
Restoration of rotational symmetry in the continuum limit of lattice field theories

Zohreh Davoudi1,* and Martin J. Savage1,†

1Department of Physics, University of Washington, Box 351560, Seattle, Washington, DC 98195, USA
(Received 27 May 2012; published 12 September 2012)

We explore how rotational invariance is systematically recovered from calculations on hyper-cubic

lattices through the use of smeared lattice operators that smoothly evolve into continuum operators with

definite angular momentum as the lattice-spacing is reduced. Perturbative calculations of the angular

momentum violation associated with such operators at tree level and at one loop are presented in ��4

theory and QCD. Contributions from these operators that violate rotational invariance occur at tree-level,

with coefficients that are suppressed by Oða2Þ in the continuum limit. Quantum loops do not modify this

behavior in ��4, nor in QCD if the gauge-fields are smeared over a comparable spatial region.

Consequently, the use of this type of operator should, in principle, allow for Lattice QCD calculations

of the higher moments of the hadron structure functions.
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I. INTRODUCTION

Lattice quantum chromodynamics (LQCD) is a numeri-
cal technique in which Euclidean space correlation func-
tions of QCD are calculated by a Monte-Carlo evaluation
of the Euclidean space path integral [1]. The computa-
tional resources are now becoming available for LQCD to
recover the spectrum of mesons and baryons that have been
observed in the laboratory, and to make predictions of
states with exotic quantum numbers that will be the focus
of future experimental efforts. It is also providing precise
determinations of the matrix element of weak operators
that are required to further constrain the mixing of the
eigenstates of the weak interaction contained in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. LQCD is
allowing for a comprehensive description of the structure
of nucleons, and more recently to their interactions that are
crucial to the field of nuclear physics. This marks the
beginnings of a comprehensive program to determine nu-
clear structure and dynamics directly from QCD.

Space-time is pixelated, or discretized, in LQCD calcu-
lations, with the quarks residing on the lattice sites, and the
gluon fields residing on the links between lattice sites. The
lattice spacing, a, the distance between adjacent lattice
sites, is required to be much smaller than the characteristic
hadronic length scale of the system under study. In princi-
ple, the effects of a finite lattice spacing can be systemati-
cally removed by combining calculations of correlation
functions at several lattice spacings with the low-energy
effective field theory which explicitly includes the discre-
tization effects. This type of effective field theory is some-
what more complicated than its continuum counterpart as it
must reproduce matrix elements of the Symanzik action
constructed with higher dimension operators induced by
the discretization [2–4]. While the action lacks Lorentz

invariance and rotational symmetry, it is constrained by
hyper-cubic symmetry. As computers have finite memory
and performance, the lattice volumes are finite in all four
space-time directions. Generally, periodic boundary con-
ditions are imposed on the fields in the space-directions
(a three-dimensional torus), while (anti) periodic boundary
conditions are imposed on the (quark) gauge-fields in the
time-direction. However, the conceptual and practical
problems arising from the explicit breaking of the space-
time symmetries of the continuum theory, down to those of
a hyper-cubic lattice theory, remain a challenge in the
continuum extrapolation of classes of observables calcu-
lated using LQCD. One knows, however, that as the lattice
becomes finer, the full space-time symmetries of the con-
tinuum are in fact approximately recovered for observables
involving wavelengths that are large compared with the
scale of pixelation.1 As a result, a quantitative description
of this restoration, as well as its implication for calculation
of lattice observables, is possible.
Efforts to reduce lattice artifacts and achieve a better

behaved theory in the continuum limit date back to the
early stages of development of LQCD. Many that fall
under the name of Symanzik improvement include a sys-
tematic modification of the action in such a way to elimi-
nate OðanÞ terms from physical quantities calculated with
LQCD at each order in perturbation theory [2–4,8–15], or
nonperturbatively. However, as will be discussed, discreti-
zation effects are known to give rise to more subtle issues;
the treatment of which turns out to be more involved.
LQCD is commonly formulated on a hyper-cubic grid, as
a result the full (Euclidean) Lorentz symmetry group of the
continuum is reduced to the discrete symmetry group of a
hyper-cube. As the (hyper-) cubic group has only a finite
number of irreducible representations (irreps) compared to
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1For some numerical illustrations of this recovery in SUð2Þ
lattice gauge theories, as well as the scalar �4 theory, see
Refs. [5–7].
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infinite number of irreps of the rotational group, a given
irrep of the rotational group is not irreducible under the
(hyper-) cubic group. Consequently, one cannot assign a
well-defined angular momentum to a lattice state, which is
generally a linear combination of infinitely many different
angular momentum states (see for example Refs. [16–18]).
In principle, one can identify the angular momentum of a
corresponding continuum state in a lattice calculation from
the degeneracies in the spectrum of states belonging to
different irreps of the cubic group as the lattice spacing is
reduced (a review of baryon spectroscopy efforts is given
in Ref. [19], for some recent meson spectroscopy works
see Refs. [20–23]). However, as the density of degenerate
states substantially increases with increasing the angular
momentum, the identification of states with higher angular
momentum becomes impossible with the current statistical
precision. The other issue is that the cubic symmetry of
the lattice allows the renormalization mixing of interpolat-
ing operators with lower dimensional ones. The induced
coefficients of the lower-dimensional operators scale as
inverse powers of the lattice spacing, and hence diverge
as the lattice spacing goes to zero. Although renormaliza-
tion mixing of operators is familiar from the continuum
quantum field theory, it happens more frequently in LQCD
calculations as the reduced symmetry of the hyper-cube is
now less restrictive in preventing operators from mixing.
To obtain useful results for, as an example, the matrix
elements of operators from LQCD calculations, nonpertur-
bative subtraction of the power-divergences is required and
generally introduces large statistical uncertainties.

To overcome these obstacles, it has been recently pro-
posed by Dudek, et al. [24–26] (and later applied to
bottom-baryon systems by Meinel [27]) that by means of
a novel construction of interpolating operators, the excited
states of several mesons and baryons can be identified to
high precision. The essence of this method is that if one
uses a set of cubically invariant local operators which have
already been subduced [28] from a rotationally invariant
local operator with a definite angular momentum, J, while
at the same time smearing the gauge and quark fields over
the hadronic scale [29–31], the constructed operator has
maximum overlap onto a continuum state with angular
momentum J if the lattice spacing is sufficiently small.
The subduction is assumed to be responsible for retaining
‘‘memory’’ of the underlying angular momentum of the
continuum operator, while the smearing is assumed to
suppress mixing with operators of different angular mo-
mentum by filtering contributions from ultraviolet (UV)
modes. In another approach, states with higher angular
momentum in the glueball spectra of 2þ 1 dimensional
SUð2Þ gauge theories [32,33] are isolated by using glueball
interpolating operators that are linear combinations of
Wilson loops which are rotated by arbitrary angles in order
to project out a particular angular momentum J in the
continuum. In addition, the links are smeared, or blocked,

in order to be smooth over physical length scales rather
than just in the UV [34]. So by monitoring the angular
content of the glueball wave function in the continuum
limit with a probe with definite J, the 0�=4� puzzle in the
glueball spectroscopy has been tackled. The prominent
feature of these works is that the recovery of rotational
symmetry for sufficiently small lattice spacings is qualita-
tively emergent from their numerical results.
The same issue occurs in LQCD calculations of higher

moments of hadron structure functions, the extraction of
which requires the matrix elements of local operators
between hadronic states. Although Lorentz invariance for-
bids twist-2 operators with different J from mixing in the
continuum, generally they can mix in LQCD calculations
with power-divergent mixing coefficients [35,36]. The
power-divergent mixing problem associated with the lower
moments can be avoided by several means as described, for
example, in Refs. [36–45]. In addition to these approaches,
two methods [46,47] have been suggested that highlight
the idea of approaching the continuum properties of the
hadronic matrix elements by suppressing the contributions
from the UV, and in that sense resemble the idea of
operator smearing in the proposals described above. In
LQCD calculations of non-leptonic K-decay, Dawson
et al. [46] suggested that point-splitting the hadronic cur-
rents by a distance larger than the lattice spacing, but
smaller than the QCD scale, results in an operator product
expansion of the currents with the coefficients of lower
dimensional operators scaling with inverse powers of the
point-splitting distance, as opposed to the inverse lattice
spacing. This considerably reduces the numerical issues
introduced by the operator mixing. In a different, but still
physically equivalent approach, Detmold and Lin [47]
showed that in the LQCD calculation of matrix elements
of the Compton scattering tensor, the introduction of a
fictitious, nondynamical, heavy quark coupled to physical
light quarks removes the power divergences of the mixing
coefficients. This technique enables the extraction of
matrix elements of higher spin twist-2 operators with a
simple renormalization procedure. The essence of this
method is that the heavy quark propagator acts as a smear-
ing function in the momentum-space, suppressing contri-
butions from the high energy modes, provided that its mass
is much smaller than the inverse lattice spacing.
Encouraged by the results of the numerical nonpertur-

bative investigation of Refs. [24–26,32,33], as well as the
results of Refs. [46,47], we aim to quantify the recovery of
rotational symmetry with analytical, perturbative calcula-
tions in ��4 and QCD. In order to achieve this goal, we
first define a composite operator on the lattice which has a
well-defined angular momentum in the continuum limit
and is smeared over a finite physical region, and show how
the noncontinuum contributions to the multipole expansion
of the operator scales as the lattice spacing is reduced
toward the continuum. Tree-level contributions to matrix
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elements that violate rotational symmetry, either by the
lattice operator matching onto continuum operators with
the ‘‘wrong’’ angular momentum, or matching onto con-
tinuum operators that explicitly violate rotational symme-
try, scale as Oða2Þ as a ! 0. This includes the (naively)
power divergent contributions from lower-dimension
operators. In order to make definitive statements about
the size of violations to rotational symmetry, it must be
ensured that the tree-level scalings are not ruined by quan-
tum fluctuations. This is demonstrated by a perturbative
calculation of the two-point function in ��4 scalar field
theory with an insertion of such an operator. It is confirmed
that quantum corrections at any order in perturbation
theory do not alter the observed classical scalings of non-
continuum contributions. This result is comparable with
finite size scaling results of the leading irrelevant operator
that breaks rotational invariance in three dimensionalOðNÞ
models given in Refs. [48,49]. The critical exponent �
introduced there has a realization in terms of small-a
scaling of the leading rotational invariance violating terms
in this calculation. Its value is shown to be consistent with
the results presented here.

After gaining experience with this operator in scalar
field theory, the generalization to gauge theories is straight-
forward. Special attention must be paid to the gauge links
that appear in the definition of gauge-invariant operator(s)
that are the analogue of those considered in the scalar field
theory. Also, it is well known that the perturbative expan-
sion of operators used in LQCD are not well-behaved due
to the presence of tadpole diagrams [50]. Naively, tadpoles
make enhanced contributions to the matrix elements of the
operators we consider, and that tadpole improvement of
the gauge links and smearing of the gluon fields are crucial
to the suppression of violations of rotational symmetry.
After discussing the continuum behavior of the QCD
operator(s), and their potential mixings, which violate
rotational invariance atOða2Þ, we determine the renormal-
ization of the operator(s) on the lattice at one-loop order.
The leading rotational invariance violating contributions to
the renormalized lattice operator are suppressed by
Oð�sa

2Þ, (where �s ¼ g2s=ð4�Þ and gs is the strong cou-
pling constant) provided that the gauge fields are also
smeared over a physical region similar to the matter fields.
This means that the leading rotational invariance violating
operators introduced by the quantum loops make sublead-
ing contributions compared to tree level, Oða2Þ. The loop
contributions that scale asOð�saÞ do not violate rotational
symmetry, and hence are absorbed into the operator
Z-factor.

II. OPERATORS IN SCALAR FIELD THEORY

The goal is to construct a bilinear operator of the scalar
fields on a cubic lattice which has certain properties. First
of all, as it was discussed earlier, it has to be smeared over a
finite region of space. This physical region should be large

compared to the lattice spacing, and, for our purposes,
small compared to typical length scale of the system to
allow for a perturbative analysis. The spatial extent of the
operator can be identified with its renormalization scale.
Second, it is required to transform as a spherical tensor
with well-defined angular momentum in the continuum
limit. An operator that satisfies these conditions is2

�̂L;Mðx;a; NÞ ¼ 3

4�N3

Xjnj�N

n

�ðxÞ�ðxþ naÞYL;Mðn̂Þ; (1)

where n denotes a triplet of integers, and it is normalized
by the spatial volume of the region over which it is dis-
tributed. �ðxÞ is the scalar field operator, N is the maxi-
mum number of lattice sites in the radial direction, and
YLMðn̂Þ is a spherical harmonic evaluated at the angles
defined by the unit vector in the direction of n, n̂, as shown
in Fig. 1. This operator can also be written in a multipole
expansion about its center as

�̂L;Mðx;a; NÞ

¼ 3

4�N3

Xjnj�N

n

X
k

1

k!
�ðxÞðan � rÞk�ðxÞYL;Mðn̂Þ; (2)

where the gradient operator acts on the x variable,
r � rx.

Although the operator �̂L;Mðx;a; NÞ is labeled by its

angular momentum in the continuum limit, from the

FIG. 1 (color online). A contribution to the lattice operator
defined in Eq. (1), with jnj � N. All the points inside the three-
dimensional spherical shell jnaj ¼ Na are included in the
operator. The two length scales defining the operator, the lattice
spacing, a, and the operator size, Na ¼ 1=�, are shown.

2This corresponds to one particular choice of radial structure
of the operator. However, the results of the calculations and the
physics conclusions presented in this work do not change qual-
ititively when other smooth radial structures are employed, such
as a Gaussian or exponential.
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right-hand side of Eq. (2), it is clear that it is a linear
combination of an infinite number of operators with
angular momentum compatible with its parity. To be more
specific, consider the M ¼ 0 component of the operator
expanded in a derivative operator basis,

�̂ L;0ðx;a; NÞ ¼ X
L0;d

CðdÞ
L0;L00ðNÞ
�d

OðdÞ
zL

0 ðx;aÞ; (3)

where OðdÞ
zL

0 ðx;aÞ are defined in Appendix A. The operator

subscript denotes that there are L0 free indices in the de-
rivative operator, while d denotes the total number of
derivatives. As is discussed in the Appendix A, there are
operators in this basis which are not rotationally invariant

but only cubically invariant. CðdÞ
L0;L00ðNÞ are coefficients of

each operator in the expansionwhose values are determined
bymatching Eq. (2) with Eq. (3). Finally� ¼ 1=ðNaÞ is the
momentum-scale of the smeared operator which is kept
fixed as the lattice spacing is varied. Therefore, as the lattice
spacing decreases, more point shells (shells of integer
triplets) are included in the sum in Eq. (2). The convergence
of this derivative expansion is guaranteed as the scale � is
set to be much larger than the typical momentum encoun-
tered by the operator.

A. Classical scalar field theory

In order for the operator to recover its continuum limit as

the lattice spacing vanishes, the coefficients CðdÞ
L0;L00 should

have certain properties. First of all, those associated with
the operators with L � L0 as well as the rotational invari-
ance violating operators, should vanish as a ! 0. Also the
coefficients of rotational invariant operators with L ¼ L0
should reach a finite value in this limit. These properties
will be shown to be the case in a formal way shortly, but in
order to get a general idea of the classical scaling of
the operators and the size of mixing coefficients, we first
work out a particular example. Consider the operator

�̂3;0ðx; a;NÞ expanded out up to five derivative operators,

�̂3;0ðx; a;NÞ

¼ Cð1Þ
30;10ðNÞ
�

Oð1Þ
z ðx; aÞ þ Cð3Þ

30;10ðNÞ
�3

Oð3Þ
z ðx; aÞ

þ Cð5Þ
30;10ðNÞ
�5

Oð5Þ
z ðx; aÞ þ Cð5;RVÞ

30;10 ðNÞ
�5

Oð5;RVÞ
z ðx;aÞ

þ Cð3Þ
30;30ðNÞ
�3

Oð3Þ
zzzðx; aÞ þ Cð5Þ

30;30ðNÞ
�5

Oð5Þ
zzzðx; aÞ

þ Cð5Þ
30;50ðNÞ
�5

Oð5Þ
zzzzzðx; aÞ þO

�r7
z

�7

�
; (4)

where the superscript RV denotes the rotational invariance
violating operator and its corresponding coefficient in the
above expansion.

The numerical values of the coefficients in Eq. (4), at
the classical level, as a function of the maximum shell
included in the sum in Eq. (2) are shown in Figs. 2 and 3.

From these plots it is clear that while the coefficients Cð3Þ
30;30

and Cð5Þ
30;30 reach a finite value for large N, the coefficients

of lower and higher angular momentum operators, as well
as the rotational invariance violating operator, approach
zero. To find the values of the leading order (LO) coef-
ficients in this limit, as well as to see how the nonleading
contributions scale with N ¼ 1=ð�aÞ, one can apply the
Poisson re-summation formula to the right-hand side
of Eq. (2),

�̂L;Mðx;a; NÞ ¼ 3

4�N3

X
k

ak

k!

X
p

Z
d3y�ðN � yÞei2�p�y

��ðxÞðy � rÞk�ðxÞYL;MðŷÞ; (5)

where p is another triplet of integers, and the p summation
is unbounded. The continuum values of the coefficients
obtained in the N ! 1 limit, corresponding to the p ¼ 0
term in Eq. (5), are

CðdÞ
30;30 ¼

15

4

ffiffiffiffi
7

�

s
d2 � 1

ðdþ 4Þ! with d ¼ 3; 5; . . . ; (6)

while the other coefficients in Eq. (4) vanish in this limit as
expected. The LO corrections to these continuum values

can be calculated as following. The deviation of Cð3Þ
30;30

from its continuum value can be found from

I30 � 3

4�

ðNaÞ3
3!

X
p�0

Z 1

0
dyy2d�ŷe

i2�Np�y�ðxÞðŷ � rÞ3

��ðxÞY3;0ðŷÞ; (7)

where r ¼ rzêz and the y-variable in Eq. (7) is rede-
fined to lie between 0 and 1, and it is straightforward to
show that

�Cð3Þ
30;30 ¼

1

N2

1

32�2

ffiffiffiffi
7

�

s X
p�0

cosð2�NjpjÞ
jpj8

�
�
� 3

2
jpj6 þ 15jpj2p4

z � 25

2
p6
z

�
: (8)

It is interesting to note that, after trading N for 1=ða�Þ,
the finite lattice spacing corrections are not monotonic in
a, but exhibit oscillatory behavior, which is clearly evi-
dent in Fig. 2.

The deviation of Cð1Þ
30;10 from its continuum value of zero

follows similarly, and is found to scale as �1=N2,

�Cð1Þ
30;10¼

1

N2

3

16�2

ffiffiffiffi
7

�

s X
p�0

cosð2�NjpjÞ
jpj6 ðjpj4�5p4

zÞ: (9)
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As in the case of the operator that conserves angular
momentum in the continuum limit, the subleading correc-
tion (and in this case the first nonzero contribution) to
the coefficient is suppressed by 1=N2. This can be shown
to be the case for all the subleading contributions to the

coefficientsCðdÞ
LM;L0M0 as follows. As is evident from Eq. (5),

the integrals that are required in calculating deviations
from the continuum values have the general form

Ii1...ik � 3

4�

ðNaÞk
k!

X
p�0

Z 1

0
dyy2þk

�
Z

d�ŷe
i2�Np�y ŷi1 ŷi2 . . . ŷikYLMð�ŷÞ; (10)

which can be written as

FIG. 3 (color online). A comparison between the tree-level

coefficients CðdÞ
30;L00 to illustrate the relative rates of convergence

to the continuum limit.
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FIG. 2 (color online). The tree-level values of the coefficients CðdÞ
30;L00 appearing in Eq. (4) as a function of the largest n-shell included

in the summation in Eq. (1).
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Ii1...ik � 3

4�

ðNaÞk
k!

1

ði2�NÞk
X
p�0

@

@pi1

. . .
@

@pik

�
Z 1

0
dyy2þk

Z
d�ŷe

i2�Np�yYLMð�ŷÞ

� 3

4�

ðNaÞk
k!

4�iL

ði2�NÞk
X
p�0

@

@pi1

. . .
@

@pik

YLMð�p̂Þ

�
Z 1

0
dyy2þkjLð2�NjpjyÞ: (11)

The y integration over the Bessel function gives rise to

either � cosð2�NjpjÞ
ð2�NjpjÞ2 or � sinð2�NjpjÞ

ð2�NjpjÞ2 , up to higher orders in

1=N, depending on whether L is even or odd. Thus the LO
contribution from Eq. (11) in the large N limit is obtained
by acting on the numerator with the p derivatives, produc-
ing k powers of N, multiplying the 1=N2 from the denomi-
nator. Therefore, Eq. (11) scales as

Ii1...ik � ðNaÞk 1

Nk

Nk

N2
� 1

�k

1

N2
; (12)

and, in general, the deviation of any coefficient from its
continuum value is suppressed by 1=N2 ¼ �2a2. This
result implies that in calculating the matrix element of
L ¼ 3 operator, one has a derivative expansion of the form

�3�̂3;0ðx;a; NÞ

¼ �1

�2

N2
Oð1Þ

z ðx;aÞ þ �2

1

N2
Oð3Þ

z ðx; aÞ

þ �3

1

�2N2
Oð5Þ

z ðx;aÞ þ �4

1

�2N2
Oð5;RVÞ

z ðx; aÞ

þ �5O
ð3Þ
zzzðx; aÞ þ �6

1

�2
Oð5Þ

zzzðx; aÞ

þ �7

1

�2N2
Oð5Þ

zzzzzðx; aÞ þO
�r7

z

�4

�
; (13)

where the mixing with L � 3 operators (with coefficients
�1;2;3;7;...), as well as the operator with broken rotational

symmetry (with coefficient �4), vanish in the largeN limit,
while the coefficients of L ¼ 3 operators (with coefficients
�5;6;...), are fixed by the scale of the operator, �. It is clear

that for N ¼ 1 and � ¼ 1=a, where no smearing is per-
formed, the problem with divergent coefficients of the
lower dimensional operators is obvious, as, for example,

the coefficient ofOð1Þ
z ðx;aÞ diverges as 1=a2 as a ! 0, as is

well known.
The fact that all the subleading contributions to the

classical operator are suppressed at least by 1=N2 regard-
less of L and L0 can be understood as follows. In the
classical limit, where the short distance fluctuations of
the operator are negligible, the operator does not probe
the distances of the order of lattice spacing when a ! 0.
The angular resolution of the operator is dictated by the
solid angle discretization of the physical region over which
the operator is smeared, and therefore is proportional to
1=N2. The question to answer is whether the quantum
fluctuations modify this general result.
Before proceeding with the quantum loop calculations,

it is advantageous to transform the operator into
momentum-space to simplify loop integrals. This can be
done easily by noting that for zero momentum insertion,
the operator acting on the field with momentum k is

~̂�LMðk; a;NÞ ¼ 3

4�N3

Xjnj�N

n

eik�naYLMðnÞ ~�ðkÞ ~�ð�kÞ;

(14)

which, after using the partial-wave expansion of eik�na and
the exponential term resulting from the Poisson relation,
can be written as

~̂�LMðk;a; NÞ ¼ 6
ffiffiffiffi
�

p
~�ðkÞ ~�ð�kÞX

p

X
L1;M1;L2;M2

iL1þL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L1 þ 1Þð2L2 þ 1Þ

2Lþ 1

s
hL10;L20jL0i

� hL1M1;L2M2jLMiYL1M1
ð�k̂ÞYL2M2

ð�p̂Þ
Z 1

0
dyy2jL1

ðaNjkjyÞjL2
ð2�NjpjyÞ: (15)

Although this form seems to be somewhat more compli-

cated than in position-space, it turns out that it is advanta-

geous to work in momentum-space when dealing with

higher angular momenta, as well as for M � 0. Further,
the dimensionless parameters jkj=� and N that define the

physics of such systems are now explicit. It is straightfor-

ward to show this form recovers the values of the leading

and subleading coefficients given in Eqs. (8) and (9), and

it is worth mentioning how they emerge from Eq. (15). For

a nonzero value of jpj and N ¼ 1, the spherical Bessel

function jL2
ð2�NjpjyÞ vanishes for any value of L2.

However, for large values of N but jpj ¼ 0 the only non-
zero contribution is from L2 ¼ 0, and thus L1 ¼ L, leaving
a straightforward integration over a single spherical Bessel
function jLðaNjkjyÞ to obtain the continuum limit given in
Eq. (6). Extracting the subleading contributions and the
violations of rotational symmetry is somewhat more in-
volved, and we provide an explicit example in Appendix B.

B. Quantum corrections in ��4

In order to determine the impact of quantum fluctuations

on the matrix elements of �̂L;M, defined in Eq. (1), we
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consider loop contributions in ��4 theory. Beside its
simplicity which enables us to develop tools in performing
the analogous calculations in lattice QCD, this theory
corresponds to some interesting condensed matter systems.
For example, three dimensional O(N) models, which
describe important critical phenomena in nature, have a
corresponding ��4 field theory formulation. As pointed
out in Refs. [48,49], anisotropy in space either due to the
symmetries of the physical system, or due to an underlying
lattice formulation, will result in the presence of irrelevant
operators in the effective Hamiltonian which are not rota-
tionally invariant, and introduce deviations of two-point
functions from their rotationally invariant scaling law near
the fixed point. However, as the rotationally invariant fixed
point of the theory is approached, the anisotropic devia-
tions vanish like 1=�� where �2 is the second moment
correlation length derived from the two-point function, and
� is a critical exponent which is related to the critical
effective dimension of the leading irrelevant operator
breaking rotational invariance. It has been shown that in
the large N approximation of OðNÞ models, � ’ 2 for
cubic-like lattices. In the following, it will be shown that,

by inserting �̂L;M defined in Eq. (1) into the two-point

function, the same scaling law emerges when approaching
the rotational-invariant continuum limit of ��4 theory.

At tree level, the contributions to the two-point function

from an insertion of �̂L;M at zero momentum transfer has

been already discussed in Sec. II A. At one-loop, there is

only one diagram with an insertion of �̂L;M that contributes

to the two-point function, as shown in Fig. 4. This diagram
introduces corrections only to the L ¼ 0matrix element as
there are no free indices associated with the loop. The
lattice integral associated with this one-loop diagram is

JLM ¼ 3�

4�N3

Xjnj�N

n

Z �=a

�ð�=aÞ
d4k

ð2�Þ4
eik�na

ðk̂2 þm2Þ2 YLMð�nÞ;

(16)

where k̂2 ¼ 4
a2
P

	sin
2ðk	a2 Þ, � is the coupling constant and

m is the � mass. The three-momentum integration can be
evaluated by noting that the region of integration can be
split into two parts: region I where 0 � jkj � �=a and
therefore is rotationally symmetric, and region II where

�=a � jkj � ffiffiffi
3

p
�=a which consists of disconnected

angular parts. Also as the three-momentum integration is
UV convergent, a small a expansion of the integrand can
be performed. Using Eq. (15), the contribution from
region I to the p ¼ 0 term in the Poisson sum is

JðIÞLMðp ¼ 0Þ
¼ 3�

ð2�Þ4 i
L
Z �=a

�ð�=aÞ
dk4

Z �=a

0
dkk2

Z
d�k̂

1

ðk̂2 þm2Þ2

�
�Z 1

0
dyy2jLðaNjkjyÞ

�
YLMð�kÞ

¼ 3�

16�4
iL½JLOLM þ JNLOLM þOð1=N4Þ�; (17)

where

JLOLM ¼ 2
ffiffiffiffi
�

p
�L;0�M;0

Z �=�a

�ð�=�aÞ
dq4

Z �=�a

0
dqq2

1

½q2 þ q24 þm2=�2�2
Z 1

0
dyy2j0ðqyÞ;

JNLOLM ¼ 1

N2

Z �=�a

�ð�=�aÞ
dq4

Z �=�a

0
dqq2

q4

½q2 þ q24 þm2=�2�3
�
6

ffiffiffiffi
�

p
5

�L;0�M;0

Z 1

0
dyy2j0ðqyÞ

þ �L;4

�
2

3

ffiffiffiffiffiffiffi
2�

35

s
�M;�4 þ 4

ffiffiffiffi
�

p
15

�M;0 þ 2

3

ffiffiffiffiffiffiffi
2�

35

s
�M;4

�Z 1

0
dyy2j4ðqyÞ

�
;

(18)

with q ¼ jkj=� and q4 ¼ k4=�. The LO integral, JLOLM,
is convergent, while the next-to-leading-order (NLO) con-
tribution, JNLOLM , while not convergent, is not divergent, but
is of the form sinðN�Þ=N2. This implies that they depend
on the ratio of the two mass scales, � and m, but without
inverse powers of a. So as a ! 0, the LO L ¼ 0 operator
makes an unsuppressed contribution to the L ¼ 0 matrix
element, while the contributions to this matrix element

from the NLO rotational symmetry violating L ¼ 0 and

L ¼ 4 operators are suppressed by 1=N2.
A simple argument shows that contributions from

integration region II, for which �=a � jkj � ffiffiffi
3

p
�=a, are

also suppressed by 1=N2. After defining a new momentum

variable l	 ¼ k	a and l2 ¼ l21 þ l22 þ l23, the p ¼ 0 term of

the Poisson sum in region II is

FIG. 4. One-loop correction to the two-point function with an
insertion of �̂L;M in ��4
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JðIIÞLMðp¼0Þ¼ 3�

16�4
iL
Z �

��
dl4

Z ffiffi
3

p
�

�
dll2

Z
fð�lÞ

d�l

� YLMð�lÞ
ð4P	sin

2ðl	=2Þþa2m2Þ2
Z 1

0
dyy2jLðNlyÞ;

(19)

where fð�lÞ identifies the angular region of integration,
and whose parametric form does not matter for this dis-
cussion. This region still exhibits cubic symmetry, and
gives rise to contribution to the L ¼ 0; 4; 6; 8; . . . operators.
On the other hand, the three-momentum integration is
entirely located in the UV as a ! 0, and thus

sin 2ðl1=2Þ þ sin2ðl2=2Þ þ sin2ðl3=2Þ þ sin2ðl4=2Þ � 1:

(20)

Also, integration over the Bessel function brings in a factor
of � cosðNlÞ=ðN2l2Þ, up to higher orders in 1=N. So the
integrand does not have any singularities in region II of the
integration, and is bounded. As a result,��������JðIIÞLMðp¼0Þ

��������
� 1

N2

3�

ð4�Þ4
Z �

��
dl4

Z ffiffi
3

p
�

�
dl
Z
fð�lÞ

d�lYLMð�lÞ; (21)

and consequently JðIIÞLMðp ¼ 0Þ itself is suppressed by 1=N2.
This completes the discussion of the p ¼ 0 term in the
Poisson sum, corresponding to a zero-momentum insertion
of the continuum operator into the loop diagram. It then
remains to determine the scaling of the p � 0 terms in the
summation in the large N limit. The integral arising from
the p � 0 terms is, up to numerical factors,

Ip�0 � �
X
p�0

Z �=a

�ð�=aÞ
d4k

ð2�Þ4

� 1

ðk̂2 þm2Þ2 YL1M1
ð�k̂ÞYL2M2

ð�p̂Þ

�
Z 1

0
dyy2jL1

ðNajkjyÞjL2
ð2�NjpjyÞ: (22)

This integral is finite in UV, and the integrand can be
expanded in powers of a, giving a leading contribution of

Ip�0 � �
X
p�0

Z �=�a

�ð�=�aÞ
d3qdq4
ð2�Þ4

� 1

ðq2 þ q24 þm2=�2Þ2 YL1M1
ð�q̂ÞYL2M2

ð�p̂Þ

�
Z 1

0
dyy2jL1

ðqyÞjL2
ð2�NjpjyÞ: (23)

A nonzero angular integration requires that L1 ¼ 0, and
the integral is suppressed at least by a factor of 1=N2 as
integration over the Bessel functions introduces a factor of
1=ð2�NjpjÞ2 up to a numerical coefficient and a bounded

trigonometric function at LO in 1=N. The next order term
in the small a expansion of the integrand can be easily
shown to bring in an additional factor of 1=N2. So one can
see that the p � 0 terms in the Poisson summation, which
give rise to noncontinuum contributions to the two-point
function at one loop, are always suppressed by at least a
factor of 1=N2.
The result of the one-loop calculation is promising: all

the sub-leading contributions that break rotational symme-
try are suppressed by 1=N2 compared to the leading L ¼ 0
continuum operator contribution to the two-point function.
A little investigation shows that this scaling also holds to
higher orders in ��4 theory. Suppose that the operator
is inserted into a propagator inside an n-loop diagram
contributing to the two-point function. Considering the
continuum part of the operator first, the leading term in
the small a expansion of the integrand gives rise to 2n
propagators, while the integration measure contributes 4n
powers of momentum. Although this appears to be loga-
rithmically divergent, the spherical Bessel function con-
tributes a factor of inverse three-momentum and either a
sine or cosine of the three-momentum, rendering the dia-
gram finite. The same argument applies to the NLO term in
the small a expansion of the integrand, resulting in a 1=N2

suppression of the breaking of rotational invariance.
Insertion of the noncontinuum operator in loop diagrams
are also suppressed by 1=N2 for similar reasons.
The interpretation of finite size scaling results presented

in Refs. [48,49] in terms of what has been observed in this
section is now straightforward. Near the critical point, the
correlation length is the only relevant physical scale in the
problem, and tends to infinity. So as the critical point is
approached, one does not probe the underlying lattice
structure as the correlation length becomes much larger
than the lattice spacing, and extends over an increasing
number of point shells. In comparison, inserting an opera-
tor which only probes distances of the order of a physical
scale that is much larger than the lattice spacing, resembles
the physics near a rotational-invariant fixed point, and the
same scaling law for the nonrotational invariant operators
is expected (in the same theory) as the lattice spacing goes
to zero.

III. OPERATORS IN QCD

The necessity of introducing a gauge link to connect
the fermionic fields in a gauge invariant way, makes the
discussion of the operator and its renormalization more
involved in gauge theories. The reason is two-folded: first,
as is well known, perturbative LQCD is ill-behaved as a
result of nonvanishing tadpoles which diverge in the UV,
making the small coupling series expansion of the opera-
tors slowly convergent. The other difficulty is that as the
operator is smeared over many lattice sites, the links
are necessarily extended links. Thus, to analytically
investigate the deviations from a rotational invariant path,
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working with a well-defined path on the grid is crucial.
In this section, the strategies to deal with these problems
are discussed, and the scaling laws of different operator
contributions to the two-point function in QCD with an
insertion of the smeared operator are deduced.

In position-space, perhaps the simplest gauge-invariant
smeared operator of quark bilinears is

�̂L;Mðx;a; NÞ

¼ 3

4�N3

Xjnj�N

n

�c ðxÞUðx;xþ naÞc ðxþ naÞYL;Mðn̂Þ;

(24)

where

Uðx;xþ naÞ ¼ eig
R

xþna

x
AðzÞ�dz

¼ 1þ ig
Z xþna

x
AðzÞ � dzþOðg2Þ; (25)

where the actual path defining U will be considered sub-
sequently. As the fermion operator is a spin singlet, S ¼ 0,
the total angular momentum of this operator in the con-
tinuum is J ¼ L. One could also consider operators of
the form

�̂	JL;Mðx;a; NÞ ¼ 3

4�N3

Xjnj�N

n

�c ðxÞ
	Uðx;xþ naÞ

� c ðxþ naÞYL;Mðn̂Þ; (26)

which can be used to form operators with J ¼ Lþ 1, L,
L� 1. It is clear that the set of operators with angular
momentum J will mix under renormalization, but the
vector nature of QCD precludes mixing between the �c c
and �c
	c operators in the chiral limit. However to cap-
ture the main features of operator mixing in the continuum
limit of LQCD, it suffices to work with the simplest
operator, in Eq. (24). At tree level, the contributions of
this operator away from the continuum limit scale in the
same way as in the scalar theory, with contributions that
violate rotational invariance suppressed by �1=N2.

Let us first discuss the one-loop renormalization of
the operator in the continuum. There are four one-loop
diagrams contributing to the operator renormalization as
shown in Fig. 5. The diagram in Fig. 5(a) results from
inserting the LO term in the small coupling expansion of

the operator in the loop. At zero external momentum this
diagram is

�ð5aÞ � �TaTa 3ig
2

4�

Z 1

0
dyy2

Z
d�y

Z d4k

ð2�Þ4

� 
�ðik	
	 þmÞ2
�

ðk2 þm2Þ2k2 eiNak�yYLMð�yÞ; (27)

which is clearly convergent in the UV. Also it contains
L ¼ 0 as well as L ¼ 1 operator as can be seen from the
angular part of the integralX
L0;M0

Z
d�yd�k½f1ðk2; m; k4Þ þ f2ðk2; m; k4Þk � ~
�

� YL0M0 ð�kÞY	
L0M0 ð�yÞYLMð�yÞ

¼ ffiffiffiffiffiffiffi
4�

p
f1ðk2; k4; mÞ�L;0�M;0

þ
ffiffiffiffiffiffiffi
4�

3

s
f2ðk2; k4; mÞjkj�L;1

�

1

�
�M;�1 � �M;1ffiffiffi

2
p

�
þ i
2

�
�M;�1 þ �M;1ffiffiffi

2
p

�
þ 
3�M;0

�
; (28)

where f1 and f2 are some functions of their arguments.
One can check however that asm=� ! 0 (the chiral limit),
the contribution to the L ¼ 1 operator is suppressed by the
quark mass.
The diagrams in Fig. 5(b) comes from the next term

in the expansion of Eq. (25). It is straightforward to show
that the Feynman rule for the one-gluon vertex with zero
momentum insertion into the operator is

V�
g ¼ 3

4�N3

Xjnj�N

n

gan�
1

ðp� p0Þ � na ðe
iðkþp0Þ�na � eip

0�naÞ

� �4ðp� p0 � kÞYL;Mðn̂Þ; (29)

where the radial path between points x and xþ na is taken
in evaluating the link integral, p and p0 are the momenta
of incoming and outgoing fermions respectively, � is the
Lorentz-index of the gluon field, and k is the momentum of
the gluon coming out of the vertex. Note that in principle,
any path between points x and xþ na can be taken in the
above calculation, but if one is interested in deviations
of the renormalized lattice operator from the rotational
invariance compared to the continuum operator, a path
between two points should be chosen in the continuum in

FIG. 5. One-loop QCD corrections to the fermionic two-point function with an insertion of �̂L;M, given in Eq. (24), at zero external
momentum
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such a way that it respects rotational invariance explicitly.
Any path other than the radial path, on the other hand, is
equivalent to infinitely many other paths resulting from
rotated versions of the original path around the radial path.
To reveal rotational invariance at the level of the contin-
uum operator, an averaging over these infinite copies of the
path is needed, and this makes the calculation of the link
more involved.

Now at zero external momentum, using expression (29)
with p ¼ 0, the contribution from the second and third
diagrams in Fig. 5(b) is

�ð5b;5cÞ ��TaTa3g
2

2�

Z 1

0
dyy2

Z
d�y

Z d4k

ð2�Þ4

� ik �yþmy � ~

ðk2þm2Þk2

1

k:y
ðeiNak�y�1ÞYLMð�yÞ: (30)

As is evident, because of a nonoscillatory contribution to
the operator, there is a logarithmically divergent piece from
the above integration contributing to the L ¼ 0 operator,
which along with the logarithmic divergent contribution
from wave function renormalization, contributes to the
anomalous dimension of the operator. Also the angular
integration of the above expression:Z

d�yd�k

�
1þ y � ~


ik � ym
�
ðeiNak�y � 1ÞYLMð�yÞ

¼
Z

d�y½g1ðNayjkjÞ þ g2ðNayjkjÞmy � ~
�YLMð�yÞ;
(31)

indicates that as before, in addition to L ¼ 0 operator, an
L ¼ 1 contribution is present which is finite at UV, and can
be shown to vanish for m=� ! 0. g1 and g2 are some
functions of their arguments whose explicit forms do not
matter for this discussion.

The last diagram in Fig. 5 corresponds to theOðg2Þ term
in the small coupling expansion of the gauge link. It
contains the tadpole of the continuum theory whose value
depends in general on the regularization scheme. For ex-
ample, by using a hard momentum cutoff which is matched
easily with the lattice regularization, it diverges quadrati-
cally. However, it is not hard to see that in dimensional
regularization which respects the full rotational symmetry

of the continuum, it vanishes in d ¼ 4, therefore it does not
contribute to the renormalization of the continuum opera-
tor. But the fourth diagram in Fig. 5 does not only include
the conventional tadpoles, Fig. 6(a), it also contains the
diagram where a gluon is emitted by the Wilson line inside
the operator and then absorbed at another point on the
Wilson line, Fig. 6(b) as a consequence of the matter fields
being separated by a distance na. It is straightforward to
show this diagram is convergent, and scales by �s=j�xj2
where �x is the distance between two gluon vertices and
�s is evaluated at the energy scale of the order of 1=j�xj.
This completes the qualitative discussion of the operator
renormalization and mixing at one-loop order in the
continuum.
Let us start the discussion of the lattice operator by

assuming that its definition is still given by Eq. (24).
However, this can be shown to be a naive definition of
the operator on the lattice. The reason is implicit in the
discussion of tadpoles given above. Although tadpoles are
absent from the operator renormalization in the continuum,
on the lattice, they are nonvanishing, and result in large
renormalizations, as can be seen in perturbative lattice
QCD calculations. As was suggested long ago by Lepage
and Mackenzie [50], to make the perturbative expansion of
the lattice quantities well behaved, and to define an appro-
priate connection between the lattice operators and their
continuum counterparts, one can remove tadpoles from the
expansion of the lattice operators in a nonperturbative
manner by dividing the gauge link by its expectation value
in a smooth gauge,

Uðx; xþ a	̂Þ ! 1

u0
Uðx; xþ a	̂Þ; (32)

where a simpler, gauge invariant choice of u0 uses
the measured value of the plaquette in the simulation,

u0 � h13 TrðUplaqÞi1=4. There remains still another issue

regarding the tadpole contributions to the smeared operator
which is not fully taken care of by the simple single-link
improvement procedure explained above. The operator
introduced in Eq. (24) is smeared over several lattice
sites, and as a result includes extended links. As will be
explained shortly, in spite of Oð�sÞ corrections due
to tadpoles from a single link, there is an OðN�sÞ

FIG. 6. The tadpole contribution consists of the conventional tadpole diagram (a), which vanishes when using a mass-independent
regulator in the continuum (such as dimensional regularization), as well as the diagram shown in (b) which is of the order of �s=j�xj2,
where �x is the distance between two gluon vertices.
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enhancement due to the tadpoles from the extended link
with length �Na. So although a nonperturbative tadpole
improvement could introduce nonnegligible statistical
errors, this improvement is crucial, otherwise the relation
between the lattice smeared operator and the correspond-
ing continuum operator is somewhat obscure.

The reason for the OðN�sÞ enhancement of tadpoles
from the extended links can be illustrated by working out
a particular example. Suppose that the link is extended
between points x and xþ Naê1 entirely along the 1 axis.
Then in order to make a tadpole, not only can each gauge
field be contracted with the other gauge field belonging to
the same elementary link, but also it can be contracted with
a gauge field from one of the remaining N � 1 elementary
links (see Fig. 7). Note that each diagram in Fig. 7 comes
with a multiplicity of N �m, where m is the number of
links between the contracted gluonic vertices. At LO in a,
the corresponding contribution from the extended tadpole
is of the form

�ðETÞ��sa
2
Z �=a

�ð�=aÞ
d4k

eimak1

k21 þ k22 þ k23 þ k24
� �s

m2
; (33)

from which the contribution from all the diagrams in Fig. 7
can be obtained,

XN�1

m¼1

ðN �mÞ �s

m2
¼ OðN�sÞ: (34)

Note that the m ¼ 0 term, corresponding to the first dia-
gram in Fig. 7, has been excluded from the above sum as it
is just the single link tadpole contribution. Given that there
are N single links, the total contribution from single link
tadpoles is OðN�sÞ as well.

Another issue with the extended links is the fact that
without tadpole improvement, breakdown of rotational
symmetry occurs at OðN�sÞ. The reason is that without

tadpole improvement of the extended links, contributions
from the different A1 irreps in a given point shell are
normalized differently. For example, there are more tad-
pole diagrams at Oðg2Þ contributing to an extended link
between points (0, 0, 0) and (2, 2, 1) (five single links) than
to an extended link between points (0, 0, 0) and (3, 0, 0)
(three single links) although both points belong to the
same point shell (i.e., have the same separation in position-
space). This fact magnifies the necessity of tadpole
improvement as well as providing a prescription for an
appropriate improvement of an extended link. As the ex-
pectation value of a link belonging to a given A1 irrep in a
given shell is in general different from the expectation
value of the link belonging to another A1 irrep in the
same shell, one needs to redefine the link in a given irrep
by dividing it by its expectation value in the same irrep,

UAi
1
ðx; xþ anÞ ! 1

uAi
1

UAi
1
ðx; xþ anÞ; (35)

where uAi
1
¼ hUAi

1
ðx; xþ anÞi, and the Ai

1’s are different

A1 irreps belonging to the n2-shell. With this prescription
for tadpole improvement of the extended links, the renor-
malized operator is assured to be safe from large rotational
invariance breaking effects of the order of OðN�sÞ. With
this new definition of the gauge link, Eq. (24) is now awell-
defined lattice operator with an appropriate continuum
limit which can be used in our subsequent analysis.
As the cancellation of the tadpole diagram is assured by

the new definition of the operator, there are only three one-
loop diagrams that contribute to the renormalization of the
lattice operator. The first diagram in Fig. 5 corresponds to
the following loop integral at zero external momentum for
Wilson fermions,

�ð5aÞ � ðigÞ2TaTa 3

4�N3

X
n

Z �=a

�ð�=aÞ
d4k

ð2�Þ4

� eik�na
�

� cos

�
k�a

2

�
� ir sin

�
k�a

2

��

�
0@�i

P
	 
	

sinðk	aÞ
a þMðkÞP

	
sin2ðk	aÞ

a2
þMðkÞ2

1A2

�
�

� cos

�
k�a

2

�
� ir sin

�
k�a

2

��
� i

4
a2

P
� sin

2
�
k�a
2

�YLMð�nÞ; (36)

where MðkÞ � Mþ 2r=a
P

	sin
2ðk	a=2Þ, and r is the

Wilson parameter. Clearly at LO in the lattice spacing,
one recovers the corresponding diagram with the insertion
of the continuum operator, Eq. (27), and so it contributes to
both the L ¼ 0 and L ¼ 1 operators. Note that although
the integration region is not rotationally symmetric like the
continuum integral, the convergence of integral at UV

FIG. 7. Tadpole diagrams contributing to the smeared operator
at one-loop order. Shown in the right are the number of diagrams
of each type.
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ensures that the contributions from nonrotationally sym-
metric integration region II, defined in Sec. II B, are
suppressed by additional powers of 1=N compared to the
rotational invariant region I:

��ð5aÞ � �ig2TaTa 3iL

16�4

Z �

��
dl4

Z ffiffi
3

p
�

�
dll2

Z
fð�lÞ

d�l

� ðil	
	 þmaÞ2
ðl2 þm2a2Þ2l2 YLMð�lÞ

�Z 1

0
dyy2jLðNlyÞ

�
;

(37)

where: l	 ¼ k	a and l2 ¼ l21 þ l22 þ l23. The integrand is

clearly convergent, and the integration region is entirely in
the UV, and so the only dependence on a ¼ 1=ð�NÞ comes
from the integration over the Bessel function, giving a LO
contribution proportional to 1=N2. However, the first sub-
leading contribution from this diagram scales as ��s=N
for Wilson fermions instead of��s=N

2. The reason is that
the small a expansion of the integrand in Eq. (36) includes
terms at OðaÞ which is proportional to the Wilson parame-
ter. The integrand scales as �1=k3 multiplied by the
spherical Bessel function in the UV which still gives rise
to a convergent four-momentum integration for any value
of L,

��ð5a;rÞ � a
Z

d4k
1

k3

�Z 1

0
dyy2jLðNakyÞ

�
� a� ¼ 1

N
:

(38)

These contributions are rotational invariant, and will be
included in the renormalization Z-factor of the operator
when matching the lattice operator with its continuum
counterpart. Further, the integrals that appear at Oða2Þ in
an expansion of Eq. (36) are also convergent, and the terms
containing rotational invariance breaking contributions are
suppressed by 1=N2. This completes discussion of the first
one-loop diagram of Fig. 5.

The second diagram contains the one-gluon vertex
operator, and requires evaluating a line integral over the
path on the grid defining the extended link. As was pointed
out in the discussion of the path in the continuum, in
general any path can be chosen in evaluating the operator
both in the continuum or on the lattice, but requiring the
recovery of rotational symmetry at the level of the operator
means that the extended link has to exhibit rotational
symmetry in the continuum limit. As already discussed,
the simplest rotational invariant path in the continuum is
the radial path between the points, so it makes sense to try
to construct a path on the grid which remains as close as
possible to the radial path between points x and xþ na as
it passes through the lattice sites. One might expect though
that choosing a path in continuum which is the same as
its lattice counterpart is a more legitimate choice. One
example of such a path is an L-shaped path. However, it
is not hard to verify that the L-shaped link does not restore
rotational invariance in the continuum limit as the contin-

uum path explicitly breaks rotational symmetry. So the
problem of evaluating the one-gluon vertex of the smeared
operator is reduced to finding the closest path to the
straight line on the grid. In a lattice calculation, one can,
in principle, construct an algorithm which finds a path on
the three-dimensional grid in such a way that the area
between the path and the rotational invariant radial path
is a minimum. One such algorithm has already been used in
Ref. [32] to construct a path that follows the straight line
between sites A and B as closely as possible, by forming
a diagonal link at each step which has the maximum

projection onto the vector ~AB. By this construction of
‘‘super-links’’, the authors have been able to form arbitrary
(approximate) rotations of the Wilson loops, therefore
constructing glueball operators which project onto a defi-
nite spin J in the continuum limit. However, the analytic
form of the super-link has not been given. In Appendix D, a
method to evaluate the link on such a path is illustrated
with a small number of examples. For the following dis-
cussion, however, a particular example has been consid-
ered which encapsulates the essential features of the
recovery of the rotational invariant path, and gives us an
idea how to deal with the general case.
Suppose that the link connects points x and xþ na on a

cubic lattice where n ¼ a0
a ðQ; 1; 0Þ, and a0 ¼ 2Ka. As

usual a denotes the lattice spacing, and Q is an arbitrary
integer. The continuum limit is recovered when the integer
K tends to infinity for a finite value of a0. Then as is shown
in Appendix D, for a path which is symmetric under
reflection about its midpoint and remains as close as pos-
sible to the vector na (see Fig. 8), the OðgÞ term in the
momentum-space expansion of the link has the following
form

Uð1gÞðqÞ ¼ ig
a0
2K

eiq�na=2
sin

�
q�na
2

�
sin

�
q�na
2Kþ1

� �AyðqÞ þ 2AxðqÞ

� sinðQqxa0=2
Kþ2Þ

sinðqxa0=2Kþ1Þ cos

�
Qqxa0
2Kþ2

þ qya0

2Kþ1

��
:

(39)

As K ! 1 limit which corresponds to a ! 0, one obtains

Uð1gÞðqÞ

¼2igeiq�na=2
sinðq�na2 Þ
q �na

�
A �naþa2

24
ðqxQþqyÞ2A �na

�a2

24
QAxa0ðq2xðQ2�1Þþ3Qqxqyþ3q2yÞþOða4Þ

�
;

(40)

recovering the continuum link, given in Eq. (29), and
contains broken rotational invariance contributions which
are suppressed by�Oða2Þ. This scaling has been shown in
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Appendix D to hold for vectors n of the forms: a0a ðQ; 1; 1Þ,
a0
a ðQ;Q; 1Þ, and a0

a ðQ;Q;QÞ as well.
Let us now examine how the insertion of this contribu-

tion from the operator modifies the scaling of the rotational
invariance violating operators at one-loop. The contribu-
tion from the second diagram in Fig. 5 with the insertion of
this vertex can be calculated order by order in small a by
expanding the vertices and propagators as before. At the
LO one gets

�ð5bÞ��ig2TaTa 3

4�N3

X
n

Z �=a

�ð�=aÞ
d4k

ð2�Þ4
ik	


	þm

ðk2þm2Þk2

�eik�na�1

ik �na YLMð�nÞ
�
an � ~
þa2

24
ðkxQþkyÞ2an � ~


�a2

24
Qðk2xðQ2�1Þþ3Qkxkyþ3k2yÞ
xa0

�
: (41)

Clearly, after adding the contribution from the third diagram
in Fig. 5, theLOcontribution from the above expression, the
first term in the bracket of Eq. (41), recovers the results
obtained previously for the insertion of the continuum
operator, up to suppressed contributions from the integra-
tion region II, as discussed before. Therefore this term
contributes to the L ¼ 0 operator with a logarithmically
divergent coefficient, which along with the wave function
renormalization contributes to the anomalous dimension of
the lattice operator. Note that the wave function renormal-
ization gives rise to a logarithmically divergent contribution
to the L ¼ 0 operator at LO in the lattice spacing, recover-
ing the continuum result, and the subleading contributions
are suppressed at least bya ¼ 1=ðN�Þ forWilson fermions.
This term also contains and L ¼ 1 operator which is pro-
portional to m, and vanishes in the chiral limit.

The second term in the bracket of Eq. (41) is Oða2Þ, and
can be written as

��ð5b;5cÞ;2 ¼ �i
g2a2

8�N3
TaTa

X
n

Z �=a

�ð�=aÞ
d4k

ð2�Þ4

�
�
1þ m

ik � naan � ~

�

eik�na � 1

ðk2 þm2Þk2
� ðkxQþ kyÞ2YLMð�nÞ �Oðg2a0Þ: (42)

This scaling arises as a result of the UV divergence of the
nonoscillatory contribution to the integral and is entirely a
UVeffect. For this term there is no dependence upon n and
as such the factor of N�3 is canceled by a corresponding
N3 from the sum. Terms proportional to the mass are
convergent in the UV, and as such are suppressed by a2

in the continuum limit.
The last term in the above expression Eq. (41) contains

rotational breaking contributions. It is multiplied by an
explicit factor of a2, but as seen in the previous term, the
power divergence of the nonoscillatory part of the integral
gives rise to an overall scaling ofOðg2Þ. This completes the
discussion of the one-loop corrections to the lattice opera-
tor for the specific displacement vector na used above. It is
also straightforward to check the obtained scaling of differ-
ent terms for other choices of the vector na. In general,
subleading contributions to the continuum link are Oða2Þ,
and so by dimensional analysis it has an associated factor
of momentum squared. On the other hand, it always con-
tains a nonoscillatory term, and as a result, the noncontin-
uum contributions and the violations of rotational
symmetry scale as Oð�sÞ.
Given the discussion of the previous paragraphs, we

naively conclude that the rotational symmetry breaking
scales as �Oð�sÞ in the continuum limit. It is the one-
gluon vertex associated with the smeared-operator that is
dominating this behavior, with the contributions from other
diagrams scaling as��s=N for Wilson fermions [Eqs. (36)
and (37)] and �s=N

2 from the other loop diagrams com-
pared with�1=N2 from the tree-level matching. However,
this scaling can be further improved by smearing the
gauge-field. TheOð�sÞ contributions are due to the explicit
factor of a2 being compensated by a quadratic loop diver-
gence, ð�=aÞ2, rendering a suppression by only the cou-
pling in the continuum limit, analogous to the impact of
tadpole diagrams. However, by smearing the gluon field
over a volume of radius 1=�g ¼ aNg,

3 the offending

diagrams in Fig. 5 scale as

FIG. 8 (color online). (a) The link between points x and xþ na for n ¼ ð2; 1; 0Þ which remains as close as possible to the diagonal
link. (b) The link between the same points for n ¼ 2ð2; 1; 0Þ which consists of two separate links of part (a) with the lattice spacing
being halved. (c) The link for n ¼ 2Kð2; 1; 0Þ which consists of 2K separate links of part (a) with the lattice spacing divided by 2K.

3We have distinguished the smearing radius of the operator, N,
from the smearing radius of the gluons, Ng, but in principle they
could be set equal.
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��ð5b;5cÞ;2;3 � �sa
2�2

g � �s

N2
g

; (43)

due to the suppression of the high momentum modes in the
gluon propagator.

The natural question to ask here is what is the scale of the
coupling in this process? Note that the bare coupling con-
stant of lattice QCD suffers from large renormalization as
discussed before, so a better-behaved weak coupling ex-
pansion of the lattice quantities uses a renormalized cou-
pling constant as the expansion parameter. As is suggested
by Lepage and Mackenzie [50], one first fixes the renor-
malization scheme by determining the renormalized cou-
pling �ren

s ðk	Þ from a physical quantity such as the heavy
quark potential. Then the scale of the coupling is set by the
typical momentum of the gluon in a given process. In the
case considered above, the energy scale of the strong cou-
pling constant is dictated by the scale of the gluon smearing
region as the dominant contribution to the integral comes
from this region of the integration: k	 � �=ðNgaÞ. A better

estimate of the scale can be obtained by the method ex-
plained in Ref. [50], but since we are interested in the
continuum limit where a ! 0, this is already a reliable
estimation of the momentum scale of the running coupling.

The analysis in QCD is more complex at one-loop level
than in the scalar theory due to the presence of the gauge-
link required to render the operator gauge-invariant. We
have found that the contributions from the operator defined
in Eq. (24) scale in the same way as those in the scalar
theory, with the violation of rotational symmetry sup-
pressed by factors of �1=N2, but both tadpole improve-
ment of the extended links and smearing of the gauge-field
is required. Our analysis of Wilson fermions reveals the
contributions to matrix elements that violate rotational
invariance in the continuum limit at the one-loop level are
suppressed by factors of ��s=N

2 and ��s=N
2
g, and thus

for a smearing defined in physical units, deviations from
rotational invariance scale as Oða2Þ. Contributions that
scale as��s=N and are proportional to theWilson parame-
ter, conserve angular momentum and can be absorbed by
the operator Z-factor. Most importantly, as in the scalar
theory, there are no mixings with lower dimension opera-
tors that diverge as inverse powers of the lattice spacing.

IV. SUMMARYAND CONCLUSIONS

In this paper, a mechanism for the restoration of rota-
tional symmetry in the continuum limit of lattice field
theories is considered. The essence of this approach is to
construct an appropriate operator on the cubic lattice which
has maximum overlap onto the states with definite angular
momentum in the continuum. In analogy to the operator
smearing proposals given in Refs. [24–26,32,33], the
operator is constructed on multiple lattice sites. Using
spherical harmonics in the definition of the operator is
key to having the leading contributions to the classical

operator be those with the desired angular momentum.
The sizes of the contributions are controlled by the scale
of the smearing of the operator, with sub-leading contribu-
tions to both lower and higher dimensional operators that
violate rotational symmetry being suppressed by 1=N2—
reflective of the pixelation of the operator and fields. The
��4 scalar field theory is shown to preserve this universal
scaling of the leading non-rotationally invariant contribu-
tions at all orders in perturbation theory, compatible with
the finite size scaling results of ��4-type theories near
their rotational invariant fixed points [48,49]. The same
can be shown to be true in g�3 scalar field theory.
Gauge invariance somewhat complicates the construc-

tion and analysis of analogous operators in QCD. Although
the tree-level lattice operator in QCD exhibits the same
scaling properties as the scalar operator, extended gauge-
links connecting the quark fields generate gluonic interac-
tions that contribute to loop diagrams that are power-law
divergent. Such contributions are either eliminated by tad-
pole improvement of the extended links, or are suppressed
by smearing of the gauge-field. We find that it is the
physical length-scales and continuum renormalization-
scale that dictate the size of matrix elements. The leading
noncontinuum corrections from the one-loop diagrams
preserve angular momentum, scaling as ��sa for Wilson
fermions, and can be absorbed by the operator Z-factor. In
contrast, contributions that violate rotational symmetry are
suppressed by �sa

2 as a ! 0. While we have chosen a
specific form for the smeared operator, we expect that the
results, in particular the scaling of the violations to rota-
tional symmetry, are general features of a smeared operator
with any (smooth) profile. Also, it is worth mentioning that
although the calculations preformed in this work, and the
subsequent conclusions, relate operators and matrix ele-
ments in H(3) to those in O(3), the methodology and results
are expected to hold in relations between H(4) and O(4).
Instead of working with operators formed with spherical
harmonics to recover SO(3) invariance, one would work
with operators formed with hyper-spherical harmonics to
recover O(4) symmetry.
We conclude the paper by discussing the practicality of

our result for the current LQCD calculations as well as
its connection to the infra-red (IR) rotational invariance
recovery of the lattice theories:
(i) It is important to understand and to quantify the

violation of angular momentum conservation in the
states and matrix elements calculated using lattice
QCD with the lattice spacings currently employed.
One interesting result is that by using the tadpole-
improved operator extended over several lattice sites
and built from the smeared gauge links, the quantum
corrections introduce noncontinuum corrections to
the tree-level results that are suppressed by at least
�s, i.e., they do not introduce power-divergent con-
tributions. As an example, suppose that a lattice
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calculation aims to determine a matrix element of an
operator with L ¼ 3. Then, as is demonstrated in
Fig. 9, the coefficient of the lower dimensional de-
rivative operator with L ¼ 1 is almost 10 times
larger than the coefficient of the L ¼ 3 derivative
operator when the operator is defined over one lattice
site, N ¼ 1. The computational time required to
accurately perform the subtraction of the L ¼ 1
contribution is significant for a smearing scale of,
say, �� 2 GeV. Fortunately, by halving the lattice
spacing and smearing the operator over just two
point shells (N ¼ 2), the contamination from the
lower dimensional operator is reduced by a factor
of �3, requiring a factor of �10 less computational
resources to accurately perform the subtraction at the
same level of precision. Further, by smearing the
operator over ten point shells, the contamination
from the lower dimensional operator is reduced to
�1% of its value at N ¼ 1. Given that the lattice
spacing associated with � ¼ 2 GeV is a� 0:1 fm
for N ¼ 1, to be able to smear out to the N ¼ 2 shell
requires a lattice spacing of a� 0:05 fm, pushing
the limits of current lattice generation. To smear out
to theN ¼ 10 shell would require a lattice spacing of
a� 0:01 fm which is currently impractical.

(ii) The restoration of rotational invariance as discussed
in this paper regards only the UV asymptote of the
lattice theories: as one reaches a good pixelation of a
region of spacewhere the lattice operator probes, the
identification of eigenstates of the angular momen-
tum operator becomes possible. In other words, the
more point-shells included in the lattice operator, the
larger overlap the operator has onto a definite angu-
lar momentum state. However, the full recovery of
rotational invariance in the lattice theories requires
the suppression of rotational symmetry breaking

contributions to the physical quantities not only as
a result of short-distance discretization effects, but
also as a result of boundary effects of the finite cubic
lattice in the IR regime of the theories. The finite size
of the lattice imposes (anti-)periodic boundary con-
ditions on the lattice wave functions which enforces
the lattice momenta to be discretized, p ¼ 2�n

L ,

where L is the spatial extent of the lattice and n is
a vector of integers. The IR rotational invariant
theory is achieved as the lattice becomes infinitely
large, corresponding to a large number of point-
shells in the momentum-space. However, beyond
this intuitive picture, one needs to examine in a
quantitative way how this recovery takes place in
the large volume limits of the lattice theories in the
same way as it was discussed for small lattice spac-
ing limit of the theories. One quantitative explana-
tion of this IR recovery, has been given recently in
Ref. [51] in the context of the extraction of phase
shifts in higher partial-waves from the energies of
scattering particles in a finite volume using
Lüscher’s method. The idea is that as one includes
higher momentum shells, the number of occurrence
(multiplicity) of any given irrep of the cubic group
increases. As a result, for a fixed energy in the large
volume limit, linear combinations of different states
of a given irrep can be formedwhich can be shown to
be energy eigenstates; and the energy-shift of each
combination due to interactions is suppressed in all
but one partial-wave in the infinite-volume limit. So,
although each irrep state has an overlap onto infi-
nitely many angular momentum states, the high
multiplicity of a given irrep in a large momentum
shell generates energy-eigenstates which dominantly
overlap onto states of definite angular momentum,
and the mixing with other angular momentum states
becomes insignificant in the large volume limit. This
picture also helps to better understand themechanism
of the UV rotational invariance recovery due to the
operator smearing. It is the high multiplicity of the
irreps in large (position-space) shells that is respon-
sible for projecting out a definite angular momentum
eigenstate. These large shells are obtained by reduc-
ing the pixelation of the lattice by taking a ! 0 in
position-space, or increasing the size of the lattice by
taking L ! 1 in momentum-space—both are re-
quired in order to recover rotational invariance from
calculations performed on a lattice.
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APPENDIX A: OPERATOR BASIS

In this appendix, a basis for composite local operators is
presented. Any local operator that is bilinear in the scalar
field with L spatial indices, and that is invariant under
cubic transformations, can be written as

O ðdÞ
i1i2...iL

ðxÞ ¼ �yðxÞQðdÞ
i1i2...iL

�ðxÞ; (A1)

where QðdÞ
i1i2...iL

is a homogeneous function of the operator

ri, and degree d (d � L) is defined to be the number of
r’s. Their forms are determined by the symmetric traceless
tensor of rank L that respect cubic symmetry constructed
from d r’s. The operators composed of fewer than seven
derivatives and with no spatial indices are

Oð0ÞðxÞ ¼ �yðxÞ�ðxÞ
Oð2ÞðxÞ ¼ �yðxÞr2�ðxÞ
Oð4ÞðxÞ ¼ �yðxÞðr2Þ2�ðxÞ

Oð4;RVÞðxÞ ¼ �yðxÞX
j

r4
j�ðxÞ

Oð6ÞðxÞ ¼ �yðxÞðr2Þ3�ðxÞ
Oð6;RV;1ÞðxÞ ¼ �yðxÞr2

X
j

r4
j�ðxÞ

Oð6;RV;2ÞðxÞ ¼ �yðxÞX
j

r6
j�ðxÞ:

(A2)

Except for three of these operators which explicitly break
the rotational symmetry, they transform as L ¼ 0 under
rotations.
The operators with one spatial index with up to six

derivatives are

Oð1Þ
i ðxÞ ¼ �yðxÞri�ðxÞ

Oð3Þ
i ðxÞ ¼ �yðxÞr2ri�ðxÞ

Oð5Þ
i ðxÞ ¼ �yðxÞðr2Þ2ri�ðxÞ

Oð5;RVÞ
i ðxÞ ¼ �yðxÞX

j

r4
jri�ðxÞ:

(A3)

There is one operator which breaks rotational invariance,
and the rest transform as L ¼ 1 under rotations.
The operators with two spatial indices with up to six

derivatives are

Oð2Þ
ij ðxÞ ¼ �yðxÞ

�
rirj � 1

3
�ijr2

�
�ðxÞ

Oð4Þ
ij ðxÞ ¼ �yðxÞr2

�
rirj � 1

3
�ijr2

�
�ðxÞ

Oð6Þ
ij ðxÞ ¼ �yðxÞðr2Þ2

�
rirj � 1

3
�ijr2

�
�ðxÞ

Oð6;RVÞ
ij ðxÞ ¼ �yðxÞX

k

r4
k

�
rirj � 1

3
�ijr2

�
�ðxÞ:

(A4)

There is one operator which breaks rotational invariance,
and the rest transform as L ¼ 2 under rotations.
Operators with three, four, and five spatial indices which

have L ¼ 3, L ¼ 4, and L ¼ 5, respectively are listed
below. There is no operator which breaks rotational invari-
ance up to six derivatives:

Oð3Þ
ijkðxÞ ¼ �yðxÞ

�
rirjrk � 1

5
r2ð�ijrk þ �jkri þ �kirjÞ

�
�ðxÞ

Oð5Þ
ijkðxÞ ¼ �yðxÞr2

�
rirjrk � 1

5
r2ð�ijrk þ �jkri þ �kirjÞ

�
�ðxÞ;

(A5)

Oð4Þ
ijklðxÞ ¼ �yðxÞ

�
rirjrkrl � 1

7
r2ð�ijrkrl þ �ikrjrl þ �ilrkrj þ �jkrirl þ �jlrirk þ �klrirjÞ

þ 1

35
ðr2Þ2ð�ij�kl þ �ik�jl þ �il�jkÞ

�
�ðxÞ

Oð6Þ
ijklðxÞ ¼ �yðxÞr2

�
rirjrkrl � 1

7
r2ð�ijrkrl þ �ikrjrl þ �ilrkrj þ �jkrirl þ �jlrirk þ �klrirjÞ

þ 1

35
ðr2Þ2ð�ij�kl þ �ik�jl þ �il�jkÞ

�
�ðxÞ; (A6)

Oð5Þ
ijklmðxÞ ¼ �yðxÞ

�
rirjrkrlrm � 1

7
r2ð�ijrkrlrm þ �ikrjrlrm þ �ilrkrjrm þ �imrkrlrj þ �jkrirlrm

þ �jlrkrirm þ �jmrkrirl þ �klrirjrm þ �kmrirjrl þ �lmrirjrkÞ
þ 1

63
ðr2Þ2½ð�ij�kl þ �ik�jl þ �il�jkÞrm þ ð�ij�km þ �ik�jm þ �im�jkÞrl þ ð�ij�ml þ �im�jl þ �il�jmÞrk

þ ð�im�kl þ �ik�ml þ �il�mkÞrj þ ð�mj�kl þ �mk�jl þ �ml�jkÞri�
�
�ðxÞ: (A7)
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Note that as demonstrated in Eq. (A2), there can be more
than one operator that breaks rotational invariance at a
given order in derivative expansion. To arrive at a notation
that is general and useful, one can use the fact that any
cubically invariant polynomial of a three-vector V, can be
expanded in terms of only three cubically invariant struc-
tures, X

k

V2
k ;

X
k

V4
k ;

X
k

V6
k : (A8)

The number of times each structure appears in a derivative
operator, as well as the number of free indices, uniquely
specifies the operator. For example, with nine derivatives
and one spatial index, one can make four independent
operators,

Oð4;0;0Þ
i ðxÞ ¼ �yðxÞðr2Þ4ri�ðxÞ

Oð2;1;0Þ
i ðxÞ ¼ �yðxÞðr2Þ2

�X
k

r4
k

�
ri�ðxÞ

Oð1;0;1Þ
i ðxÞ ¼ �yðxÞðr2Þ

�X
j

r6
j

�
ri�ðxÞ

Oð0;2;0Þ
i ðxÞ ¼ �yðxÞ

�X
k

r4
k

�
2ri�ðxÞ;

(A9)

and generally,

Oðm;n;pÞ
i ðxÞ ¼ ðr2Þm

�X
k

r4
k

�
n
�X

k

r6
k

�
pri�ðxÞ: (A10)

It is then obvious that d ¼ 2mþ 4nþ 6pþ L gives the
total number of derivatives in the operator, where L is the
number of free indices. For n ¼ p ¼ 0, the operator is
rotationally invariant with angular momentum L.

APPENDIX B: ROTATIONAL INVARIANCE
VIOLATING COEFFICIENTS : AN EXAMPLE

In this appendix, an explicit derivation of a rotational
invariance violating coefficient in both coordinate-space,
and momentum-space formalism, introduced in Sec. II,
is presented. Consider the position-space operator

�̂ð4Þ00 ðx;a; NÞ where superscript indicates that only opera-

tors with four derivatives are retained in the expansion

of �̂00. The goal is to derive the LO correction to the

continuum values of coefficients Cð4Þ
00;00 and Cð4;RVÞ

00;00 :

�̂ð4Þ00 ðx; a;NÞ ¼ �ðxÞ½ðNaÞ4Cð4Þ
00;00ðr2Þ2

þ ðNaÞ4Cð4;RVÞ
00;00 ðr4

x þr4
y þr4

zÞ��ðxÞ

¼ 3

4�

ðaNÞ4
4!

X
P

Z 1

0
dyy6

Z
d�ye

i2�Np�y

��yðxÞðŷ � rÞ4�ðxÞY00ð�yÞ: (B1)

The y integration isZ 1

0
dyy6

Z
d�ye

i2�Np�yyiyjykyl

¼ �ðpipjpkplÞ þ 
ð�ij�kl þ �ik�jl þ �il�jkÞ
þ �ðpipj�kl þ pipk�jl þ pipl�jk þ pkpl�ij

þ pjpl�ik þ pjpk�ilÞ; (B2)

and the coefficients �, �, and 
 can be determined. It
is easy to see that coefficient � makes the dominant
contribution in the large N limit. Using

X
p

fðp2Þðp:AÞ4 ¼ X
p

fðp2Þ
�
�jAj4 þ 

X
j

ðAjÞ4
�
; (B3)

for any rotational invariant function f of the vector p,
with

� ¼ 1

2
ðjpj4 � 3p4

zÞ;  ¼ 1

2
ð5p4

z � jpj4Þ; (B4)

one finds that the deviations of Cð4Þ
00;00 and Cð4;RVÞ

00;00 from

their continuum values are

�Cð4Þ
00;00¼

1

96
ffiffiffiffi
�

p X
p�0

�
�3cosð2�NjpjÞ

4�2jpj6N2

�
ð�3p4

zþjpj4Þ

�Cð4;RVÞ
00;00 ¼ 1

96
ffiffiffiffi
�

p X
p�0

�
�3cosð2�NjpjÞ

4�2jpj6N2

�
ð5p4

z�jpj4Þ:

(B5)

The emergence of rotational invariance violating coef-
ficients from the momentum-space construction is some-
what less obvious. From Eqs. (14) and (15) the operator

~̂�
ð4Þ
00 ðk; a;NÞ can be written as

~̂�
ð4Þ
00 ðk;a; NÞ ¼ ~�ðkÞ ~�ð�kÞ½ðNaÞ4Cð4Þ

00;00jkj4 þ ðNaÞ4Cð4;RVÞ
00;00 ðk4x þ k4y þ k4zÞ�

¼ ~�ðkÞ ~�ð�kÞ6 ffiffiffiffi
�

p X
p

X
L1;M1;L2;M2

iL1þL2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2L1 þ 1Þð2L2 þ 1Þ

2Lþ 1

s
hL10;L20j00ihL1M1;L2M2j00i

� YL1M1
ð�k̂ÞYL2M2

ð�p̂Þ
Z 1

0
dyy2jL1

ðaNjkjyÞjL2
ð2�NjpjyÞjk4 ; (B6)

where only the terms of order k4 are retained from the integral. As such, only L1 ¼ 4 with Y4
4ð�p̂Þ and Y40ð�p̂Þ, and
L1 ¼ 0 with Y00ð�p̂Þ, contribute to the sum. This reduces the relation to
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~̂�
ð4Þ
00 ðk;a; NÞ ¼ 6

ffiffiffiffi
�

p X
p

	
Y00ð�k̂ÞY00ð�p̂Þ

Z 1

0
dyy2

ðaNjkjyÞ4
120

j0ð2�NjpjyÞ þ 9½h40; 40j00i2Y40ð�k̂ÞY40ð�p̂Þ

þ h40; 40j00ih44; 4� 4j00iY44ð�k̂ÞY4�4ð�p̂Þ þ h40; 40j00ih4� 4; 44j00iY4�4ð�k̂ÞY44ð�p̂Þ�

�
Z 1

0
dyy2

ðaNjkjyÞ4
945

j4ð2�NjpjyÞ


: (B7)

Using the relations

X
p

fðp2Þðjpj4Y40ð�p̂ÞÞ¼21

16

ffiffiffiffi
1

�

s X
p

fðp2Þð5p4
z�jpj4Þ; X

p

fðp2Þðjpj4Y4
4ð�p̂ÞÞ¼ 3

16

ffiffiffiffiffiffiffi
35

2�

s X
p

fðp2Þð5p4
z�jpj4Þ; (B8)

and keeping the LO term in 1=N from the y integration gives

~̂�
ð4Þ
00 ðk;a; NÞ ¼ 3ðaNjkjÞ4X

p�0

�
� cosð2�NjpjÞ

4�jpj2N2

�	
1

120
Y00ð�k̂Þ þ

ffiffiffiffiffiffiffi
4�

p
945

ð5p4
z � jpj4Þ

�
�
21

16

ffiffiffiffi
1

�

s
Y40ð�k̂Þ þ

3

16

ffiffiffiffiffiffiffi
35

2�

s
ðY4�4ð�k̂Þ þ Y44ð�k̂ÞÞ

�

: (B9)

Finally, we use the relation

k4x þ k4y þ k4z

jkj4 ¼ 6
ffiffiffiffi
�

p
5

Y00ð�k̂Þ þ
4

ffiffiffiffi
�

p
15

Y40ð�k̂Þ þ
2

3

ffiffiffiffiffiffiffi
2�

35

s
ðY4�4ð�k̂Þ þ Y44ð�k̂ÞÞ; (B10)

to identify the coefficients �Cð4Þ
00;00 and �Cð4;RVÞ

00;00 from Eq. (B9)

�Cð4Þ
00;00¼

1

96
ffiffiffiffi
�

p X
p�0

�
�3cosð2�NjpjÞ

4�2jpj6N2

�
ð�3p4

zþjpj4Þ; �Cð4;RVÞ
00;00 ¼ 1

96
ffiffiffiffi
�

p X
p�0

�
�3cosð2�NjpjÞ

4�2jpj6N2

�
ð5p4

z�jpj4Þ; (B11)

which recovers the position-space results given in Eq. (B5).

APPENDIX C: MATRIX ELEMENTS FOR
NONZERO EXTERNAL MOMENTUM

The loop calculations presented in the body of this
paper have been performed for vanishing external mo-
mentum, therefore only the quantum corrections to the
L ¼ 0 operator have been considered. In this appendix,
the generalization to nonzero external momentum is
presented, where the one-loop correction to the two-point
function with an insertion of the smeared operator is
considered in scalar g�3 theory, see Fig. 10. The loop
integral to be evaluated is

JLM ¼ 3

4�N3

Xjnj�N

n

Z �=a

�ð�=aÞ
d4k

ð2�Þ4

� eik�na

ðk̂2 þm2Þ2ðð dkþ PÞ2 þm2Þ
YLMð�nÞ; (C1)

where

k̂2 ¼ 4

a2
X
	

sin2
�
k	a

2

�
;

ð dkþ PÞ2 ¼ 4

a2
X
	

sin2
�ðk	 þ P	Þa

2

�
:

(C2)

FIG. 10. One-loop contribution to the two-point function with
an insertion of the operator in g�3
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Note that the operator is smeared over a physical region whose size is small compared to the hadronic scale, and as a result
the external momenta are small compared to the scale of the operator � ¼ 1=Na. Therefore one may perform a Taylor
expansion of the loop integral in Pi=� to obtain

JLM ¼ 3

16�4
iL

1

�2

Z �N

��N
dq4d
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�Z 1

0
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�
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sin2
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qi
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þ 4N2sin2
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q4
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��2
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sin2
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qi
2N

�
þ 4N2sin2
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q4
2N
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2N�

�
þm2

�2

��1

� X1
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264�
4N2

P
3
i¼1

1
2 sin

�
qi
N

�
sin

�
Pi

N�

�
þ 4N2

P
3
i¼1 cos

�
qi
N

�
sin2

�
Pi

2N�

�
4N2

P3
i¼1 sin

2
�
qi
2N

�
þ 4N2sin2

�
q4
2N þ P4

2N�

�
þ m2

�2

375k

;

(C3)

where q ¼ k=�, q4 ¼ k4=�, and only the leading term in
the Poisson sum is retained. As was shown before, the
nonzero terms in the Poisson sum are suppressed by at
least 1=N2 compared to the continuum operator insertion
in the loop.

The first term in the above Taylor expansion corresponds
to the zero external momentum in the loop, therefore at
LO, it contributes to the L ¼ 0 operator, and the sublead-
ing rotational invariance breaking operators can be easily
shown to be suppressed by 1=N2 using the procedure
described in Sec. II B. Note that the loop integrals one
needs to deal with in g�3 are more convergent than com-
parable integrals in ��4 theory, which simplifies the dis-
cussion of the scaling of the different contributions.

The next term in the Taylor expansion of the loop
integral can be expanded in large N since the integral is
convergent. The numerator has an expansion of the form

Num:� 4N2
X3
i¼1

1

2
sin

�
qi
N

�
sin

�
Pi

N�

�

þ 4N2
X3
i¼1

cos

�
qi
N

�
sin2

�
Pi

2N�

�

¼ 2P � q
�

þ jPj2
�2

þO
�
1

N2

�
; (C4)

where the rotational invariance breaking terms are sup-
pressed by at least 1=N2, and the leading contribution to
the above integral modifies the L ¼ 1 matrix element,
while the L ¼ 0 term is suppressed by 1=� compared to
the L ¼ 1 contribution. The next terms in the Taylor
expansion give rise to contributions to the L ¼ 2; 3; . . .
matrix elements at the LO in 1=�, while the rotational
invariance violating terms remain suppressed by at least
1=N2 compared to the LO contributions.

APPENDIX D: LINKS ON THE GRID

In this appendix, the method to evaluate the link atOðgÞ
on a three-dimensional grid is outlined through an
example, and the result is generalized to other similar

cases. The link is constructed to be the closest link to the
continuum diagonal link in the continuum.
Suppose that the link lies between points x and xþ na

on a cubic lattice where: na ¼ a0ðQ; 1; 0Þ.Q is an arbitrary
integer and a0 is a finite number denoting the original
lattice spacing which is not necessarily small. Then the
paths which make minimal area with the diagonal path can
be formed easily. Among those, the paths which are sym-
metric under reflection around the midpoint of the path are
desired since they have somewhat simple forms. One such
path is shown in Fig. 8(a) for Q ¼ 2, where it is straight-
forward to show that:

Uð1gÞ
ðQ;1;0ÞðqÞ ¼ iga0e

iq�na=2
�
AyðqÞ þ 2AxðqÞ sinðQqxa0=4Þ

sinðqxa0=2Þ
� cos

�
Qqxa0

4
þ qya0

2

��
: (D1)

If the lattice spacing is halved, the closest link to the
diagonal path can be obtained by adding up two paths
each of the form above with an appropriate phase factor
and where na is replaced by na=2, Fig. 8(b),

Uð1gÞ
ðQ;1;0ÞðqÞ¼ ig

a0
2
eiq�na=2

sinðq�na2 Þ
sinðq�na4 Þ

�
AyðqÞþ2AxðqÞ

�sinðQqxa0=8Þ
sinðqxa0=4Þ cos

�
Qqxa0

8
þqya0

4

��
: (D2)

This process can be repeated to build extended gauge links
on finer grids. For the general case, where the original
lattice spacing is divided by 2K, it is not hard to show that

Uð1gÞ
2KðQ;1;0ÞðqÞ ¼ ig

a0
2K

eiq�na=2
sin

�
q�na
2

�
sin

�
q:na
2Kþ1

� �AyðqÞ þ 2AxðqÞ

� sinðQqxa0=2
Kþ2Þ

sinðqxa0=2Kþ1Þ cos

�
Qqxa0
2Kþ2

þ qya0

2Kþ1

��
:

(D3)
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The continuum limit is obtained by taking K ! 1, which corresponds to a ¼ a0=2
K ! 0, recovering Eq. (40). Note that

after interchanging the gauge field indices properly, this expression is applicable to a class of n vectors with one zero
component and ni=nj ¼ Q for the ratio of the remaining components.

The above expression for the gauge link in Eq. (D3) can be generalized easily to another class of n vectors with one
component being equal to Q and the other two components each being one. For example for na ¼ a0ðQ; 1; 1Þ one obtains

Uð1gÞ
2KðQ;1;1ÞðqÞ ¼ ig

a0
2K

eiq�na=2
sinðq�na2 Þ
sinðq�na

2Kþ1Þ
�
AzðqÞeiqya0=2Kþ1 þ AyðqÞe�iqza0=2

Kþ1

þ 2AxðqÞ sinðQqxa0=2
Kþ2Þ

sinðqxa0=2Kþ1Þ cos

�
Qqxa0
2Kþ2

þ qya0

2Kþ1
þ qza0

2Kþ1

��
: (D4)

However, since the vector na is symmetric in its y and z components, the link has to respect this symmetry as well. In fact,
there exist an equivalent path which arises from the first path by interchanging the steps in the y direction and the
z direction. Taking an average of these two paths gives a link which is symmetric in the y and z components,

�Uð1gÞ
2KðQ;1;1ÞðqÞ ¼ ig

a0
2K

eiq�na=2
sinðq�na2 Þ
sinðq�na

2Kþ1Þ
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�
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�
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�
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�
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Kþ2Þ

sinðqxa0=2Kþ1Þ cos

�
Qqxa0
2Kþ2

þ qya0

2Kþ1
þ qza0

2Kþ1

��
: (D5)

Taking the K ! 1 limit of the above link gives rise to the rotational invariant link as well as noncontinuum corrections
which start at Oða2Þ.

Another class of n vectors are those where two components are equal to Q while the other one is equal to one. For
example for na ¼ a0ðQ;Q; 1Þ the link which is symmetric with respect to x and y can be shown to have the form:

�Uð1gÞ
2KðQ�Q�1Þ ¼ ig

a0
2K

eiq��x=2
sinðq��x

2 Þ
sinðq��x

2Kþ1 Þ
�
2

�
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�
qya0

2Kþ1

�
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�
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2Kþ1

��
sinðQðqxa0 þ qya0Þ=2Kþ2Þ
sinððqxa0 þ qya0Þ=2Kþ1Þ

� cos

�
Qqxa0
2Kþ2

þQqya0

2Kþ2
þ qza0

2Kþ1

�
þ AzðqÞ

�
; (D6)

where �U the average of two links which are identical upon interchanging the x and y coordinate axes. This link recovers the
rotational invariant link up to corrections of Oða2Þ.

For n vectors with equal components, na ¼ a0ðQ;Q;QÞ, there are six equivalent links which are averaged over to obtain

�Uð1gÞ
2KðQ�Q�QÞ ¼ ig

a0
2K

eiq��x=2
sinðq��x

2 Þ
sinðq��x

2Kþ1 Þ
�
2

�
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�
qya0

2Kþ1
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��
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sinððqxa0þqya0þqza0Þ=2Kþ1Þ cos

�
Qqxa0
2Kþ2
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2Kþ2
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2Kþ2

��
; (D7)

which results in Oða2Þ corrections to the rotational invariant continuum path. It is the case that determining the link for a
general extended path is quite involved, but the general trend that the deviation from the rotationally invariant continuum
path is Oða2Þ is anticipated.
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