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We calculate perturbative contributions of Wilson loops of various sizes up to order 20 in SUð3Þ pure
lattice gauge theory at different lattice sizes for the Wilson gauge action using the technique of numerical

stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson

loops at high orders of the perturbation theory. We observe differences in the behavior of the series as a

function of the loop order n. Up to n ¼ 20 we do not find evidence for the factorial growth of the

expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed

behavior we sum the series in a model parametrized by hypergeometric functions. For Wilson loops of

moderate sizes the summed series in boosted perturbation theory reach stable plateaus for moderate

perturbative order already. The coefficients in the boosted series become much more stable in the result of

smoothing the coefficients of the original series effected by the hypergeometric model. We introduce

generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from

standard Monte Carlo measurements they enable us to assess their nonperturbative parts.
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I. INTRODUCTION

Since the nonperturbative gluon condensate has been
introduced by Shifman, Vainshtein and Zakharov [1] there
have been many attempts to obtain reliable numerical
values for this quantity. It has become clear that lattice
gauge theory provides a promising tool to calculate the
gluon condensate from first principles using Wilson loops
WNM of various sizes N �M. The perturbative expansion
of the Wilson loop—which does not depend on an external
scale—is especially simple since it cannot depend on
logarithms. In Refs. [2,3] the plaquette was used whereas
larger Wilson loops have been investigated in Refs. [4,5].
In all cases it turned out that knowledge—as precisely as
possible—of the large order perturbative tail of the Wilson
loops is crucial. In the last decade, the application of the
numerical stochastic perturbation theory (NSPT) [6] has
pushed the perturbative order of the plaquette up to order
n ¼ 10 [7] and even n ¼ 16 [8].

Apart from the desired evaluation of the gluon conden-
sate, there is a general interest in the behavior of the
perturbative series in QCD (for an investigation see
Ref. [9]). In the perturbation theory, observables can be
written as a series of the form

O �X
n

cn�
n; (1)

where � denotes some generic coupling, e.g., �s. It is
generally believed that these series are asymptotic ones,
and it is often assumed that for large n the leading growth
of the coefficients cn can be parametrized as [10]

cn � C1ðC2Þn�ðnþ C3Þ; (2)

with some constants C1, C2, C3, i.e., they show a factorial
behavior.
Using the technique of NSPT one can reach loop orders

of the perturbation theory where a possible set-in of this
assumed behavior becomes testable. In Ref. [11] Narison
and Zakharov discussed the difference between short and
long perturbative series and the impact on the determina-
tion of the gluon condensate.
In this paper we present perturbative calculations of

Wilson loops in NSPT for the Wilson gauge action (with
� ¼ 6=g2)

SW½U� ¼ �
X
P

�
1� 1

6
TrðUP þUy

PÞ
�
; (3)

up to order n ¼ 20 for lattice sizes L4 with L ¼ 4, 6, 8, 12.
The computations for L ¼ 12 were performed on a
NEC SX-9 computer at the Research Center for Nuclear
Physics, Osaka University, all the rest on Linux/HP clusters
at Leipzig University.
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The paper is organized as follows. In Sec. II we explain
how the loop order expansion of Wilson loops has been
obtained in NSPT. In Sec. III we discuss a model which
allows us to sum up completely the obtained Wilson loops
series on finite lattices. As an alternative we apply boosted
perturbation theory: due to a rearrangement of the series
one obtains good convergence of the sum up to relatively
low loop order already. These results are used to estimate
the gluon condensate in Sec. IV. Finally we draw our
conclusions.

Some preliminary results have been presented in recent
lattice proceedings [12,13]. In the present work we give the
computational details of the Langevin calculation for the
final statistics reached and significantly extend the analysis
part using boosting and series summation as well as adding
new aspects to the analysis of Wilson loops of moderate
size.

II. NSPT AND WILSON LOOPS UP TO 20 LOOPS

A. The strategy of NSPT

Numerical stochastic perturbation theory—based on sto-
chastic quantization [14]—allows perturbative calculations
on finite lattices up to finite but high loop order n, unrivaled
by the standard diagrammatic approach in lattice perturba-
tion theory. Practical limits are set only by computer time,
storage limitations and machine precision. For instance, in
order to calculate in the n-loop order in the simplest
realization of NSPT in the Euler scheme, one has to keep
simultaneously links corresponding to roughly 2n gauge
field configurations for a given lattice size. If one wants to
keep for practical reasons also the gauge fields (vector
potentials) besides the gauge field links themselves, the
storage requirement is even doubled. In addition, the com-
puter time of the Langevin simulation scales quite se-
verely; we found it roughly goes like n3.

The algorithm of NSPT has been introduced and dis-
cussed in detail in Refs. [6,15]. For convenience, we will
repeat the main points for the pure SUð3Þ lattice gauge
theory. The stochastic evolution of the gauge field links
Ux;�, located at the link between lattice sites x and xþ �̂,

occurs in an additional ‘‘Langevin time’’ �. This process is
described by the Langevin equation

@

@�
Ux;�ð�;�Þ ¼ ifrx;�SW½U� � �x;�ð�ÞgUx;�ð�;�Þ: (4)

The so-called drift term is given by the variation of the
Euclidean gauge action SW½U�: it is written in terms of the
left Lie derivative rx;� which keeps the links in the SUð3Þ
group manifold. The process is made stochastic by additive
white noise �x;�ð�Þ. In the limit of large � the distribution

of subsequent, simultaneous gauge link fields converges to
the Gibbs measure P½U� / expð�SW½U�Þ.

As in any numerical approach one needs to discretize the
Langevin time as a sequence � ! k�, with running step
number k. It is known that, in order to extract correct

equilibrium physics, one needs to perform the double
extrapolation k ! 1 and � ! 0, the latter in order not to
violate detailed balance. For the numerical solution of the
Langevin equation we adhere to a particular version of the
Euler scheme that guarantees all the link matrices Ux;� 2
SUð3Þ to stay in the group manifold:

Ux;�ðkþ 1;�Þ ¼ expðiFx;�½U;��ÞUx;�ðk;�Þ; (5)

with the force term for the update of the gauge links
Ux;�ðk;�Þ in the form

Fx;�½U;�� ¼ �rx;�SW½U� þ ffiffiffi
�

p
�x;�; (6)

� being a traceless 3� 3 noise matrix. In case of the
Wilson gauge action that force term takes the form

Fx;� ¼ ��

12

X
UP�Ux;�

�
ðUP �Uy

PÞ �
1

3
TrðUP �Uy

PÞ1
�

þ ffiffiffi
�

p
�x;�: (7)

We expand each link matrix at any time step in the bare
coupling constant g around the trivial vacuum Ux;� ¼ 1.
Since � ¼ 6=g2, the expansion reads

Ux;�ðk;�Þ ! 1þ X
m�1

��m=2UðmÞ
x;�ðk;�Þ: (8)

If one rescales the time step to " ¼ ��, the expansion (8)
converts the Langevin equation, Eq. (5), into a system of
simultaneous updates in terms of the expansion coeffi-

cients of UðmÞ
x;�ðk;�Þ and of similar expansion coefficients

for the force Fx;� in (7), but free of adjustable constants.

While the random noise � enters only the lowest order
equation, higher orders are rendered stochastic by the noise
propagating from lower to higher order terms. The system
is usually truncated according to the maximal order of the
perturbative gauge link fields one is interested in.
For NSPT it is indispensable to perform stochastic gauge

fixing by using a variant of gauge transformations,

UG
x;� ¼ GxUx;�G

y
xþ�̂; (9)

with Gx derived from the Landau gauge and expanded in
powers of 1=

ffiffiffiffi
�

p � g. A convenient solution for the gauge
transformation G comes with the choice

Gx ¼ exp

�
��

X
�

�
Axþ�̂=2;� � Ax��̂=2;�

a

��
; (10)

where the series variant of the expression has to be taken.
Here the (anti-Hermitian) vector potential Axþ�̂=2;� is re-

lated to the link matrices Ux;� via

Axþ�̂=2;� ¼ logUx;�; (11)

and an expansion similar to (8) taking values in the algebra
suð3Þ is applied for the potential.
The need for stochastic gauge fixing comes from the fact

that the diffusion of the longitudinal component of the A�
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fields is unbounded and hence their norms would diverge in
the course of the stochastic process. Although gauge-
invariant quantities are in principle not affected by these
divergences, the performance eventually runs into trouble
due to loss of accuracy. It turns out that one step of (9)
using (10) alternating with the Langevin step (5) is suffi-
cient to keep fluctuations under control, if � is chosen of
order �� ".

The influence of zero modes of the gluon field on the
performance of the Langevin process has been critically
discussed in Ref. [15]. Since zero modes (constant modes)
of the gauge fields do not contribute to the discretized
divergence present in (10), they would not be subtracted
by performing the gauge transformation. We take the sim-
plest prescription of subtracting zero modes at every order
by hand. This completes the specification how NSPT is
used in our calculations.

Let us remark that, whenever we speak about contribu-
tions of some order to an observable constructed out of
links, this has to be understood in the sense of an expan-
sion,

hOi ! X
m�0

��m=2hOðmÞi; (12)

and the expansion coefficients hOðmÞi are extracted out of
the expanded right-hand side of (8) by comparing coeffi-

cients of equal powers ��m=2 (or gm). In the notation of
(12) even integers m correspond to genuine loop contribu-
tions (with loop order m=2). In the computer implementa-
tion of NSPT we practically measure observables for
various small but finite values of ". The final result is
then obtained by performing the extrapolation to " ! 0
for the observables in each loop order.

B. NSPT results for Wilson loops in high order
perturbation theory

In lattice gauge theory the Wilson loop as a gauge
invariant quantity built only out of gauge field links is
defined as the trace of a product of link fields along a
closed path C,

WC½U� ¼ 1

3
Tr

Y
ðx;�Þ2C

Ux;�: (13)

Having at our disposal the expansion of the links (at finite

Langevin step size) close to the trivial vacuumUð0Þ
x;� � 1 to

all orders in g / 1=
ffiffiffiffi
�

p
,1

Ux;� � X
m�0

UðmÞ
x;�gm; (14)

we construct perturbative Wilson loops within a given
‘‘Langevin configuration’’ (at fixed Langevin time).

Inserting the expansion (14) for the links in (13) we collect
terms of equal power in g on the right-hand side and

identify these with the n-th loop order contribution WðnÞ
C

on the left-hand side,

X
n¼0;1=2;1;3=2;...

WðnÞ
C g2n ¼ 1

3
Tr

Y
ðx;�Þ2C

� X
mx;��0

U
ðmx;�Þ
x;� gmx;�

�
:

(15)

The final result involves averaging over different configu-
rations obtained during the Langevin evolution and the
extrapolation to " ! 0.
Here we consider rectangular Wilson loops C of size

N �M, where we restrict the maximal side length of the
Wilson loop to half of the lattice size L=2 for a lattice L4.
Therefore, we identify the general perturbative loop order
expansion of the Wilson loop WNM in terms of the bare
lattice coupling g as

WNM ¼ X
n¼0;1=2;1;3=2;...

WðnÞ
NMg

2n; (16)

with the Wilson loop expansion coefficients WðnÞ
NM

(Wð0Þ
NM � 1). The integer powers n ¼ 1; 2; . . . in the series

(16) denote the perturbative loop orders as in the diagram-
matic perturbation theory.
In addition, following (15) we measure analogues of

the loop coefficients WðnÞ
NM also for half-integer n ¼

3=2; 5=2; . . . . (Due to the color trace the coefficient with
n ¼ 1=2 is identically equal to zero.) Averages over coef-
ficients with those half-integers—which describe nonloop
contributions—should vanish numerically after averaging
over a sufficient number of measurements and define some
level of ‘‘noise’’ for finite statistics to be compared to the
loop contributions. While higher loop order contributions
decrease fast with the loop number, the noise does not
decrease sufficiently fast, staying near zero. Therefore,
we adopt here the criterion that we can take the expansion
coefficients for a given loop order n for granted
(‘‘reliable’’) only if they can be clearly distinguished nu-
merically from the noisy results for adjacent nonloop con-
tributions of orders n� 1=2 and nþ 1=2. We do not rule
out the possibility of an extrapolation to zero Langevin step
size crossing in a systematic way the noise region near zero
from a positive/negative coefficient at large " to a negative/
positive coefficient at smallest ". The coefficient extrapo-
lated to " ¼ 0might be as small as the noise of the adjacent
nonloop contributions.
Let us add some details of the perturbative Langevin

simulation: Instead of having one link configuration as in
usual Monte Carlo studies, we have to handle 40 link
configurations building our ‘‘perturbative’’ configuration
for each g order to reach loop order 20 at each Langevin
step. So, unavoidably, the different orders in g are

1From now on we use as expansion parameter the gauge

coupling g, using the same notation for the coefficients UðmÞ
x;�.
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correlated, since we have to use a correlated system of
Langevin equations for each order.

Any simulation for a chosen Langevin step size " starts
from a link configuration, where the zeroth order in g of the
expanded links is put equal to one (and remains so during
all the evolution), whereas all nonzero orders in g are set
initially to zero (a ‘‘cold’’ start). So any loop contribution is
by construction vanishing at the beginning. Starting from
here with the Langevin process including the noise term,
the nonzero g orders of the links iteratively obtain nonzero
values at each link position starting from the lowest order
in g. Therefore, the highest order in g needs the highest
minimal number of Langevin steps to reach equilibrium.
With decreasing step size " that minimal number also
increases.

As a criterion to reach the equilibrium of the Langevin
process, we studied the behavior of the perturbative pla-
quette. By monitoring the highest order of the plaquette at
the lowest chosen step size " ¼ 0:01, we observed that
equilibrium is reached after roughly 2000 Langevin steps.
To be on the safe side we have discarded the first 5000
Langevin steps after a cold start before we began measure-
ments of the perturbative Wilson loops. To increase statis-
tics, we also created new ‘‘parallel’’ Langevin trajectories
(keeping the same parameter ") starting from a configura-
tion already in equilibrium (given in replicas representing
all orders in g) after changing the seeds for the white noise.
Only in these cases the strategy of averaging over inde-
pendent realizations of noise has been followed.
Otherwise, subsequent sequences of noise are considered
as independent.

We have observed that the autocorrelations increase on
one side with increasing loop order and on the other side
with increasing Wilson loop size. The perturbative Wilson
loops have been measured after each 20th Langevin step to
reduce autocorrelations. The integrated autocorrelation
times are included in the error estimate of the measured
quantities. Typically for the 1� 1 Wilson loop the esti-
mated autocorrelation was Oð1Þ at the lowest loop orders
and increased up toOð10Þ at the highest loop orders. So the
relative errors significantly increase with the loop order. As
a result, we have collected the following statistics in mea-
suring the perturbative Wilson loops for the different
chosen finite Langevin steps sizes and lattice volumes as
shown in Table I. The statistics have to be understood as
follows: The thermalization is not included, e.g., 21000
measurements at lattice volume L4 with L ¼ 8 and " ¼
0:01 in the table corresponds to 420 000 Langevin steps in
equilibrium. Those measurements are performed for all
orders in g; the reached results are shown in the figures
below.

Let us first discuss the accuracy and some problems we
have met in performing the extrapolation to vanishing
Langevin step size ". Having several different expansion

coefficients WðnÞ
NMð"Þ for various " values at a given loop

order n available, we perform the extrapolation to the

coefficientWðnÞ
NM corresponding to zero step size by a linear

plus quadratic fit ansatz

WðnÞ
NMð"Þ ¼ WðnÞ

NM þ AðnÞ
NM"þ BðnÞ

NM"
2: (17)

The " behavior depends on the loop order n and the
Wilson loop size N �M, as well as on the lattice volume.
To illustrate the overall behavior we present here results for
the plaquette W11 and the Wilson loop W33 for lattice size
L ¼ 12.

The measured perturbative plaquette values WðnÞ
11 at all

integer loop orders n > 0 (remember that Wð0Þ
NM � 1) be-

have in a similar way: they are all negative and tend to
values different from zero which can be determined with
very good accuracy. Except for n ¼ 2 zero Langevin step
size limit is approached from below with decreasing step
size ". The clearly nonvanishing fit results decrease mono-
tonically in magnitude with increasing loop order. This is
demonstrated in the left of Fig. 1; see also the tables in the
Appendix. The coefficients of odd powers of g should be
zero, because the action is unchanged under
g $ �g. These nonloop coefficients are shown in the
right-hand panel of Fig. 1. We observe that these coeffi-
cients are indeed orders of magnitude smaller than the
coefficients for even powers of g. To show the quality of
the " ! 0 extrapolation we zoom into the small and large
loop number behaviors of the expansion coefficients. This
is demonstrated in Fig. 2. For better visibility, part of the
expansion coefficients at low loop numbers n are multi-
plied by factors given in the figure.
Now we consider the Wilson loop W33. In Fig. 3 we

show how the loop and nonloop expansion coefficients for
various Langevin step sizes behave as function of n. We
observe that the noise of the nonloop coefficients is much
larger than in the plaquette case, which has to be expected
for Wilson loops with larger areas. For the smallest half-
integer n the magnitude of the noise is larger than the
actual (integer) loop results at much larger n. But still
our criterion is fulfilled that a Wilson loop coefficient at
a given loop order n should be larger than the magnitude of
the noise for the adjacent n� 1=2 and nþ 1=2 nonloop
contributions.

TABLE I. Number of Wilson loops measurements up to loop
order 20 at various lattice volumes L4 and Langevin time steps ".

" L ¼ 4 L ¼ 6 L ¼ 8 L ¼ 12

0.010 19522 16390 21000 5672

0.015 12182 13366 18500 � � �
0.020 11186 12726 18750 5464

0.030 10120 10210 17500 5334

0.040 9620 9466 17500 5200

0.050 9500 8500 16500 � � �
0.070 9500 8500 16250 5476
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Contrary to the plaquette case, the loop expansion co-
efficients alternate in sign for n 	 3. In absolute value the
step-size extrapolation " ! 0 approaches the extrapolated
value from above. For loop number n ¼ 4 the situation is
different (see the left panel of Fig. 4): The extrapolation of
the expansion coefficient to zero Langevin step starts at a

positive value Wð4Þ
33 ð" ¼ 0:07Þ, crosses ‘‘zero’’ with de-

creasing " and points towards a negative value Wð4Þ
33 at

zero Langevin step. Remember that near zero we have
the ‘‘noise,’’ shown in that figure as well, by the adjacent
nonloop contributions 3.5 and 4.5. The magnitude of that

FIG. 2 (color online). Zoom in plot of left panel in Fig. 1 into small (left panel) and large (right panel) loop number region n for all
finite ". The full circles in red are the extrapolated " ! 0 values. The coefficients in the left panel at different orders n are multiplied
by factors to make them comparable in size to those at n ¼ 1.

FIG. 1 (color online). Plaquette expansion coefficientsWðnÞ
11 at some finite " at L ¼ 12 versus loop number n. On the left-hand panel

the loop expansion coefficients for integer n (signal) are shown together with their extrapolations " ! 0. The right-hand panel shows
the nonloop coefficients for half-integer n which are purely noise, and 2 or 3 orders of magnitude smaller than the integer coefficients.
The open/full symbols denote positive/negative numbers.
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noise is comparable to Wð4Þ
33 for " ¼ 0:03 only, and a

reliable almost linear extrapolation to zero Langevin step
is possible. For the next higher loop numbers n > 4 the
extrapolation to zero Langevin step becomes clearly non-
linear as shown in more detail in the right panel of Fig. 4
for some loop numbers n. The extrapolated zero step size
results are still clearly distinguishable from the adjacent
nonloop expansion coefficients. Therefore, according to
our criterion, those extrapolations can be considered as

reliable. For larger loop numbers n � 10 the " dependence
becomes less nonlinear again. For those n the expansion
coefficients of W33 as a function of n behave similar to
those of the plaquette though their slope slightly differs.
In Fig. 5 we show some results for the loop coefficients

(extrapolated to " ¼ 0) of elongated (WðnÞ
N1 , left panel) and

square (WðnÞ
NN , right panel) Wilson loops for various size N

as a function of loop order n for a 124 lattice and compare
them to the noise. At larger n, a behavior without sign

FIG. 3 (color online). Same as in Fig. 1 but for the Wilson loop expansion coefficients WðnÞ
33 .

FIG. 4 (color online). The extrapolation to zero Langevin step for Wilson loop expansion coefficients WðnÞ
33 . Left panel: Zoom in of

both panels in Fig. 3 in the region [3.5, 11.5]. Right panel: Detailed extrapolation to " ! 0 for selected loop numbers.

R. HORSLEY et al. PHYSICAL REVIEW D 86, 054502 (2012)

054502-6



changes is observed for all considered Wilson loops that
could be interpreted as ‘‘asymptotic’’. We note that the
precision of the extrapolated loop coefficients for the larger
Wilson loops drops down and also the signal to noise ratio
decreases. Still, the signal for the shown Wilson loops is
clearly above the noise for all orders. For square Wilson
loops with N � 4 (not shown) or other larger Wilson loops
the statistics were insufficient to get a clear signal out of the
noise for larger orders (see also the Appendix). In the
analysis below we concentrate on the smallest Wilson
loops.

In addition we have to raise the question about the
infinite volume limit of the series. In the perturbative series
the leading finite-size correction is expected to be propor-
tional to 1=L4. For additional nonleading corrections we
tried the heuristic ansatz

WðnÞ
NM;L ¼ WðnÞ

NM;1 þ aðnÞNM

1

L4
þ bðnÞNM

logL

L6
; (18)

which describes well the L-dependence of one-loop and
two-loop coefficients of the perturbative Wilson loops for
various loop sizes. Those coefficients are known from
standard finite volume lattice perturbation theory [16]
(the basic formulas have been given in Ref. [17]). Note
that the one-loop and two-loop NSPT coefficients repro-
duce the finite volume lattice perturbation theory reason-
ably well as shown in Table II for some examples.
For lower loop orders a simple 1=L4 dependence was

sufficient in the fits in agreement with Ref. [17]. Higher
loop coefficients, however, need further corrections which
we have chosen in the form (18). In Fig. 6 we show two
selected extrapolations for the one-loop and ten-loop ex-

FIG. 5 (color online). Selected loop coefficients WðnÞ
NM for L ¼ 12 versus loop order n together with typical values in magnitude of

nonloop coefficients. Positive/negative signs of the coefficients are given by open/full symbols, all WðnÞ
11 < 0, WðnÞ

21 < 0. Left panel:
elongated Wilson loops N � 1 with N ¼ 1; . . . ; 6. Right panel: square Wilson loops N � N with N ¼ 1; . . . ; 4.

TABLE II. Comparison of one-loop and two-loop results for NSPT and the finite volume standard lattice perturbation theory [16].

WNN L NSPT (1-loop) Bali (1-loop) NSPT (2-loop) Bali (2-loop)

W22 4 �0:87468ð13Þ �0:87500 0.10404(07) 0.10406

6 �0:90752ð12Þ �0:90762 0.11830(10) 0.11837

8 �0:91147ð03Þ �0:91141 0.11998(02) 0.11993

12 �0:91264ð02Þ �0:91261 0.12043(01) 0.12038

W33 6 �1:50088ð30Þ �1:50093 0.60906(34) 0.60866

8 �1:52849ð12Þ �1:52803 0.63654(08) 0.63632

12 �1:53552ð06Þ �1:53533 0.64388(01) 0.64360

W44 8 �2:14092ð23Þ �2:14016 1.52436(28) 1.52331

12 �2:17001ð10Þ �2:16922 1.57160(10) 1.57006
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pansion coefficient. From the volume dependence of all
orders and sizes of the Wilson loop we conclude that we
can treat the lattice volume 124 as being already near to the
infinite volume limit. Therefore, in the subsequent analysis
we use that lattice size as a reasonable approximation for
volume independent results of the series. In the Appendix
we present the expansion coefficients for all available
lattice volumes and Wilson loop sizes.

III. PERTURBATIVE SERIES OF WILSON LOOPS
AT LARGE ORDERS

There is plenty evidence that perturbative series in con-
tinuum QCD are divergent, at best asymptotic. This would
mean that, beginning from some perturbative order n > n?,
the coefficients of the series should grow factorially. The
situation might be different for perturbative series on finite
lattices. Here we have both ultraviolet and infrared cutoffs
and the growth could be modified significantly. With our
computed coefficients of the loop expansion up to order
n ¼ 20 we are able to check this to a so far inaccessible
level.

For finite lattices one could try to use the raw NSPT
coefficients for evaluating the corresponding underlying
infinite series. This requires one to deduce a kind of
asymptotic model providing the complete perturbative an-
swer. Formally, one can use such a model designed for
finite lattices also in a version adapted to the coefficients
extrapolated to L ! 1. Although the extrapolation seems
to yield smooth limits, it is certainly not allowed to sum a
series based on these extrapolated coefficients up to infin-
ity. In this case there exist at least two possibilities. The
first consists of taking into account possible renormalon
effects and estimating the truncated tail of the series (cf.,
e.g., [9]). This procedure, however, strongly depends on
whether a clear factorial growth of the coefficients in the
perturbative region under consideration has been identi-
fied. Wewill see that this is very difficult to justify from our
results. A second possibility consists in applying boosting,
i.e., a rearrangement of the series resulting in a (rather)

stable plateau of the truncated sum as a function of the
maximal perturbative order n
 that is included, and to use
this as the final perturbative result at a given coupling.

A. Plaquette

In 2001, when only the first 10 loops of the plaquette
series as expansion in the bare coupling were known from
Ref. [7], some of the present authors tried plotting the data
in various ways in order to find a fit ansatz which could
describe the known data and would be able to predict the
unknown higher coefficients [18]. A logarithmic plot of

WðnÞ
11 against n shows a curve with decreasing slope, well

described by an asymptotic behavior,

WðnÞ
11 � n�ð1þ	Þun; (19)

i.e., an exponential in n multiplied by a power of n (see
Fig. 1 and the tables in the Appendix). This is a somewhat
unexpected result, because a series of this type has a finite
radius of convergence, g2 < 1=u, and sums to give a result
with a power-law singularity of the form

ð1� ug2Þ	: (20)

A more sensitive way of showing the large n behavior of
a series is the Domb-Sykes plot [19]. If the series has the
form

X
n

cng
2n; (21)

we calculate rn, the ratio of neighboring coefficients,

rn � cn
cn�1

; (22)

and plot it as a function of 1=n. The intercept as 1=n ! 0
(if the limit exists) gives the radius of convergence. The
behavior for small 1=n (i.e., large n) tells us the nature of
the dominant singularity. A function with the power-law
singularity (20) has the expansion

FIG. 6 (color online). Extrapolation L ! 1 for WðnÞ
11 for loop orders n ¼ 1 (left panel) and n ¼ 10 (right panel).
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ð1� ug2Þ	 ¼ 1� 	ug2 þ � � � þ �ðn� 	Þ
�ðnþ 1Þ�ð�	Þ ðug

2Þn

þ � � � ; (23)

which leads to the ratio of neighboring coefficients de-
pending on the parameters u and 	,

cn
cn�1

¼ u

�
1� 1þ 	

n

�
: (24)

Therefore, the Domb-Dykes plot cn versus 1=n is a
straight-line graph.

The actual Domb-Sykes plot for the measured perturba-
tive plaquette showed a small curvature. To allow for this
we added one more parameter and made a fit of the form

rn ¼ u

�
1� 1þ 	

nþ s

�
: (25)

This described the data for n 2 ½3; 10� well, with the
parameter values [18],

u ¼ 0:961ð9Þ; 	 ¼ 0:99ð7Þ; s ¼ 0:44ð10Þ: (26)

We now have 10 more coefficients. How well do the fit
parameters (26) predict the new data? In Fig. 7 we compare
the current data with the prediction made in 2001.

The data lie very near the prediction. We have doubled
the maximum n value without seeing any breakdown of the
behavior seen at lower n. In particular, the series still looks
like a series with a finite range of convergence, g2 < 1:04.

B. A model for summing up the Wilson loop series

Now we have in addition also Wilson loops larger than
the plaquette at our disposal. In Fig. 8 we show the coef-
ficient ratios rn for some small size Wilson loops for
n � 5. We have seen that at large order n the coefficients
in the plaquette series have the asymptotic behavior

of (19). What is the asymptotic behavior of the other
Wilson loops? Is it similar?
A sensitive way to investigate this is to look at the ratio

between the coefficients of the Wilson loops series and the
plaquette series. If both have similar behaviors at large
order n,

WðnÞ
NM

WðnÞ
11

� n�ð1þ	0Þðu0Þn
n�ð1þ	Þun

¼ nð	�	0Þ
�
u0

u

�
n
: (27)

We plot the ratio (27) for various NM values in Fig. 9 as a
log-log plot against n. The plot shows that at large n the
ratio scales like a power of n, suggesting that the parameter
u in (19) is the same for all Wilson loops, but the power 	
depends on the size of the loop. Therefore, u0 ¼ u to a very
good approximation. This means that for all Wilson loops
the series have the same apparent radius of convergence,
g2 < 1=u. However the curves for different Wilson loops
have different slopes at large n, indicating different asymp-
totic powers of n, i.e., different values of 	.
In Fig. 8 one clearly recognizes that for larger loop sizes

the ratios deviate from the almost perfect straight line
behavior seen for W11. This deviation can be described
rather well by a modification of (25) taking into account
some curvature, especially for larger loop sizes N �M.
Parametrizing these effects by an additional parameter p
we make the ansatz

rn ¼ cn
cn�1

¼ u

�
1� 1þ 	

n

�
þ p

nðnþ sÞ ; (28)

where the first term is the asymptotic form (24) without
curvature. Relation (28) can be transformed into a recur-
sion relation,

cn ¼
�
rncn�1; if n > n0;
cn0 ; if n ¼ n0:

(29)

FIG. 7 (color online). Current ratio data for the plaquette, compared with the prediction of 2001 [18], plotted with the original
parameters. The prediction was based on data with n 	 10, i.e., to the right of the vertical blue bar. The second figure zooms in on the
region of new data.
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Here cn0 is the input value for some lowest measured

perturbative coefficientW
ðn0Þ
NM at loop order n ¼ n0 to begin

the recursive reconstruction. Relation (29) can be solved to

cn;hyp ¼ dn0
ð
� �� 1Þnð
þ �� 1Þn

ðsþ 1Þnn! un;

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	þ sþ 1Þ2 � 4p=u

q
;


 ¼ sþ 3� 	

2
;

(30)

with ðaÞn � �ðaþ nÞ=�ðaÞ being the Pochhammer sym-
bol. The coefficient dn0 is given by

dn0 ¼
n0!cn0
un0

Qn0
i¼1ðsþ iÞQn0

k¼1ðð
� 2þ kÞ2 � �2Þ : (31)

Accepting such a parametrization one can follow differ-
ent strategies:

(i) Use the raw coefficients cn and/or cn;hyp fixed by the

fitted values of the parameters in the loop order range
1 	 n 	 20 as determined by the NSPT computa-
tion to investigate the perturbative series. This will
be done in Sec. III C.

(ii) Assume that the coefficients cn;hyp, found as solu-

tion of (29), belong to an infinite series and try to
sum up the series on a finite lattice. This will be
discussed in the following text.

The infinite series we want to compute is defined by

Wðn0Þ
NM;1 ¼ 1þ Xn0

n¼1

cng
2n þ X1

n¼n0þ1

cn;hypg
2n

� 1þ X1
n¼1

WðnÞ
NM;hypg

2n; (32)

where the first n0 coefficients cn � WðnÞ
NM are given by the

NSPT measurements and the cn;hyp are the solutions of

(29). For later use we have introduced the general coeffi-

cients WðnÞ
NM;hyp. The matching condition for (32) is that at

n0 we have cn0 ¼ cn0;hyp. Introducing the hypergeometric

function 2F1,

2F1ða; b; c; tÞ ¼
X1
n¼0

Ant
n � X1

n¼0

ðaÞnðbÞn
ðcÞnn! tn; (33)

we get the closed expression

W
ðn0Þ
NM;1¼1þXn0

n¼1

ðcn�dn0Anu
nÞg2n

þdn0½2F1ð
���1;
þ��1;sþ1;ug2Þ�1�:
(34)

The result expressed in terms of 2F1ða; b; c; ug2Þ has a
branch cut discontinuity at the positive g2-axis for
g2 > 1=u. This means that the parameter u in (28) [just
as well as in (25)] determines the convergence radius: for
g2 < 1=u the series can be summed up to n ¼ 1 without
analytic continuation into the complex plane. All parame-
ters u, 	, p, s depend on the corresponding underlying data
set. As discussed above (see also Fig. 9) we will assume
that the convergence radius is the same for all Wilson loop
sizes which implies a common value for u.
We found that Wilson loops larger in size than the

plaquette (e.g., W21, W31, W22) give rise to ratios rn (for
n < 5) that show a pronounced oscillating behavior.
Therefore, we restrict the fit of the ratio function (28) to
the data for n > n0 ¼ 4 only. The fit results are shown in
Fig. 8 as thin lines.
It should be pointed out that fitting the parameters

ðu; 	; p; sÞ in ansatz (28) to the NSPT data is nontrivial.
We have determined the optimal values by minimizing the
function

FIG. 8 (color online). Domb-Sykes plots for WNM for n � 5
together with the fit result using (28).

FIG. 9 (color online). A log-log plot of the ratio (27), plotted
for different sizes of Wilson loops. To guide the eyes, the data
points for the loop orders are connected by lines.
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�2ðu; 	; p; sÞ ¼ X20
n¼n0þ1

½rnðu; 	; p; sÞ � rnðNSPTÞ�2
½rnðNSPTÞ�2

;

(35)

where rnðNSPTÞ are the ratios computed from the corre-
sponding NSPT data. The most sensitive parameter in (28)
is s. Therefore, we vary s over a certain range smin < s <
smax by a small increment �s as s0ðkÞ ¼ smin þ k�s

(k-integer) and minimize �2ðu; 	; p; s0ðkÞÞ with respect to
ðu; 	; pÞ at every s0ðkÞ which is held fixed. The smallest of
all minimized �2

minðu; 	; p; s0ðkÞÞ defines the starting set

ðu?; 	?; p?; s0ðk?ÞÞ for a final minimization fit—now with
respect to all parameters ðu; 	; p; sÞ. In Fig. 10 we show
one example for �2

min forW22 with n0 ¼ 4. One recognizes
a couple of shallow local minima (besides the absolute
one) where minimization procedures could have been
trapped. In Table III we give the results of our minimal
fit function and the final fit parameters for various Wilson
loops. The given errors ð�u;�	;�p;�sÞ are the extreme
values within the error ellipsoid obtained from the relation

�2ðu? þ �u; 	? þ�	; p? þ�p; s? þ �sÞ
¼ 2�2ðu?; 	?; p?; s?Þ; (36)

where ðu?; 	?; p?; s?Þ are the best fit parameters. For ex-
trapolation of the perturbative series we use hypergeomet-
ric fits in the interval [5, 20]. Fits to the coefficients in this
range are excellent, with relative errors 	 0:5%.

The hypergeometric fit still gives a fairly good descrip-
tion of the data all the way down to n ¼ 1. For most loop
sizes a fit from n ¼ 1 to 20 describes the data within�5%,
except for the 2� 1 loop, which has some errors, � 10%.
Given that the coefficients vary through 4 orders of mag-
nitude in this interval, an error of 5% or 10% is still
impressive.
All the Wilson loops show rather similar behavior at

large order n; see Fig. 11. At small n they look quite
different from the plaquette, with a mixture of positive
and negative terms. It is interesting that there is often a
‘‘notch’’ just before the asymptotic region begins, i.e., a
particularly steep drop to a small coefficient, followed by a
jump back up again. This is particularly dramatic in the
2� 2 Wilson loop, where the n ¼ 3 coefficient is about
600 times smaller than the n ¼ 2 coefficient. The notch
gives rise to big changes in rn, for example for the 2� 2
loop we have

. . . ; r2 ¼ �0:1319; r3 ¼ þ0:0016;

r4 ¼ �11:98; r5 ¼ þ0:9722; . . . :
(37)

The notch corresponds to the singularity in the Domb-
Sykes plot. The anomalously large rn value occurs when
n is close to the pole at n ¼ �s in (28). This is demon-
strated in Fig. 12 where the fit to the parameters has been
extended to the range n 2 ½2; 20�. Using this fit range one
clearly recognizes the corresponding pole terms.
Our analysis shows that we can reproduce our NSPT

data up to order n ¼ 20 for Wilson loops of moderate size
(at least the elongated ones) with this hypergeometric
model sufficiently well. This means that we do not find
any evidence for a factorial behavior which should result in
a behavior rn � n. In Sec. II B we showed that in the range
4 	 L 	 12 the volume dependence of each individual
perturbative coefficient is rather smooth and already very
weak at sizes like L � 12. So we do not expect a signifi-
cant change extrapolating the results to infinite lattice size.
Even beyond the apparent radius of convergence ðg2c ¼

1=u; �c � 5:82Þ the perturbative series still has some in-
formation on the Wilson loops. In that case the terms in the
series decrease initially, before reaching a minimum and
then growing. Summing the series up to the minimum term
would give an approximation to the Wilson loop. The
minimum term in the series can be estimated from the
condition on the ratio of neighboring coefficients in (22)
rnmin

g2 ¼ 1. The corresponding minimal number nmin in

the summation is approximately (neglecting the parame-
ters s and p)

nmin � ð1þ 	Þug2
ug2 � 1

¼ 6uð1þ 	Þ
6u� �

� 12

�c � �
; (38)

for �< 6u. So, at � ¼ 5:7 we would have to sum about
100 terms before reaching the minimum (assuming, of
course, that the hypergeometric form remains applicable),
and even at � ¼ 5:2 (g2 ¼ 1:15) we would still have about

FIG. 10 (color online). �2
min as function of parameter s forW22.

TABLE III. Minimal value of �2
min and resulting fit parameters.

The fit range in n is [5,20].

WNM �2
min u 	 p s

W11 8� 10�6 0.9694(4) 1.13(5) 1:5þ1:3
�0:6 0:7þ3:0

�1:8

W21 1� 10�5 0.9694(5) 1.02(4) 1.6(5) �1:4ð8Þ
W31 2� 10�5 0.9694(6) 0.91(4) 1.7(2) �3:3ð2Þ
W22 4� 10�5 0.9694(9) 0.82(4) 1.9(2) �3:9ð1Þ
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FIG. 11 (color online). The hypergeometric fit to the coefficients WðnÞ
NM for the four small Wilson loops. Solid symbols represent

positive terms, open symbols are negative terms. The blue line is an equal weight fit, including all points from Wð0Þ
NM to Wð20Þ

NM . The

agreement is remarkably good.

FIG. 12 (color online). Domb-Sykes plots for WNM with fits to the parameters in the range n 2 ½2; 20�.
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20 decreasing terms before reaching the minimum term. To
stay on the safe side, we have not used any data beyond the
apparent convergence radius gc in our analysis of non-
perturbative Wilson loops described below. We have re-
stricted ourselves to � � 5:85, i.e., g2 	 1:026.

C. Boosted perturbation theory

It is well-known that the bare lattice coupling g is a bad
expansion parameter by virtue of lattice artifacts like tad-
poles. There is hope that, by redefining the bare coupling g
into a boosted coupling gb and the corresponding re-
arrangement of the series, a better convergence behavior
can be achieved [20]. For the case of perturbative Wilson
loops this idea has been applied for the first time by Rakow
[8].

Let us denote the perturbative Wilson loop summed up
to order n? using the bare coupling g by

WNMðg; n?Þ ¼ 1þ Xn?
n¼1

WðnÞ
NMg

2n; (39)

and call in the following any series in g2 a ‘‘naive series.’’
We define the boosted coupling as

g2b ¼
g2

W11ðg; n?Þ : (40)

The corresponding ‘‘boosted series’’ for an arbitrary
Wilson loop WNM is then given by

WNM;bðgb; n?Þ ¼ 1þ Xn?
n¼1

WðnÞ
NM;bg

2n
b ; (41)

with coefficients WðnÞ
NM;b to be calculated from WðkÞ

NM and

WðlÞ
11 with k, l 	 n. Setting

WNMðg; n?Þ ¼ WNM;bðgb; n?Þ; (42)

and inserting (40) into the right- hand side of (42), we can

compute the boosted coefficients WðnÞ
NM;b order by order.

It should be emphasized that the prescribed procedure is
done by solving a hierarchical set of recursive equations.
Especially for large loop orders n these equations involve
hundreds or thousands of terms. Using the NSPT raw data

WðnÞ
NM with their errors gives rise to significant numerical

instabilities in the boosted result for larger n. Therefore, it
turned out to be advantageous to use the coefficients

WðnÞ
NM;hyp (32) as input for the recursive equations. Using

that form up to loop order n 	 20 means that we are
smoothing the data of the naive series. In addition we are
in the position to extend the maximal loop order beyond
n ¼ 20. This leads to a stable numerical result for the

boosted coefficientsWðnÞ
NM;b;hyp. An additional improvement

can be achieved by replacing the lowest order perturbative
coefficients at L ¼ 12 by the corresponding coefficients of
the infinite volume limit. In the Appendix we give those

numbers for the one-loop and two-loop coefficients ob-
tained in the diagrammatic approach [21–23].
In Fig. 13 we compare the perturbative coefficients of

the plaquette for the NSPT raw data WðnÞ
11 with the WðnÞ

11;b

calculated from the raw data and theWðnÞ
11;b;hyp. The boosted

coefficients obtained via the model show a smooth decreas-
ing behavior with much smaller errors than the boosted
coefficients based on the raw data, all the way down to the
highest order n ¼ 20. The superior result concerning the
error is due to the fact that the errors of the model-fitted
coefficients are computed from the correlated errors of the
parameters ðu; 	; p; sÞ as discussed in the preceding sec-
tion. The errors of the boosted coefficients (when con-
structed from the raw data) are calculated with standard
error propagation through the set of recurrence equations
involving thousands of terms. Since the perturbative pla-
quette (as the nonperturbative plaquette) is less than one,
W11ðg; n?Þ< 1, it is clear from (40) that g2b > g2. On the

other hand, we find jWðnÞ
11;bj � jWðnÞ

11 j for n > 4 as shown in

Fig. 13. We remark that also the boosted coefficients are
characterized by oscillating signs as function of the loop
order n for smaller n (open versus filled symbols).
The above mentioned numerical problems relating the

boosted series to the naive series obtained directly from
NSPTwould be less severe if we could start from a coupling
constant which was closer to gb. Therefore in Ref. [8] one
of us proposed a simulation with a shifted ‘‘reference’’
coupling constant, gref . Instead of simulating NSPT with
the action (3), we could use the slightly modified action

Sref½U� ¼ 6

�
1

g2ref
þ r̂1 þ r̂2g

2
ref

�

�X
P

�
1� 1

6
TrðUP þUy

PÞ
�
; (43)

FIG. 13 (color online). Comparison of perturbative coeffi-

cients for the naive series (WðnÞ
11 ), the boosted series from

NSPT raw data (WðnÞ
11;b) and the boosted series using the hyper-

geometric model (WðnÞ
11;b;hyp). The boosted coupling (40) is used;

positive/negative signs of the coefficients are given by open/full
symbols.
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where now UP is expanded as a power series in gref rather
than g. Physically, the action is still the usual plaquette
action—all we have done is to redefine the coupling con-
stant. This modified action leads to changes in the drift term
of (4). The advantage is that the simulation now gives us a
series for the plaquette in terms of the coupling gref , related
to the bare coupling by

1

g2
¼ 1

g2ref
þ r̂1 þ r̂2g

2
ref: (44)

If we choose the parameters r̂1 and r̂2 well, the new
intermediate coupling will be close to the boosted coupling,
so the transformation from gref ! gb will be numerically
stable and will not introduce large uncertainties as in the
transformation from g2 ! g2b.

In Ref. [8] simulations have been performed with r̂1 ¼
1=3, r̂2 ¼ 0:033911. These values were chosen such that
g2b ¼ g2ref þOðg8refÞ, making the transformation between

the two couplings numerically robust. The resulting
boosted series is shown in Table IV. The results are com-
patible with those found by transforming both the naive
series from the NSPT raw data and from the hypergeomet-
ric model, respectively, but the error bars are now consid-
erably reduced. In particular, the change in the behavior
beyond n ¼ 8, from an alternating series to a single-sign
series is confirmed in this calculation. So far we have only
applied this method to the series describing the plaquette,
but we expect that it would also be useful for the larger
Wilson loops.

The successful hypergeometric model fit to the NSPT
raw data (as presented in the preceding section) and the
very smooth behavior of the boosted coefficients based on
the fit formula (34) allows us to extend the accessible loop
order for the coefficients both in the naive and boosted
series far beyond n ¼ 20 loops. In Fig. 14 the correspond-
ing coefficients for W11, W21, W31 and W22 are shown
throughout the extended range of loop orders n 	 40 rely-

ing on the information contained in the set of smoothed
data represented by the hypergeometric model.
In Fig. 15 we compare the effect of truncating the sum at

order n? for the naive and boosted series, both on the basis
of the hypergeometric model. The corresponding trunca-
tion error TNMðn?Þ is defined by

TNMðn?Þ ¼
jWNMðn?Þ �Wðn0Þ

NM;1j
W

ðn0Þ
NM;1

; (45)

where WNMðn?Þ is either the naive [WNMðg; n?Þ] or the
boosted [WNM;bðgb; n?Þ] truncated series. As the asymp-

totic value W
ðn0Þ
NM;1 we take the hypergeometric sum (32)

with n0 ¼ 4 computed at the chosen g2 ¼ 6=� ¼ 1. Even
though part of the decrease in the boosted coefficients is
‘‘eaten’’ up by the fact that g2bð¼ 1:6832Þ> g2ð¼ 1Þ, we
see that the boosted series is clearly superior. For example,
for W11 we have a truncation error �10�3 at 10th order in
the boosted series, but we would have to go nearly to the
30th order in naive perturbation theory to achieve the same
accuracy.
Figure 15 suggests that using the naive perturbative

series for W11;hypðg; n?Þ in (40) to compute g2b for a given

g2 is a poor choice. A much better convergence towards the
total perturbative plaquette is obtained by using the coef-

ficients WðnÞ
11;b;hyp. This suggests to define the boosted cou-

pling g2bðg2Þ by solving the implicit equation

g2b ¼
g2

W11;b;hypðgb; n?Þ ; (46)

where

W11;b;hypðgb; n?Þ ¼ 1þ Xn?
n¼1

WðnÞ
11;b;hypg

2n
b : (47)

One essential justification for choosing (46) is the be-
havior of the perturbative series of a Wilson loop for large

TABLE IV. Coefficients for the plaquette in boosted perturbation theory, calculated using the modified action (43) on a 124 lattice.
They are compared to the corresponding coefficients from the NSPT raw data (second column) and the hypergeometric model data
(third column). The loop order n given in the table is restricted by the order used in Ref. [8].

n WðnÞ
11;b from (43) WðnÞ

11;b from NSPT raw data WðnÞ
11;b from (32)

1 �0:333334ð42Þ �1=3 �1=3
2 0.077187(30) 0.0772001181(8) 0.0772001181(8)

3 �0:016817ð10Þ �0:0168321ð4Þ �0:0168321ð4Þ
4 0.0030488(10) 0.0030612(3) 0.0030612(3)

5 �0:0006101ð14Þ �0:00061867ð9Þ �0:000620ð11Þ
6 0.0000831(7) 0.000087(2) 0.0000911(14)

7 �0:00002209ð34Þ �0:000024ð2Þ �0:0000275ð89Þ
8 �0:00000007ð30Þ 0.0000009(28) 0.0000024(43)

9 �0:00000138ð11Þ �0:0000017ð33Þ �0:0000024ð17Þ
10 �0:00000042ð8Þ �0:00000029ð360Þ �0:00000011ð58Þ
11 �0:000000201ð12Þ �0:00000022ð380Þ �0:00000033ð18Þ
12 �0:000000087ð14Þ 0.000000012(3877) �0:000000073ð51Þ
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� (small g2) in comparison to the nonperturbative mea-
surement: in this coupling range the Wilson loop should be
dominated by the perturbative content. We introduce the
relative difference

~W NMð�Þ � 1 ¼ WNM;PTð�Þ �WNM;MCð�Þ
WNM;MCð�Þ : (48)

where the index ‘‘PT’’ stands for the perturbative value of
theWilson loop and ‘‘MC’’ denotes theMonte Carlo result.
This quantity should tend to zero for large �. In Fig. 16 we
plot ~W11ð�Þ � 1 as function of �. The � dependence
clearly shows that the boosted coupling computed from
(46) gives the best behavior for the small g2 where the
plaquette from that perturbative series practically

FIG. 14 (color online). Coefficients for the naive and boosted series based on the hypergeometric model for W11, W21, W31 and W22

as function of the loop order n.

FIG. 15 (color online). Truncation errors TNMðn?Þ (45) for W11 (left panel) and W31 (right panel) at L ¼ 12 and � ¼ 6 using the
naive and the boosted series on the basis of the hypergeometric model. The hypergeometric model values for the total sum are

W
ðn0¼4Þ
11;1 ¼ 0:59409ð8Þ and W

ðn0¼4Þ
31;1 ¼ 0:25337ð22Þ.
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coincides with the Monte Carlo value. Wilson loops with
larger loop sizes show a similar behavior.

Note that the definitions of the boosted coupling using
either (46) or (40) are calculated from a perturbative input
exclusively. Using boosting in standard Monte Carlo mea-
surements, the boosted coupling g2b is defined by dividing

the bare coupling squared g2 by the measured plaquette at
given� value. Numerically, this coupling constant behaves
in a similar way as that obtained from (46). This is another
argument to use expression (46) as definition for the
boosted coupling in the perturbation theory.

IV. NONPERTURBATIVE PART
OF WILSON LOOPS

A. Reliability of high order lattice perturbation theory

There is much debate to which extent the high order
lattice perturbation theory can be trusted and how its
results can be used to extract physical quantities. In
Ref. [24] the authors have investigated the influence of
the finite volume on the possibility of finding infrared
renormalons. Using the steepest descent (sd) method,
they deduce an upper bound on the order of perturbation
theory nsd above which possible infrared effects are tamed
for dimension four operators,

n < nsd � 4 logLþ c; (49)

where L is the lattice size. However, it is difficult to
determine the value of c—in Ref. [24] it was estimated
as c ¼ Oð1Þ.

As shown in the preceding Sec. III C we found that the
boosted perturbation theory using the raw NSPT coeffi-
cients in the range 1 	 n 	 12 gives already reliable re-
sults for the summed series. Furthermore, from the
discussion at the end of Sec. II B (see Fig. 6) we feel

confident that the finite size effects are under control,
which would not be the case if there are infrared effects.
On finite lattices one cannot expect renormalons because

of hard ultraviolet (k < 1=a) and infrared (k � 2�=La)
cutoffs. However, one might expect quadratic and quartic
divergences. For the plaquette W11 one could write (see,
e.g., Ref. [25])

W11 ¼ C1ðaQÞh1i þ C2ðaQÞa4hGGi; (50)

with hGGi denoting a condensate of dimension four. There
could be a mixing between operators 1 and GG which
would result in an a4-contribution to C1,

C1ðaQÞ ¼ C0
1ðaQÞ þ C4

1ðaQÞðaQÞ4: (51)

The coefficients Ci
1ðaQÞ themselves diverge at most as

powers of logðaQÞ. The existence of a quartic divergence
would spoil the determination of the condensate. This type
of divergence is connected to a pole in the Borel transform
of the corresponding, assumed a divergent perturbative
series with a factorial growth of the expansion coefficients
[26]. We do not observe such a factorial growth up to loop
order n ¼ 20. This is a fact which we have to accept and
appreciate theoretically [27,28].

B. Ratios of Wilson loops

A precise separation of the nonperturbative part of
Wilson loops from the corresponding quantities measured
on the lattice requires a perturbative computation to very
high order. From the discussion in Sec. III C it is clear that
the boosted perturbation theory provides an optimal tool
for that. We use the version of boosting including the
hypergeometric model to smooth the NSPT bare coeffi-
cients and go beyond loop order n ¼ 20. The boosted
coupling is computed from (46) with n? ¼ 40.
Additionally we restrict ourselves to moderate loop sizes
which ensures that the boosted coefficients can be deter-
mined with sufficient accuracy.
Let us introduce generic ratios of powers of Wilson

loops (together with their boosted perturbative expansion)
as

Rk;m
NM;N0M0 ¼ ðWNMÞk

ðWN0M0 Þm ¼ X
n

½Rk;m
NM;N0M0 �ðnÞg2nb : (52)

In most of the following examples we restrict ourselves to
reference loops of size N0 ¼ M0 ¼ 1 (plaquette) and inte-
ger powers k, m> 0. A generalization to larger N0,M0 and
also to noninteger powers k andm can be easily performed.

We consider now the particular ratios R1;2
21;11 and R1;3

31;11.

They fulfill the area relation

k� SNM ¼ m� SN0M0 ; (53)

where SNM is the area of the Wilson loop WNM—in our
case of planar rectangular loops we have SNM ¼ N �M.
From considerations of naturalness we would expect the

FIG. 16 (color online). ~W11ð�Þ � 1 as function of � ¼ 6=g2

for n? ¼ 20, ‘‘naive’’ with W11;PT ¼ W11ðg; 20Þ; ‘‘boost’’ with
W11;PT ¼ W11;bðgb; 20Þ and g2b computed from (40); ‘‘improved

boost’’ with W11;PT ¼ W11;bðgb; 20Þ and gb computed from (46).

(Full/open symbols denote positive/negative numbers).
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convergence behavior of these types of ratios to be better
than other ratios that are not constrained by the area
relation (53). We first compare the perturbative coefficients
of these ratios with the corresponding coefficients of

Wilson loops WðnÞ
NM. Figure 17 shows that the coefficients

of the ratios behave similar to the coefficients of theWilson
loops (shown for comparison as thin lines without errors)
themselves.

Now we define the quantity

�A ¼ APT �AMC; (54)

where�A is then the nonperturbative value of the quantity
A and the ratio

~A ¼ APT

AMC

: (55)

In the case of Wilson loops �A > 0 and �A � APT.
Since we know the nonperturbative piece to be much

smaller than the perturbative one we can expand ~A in
powers of �A. To first order we have

~A ’ 1þ �A

APT

: (56)

Applying this expansion taking in place of ~A the ratios ~R
for the R introduced in (52) we have

~R k;m
NM;N0M0 ’ 1þ k

�WNM

WNM;PT

�m
�WN0M0

WN0M0;PT
: (57)

In Fig. 18 we show an example for some ratios ~Rk;m
NM;N0M0

at � ¼ 6. We have used our own Monte Carlo measure-
ments of Wilson loops generated at the same lattice size
[29]. One recognizes that for large n? the ratios tend to
~Rk;m
NM;N0M0 ’ 1. For smaller powers m and k this behavior is

more pronounced. Additionally, one finds that the ‘‘non-
natural’’ choice ðk;mÞ ¼ ð3; 3Þ leads to a significantly
different behavior. Thus, Fig. 18 strongly suggests to use
powers ðk;mÞ which obey the area relation (53).

Using for A in the ~A definition (55) the quantityRk;m
NM;N0M0

(52) one can easily derive a formula to determine
the ‘‘deviation from perturbation theory,’’ �WNM

, for a

N �M Wilson loop as

�WNM
ðWN0M0 Þ ¼

�
1� exp

�
� d

dk
logð ~Rk;m

NM;N0M0 Þ
��

WNM;PT;

(58)

where we made explicit the dependence of �WNM
on the

reference loop WN0M0 . Values of ðN;M; kÞ and ðN0M0; mÞ
are related by (53). Inserting the boosted perturbative
series for WNM;PT and the Monte Carlo measured values

WNM;MC for various values of the inverse coupling � into

(58) one obtains rather easily the desired a dependent
nonperturbative part �WNM

ðaÞ of WNM upon using the

known function �ðaÞ.

FIG. 17 (color online). Boosted coefficients of ratios (left panel: ½R12
21;11�ðnÞ, right panel: ½R13

31;11�ðnÞ) defined in (52). The thin lines
show the corresponding boosted coefficients for the 1� 1 and 2� 1 (left panel) and 1� 1 and 3� 1 (right panel) Wilson loops,
respectively.

FIG. 18 (color online). ~Rk;m
21;11 for ðk; mÞ ¼ ð1; 2Þ (2, 4) and (3,

3) as function of loop order n? up to which the ratio is summed
up.
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C. Condensate of dimension four on the lattice

One special case of the nonperturbative part of Wilson
loops is �W11

¼ W11;PT �W11;MC which is directly con-

nected to the gluon condensate introduced in Ref. [1].
There is a commonly used relation between the
Monte Carlo measured plaquette and its perturbative coun-
terpart,

W11;MC ¼ W11;PT � a4
�2

36

��b0g
3

�ðgÞ
��

�

�
GG

	
; (59)

which defines the gluon condensate h��GGi on the lattice.2

In contrast to (58), relation (59) allows us to determine the
gluon condensate from the 1� 1 Wilson loop only. An
alternative could be to find �W11

from (58) choosing a

suitable reference Wilson loop. As discussed in Sec. IVA
this is strictly valid only in the absence of renormalon
ambiguities which is assumed to be the case in the
following.

In (59) it is assumed that there is only a single, non-
perturbative quantity of dimension four contributing to the
plaquette. It has been speculated [30] that in the difference
between the perturbative and the lattice Monte Carlo pla-
quette also an a2 contribution might be present. That
difference depends on n? denoting the truncation of the
perturbative series as expressed by the n? dependence of
the corresponding coefficients,

�W11
ðn?Þ ¼ W11;PTðn?Þ �W11;MC

¼ c2ðn?Þa2 þ c4ðn?Þa4: (60)

In Ref. [11] Narison and Zakharov have presented argu-
ments that a nonzero value of the coefficient c2ðn?Þ is an
artifact due to the truncation—above some value of n? that
coefficient should vanish.

For the estimate of the gluon condensate we are in the
position to take the most precise perturbative values avail-
able—in our computation these are the summed series
based on hypergeometric functions (n? ! 1) given in
(34) with the parameters of Table III. So we can ask the
question, whether there is a significant a2 dependence for
the nonperturbative parts�WNM

derived from (58) making a

corresponding ansatz as in (60).
To find the dependence of the nonperturbative part on

the lattice spacing a, we consider the lattice coupling
region �min 	 � 	 �max. �min ¼ 5:85 is determined by
the convergence radius of the perturbative series. In the
analysis we have used nonperturbative Wilson loops from
the same lattice size as the largest NSPT lattice and
have chosen �max ¼ 6:3. To relate the different lattice
couplings � to a=r0, where r0 is the Sommer scale, we
use Ref. [31].
In the left panel of Fig. 19 we show �W11ðaÞ as function

of a4. One observes that there is not much room for an
additional a2 dependence. On the other hand, we find a
significant bending for larger aðg2Þ which can be parame-
trized as an ða4Þ2 correction term. This might be a sign of
breaking scaling on the coarsest lattices, or it could be the
signature of higher dimensional condensates considered in
Ref. [32]. That correction is relatively small for �W11

. For

larger Wilson loops we find this deviation from a pure a4

dependence more pronounced as shown in the right of
Fig. 19. We should mention that, using the summed per-
turbative series of the hypergeometric model, the nonper-
turbative parts �WNM

are independent of the choice of the

reference loops [as indicated in (58)] and also agree for the
plaquette case with the simple subtraction scheme (59).
In Fig. 20 we plot c4ðn?Þ for various Wilson loops. One

recognizes a pronounced plateau for n? > 30. In Table V
we give the values of the coefficients c4 both for the
boosted series summed up to n? ¼ 40 and as obtained
from the infinite series, respectively. On dimensional
grounds one would expect that c4 would be approximately
proportional to the square of the Wilson loop area [32].

FIG. 19 (color online). �W11
(left panel) and �WNM

(right panel) as function of a4 together with their corresponding fits assuming a4

and ða4Þ2 contributions.

2In (59) �ðgÞ denotes the standard �-function with b0 being its
leading coefficient.
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From Table V we do see an increase in c4, but it is much
slower than area squared (in fact the a4 term in the 3� 1
loop is smaller than the 2� 1 loop, though the error bars
overlap).

Introducing the Sommer scale r0, a physical value for
the condensate can be extracted from the coefficient c4. If

we approximate ð�b0g
3

�ðgÞ Þ � 1 in (59), we extract from �W11

the gluon condensate as given in Table VI. This value is
slightly lower than the value 0:04ð1Þ GeV4 found in
Ref. [8]. The main reason for the difference is that in
Ref. [8] the boosted series was truncated at n? ¼ 12, while
in the present work we make an estimate of the contribu-
tion from higher terms in the boosted series.

V. SUMMARY

In this paper we presented the result of NSPT calcula-
tions for Wilson loops of various sizes using the Wilson
gauge action. Within the framework of NSPTwe were able
to determine the perturbative coefficients of those loops up
to loop order n ¼ 20 for different lattice sizes as numeri-
cally clear signals.

Up to that order we did not observe signs of a factorial n
dependence as expected for an asymptotic series.
Assuming that this behavior is not spoiled at larger n, we
were able to describe the n dependence of the series by a
simple recursion relating subsequent orders. Solving that
relation, the sum over all orders has been represented by a
hypergeometric function. Its branch cut discontinuity de-
fines a convergence radius of the series at positive g2.

Using the naive perturbative series of the Wilson loops
in the bare coupling squared g2 ¼ 6=�, the summed series
up to n? converges only slowly to some asymptotic value.
This has led us to apply boosting-a rearrangement of the
perturbative series in terms of the so-called boosted cou-
pling as expansion parameter where we expect that the
summed series reaches a stable plateau already after mod-
erate loop orders. For moderate Wilson loop sizes these
plateaus have been found.

The transformation from the naive perturbative series to
the boosted series is numerically delicate, involving large
cancellations. Simply transforming the NSPT raw expan-
sion coefficients leads to very noisy boosted coefficients
beyond n � 8. To get around this problem we ‘‘smoothed’’
the coefficients of the naive perturbative series using the
presented hypergeometric model before calculating the
boosted series. The resulting smoothed boosted coeffi-
cients are much more stable, and this strongly suggests
that the observed rapid falloff of the boosted coefficients
continues to large loop orders.
We introduced ratios of powers of Wilson loops which

then have been treated within boosted perturbation theory.
In many cases the truncation errors for these ratios are
much smaller than the truncation errors for the Wilson
loops themselves.
The results of the boosted perturbative series are ex-

tremely close to the Monte Carlo values of the Wilson
loops; the same applies to their ratios. For �> 6 (g2 <
1) the differences are typically in the third or fourth deci-
mal place. Looking at the small deviations between
Monte Carlo results and boosted perturbation theory allows
for a determination of the nonperturbative parts of Wilson
loops. We find that the dominant behavior of the non-
perturbative part scales like a4.
As a special case we have calculated the gluon conden-

sate h��GGi from the plaquette. The found number is

somewhat larger than that in the phenomenological
Shifman-Vainshtein-Zakharov sum rule approach [1]-at
least for our 124 lattice. Our number agrees within errors
with the estimate h��GGi ¼ 0:024ð8Þ GeV4 presented by

Narison in Ref. [33] which is based on a study of heavy
quarkonia mass splittings.
We have checked the regularly reappearing claim, that

the Wilson loop has, in addition to its ‘‘canonical’’ a4

dependence, a significant part showing an a2 power depen-
dence. Our results show that in the chosen �-region the

FIG. 20 (color online). Coefficient c4 as function of the inverse
loop order 1=n? for different Wilson loops. The data points at
‘‘1=n? ¼ 0’’ represent the series summed to infinity using the
hypergeometric model.

TABLE V. Coefficients c4 for the Wilson loops WNM obtained
from the boosted perturbation theory up to n? ¼ 40 and from the
series summed to infinity using the hypergeometric model.

c4 from boosting

(n? ¼ 40)
c4 from the

hypergeometric model

W11 0.30(3) 0.31(3)

W21 0.54(5) 0.56(5)

W31 0.47(9) 0.49(10)

W22 0.67(10) 0.70(11)

TABLE VI. Gluon condensate at L ¼ 12 (r0 ¼ 0:5 fm).

r40h��GGi h��GGi [GeV4]

�W11
1.16(12) 0.028(3)
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nonperturbative parts of the Wilson loopsWNM can be well
described by an a4 ansatz with an ða4Þ2 correction term.
For the difference between the perturbative and the lattice
Monte Carlo plaquette �W11

this correction is rather small.

If infinite or large order perturbation theory was to
reflect the long distance properties of QCD, we would
expect the Wilson loops to show an area-law behavior
and the static potential to grow linearly with distance. As
a result, the Borel transform would exhibit a pole at
1=b0 ¼ 16�2=11, and the coefficients of the perturbative
series should show a factorial growth. (Then, for compari-
son, the gluon condensate would show up as a pole at
2=b0 ¼ 32�2=11.) Instead, we find

WðR; TÞ / T

R
; (61)

for R ¼ 2, 3, 4 and T ¼ 5, within a few percent, and no
sign of an infrared renormalon.3 This result holds for all
couplings within the radius of convergence of the pertur-
bative series, 0< g2 & 1:1.

In Fig. 21 we show the potential difference �V as
function of R and g2 calculated from the series variant of
the Creutz ratio

�VðRÞ ¼ VðR� 1Þ � VðRÞ

¼ log
WðR; TÞWðR� 1; T � 1Þ
WðR; T � 1ÞWðR� 1; TÞ ; (62)

using the perturbative Wilson loops up to loop order 20.
For a linearly increasing potential one would expect �V to
be a constant proportional to the string tension. In fact, �V
decreases with R for all g2 within the radius of conver-

gence consistent with the expected Coulomb behavior
1=ðRðR� 1ÞÞ.
A look at the �-function suggests, furthermore, that the

perturbative theory is separated from the strong coupling
phase through a pole, similar to the supersymmetric Yang-
Mills theory [36], indicating that there is no direct contra-
diction with the strong coupling expansion. A similar result
to (61) was found inMonte Carlo simulations of gauge fixed
noncompact lattice QCD [37,38], which took into account
only small fluctuations of the gauge fields.
This leads us to conclude-on the basis of our present

results, nota bene-that the perturbative series carry no
information on the confining properties of the theory and
the nontrivial features of the QCD vacuum. The positive
aspect of this result is that the perturbative tail can be
cleanly separated from the Monte Carlo results for the
plaquette.
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APPENDIX

We present in Tables VII, VIII, IX, X, XI, XII, and XIII
all considered rectangular perturbative Wilson loops of

FIG. 21 (color online). The perturbative potential difference
�V obtained from the perturbative Wilson loops up to loop order
20 as a function of the distance R and g2.

TABLE VII. Perturbative coefficients for L ¼ 4.

n WðnÞ
11 WðnÞ

21 WðnÞ
22

1 �0:332147ð22Þ �0:567064ð34Þ �0:874683ð122Þ
2 �0:033411ð15Þ �0:004571ð25Þ 0.104041(63)

3 �0:013368ð13Þ �0:010094ð28Þ �0:000735ð58Þ
4 �0:006983ð1Þ �0:006394ð13Þ �0:002683ð12Þ
5 �0:004179ð8Þ �0:004167ð9Þ �0:002284ð1Þ
6 �0:002719ð6Þ �0:002859ð8Þ �0:001777ð9Þ
7 �0:001872ð6Þ �0:002041ð8Þ �0:001368ð1Þ
8 �0:001342ð5Þ �0:001503ð8Þ �0:001063ð9Þ
9 �0:000992ð5Þ �0:001134ð7Þ �0:000834ð8Þ
10 �0:000752ð4Þ �0:000874ð6Þ �0:000663ð7Þ
11 �0:000581ð4Þ �0:000684ð5Þ �0:000534ð6Þ
12 �0:000456ð4Þ �0:000544ð5Þ �0:000433ð6Þ
13 �0:000363ð3Þ �0:000437ð4Þ �0:000355ð6Þ
14 �0:000292ð3Þ �0:000355ð4Þ �0:000293ð6Þ
15 �0:000238ð3Þ �0:000291ð4Þ �0:000243ð5Þ
16 �0:000195ð2Þ �0:000240ð4Þ �0:000204ð5Þ
17 �0:000161ð2Þ �0:000200ð3Þ �0:000171ð5Þ
18 �0:000134ð2Þ �0:000167ð3Þ �0:000145ð5Þ
19 �0:000112ð2Þ �0:000141ð3Þ �0:000123ð4Þ
20 �0:000094ð2Þ �0:000119ð3Þ �0:000105ð4Þ

3We have nothing to add to Ref. [34] and to the argument of
Ref. [35] that there is no physical significance to these
ambiguities.
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sizes N �M with N, M ¼ 1; . . . ; L=2 for different sizes L
of the used hypercubic lattices L4 in the form

WNM ¼ 1þ X20
n¼1

WðnÞ
NMg

2n: (A1)

The expansion coefficients WðnÞ
NM are the result of the

extrapolation to zero Langevin step size using (17). The

reported errors are the fit errors from the extrapolation
" ! 0. The presented numbers for larger Wilson loops
and higher loop orders are collected irrespective of pos-
sible problems with the signal to noise ratio at a given order
n as discussed in Sec. II B and have to be taken with
care. In Table XIV we give some perturbativeWilson loops
as result of an infinite series using the described

TABLE VIII. Perturbative coefficients for L ¼ 6.

n WðnÞ
11 WðnÞ

21 WðnÞ
22 WðnÞ

31 WðnÞ
32 WðnÞ

33

1 �0:333112ð15Þ �0:573644ð44Þ �0:907518ð112Þ �0:798086ð71Þ �1:193307ð174Þ �1:500876ð291Þ
2 �0:033829ð6Þ �0:003938ð26Þ 0.118297(96) 0.075949(52) 0.313019(171) 0.609060(335)

3 �0:013641ð4Þ �0:010199ð9Þ 0.000024(16) �0:002820ð12Þ �0:005402ð37Þ �0:050954ð108Þ
4 �0:007202ð2Þ �0:006571ð5Þ �0:002375ð9Þ �0:003622ð3Þ �0:000139ð18Þ �0:000273ð38Þ
5 �0:004366ð3Þ �0:004366ð6Þ �0:002227ð12Þ �0:002878ð6Þ �0:000573ð8Þ �0:000083ð34Þ
6 �0:002881ð4Þ �0:003047ð7Þ �0:001813ð12Þ �0:002190ð8Þ �0:000684ð1Þ �0:000138ð7Þ
7 �0:002014ð4Þ �0:002214ð7Þ �0:001440ð12Þ �0:001675ð8Þ �0:000629ð13Þ �0:000147ð12Þ
8 �0:001467ð4Þ �0:001661ð7Þ �0:001151ð12Þ �0:001303ð8Þ �0:000551ð13Þ �0:000156ð1Þ
9 �0:001103ð4Þ �0:001278ð6Þ �0:000927ð1Þ �0:001028ð7Þ �0:000473ð1Þ �0:000157ð8Þ
10 �0:000850ð3Þ �0:001004ð5Þ �0:000755ð8Þ �0:000824ð6Þ �0:000404ð8Þ �0:000150ð7Þ
11 �0:000669ð3Þ �0:000802ð4Þ �0:000622ð6Þ �0:000670ð5Þ �0:000346ð6Þ �0:000139ð6Þ
12 �0:000535ð3Þ �0:000650ð3Þ �0:000518ð4Þ �0:000551ð4Þ �0:000298ð4Þ �0:000126ð5Þ
13 �0:000434ð2Þ �0:000533ð3Þ �0:000435ð3Þ �0:000458ð3Þ �0:000257ð2Þ �0:000114ð5Þ
14 �0:000356ð2Þ �0:000442ð2Þ �0:000368ð2Þ �0:000384ð2Þ �0:000222ð2Þ �0:000102ð4Þ
15 �0:000295ð2Þ �0:000370ð2Þ �0:000313ð2Þ �0:000324ð2Þ �0:000192ð2Þ �0:000091ð4Þ
16 �0:000247ð2Þ �0:000312ð2Þ �0:000268ð2Þ �0:000276ð2Þ �0:000167ð2Þ �0:000080ð3Þ
17 �0:000208ð2Þ �0:000265ð2Þ �0:000231ð2Þ �0:000236ð2Þ �0:000145ð2Þ �0:000071ð3Þ
18 �0:000177ð2Þ �0:000227ð2Þ �0:000200ð2Þ �0:000203ð2Þ �0:000127ð2Þ �0:000063ð2Þ
19 �0:000151ð2Þ �0:000195ð2Þ �0:000173ð2Þ �0:000175ð2Þ �0:000111ð2Þ �0:000056ð2Þ
20 �0:000130ð1Þ �0:000169ð2Þ �0:000151ð2Þ �0:000152ð2Þ �0:000098ð2Þ �0:000050ð2Þ

TABLE IX. Perturbative coefficients for L ¼ 8.

n WðnÞ
11 WðnÞ

21 WðnÞ
22 WðnÞ

31 WðnÞ
41

1 �0:333236ð8Þ �0:574473ð16Þ �0:911469ð27Þ �0:800665ð29Þ �1:023410ð49Þ
2 �0:033852ð5Þ �0:003818ð8Þ 0.119976(19) 0.076987(16) 0.206839(26)

3 �0:013670ð3Þ �0:010214ð4Þ 0.000196(7) �0:002770ð7Þ �0:002536ð14Þ
4 �0:007229ð3Þ �0:006594ð4Þ �0:002321ð9Þ �0:003628ð5Þ �0:001501ð7Þ
5 �0:004389ð2Þ �0:004397ð4Þ �0:002243ð5Þ �0:002892ð6Þ �0:001525ð6Þ
6 �0:002903ð2Þ �0:003080ð3Þ �0:001845ð5Þ �0:002209ð5Þ �0:001309ð6Þ
7 �0:002034ð2Þ �0:002246ð2Þ �0:001478ð5Þ �0:001697ð3Þ �0:001076ð4Þ
8 �0:001487ð1Þ �0:001693ð2Þ �0:001194ð6Þ �0:001328ð3Þ �0:000880ð3Þ
9 �0:001122ð1Þ �0:001310ð2Þ �0:000973ð7Þ �0:001057ð3Þ �0:000725ð3Þ
10 �0:000869ð1Þ �0:001035ð3Þ �0:000800ð7Þ �0:000854ð3Þ �0:000601ð3Þ
11 �0:000687ð1Þ �0:000832ð3Þ �0:000664ð6Þ �0:000700ð3Þ �0:000502ð3Þ
12 �0:000553ð1Þ �0:000678ð3Þ �0:000555ð6Þ �0:000579ð3Þ �0:000423ð3Þ
13 �0:000451ð2Þ �0:000560ð3Þ �0:000468ð5Þ �0:000484ð3Þ �0:000358ð3Þ
14 �0:000372ð2Þ �0:000467ð3Þ �0:000398ð5Þ �0:000408ð3Þ �0:000306ð3Þ
15 �0:000310ð2Þ �0:000393ð3Þ �0:000340ð5Þ �0:000346ð3Þ �0:000262ð3Þ
16 �0:000261ð2Þ �0:000333ð3Þ �0:000292ð5Þ �0:000296ð3Þ �0:000226ð3Þ
17 �0:000221ð2Þ �0:000284ð3Þ �0:000252ð4Þ �0:000254ð3Þ �0:000195ð3Þ
18 �0:000189ð1Þ �0:000244ð2Þ �0:000219ð4Þ �0:000220ð3Þ �0:000170ð3Þ
19 �0:000162ð1Þ �0:000211ð2Þ �0:000191ð4Þ �0:000191ð3Þ �0:000148ð3Þ
20 �0:000140ð1Þ �0:000183ð2Þ �0:000167ð3Þ �0:000167ð2Þ �0:000130ð2Þ
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hypergeometric model for various � values at L ¼ 12. In
Table XV we collect the values for known loop order
coefficients in the infinite volume limit. For W11 the first
three loop order coefficients are given in [22,23] whereas

for the larger Wilson loops only the first two loop orders
are known [21]. The first order coefficients can be com-
puted to high precision.

TABLE X. Perturbative coefficients for L ¼ 8 (continued).

n WðnÞ
32 WðnÞ

33 WðnÞ
42 WðnÞ

43 WðnÞ
44

1 �1:204201ð52Þ �1:528486ð114Þ �1:485430ð97Þ �1:830535ð174Þ �2:140917ð228Þ
2 0.320661(27) 0.636544(74) 0.595785(62) 1.028662(168) 1.524356(276)

3 �0:005468ð14Þ �0:055098ð20Þ �0:048959ð22Þ �0:174438ð58Þ �0:396169ð154Þ
4 �0:000135ð19Þ �0:000547ð45Þ �0:000495ð31Þ 0.002744(73) 0.025146(116)

5 �0:000592ð1Þ �0:000131ð15Þ �0:000219ð24Þ �0:000108ð45Þ 0.000200(94)

6 �0:000687ð12Þ �0:000159ð28Þ �0:000216ð20Þ �0:000068ð44Þ 0.000011(96)

7 �0:000652ð1Þ �0:000208ð13Þ �0:000238ð13Þ �0:000082ð17Þ �0:000067ð33Þ
8 �0:000588ð1Þ �0:000214ð17Þ �0:000246ð11Þ �0:000089ð14Þ �0:000057ð28Þ
9 �0:000514ð1Þ �0:000196ð16Þ �0:000233ð11Þ �0:000077ð15Þ �0:000027ð26Þ
10 �0:000443ð9Þ �0:000174ð13Þ �0:000209ð9Þ �0:000063ð12Þ �0:000011ð14Þ
11 �0:000380ð7Þ �0:000153ð1Þ �0:000183ð7Þ �0:000054ð8Þ �0:000010ð7Þ
12 �0:000326ð6Þ �0:000136ð8Þ �0:000160ð6Þ �0:000048ð7Þ �0:000013ð5Þ
13 �0:000281ð6Þ �0:000120ð7Þ �0:000141ð5Þ �0:000043ð6Þ �0:000015ð4Þ
14 �0:000243ð5Þ �0:000107ð7Þ �0:000124ð5Þ �0:000039ð5Þ �0:000015ð4Þ
15 �0:000210ð5Þ �0:000095ð6Þ �0:000109ð5Þ �0:000035ð5Þ �0:000013ð4Þ
16 �0:000183ð5Þ �0:000084ð5Þ �0:000096ð5Þ �0:000032ð5Þ �0:000011ð4Þ
17 �0:000160ð5Þ �0:000075ð5Þ �0:000086ð5Þ �0:000029ð4Þ �0:000010ð4Þ
18 �0:000141ð4Þ �0:000068ð4Þ �0:000076ð4Þ �0:000027ð4Þ �0:000009ð3Þ
19 �0:000124ð4Þ �0:000061ð4Þ �0:000068ð4Þ �0:000025ð3Þ �0:000008ð3Þ
20 �0:000110ð4Þ �0:000055ð4Þ �0:000061ð4Þ �0:000023ð3Þ �0:000007ð2Þ

TABLE XI. Perturbative coefficients for L ¼ 12.

n WðnÞ
11 WðnÞ

21 WðnÞ
22 WðnÞ

31 WðnÞ
41 WðnÞ

51 WðnÞ
61

1 �0:333320ð4Þ �0:574758ð4Þ �0:912636ð19Þ �0:801260ð5Þ �1:024718ð1Þ �1:247323ð13Þ �1:469522ð15Þ
2 �0:033898ð1Þ �0:003835ð2Þ 0.120423(2) 0.077139(9) 0.207624(22) 0.387381(18) 0.616194(13)

3 �0:013698ð3Þ �0:010247ð5Þ 0.000136(15) �0:002788ð4Þ �0:002610ð3Þ �0:020698ð3Þ �0:067876ð11Þ
4 �0:007251ð3Þ �0:006625ð7Þ �0:002337ð13Þ �0:003640ð8Þ �0:001503ð7Þ �0:000967ð6Þ �0:000342ð11Þ
5 �0:004410ð3Þ �0:004425ð6Þ �0:002255ð11Þ �0:002914ð9Þ �0:001539ð1Þ �0:000784ð1Þ �0:000475ð6Þ
6 �0:002922ð3Þ �0:003106ð6Þ �0:001861ð9Þ �0:002233ð7Þ �0:001326ð1Þ �0:000724ð12Þ �0:000406ð15Þ
7 �0:002052ð3Þ �0:002272ð4Þ �0:001503ð7Þ �0:001726ð5Þ �0:001101ð5Þ �0:000645ð6Þ �0:000373ð8Þ
8 �0:001504ð2Þ �0:001718ð3Þ �0:001217ð4Þ �0:001355ð3Þ �0:000906ð3Þ �0:000557ð4Þ �0:000334ð6Þ
9 �0:001138ð2Þ �0:001333ð2Þ �0:000994ð2Þ �0:001082ð2Þ �0:000748ð1Þ �0:000475ð2Þ �0:000289ð3Þ
10 �0:000884ð1Þ �0:001056ð2Þ �0:000820ð2Þ �0:000876ð2Þ �0:000621ð1Þ �0:000403ð2Þ �0:000251ð3Þ
11 �0:000700ð1Þ �0:000851ð1Þ �0:000683ð3Þ �0:000719ð2Þ �0:000519ð2Þ �0:000344ð2Þ �0:000218ð3Þ
12 �0:000565ð1Þ �0:000696ð2Þ �0:000574ð4Þ �0:000597ð3Þ �0:000438ð3Þ �0:000295ð4Þ �0:000191ð4Þ
13 �0:000462ð1Þ �0:000577ð2Þ �0:000487ð4Þ �0:000502ð3Þ �0:000373ð4Þ �0:000256ð4Þ �0:000168ð4Þ
14 �0:000383ð1Þ �0:000484ð2Þ �0:000418ð4Þ �0:000426ð3Þ �0:000321ð4Þ �0:000223ð4Þ �0:000149ð3Þ
15 �0:000320ð1Þ �0:000409ð2Þ �0:000361ð4Þ �0:000364ð3Þ �0:000278ð3Þ �0:000196ð3Þ �0:000132ð2Þ
16 �0:000271ð1Þ �0:000350ð2Þ �0:000314ð3Þ �0:000315ð2Þ �0:000243ð2Þ �0:000173ð2Þ �0:000117ð1Þ
17 �0:000231ð1Þ �0:000301ð2Þ �0:000275ð2Þ �0:000274ð2Þ �0:000213ð2Þ �0:000153ð2Þ �0:000105ð1Þ
18 �0:000199ð1Þ �0:000261ð2Þ �0:000242ð2Þ �0:000239ð2Þ �0:000188ð2Þ �0:000136ð2Þ �0:000094ð2Þ
19 �0:000172ð1Þ �0:000228ð1Þ �0:000213ð3Þ �0:000210ð2Þ �0:000166ð2Þ �0:000122ð3Þ �0:000085ð2Þ
20 �0:000150ð1Þ �0:000200ð1Þ �0:000189ð3Þ �0:000185ð2Þ �0:000147ð3Þ �0:000109ð3Þ �0:000077ð2Þ
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TABLE XIII. Perturbative coefficients for L ¼ 12 (continued).

n WðnÞ
54 WðnÞ

55 WðnÞ
62 WðnÞ

63 WðnÞ
64 WðnÞ

65 WðnÞ
66

1 �2:484945ð156Þ �2:807271ð225Þ �2:052506ð78Þ �2:448879ð142Þ �2:794661ð184Þ �3:121967ð258Þ �3:438947ð291Þ
2 2.181680(181) 2.906812(327) 1.391688(52) 2.114904(186) 2.879504(270) 3.716609(450) 4.631615(573)

3 �0:790329ð77Þ �1:342663ð185Þ �0:341621ð19Þ �0:751605ð84Þ �1:322744ð141Þ �2:086833ð280Þ �3:069039ð366Þ
4 0.101235(36) 0.260769(172) 0.020658(33) 0.093854(31) 0.255213(42) 0.548424(285) 1.025063(600)

5 �0:002457ð18Þ �0:015589ð148Þ �0:000052ð25Þ �0:002038ð23Þ �0:015007ð49Þ �0:056854ð283Þ �0:156497ð515Þ
6 0.000160(35) 0.000420(19) �0:000080ð18Þ 0.000078(14) 0.000253(48) 0.001978(79) 0.008403(118)

7 �0:000078ð29Þ �0:000175ð44Þ �0:000076ð11Þ �0:000051ð12Þ �0:000048ð49Þ �0:000388ð108Þ �0:000301ð267Þ
8 �0:000020ð16Þ �0:000011ð8Þ �0:000059ð11Þ �0:000045ð23Þ �0:000034ð33Þ 0.000034(26) �0:000051ð119Þ
9 �0:000008ð6Þ 0.000015(11) �0:000049ð9Þ �0:000022ð1Þ �0:000009ð25Þ �0:000004ð50Þ 0.000008(124)

10 0.000007(12) 0.000030(16) �0:000037ð4Þ 0.000003(1) 0.000015(17) 0.000056(16) 0.000093(31)

11 �0:000005ð12Þ 0.000008(1) �0:000035ð3Þ 0.000002(17) �0:000004ð1Þ �0:000014ð7Þ �0:000066ð26Þ
12 �0:000016ð6Þ �0:000002ð2Þ �0:000037ð5Þ �0:000005ð11Þ �0:000011ð4Þ �0:000022ð9Þ �0:000049ð5Þ
13 �0:000020ð4Þ �0:000006ð1Þ �0:000038ð3Þ �0:000012ð5Þ �0:000013ð11Þ �0:000010ð9Þ �0:000026ð17Þ
14 �0:000019ð6Þ �0:000008ð3Þ �0:000038ð1Þ �0:000016ð5Þ �0:000009ð11Þ �0:000004ð8Þ 0.000002(22)

15 �0:000015ð8Þ �0:000007ð6Þ �0:000036ð2Þ �0:000016ð5Þ �0:000004ð9Þ �0:000001ð7Þ 0.000012(11)

16 �0:000010ð1Þ �0:000005ð8Þ �0:000033ð3Þ �0:000015ð6Þ �0:000002ð7Þ 0.000000(6) 0.000014(3)

17 �0:000008ð1Þ �0:000004ð9Þ �0:000030ð5Þ �0:000013ð7Þ �0:000001ð6Þ 0.000000(5) 0.000009(5)

18 �0:000007ð8Þ �0:000003ð7Þ �0:000028ð5Þ �0:000012ð6Þ 0.000000(5) �0:000001ð4Þ 0.000002(4)

19 �0:000007ð6Þ �0:000003ð5Þ �0:000025ð5Þ �0:000011ð5Þ 0.000000(3) �0:000002ð3Þ �0:000002ð3Þ
20 �0:000006ð4Þ �0:000002ð3Þ �0:000023ð4Þ �0:000010ð4Þ 0.000000(2) �0:000002ð2Þ �0:000004ð5Þ

TABLE XII. Perturbative coefficients for L ¼ 12 (continued).

n WðnÞ
32 WðnÞ

33 WðnÞ
42 WðnÞ

43 WðnÞ
44 WðnÞ

52 WðnÞ
53

1 �1:207005ð31Þ �1:535522ð52Þ �1:491384ð41Þ �1:845142ð72Þ �2:170005ð100Þ �1:772698ð66Þ �2:148586ð117Þ
2 0.322694(4) 0.643882(9) 0.601963(23) 1.048051(37) 1.571598(94) 0.958407(28) 1:538376ð110Þ
3 �0:005740ð18Þ �0:056823ð24Þ �0:050320ð9Þ �0:181032ð13Þ �0:418636ð81Þ �0:155201ð16Þ �0:404144ð11Þ
4 �0:000112ð19Þ �0:000446ð44Þ �0:000514ð12Þ 0.003334(36) 0.028597(70) 0.002475(12) 0:027039ð50Þ
5 �0:000592ð11Þ �0:000136ð15Þ �0:000182ð2Þ �0:000224ð12Þ �0:000196ð13Þ �0:000188ð19Þ �0:000207ð18Þ
6 �0:000685ð9Þ �0:000113ð15Þ �0:000197ð8Þ �0:000059ð18Þ �0:000019ð16Þ 0.000109(14) �0:000003ð30Þ
7 �0:000663ð7Þ �0:000178ð12Þ �0:000241ð6Þ �0:000074ð13Þ �0:000064ð18Þ �0:000103ð9Þ �0:000054ð20Þ
8 �0:000598ð4Þ �0:000196ð5Þ �0:000248ð4Þ �0:000074ð11Þ �0:000031ð14Þ �0:000108ð8Þ �0:000043ð20Þ
9 �0:000523ð2Þ �0:000192ð5Þ �0:000234ð5Þ �0:000067ð9Þ �0:000024ð4Þ �0:000101ð9Þ �0:000027ð11Þ
10 �0:000453ð3Þ �0:000177ð3Þ �0:000210ð3Þ �0:000059ð1Þ �0:000013ð8Þ �0:000090ð6Þ �0:000015ð8Þ
11 �0:000391ð5Þ �0:000161ð7Þ �0:000188ð6Þ �0:000056ð8Þ �0:000015ð11Þ �0:000083ð6Þ �0:000018ð14Þ
12 �0:000339ð6Þ �0:000148ð9Þ �0:000170ð7Þ �0:000058ð11Þ �0:000023ð7Þ �0:000079ð6Þ �0:000025ð12Þ
13 �0:000297ð6Þ �0:000137ð9Þ �0:000155ð7Þ �0:000059ð8Þ �0:000029ð5Þ �0:000076ð5Þ �0:000028ð7Þ
14 �0:000261ð5Þ �0:000126ð7Þ �0:000141ð5Þ �0:000058ð5Þ �0:000030ð5Þ �0:000071ð3Þ �0:000029ð4Þ
15 �0:000230ð4Þ �0:000116ð5Þ �0:000128ð3Þ �0:000055ð4Þ �0:000026ð8Þ �0:000067ð2Þ �0:000026ð6Þ
16 �0:000204ð3Þ �0:000106ð5Þ �0:000116ð3Þ �0:000051ð6Þ �0:000023ð11Þ �0:000061ð3Þ �0:000023ð8Þ
17 �0:000182ð3Þ �0:000096ð7Þ �0:000105ð4Þ �0:000047ð8Þ �0:000020ð12Þ �0:000056ð5Þ �0:000021ð9Þ
18 �0:000162ð4Þ �0:000087ð8Þ �0:000095ð5Þ �0:000043ð9Þ �0:000018ð11Þ �0:000052ð5Þ �0:000020ð9Þ
19 �0:000145ð5Þ �0:000078ð9Þ �0:000086ð6Þ �0:000040ð9Þ �0:000017ð9Þ �0:000047ð6Þ �0:000020ð8Þ
20 �0:000130ð5Þ �0:000071ð9Þ �0:000077ð6Þ �0:000037ð8Þ �0:000016ð6Þ �0:000043ð5Þ �0:000018ð6Þ
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TABLE XV. Coefficients of lowest loop orders in the infinite volume limit.

WNM Wð1Þ
NM;1 Wð2Þ

NM;1 Wð3Þ
NM;1

W11 [22,23] �1=3 �0:0339109931ð3Þ �0:0137063ð2Þ
W21 [21] �0:57483367 �0:003857ð17Þ
W31 [21] �0:80146372 0.07717(5)

W22 [21] �0:91287436 0.12040(7)

TABLE XIV. Summed series of perturbative Wilson loops at L ¼ 12 using the described hypergeometric model as function of �.

� W1
11 W1

21 W1
31 W1

22

5.85 0.57595(14) 0.36021(22) 0.22936(28) 0.16659(41)

5.9 0.58254(11) 0.36901(16) 0.23814(21) 0.17557(29)

5.95 0.588518(92) 0.37692(13) 0.24602(17) 0.18354(24)

6 0.594092(80) 0.38429(11) 0.25337(14) 0.19095(20)

6.05 0.599358(71) 0.39125(10) 0.26034(12) 0.19797(17)

6.1 0.604372(63) 0.397894(90) 0.26702(11) 0.20469(15)

6.15 0.609172(57) 0.404260(81) 0.273454(99) 0.21118(14)

6.2 0.613784(52) 0.410391(75) 0.279676(89) 0.21745(12)

6.25 0.618228(48) 0.416313(67) 0.285714(81) 0.22355(11)

6.3 0.622521(44) 0.422047(62) 0.291587(74) 0.22949(10)

6.35 0.626675(41) 0.427612(57) 0.297310(68) 0.235295(94)

6.4 0.630703(38) 0.433020(53) 0.302895(63) 0.240961(87)

6.45 0.634612(35) 0.438283(49) 0.308354(58) 0.246508(80)

6.5 0.638412(33) 0.443412(45) 0.313694(54) 0.251941(75)

6.55 0.642108(31) 0.448415(44) 0.318922(50) 0.257270(70)

6.6 0.645708(29) 0.453299(40) 0.324046(47) 0.262499(65)

6.65 0.649216(27) 0.458071(37) 0.329071(44) 0.267634(61)
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