function of a single variable x. If there is IR conformality,
the nonuniversal correction to the hyperscaling is negli-
gible at this precision. Then, from the fact that in Sec. III,
the scaling is observed in the small mass range for the ratio
M�=M� at � ¼ 3:7, it is suggested that there should be

certain window dependence of � from M�. As �ðM�Þ ¼
0:434ð4Þ and �ðF�Þ ¼ 0:459ð8Þ at � ¼ 3:7, if one restricts
the mass range forM� to the smaller side, then the value of

�ðM�Þ should get closer to that of �ðM�Þ. This is actually
the case, as is observed from Table VII in which �ðM�Þ
reduces for smaller mass range (toward range 1) and larger
volume (toward L ¼ 24, 30).

However, such trends are not observed for the M� at

� ¼ 4, where one expects the similar x and L range

dependence. As the number of samples have gotten re-
duced for the fixed range analysis, a statistical instability
might have spoiled the result.
The similar trend for the x-range dependence as for M�

at � ¼ 3:7 is observed for F� at � ¼ 3:7, too. The direc-
tion of the movement is correct, but it does not get close
enough to the value of �ðM�Þ. Moreover, the L range
dependence is too weak to conclude that it will get close
to �ðM�Þ. These results may be understood from the fact
that in Sec. III, the scaling is observed only in the very
small mass range. For F� at � ¼ 4, the L dependence
appears to be opposite to the expectation, which can be
understood as the result of unobserved scaling in the
analysis in Sec. III.
As we cannot completely resolve these trends in the

mass dependence, we regard these variations of � with
respect to the change of the window as the systematic error
on the central value of � obtained with ‘‘all’’ data. We put
the asymmetric error for both x and L directions separately
estimated by the maximum variations from the central
value. The results read

� ¼

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0:434ð4Þðþ5
�5Þðþ3

�10Þ
0:516ð12Þðþ10

�11Þðþ28
�35Þ

0:459ð8Þðþ33
�45Þðþ15

�48Þ
0:414ð6Þðþ34

�17Þðþ7�3Þ
0:580ð15Þðþ65

�37Þðþ26
�29Þ

0:460ð8Þðþ4
�3Þðþ0

�5Þ

for M�

for F�

for M�

9>>>=
>>>;
for � ¼ 3:7;

for M�

for F�

for M�;

9>>>=
>>>;
for � ¼ 4;

(14)

where the numerals in parentheses are the combined errors
of the statistics and the interpolation, the systematic uncer-
tainties due to the dependence on the volume, and the
systematic errors due to the dependence on the x range,
respectively. The results with all the errors added in quad-
rature are summarized in Fig. 14. All the results are con-
sistent with each other within 2	 level, except for � from
F� at � ¼ 4 for which the scaling region was suspected to
be outside of the parameter range we have examined. (See
Sec. III.)
From these analyses, we conclude that our data for

theNf¼12 theory by the lattice simulations are reasonably

TABLE VII. Summary of the optimal values of �. See the text for details.

x L

quantity � all range 1 range 2 range 3 (18,24) (18,30) (24,30)

M� 3.7 0.434(4) 0.425(9) 0.436(6) 0.437(4) 0.438(6) 0.433(4) 0.429(8)

M� 4 0.414(5) 0.420(7) 0.418(6) 0.411(5) 0.397(7) 0.414(4) 0.447(9)

F� 3.7 0.516(12) 0.481(19) 0.512(19) 0.544(14) 0.526(18) 0.514(11) 0.505(24)

F� 4 0.580(15) 0.552(21) 0.602(20) 0.605(19) 0.544(27) 0.577(14) 0.645(32)

M� 3.7 0.459(8) 0.411(17) 0.461(10) 0.473(8) 0.491(15) 0.457(8) 0.414(18)

M� 4 0.460(9) 0.458(13) 0.455(14) 0.460(8) 0.457(16) 0.459(8) 0.463(15)
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FIG. 13 (color online). The � dependence of the evaluation
function P for M�, F�, and M� at � ¼ 3:7 is plotted. The

vertical axis shows the values of P at each of � where the three
volumes and full range of x for the data are considered. The solid
and dashed curves show the results of Pð�Þ with the interpolation
functions fðxÞ by the linear and quadratic functions, respectively.

LATTICE STUDY OF CONFORMALITY IN TWELVE- . . . PHYSICAL REVIEW D 86, 054506 (2012)

054506-11



consistent with the FSHS and, thus, with the IR confor-
mality, if we exclude F� at � ¼ 4 from the analysis. The
resulting mass anomalous dimensions from different quan-
tities and two lattice spacings are also reasonably consis-
tent. We quote 0:4 & �� & 0:5 for the value of the mass
anomalous dimension at the infrared fixed point.

V. NONUNIVERSAL CORRECTIONS
TO FINITE-SIZE HYPERSCALING

We found in the previous sections that our data is con-
sistent with the FSHS once the systematic effect due to the
limited parameter range is taken into account. The analyses
also suggested that the nonuniversal correction to the
hyperscaling could be important. In this section, we try
to test two plausible models for the correction. To do this
test, we need to fix the term for the universal scaling in the
following. Therefore, the approach loses generality that the

analysis in the previous section had. Thus, the result here is
not going to be the main result in this paper, but it still
provides useful information.
For this purpose, we use the following formulae for

the fit:


 ¼ c0 þ c1Lm
1=ð1þ�Þ
f 	 	 	 fit A; (15)


 ¼ c0 þ c1Lm
1=ð1þ�Þ
f þ c2Lm

�
f 	 	 	 fit B: (16)

The fit A uses a naive fit form based on the hyperscaling
relation which is described by the function form of fðxÞ ¼
c0 þ c1x with x ¼ Lm1=ð1þ�Þ

f . This formula is motivated

from the results obtained in Fig. 11, since the clear linearity
of the data for large x can be found near the optimal value
of �. The second formula for fit B includes a mass correc-
tion term.
As discussed in the previous sections, there may exist

some corrections beyond the hyperscaling relations in the
region we simulated, so we try to include such contribu-
tions. In general, finite-volume corrections exist, and the
form is given à la Fisher [56,57]. We do not take into
account these effects, however, as the analysis in the
previous sections indicates the mass correction is more
important for the parameter space we simulated.
Among various possible choices, we take � ¼

ð3� 2�Þ=ð1þ �Þ, which is inspired by the analytic
expression of the solution of the SD equation given in
Ref. [58]. We also consider � ¼ 2 case, which is regarded
as the small mass correction caused by the explicit chiral-
symmetry-breaking effects or due to the lattice discretiza-
tion artifact. It is noted that, in both cases, the fit function

cannot be described by a single scaling variable x ¼
Lm1=ð1þ�Þ

f . We denote these fit functions with � ¼
ð3� 2�Þ=ð1þ �Þ and � ¼ 2 as fit B1 and fit B2, respec-
tively. All the details of the fit results are shown in
Appendix B, which also includes other fits, for example,
the case of � ¼ 1 [31]. We only give a digest of the results.
We perform simultaneous fits using M�, M�, and F�,

with common � for each fit ansatz: fit A, B1, B2, and for
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FIG. 14 (color online). The results of the values of � for three
observables at two � are summarized, where the statistical and
systematic errors are added in quadrature. All the results are
consistent with each other within 2	 level, except for the � from
F� at � ¼ 4, where the scaling region is suspected to be outside
of the parameter range we have. See the text.

0 0.05 0.1 0.15 0.2 0.25
m

f

0

10

20

30

40

ξ π

L=18
L=24
L=30

0 0.05 0.1 0.15 0.2 0.25
m

f

0

2

4

6

8

ξ F

L=18
L=24
L=30

0 0.05 0.1 0.15 0.2 0.25
m

f

0

10

20

30

40

ξ ρ

L=18
L=24
L=30

FIG. 15 (color online). Spectra 
�ðleftÞ, 
FðcenterÞ, and 
�ðrightÞ as a function of mf at � ¼ 3:7. For simplicity, we only show two
fit results of fit A and fit B2, by the solid and dotted curves, respectively. The data with empty symbols are not used in the fit.
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each � separately. In these fit analyses, we assume for
simplicity that possible correlation between the data of 
�,

F and 
� is absent. Note that, here, we include the F� data

at � ¼ 4, which were excluded in the analysis in the
previous section due to the absence of manifest hyper-
scaling (Fig. 4). This is because the mass correction in
the hyperscaling analysis, which is included here but not
there, could amend the possible disturbance to the hyper-
scaling from the mass correction. To avoid the large finite-
size effects, the data used in the fits are restricted to those
which satisfy 
� ¼ LM�  9 determined by trial and
error. Figures 15 and 16 show the fit B2 as examples.
Table VIII shows the resulting fitting parameters.

The �2=dof is large * 5 for the fit A, while it is
reasonable (�2=dof � 2) for the fit B1 and B2. This
implies that the correction is necessary, and both types
of mass correction work. Let us look into the fit B2
at � ¼ 3:7, for example. The ratio of the terms propor-
tional to c1 (leading scaling) and c2 (mass correction) at the
heaviest point (mf ¼ 0:2) is �0:008ð4Þ (M�), �0:034ð6Þ
(M�) or �0:067ð7Þ (F�). The small correction for M� is

consistent with the fact that the value of �ðM�Þ was stable
against the x and L range used in the analysis in Sec. IV.
Furthermore, the order of the size of the correction forM�,
M�, and F� is consistent with what we observed in

Secs. III and IV.

We obtain consistent � for all the fit B1 and B2. The
resulting values are in the range �� 0:41–0:46, which is
consistent with the main result presented in Sec. IV: 0:4 &
�� & 0:5.

VI. CHIRAL PERTURBATION THEORYANALYSIS

A counter scenario to the conformal hyperscaling is the
S�SB. Here, we give a digest of the analysis, the detail of
which is described in Appendix C.
As the current data set of � ¼ 3:7 simulation has physi-

cally lighter quark mass, the property of the chiral limit is
captured better than those at � ¼ 4. Therefore, we focus
on the former. First, we take the infinite volume limit of
M� and F� using a formula inspired by ChPTor finite-size
effect of the multiparticle state à la Lüscher. Then, the �
decay constant and mass squared are fit with polynomial
functions in mf. Logarithmic mass dependence of these

quantities would emerge at the chiral regime and play an
important role there. As it turns out, however, our mass
range is far from it.
Several fitting ranges are examined for M2

� with
second order polynomial in mf. With fixed minimum

mmin
f ¼ 0:04, the maximum is changed as mmax

f ¼ 0:12,

0.1, and 0.08. Only the mmax
f ¼ 0:08 fit is consistent

with the vanishing intercept, while others end up with
having negative intercept. A fit with the intercept con-
strained to be zero gives good �2=dof ¼ 0:88 for mmax

f ¼
0:08, though including heavier mass gives unacceptably
large �2=dof>8.
Similar exercises are done for the F�, where the

intercept is always positive, and for mmax
f ¼ 0:1 and

0.08, reasonable �2=dof yields �2=dof ¼ 0:37 and 0.29,
respectively.
The � mass squared and decay constant behave in

the way reasonably consistent with the second-order poly-
nomial, when the mass range is restricted to smaller
side 0:04 � mf � 0:08 where we have four mass points.

The � mass vanishes in the chiral limit, and the decay
constant is nonzero. However, we are not able to conclude
these results are consistent with S�SB. The problem
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FIG. 16 (color online). Spectra 
�ðleftÞ, 
FðcenterÞ, and 
�ðrightÞ as a function of mf at � ¼ 4. For simplicity, we only show two fit
results of fit A and fit B2, by the solid and dotted curves, respectively. The data with empty symbols are not used in the fit.

TABLE VIII. The fit results of finite-size conformal hypothe-
sis at � ¼ 3:7ðleftÞ and � ¼ 4ðrightÞ. The values in the brackets
mean the input in the fit.

� � �2=dof dof

fit A 0.449(3) 	 	 	 4.52 47

fit B1 0.411(9) ð3�2�Þ
ð1þ�Þ 1.23 44

fit B2 0.423(7) [2] 1.15 44

� � �2=dof dof

fit A 0.430(3) 	 	 	 6.78 44

fit B1 0.461(18) ð3�2�Þ
ð1þ�Þ 1.86 41

fit B2 0.453(11) [2] 2.00 41
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can be appreciated if the expansion parameter in ChPT
is evaluated. Using the value of F� in the chiral limit
F� ¼ 0:0190ð52Þ, the natural expansion parameter
[13–15] of ChPT in the large Nf theory as given in

Eq. (1) is

X ¼ Nf

�
M�

4�F�=
ffiffiffi
2

p
�
2 ’ 39; (17)

which has been evaluated at the lightest point mf ¼ 0:04

on L ¼ 30 lattice, where M� ¼ 0:3028ð14Þ. For the ex-
pansion to be consistent, it should satisfyX < 1. With this
large expansion parameter at the smallest mass in the
deposit, we are not in the position to judge if the decay
constant is really nonzero at the chiral limit from the
extrapolation performed here.

VII. SUMMARYAND DISCUSSION

We have studied the SU(3) gauge theory with 12-flavor
fermions in the fundamental representation of the gauge
group. We tried to determine if the massless theory under-
goes S�SB or exhibits IR conformality due to the existence
of an IR fixed point of the beta function, through the
fermion mass mf dependence of the spectrum. A type of

HISQ action was adopted to maximally suppress the stag-
gered flavor-symmetry violation as well as other discreti-
zation errors. Three volumes with fixed aspect ratio and
various mf were examined. Simulations were repeated for

two values of the bare gauge coupling, corresponding to
two different lattice spacings. We observed that the lattice
spacing became finer when the bare gauge coupling was
made small, which is expected when the simulation points
are in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and
vector channel and the pseudoscalar decay constant re-
vealed a range of small mf where the ratios of composite

masses and decay constant, F�=M� and M�=M�, are

independent ofmf. This is consistent with the hyperscaling

characteristic to the IR conformality and was observed for
all the quantities except for the one which involves the
decay constant at a finer lattice.

Further detailed study adopting a finite-size scaling have
shown that our data are reasonably consistent with the
FSHS, where the product of linear system size and the
composite masses (or decay constant) fall into a function of
a universal scaling variable composed of the mf, linear

system size L, and mass anomalous dimension �� at the IR
fixed point at low energy. The resulting ��’s obtained from
the introduced evaluation function, Pð�Þ, of the scaling
were reasonably consistent with each other for three ob-
servables and two lattice spacings when only the decay
constant at finer lattice was excluded as before. We con-
clude the mass anomalous dimension is in the range 0:4 &
�� & 0:5 at IR fixed point if it exists.

Existence of the nonuniversal correction indicated by
the FSHS motivated a study of global fit with models
assuming some corrections. By adding a correction term
to the lowest-order universal term, the global fit works well
with a reasonable �2, though possible correlation was
assumed to be absent. Among the tested, the one with the
power of the fermion mass fixed à la ladder SD study [58]
and another with OððmaÞ2Þ discretization error resulted in
�� consistent with FSHS.
In the test of our data against the S�SB scenario, the mf

dependence of the � mass squared and decay constant
appeared to be consistent with the tree-level mass depen-
dence to second order from chiral perturbation theory, if
the data are restricted to sufficiently small mf. The decay

constant remains nonzero at the chiral limit with this
analysis. It turns out, however, the natural expansion pa-
rameter of ChPT estimated using the value of the decay
constant at the chiral limit extracted in this analysis is
very large X even at the smallest � mass simulated.
Therefore, we cannot judge if the decay constant is really
nonzero at the chiral limit from the extrapolation per-
formed in this study.
A possibility of S�SB in Nf ¼ 12 is not excluded yet.

Further efforts would be required to arrive at a decisive
conclusion. One possible direction is to use the brute force
(larger volume and lighter mass) calculations, which seems
very hard. Another may be to gather more information
about the spectrum, for example, the mass of glueball
and flavor singlet composite state, which could have dis-
tinctive signature across the phase boundary.
However, we have confirmed that the general property of

the spectrum in Nf ¼ 12 theory as functions of mf is

completely different from the Nf ¼ 4 theory [37], where

we found that the ratio F�=M� gets divergent towards the
chiral limit in accord with the ordinary QCD but in sharp
contrast to the conformal behavior we have observed for
Nf ¼ 12. Although the analyses support the conformal

scenario, even if the Nf ¼ 12 theory breaks chiral symme-

try, the breaking scale is very small, so it must be very close
to the boundary of the conformal phase transition point. In
this case, our result of �m obtained with assuming the IR
fixed point can be regarded as an approximate mass
anomalous dimension at the walking regime.
There have already been several studies focusing on the

conformality of the Nf ¼ 12 SU(3) gauge theory by in-

vestigating the masses of composite states of the mass-
deformed theory:
Reference [24] performed a large-scale simulation using

the stout-smeared staggered fermions at a single lattice
spacing. They performed the global fits of ChPT and con-
formal scenario. ChPT fit (without logarithmic terms as in
ours), which resulted in a nonzero pion decay constant and
chiral condensate, was favored over conformal scenario by
examining the �2=dof of the fits. However, the expansion
parameter at their lightest quark mass readsX ’ 34, which
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is as large as ours [Eq. (17)]. We note that we have con-
cluded that for such a largeX, ChPT is not self-consistent,
and hence it is difficult to concludewhat is really happening
at the chiral limit.

As to their conformal fit, it is equivalent to our fit A in
Eq. (15), by which we obtained a �2=dof similar to theirs.
(Their estimate of the effective mass anomalous dimension
reads �� ¼ 0:395ð52Þ, which is consistent with ours.)
Although it is not our main analysis, we introduced a
mass correction to the conformal type fit (fit B1 or B2),
which was required by our data, and obtained a reasonable
�2=dof. Looking into more details, we observe a difference
in the quark-mass dependence of pion decay constant.
Their decay constant is perfectly fitted with the linear
function in mf (Fig. 1 middle in Ref. [24]), while ours

exhibits a curvature (Fig. 15 middle or Fig. 21). The origin
of different behavior is so far unknown.

There have also been studies analyzing the data
of Ref. [24] for tests of the conformal hypothesis.
Reference [31] performed fits with the single power corre-
sponding to the fit A in Eq. (15) without the constant term
and examined the dependence of �2 as function of input �.
The optimal vale of � which minimizes �2 reads �� 0:4
for � and � masses, which is consistent with our result.
However, they obtained �� 0:25 for pion decay constant,
while our �ðF�Þ obtained without fixing the function form
in Sec. IV tends to be even larger than �ðM�Þ. This incon-
sistency likely originates from the aforementioned differ-
ence in mass dependence. They tried the global fit to
various observables with a common � introducing a vol-
ume correction term to every observable and a mass cor-
rection term to the pion decay constant. By doing that, a
model dependence is introduced, but our result is consis-
tent with their result: � ¼ 0:403ð13Þ with a reasonable
�2=dof ¼ 42=44.

Reference [32] tried a similar analysis to what is pre-
sented in Sec. IVB, using the data of Ref. [24], and
obtained �� 0:35. The error is large (� 0:23 for pion
mass), thus consistent with our result.

Reference [21] performed a pure power-law fit to � and
� masses on a single volume but over two lattice spacings.
The results are �� 0:52–0:64, which is only a bit higher
than what we obtained.
To conclude, the (effective) �� did not appear as large as

the walking theory should exhibit. By this, the hunt for the
realistic walking theory should anyway alter the direction
of the number of flavors towards smaller. The Nf ¼ 8

theory, which could have large anomalous dimension
�� � 1 as a candidate of the walking technicolor model,
is under investigation with exactly the same setting with
HISQ action [37].
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APPENDIX A: STAGGERED FLAVOR SYMMETRY

We show some other staggered meson spectra, e.g., non-
NG pseudoscalar ð�5�4 � 
5
4Þ denoted as SC and a
vector channel ð�i � 
iÞ denoted as VT in comparison
with the corresponding (NG) �, PS: ð�5 � 
5Þ and the
vector, PV: ð�i�4 � 
i
4Þ, which are used in the analysis
given in the main text. This is to see a staggered flavor-
symmetry-breaking effect in our HISQ simulation. The
results are shown in Fig. 17. As we expected, the two
masses for each pseudoscalar and vector meson channel
are almost degenerate.
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FIG. 17 (color online). Result of mass spectra of four operators at � ¼ 3:7 (left panel), 4 (right panel) on ðL; TÞ ¼ ð30; 40Þ.
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APPENDIX B: DETAILS OF FIT ANALYSIS
FOR CONFORMAL HYPOTHESIS

WITH CORRECTIONS

Numerical detail of fit results on the conformal hypothe-
sis are given here. In the conformal hypothesis with a finite
volume, we make an attempt to use the fit functions given
in Eq. (15). We fix the value of the exponent � to a certain
value or to relate with � in the fit since having two
exponents free makes the fit unstable. We consider three
possible cases: � ¼ ð3� 2�Þ=ð1þ �Þ, 2, and 1; we denote
these fit functions as fit B1, fit B2, and fit B3, respectively.
We carry out simultaneous fits using all the data for M�,
F�, and M� with common anomalous dimension � and/or

the parameter � where possible correlation is assumed to
be absent. We use same data set for the fit as given in
Sec. V. The fit results are shown in Table IX and X for � ¼
3:7 and � ¼ 4. As already discussed in Sec. V, additional
correction terms improve �2=dof for both cases of� ¼ 3:7
and � ¼ 4. In both cases of fit B1 and fit B2, the values of
� are consistent with the value from the analysis of the
FSHS test given in Sec. IV. On the other hand, the result of
fit B3 gives a slightly smaller value of the �, but with larger
errors.

APPENDIX C: DETAILS OF CHIRAL
PERTURBATION THEORYANALYSIS

In order to give a fair comparison whether or not the
chiral symmetry is spontaneously broken, we carry out the
fit based on the ChPT hypothesis by using our data.

1. Finite-size dependence of physical quantities

Here, we study the finite volume effects for M� and
F�. To obtain the values of M� and F� in the infinite
volume limit, we use the following ChPT-inspired
[59,60] fit functions:

M�ðLÞ �M� ¼ cM�

e�LM�

ðLM�Þ3=2
; (C1)

F�ðLÞ � F� ¼ cF�

e�LM�

ðLM�Þ3=2
; (C2)

where cM�
and cF�

are the fit parameters. We carry out the

simultaneous fit for each fermion mass by using three data
points on L ¼ 18, 24, and 30 at � ¼ 3:7 and � ¼ 4, where
we assume for simplicity that possible correlation between
the data of M� and F� is absent. The fit results are shown
in Figs. 18 and 19. As a result, in the entire fermion mass
region, our data is well-fitted, and the value of �2=dof for
each parameter is Oð1Þ. Also, one can find that the differ-
ence between the value of L ¼ 30 data and that in the
infinite volume limit is negligible. Thus, we use the data on
L ¼ 30 to analyze the chiral behaviors of bothM� and F�

hereafter.

TABLE IX. The fit results of finite-size conformal hypothesis
at � ¼ 3:7.

fit A c0 c1


� �0:029ð28Þ 2.793(5)


F 0.147(12) 0.544(3)


� 0.363(58) 3.325(10)

� ¼ 0:449ð3Þ, �2=dof ¼ 4:52, dof ¼ 47

fit B1 c0 c1 c2


� 0.095(30) 2.924(39) �0:227ð83Þ

F 0.627(10) �0:230ð27Þ 0.037(17)


� 0.146(77) 3.634(52) �0:74ð14Þ
� ¼ 0:411ð9Þ, �2=dof ¼ 1:23, dof ¼ 44

fit B2 c0 c1 c2


� 0.089(30) 2.860(26) �0:181ð96Þ

F 0.045(16) 0.600(7) �0:325ð33Þ

� 0.147(75) 3.524(37) �0:97ð16Þ
� ¼ 0:423ð7Þ, �2=dof ¼ 1:15, dof ¼ 44

fit B3 c0 c1 c2


� 0.095(30) 3.53(25) �0:81ð27Þ

F 0.030(17) 0.829(59) �0:356ð67Þ

� 0.149(79) 4.56(32) �1:45ð36Þ
� ¼ 0:356ð22Þ, �2=dof ¼ 1:45, dof ¼ 44

TABLE X. The fit results of finite-size conformal hypothesis at
� ¼ 4.

fit A c0 c1


� �0:202ð31Þ 2.662(5)


F 0.212(15) 0.464(3)


� 0.228(60) 3.036(9)

� ¼ 0:430ð3Þ, �2=dof ¼ 6:78, dof ¼ 44

fit B1 c0 c1 c2


� �0:083ð33Þ 2.486(74) 0.33(12)


F �0:040ð25Þ 0.531(15) 0.166(34)


� �0:146ð84Þ 3.013(85) �0:03ð16Þ
� ¼ 0:461ð18Þ, �2=dof ¼ 1:86, dof ¼ 41

fit B2 c0 c1 c2


� �0:096ð33Þ 2.551(34) 0.45(12)


F �0:026ð25Þ 0.518(9) �0:291ð36Þ

� �0:123ð81Þ 3.039(42) �0:16ð16Þ
� ¼ 0:453ð11Þ, �2=dof ¼ 2:00, dof ¼ 41

fit B3 c0 c1 c2


� �0:074ð33Þ 2.30(21) 0.44(24)


F �0:044ð25Þ 0.564(54) �0:147ð62Þ

� �0:153ð86Þ 2.92(27) 0.09(31)

� ¼ 0:476ð39Þ, �2=dof ¼ 1:88, dof ¼ 41
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2. ChPT fit analysis

We analyze the fit using the second-order polynomial
function as

hðmfÞ ¼ c0 þ c1mf þ c2m
2
f; (C3)

where c0;1;2 are fit parameters. Using this simple polyno-

mial function, we carry out the fits for M2
� and F� by the

function hðmfÞ, varying the fit range of the fermion mass

from mf ¼ 0:04 to mf ¼ 0:12. We denote the fit range of

fermion mass as ½mmin
f ; mmax

f �. As the current data set of

� ¼ 3:7 simulation has physically lighter quark mass, the
property of the chiral limit is captured better for � ¼ 3:7
data than for � ¼ 4 data. Therefore, we focus on the
former here.
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FIG. 18 (color online). The results of the finite-volume scaling fit for M� and F� at � ¼ 3:7 using the infinite volume extrapolation
formula in Eqs. (C1) and (C2).
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FIG. 19 (color online). The results of the finite volume scaling fit for M� and F� at � ¼ 4 using the infinite volume extrapolation
formula in Eqs. (C1) and (C2).
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FIG. 20 (color online). The several fit results for M2
� at

� ¼ 3:7 using the data on L ¼ 30.

TABLE XI. The fit results on M2
� at � ¼ 3:7 using the data on

L ¼ 30. The values in the brackets mean the inputs in the fit.

fit range c0 c1 c2 �2=dof dof

½0:04; 0:08� �0:0057ð91Þ 1.82(32) 15.2(2.6) 1.35 1

[0] 1.62(3) 16.76(45) 0.88 2

½0:04; 0:1� �0:0209ð48Þ 2.37(15) 10.6(1.1) 2.59 2

[0] 1.729(21) 14.99(25) 8.33 3

½0:04; 0:12� �0:0183ð31Þ 2.28(87) 11.21(55) 1.90 3

[0] 1.780(17) 14.28(17) 10.29 4
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The fit results forM2
� are shown in Fig. 20 and Table XI.

Among these fits, the best-fit values of intercept c0 is
consistent with zero for the fit with mmax

f ¼ 0:08, while

we obtained negative values of c0 for others. In Table XI,
we also show the fit results with c0 being fixed to zero. As
we expect, the values of �2=dof become much larger than
unity except for the case with mmax

f ¼ 0:08. Furthermore,

the contribution of the higher-order term with c2 is not
small enough even in the fit result using the data with the
smallest mass range. It may indicate that the fermion mass
in the data we have is too heavy to take a reliable chiral
extrapolation with ChPT-like formula.

In Fig. 21 and Table XII, we show the fit results for the
case of F�. The same fit function and fit ranges as in the
case ofM2

� are used for the fits. Nonzero value of F� in the
chiral limit is an important signal of the S�SB. Results

show Oð1Þ value of �2=dof for the fit with smaller mass
range, and we obtain tiny but nonzero value of F� in the
chiral limit.
If we adopt the fit result with the mass range ½0:04; 0:08�

at � ¼ 3:7, which is expected to be the most reliable result
among those fits, it might look like they are consistent with
the hypothesis of S�SB scenario because the result shows
that the pseudoscalar mass squared is going to zero along
the tree-level ChPT, while the decay constant remain non-
zero (though it is tiny) in the chiral limit. However, to be
able to conclude that it is consistent with the ChPT fit, one
has to check that the expansion parameter of the perturba-
tion is in the legitimate region. Using the value of F� in the
chiral limit, F� ¼ 0:0190ð52Þ, the value of the expansion
parameter is estimated as X ’ 39. Here, we evaluated it
using the data with the lightest mass, mf ¼ 0:04, on L ¼
30 lattice, where M� ¼ 0:3028ð14Þ. Since the expansion
parameter is much larger than one even in the lightest mass
region of the fit range, we are not in the position to judge if
the decay constant is really nonzero in the chiral limit from
the extrapolation performed here. Therefore, investigation
with larger volume and smaller masses is needed to draw
more definite conclusions regarding the test of the ChPT
scenario.
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