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We compute the hadronic matrix elements of the four-quark operators needed for the study of K0 � �K0

mixing beyond the Standard Model (SM). We use nf ¼ 2þ 1 flavors of domain-wall fermion that exhibit

good chiral-flavor symmetry. The renormalization is performed nonperturbatively through the RI-MOM

scheme and our results are converted perturbatively to MS. The computation is performed on a single

lattice spacing a� 0:086 with a lightest unitary pion mass of 290 MeV. The various systematic errors,

including the discretization effects, are estimated and discussed. Our results confirm a previous quenched

study, where large ratios of non-SM to SM matrix elements were obtained.
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I. INTRODUCTION

Recent progress achieved by the lattice community is
greatly improving our theoretical understanding of CP vio-
lation in kaon decays. The experimentally well-measured
parameters "K and "0K, which quantify indirect and direct
CP violation in K ! ��, can be confronted with a theo-
retical computation of the K ! ð��ÞI¼0;2 amplitudes and of

neutral kaon mixing, providing the nonperturbative effects
are correctly accounted for. The first direct and realistic
computation of the K ! ð��ÞI¼2 amplitude has been re-
cently performed [1,2]. A complete computation of the�I ¼
1=2 amplitude is still missing, but important work is being
performed in that direction [3]. The situation is much more
favorable for neutral kaon oscillations: the bag parameter BK

that describes the long-distance contributions to neutral kaon
mixing in the Standard Model (SM), is now computed with a
precision of a few percent (see e.g. [4–6]) for recent un-
quenched determinations). By combining BK with the ex-
perimental value of "K, one obtains important constraints on
the free parameters associated with quark flavor mixing (see
[7] for a recent pedagogical review). In principle, the same
techniques can be applied for beyond the Standard Model
(BSM) theories (see for example [8–17]), but not much is
known concerning the long-distance contributions of the
nonstandard operators beyond the quenched approximation.

In this paper, we present the first realistic computation of
the matrix elements of neutral kaon mixing beyond the
Standard Model. Previous studies were either preliminary
[18,19] or suffered from the quenched approximation
[20,21]. Since a noticeable disagreement was observed
between Refs. [20] and [21] it is important to repeat this
computation in a more realistic framework [22].

II. FORMALISM

In the SM, neutral kaon mixing is dominated by box
diagrams as in Fig. 1. By performing an operator product
expansion, one factorizes the long-distance effects in the
weak matrix element (WME) h �K0jO�s¼2

1 jK0i of the four-
quark operator O�s¼2

1 given by (� and � are color indices)

O�s¼2
1 ¼ ð �s���ð1� �5Þd�Þð�s���ð1� �5Þd�Þ: (1)

Only one four-quark operator appears in the SM because
neutral kaonmixing occurs underW-boson exchange, imply-
ing a ‘‘vector-axial’’ Dirac structure. Since this four-quark
operator is invariant under Fierz rearrangement, the two
different color structures (mixed andunmixed) are equivalent.
We also seek to understand whether new physics beyond

the Standard Model could play a detectable role in kaon
CP violation. Assuming that this new physics is perturba-
tive, we might also describe this by contributions to the
effective Hamiltonian, and other four-quark operators are
induced by such extensions of the SM. It is conventional to
introduce the so-called SUSY basis O�s¼2

i¼1...5: in addition to

the SM operator O�s¼2
1 , we define [24,25]

O�s¼2
2 ¼ ð�s�ð1� �5Þd�Þð�s�ð1� �5Þd�Þ;

O�s¼2
3 ¼ ð�s�ð1� �5Þd�Þð�s�ð1� �5Þd�Þ;

O�s¼2
4 ¼ ð�s�ð1� �5Þd�Þð�s�ð1þ �5Þd�Þ;

O�s¼2
5 ¼ ð�s�ð1� �5Þd�Þð�s�ð1þ �5Þd�Þ:

(2)

These four-quark operators appear in the generic �s ¼ 2
Hamiltonian

H�s¼2 ¼ X5
i¼1

Cið�ÞO�s¼2
i ð�Þ; (3)

where � is a renormalization scale. The Wilson coeffi-
cients Ci, which encode the short-distance effects, depend
on the new physics model under consideration. The long-
distance effects are factorized into the matrix elements of
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the four-quark operators O�s¼2
i . Lattice QCD offers a

unique opportunity to quantify these effects in a model-
independent way.

In phenomenological applications, by combining our
results for the BSM matrix elements with experimental
observables (typically the mass difference �MK ¼ mKL

�
mKS

and �K), one obtains important constraints on the

model under consideration. The Wilson coefficients and
the bare matrix elements have to be converted into a

common scheme, at a given scale � (typically MS at a
scale of 2 or 3 GeV). In the SM case (i ¼ 1) it is conven-
tional to introduce the kaon bag parameter BK, which
measures the deviation of the SM matrix element from
its vacuum saturation approximation

BK ¼ h �K0jO1jK0i
8
3m

2
Kf

2
K

; (4)

where the normalization for the decay constant is such
that fK� ¼ 156:1 MeV. Several normalizations for the
BSM operators have been proposed in the literature (see
for example [20]); in this work we follow [21] and define
the ratios

RBSM
i ¼

�
f2K
m2

K

�
expt

�
m2

P

f2P

h �PjOijPi
h �PjO1jPi

�
latt
; (5)

where P is a pseudoscalar particle of mass mP and decay
constant fP. The term ½ �latt is obtained from our lattice
simulations for different values of mP.

As advocated in [21], there are various reasons to choose
this normalization rather than, for example, the standard
bag parameters. In particular, we expect some systematic
errors to cancel in the ratio of the bare WMEs; there is no
need to introduce the light quark masses and the partial
conservation of the axial current. Furthermore, the mass
factors in Eq. (5) compensate the leading-order chiral
behavior of the WMEs, making all of the chiral extrapola-
tions smoother. Finally, at the physical point P ¼ K0, the
RBSM
i ’s give directly the ratios of the non-SM to SM

contributions.
The RBSM

i ’s will be the main result of this work, but for
completeness we will also give the BSM bag parametriza-
tion, defined as (where N2;...;5 ¼ 5

3 , � 1
3 , �2, � 2

3 ) [26]

Bi¼� h �K0jOijK0i
Nih �K0j�s�5dj0ih0j�s�5djK0i ; i¼2; . . . ;5: (6)

III. COMPUTATION DETAILS

This computation is performed on the finer of the two
ensembles described in detail in [4,27]. We use 323 � 64�
16 (the last number corresponds to the length of the fifth
dimension of the domain-wall action in lattice units)
Iwasaki gauge configurations with an inverse lattice spac-
ing a�1 ¼ 2:28ð3Þ GeV, corresponding to a� 0:086 fm.
The quarks are described by the domain-wall action
[28–30], both in the valence and in the sea sectors. We
have three different values of the light sea quark mass
amsea

light ¼ 0:004, 0.006, 0.008 corresponding to unitary

pion masses of approximately 290, 340, and 390 MeV,
respectively. The simulated strange sea quark mass is
amsea

strange ¼ 0:03, which is close to its physical value

0.0273(7) [27]. For the main results of this work, we
consider only unitary light quarks, amvalence

light ¼amsea
light,

whereas for the physical strange we interpolate between
the unitary (amvalence

strange ¼amsea
strange¼0:03) and the partially

quenched (amvalence
strange ¼ 0:025) data.

To extract the bare matrix elements we follow [4,27],
where the procedure for the evaluation of the two-point
functions and of the three-point function of the SM opera-
tor has been explained in detail. In particular, we have used
Coulomb gauge fixed wall sources to obtain very good
statistical precision. From the measurement of BK, the
generalization to the BSM operators is straightforward.
We define the three-point function

ci ¼ h �PðtfÞO�S¼2
i¼2;...5ðtÞ �PðtiÞi: (7)

d

s d

s

t t

W

W

FIG. 1. Diagram contributing to K0 � �K0 mixing in the SM.
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FIG. 2 (color online). Ratios of the bare three-point functions
from which we extract RBSM

i . Results are shown for our lightest

simulated unitary kaon.
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From the asymptotic Euclidean time behavior of the ratios
of three-point functions ci=c1 (we fit these ratios to a
constant in the interval t=a ¼ ½12; 52� [31]), we obtain
the bare matrix elements of the four-quark operators nor-
malized by the SM one: ½h �PjO�S¼2

i jPi=h �PjO�S¼2
1 jPi�bare.

In Fig. 2, we show the corresponding plateaus obtained
for our lightest unitary kaon amsea

light ¼ amvalence
light ¼ 0:004,

amsea
strange ¼ amvalence

strange ¼ 0:03.

IV. RENORMALIZATION

The four-quark operators given in Eqs. (1) and (2) mix
under renormalization. In a scheme that preserves chiral
symmetry, the mixing pattern is given by the transforma-
tion properties of these operators under chiral rotations
SUð3ÞL � SUð3ÞR. The SM operator O�s¼2

1 belongs to a

(27, 1) irreducible representation of SUð3ÞL � SUð3ÞR and
renormalizes multiplicatively. The BSM operators fall into
two categories: O�s¼2

2 and O�s¼2
3 transform like ð6; �6Þ and

mix together. Likewise O�s¼2
4 and O�s¼2

5 belong to (8, 8)

and also mix. If chiral symmetry is realized, the five-by-
five renormalization matrix Zij is block diagonal: a single

factor for the (27, 1) operator and two 2� 2 matrices for
the BSM operators. Because we work with the domain-
wall fermions formulation, in which the explicit breaking
of chiral symmetry can be made arbitrarily small (and in
practice numerically irrelevant), we expect to find this
continuum pattern, up to small discretization effects.

We perform the renormalization of the four-quark opera-
tors O�s¼2

i nonperturbatively in the RI-MOM scheme [32].
We compute the forward, amputated, vertex functions
of the relevant operators between external quark states in
the lattice Landau gauge for a given set of momenta.
As a renormalization condition, we impose these to be equal
to their tree-level values once projected onto their color-
Dirac structures and extrapolated to the chiral limit. By
using both momentum sources [33] and partially twisted
boundary conditions, we obtain smooth functions of the
external momentum with very good statistical accuracy
[34]. Although we have performed this computation in
various intermediate schemes (including the nonexceptional
ð��; ��Þ-scheme introduced in [4]), we quote here the

results obtained via the RI-MOM scheme because only in

this case are the conversion factors to MS (computed in
continuum perturbation theory) available for the whole set
of operators. In such a scheme, the presence of exceptional
channels enhances the Goldstone pole contaminations
[18,36], which have then been subtracted explicitly [37].
We choose to impose the renormalization conditions at� ¼
3 GeV. At this scale, perturbation theory (PT) converges
rather quickly (�s � 0:25), the chiral symmetry breaking
effects are small, and we still have good control on the
discretization effects [4,38]. Matching at this scale is im-
portant for our error budget since the perturbative conver-

sion factors between the lattice schemes and MS of the

four-quark operators are only known at one loop (as dis-
cussed later, matching to PT is actually one of our dominant
sources of systematic error). We observe that the effects of
chiral symmetry breaking are not completely negligible,
even at 3 GeV [35]. Therefore we must assess a systematic
error to the mixing of operators of different chirality (see
next section). We have checked that in a nonexceptional
scheme this small chirally forbidden mixing is strongly
reduced and becomes numerically irrelevant at 3 GeV
[18,35]. Thus we conclude that this effect is a physical
manifestation of the infrared behavior of the exceptional
intermediate scheme. The results for the chirally allowed

renormalization factors ZMS
ij ð3 GeVÞ are shown in Fig. 3.

They relate the bare four-quark operators to the renormalized
ones through the usual relation (Zq is the renormalization

factor of the quark wave function and cancels in the ratios)

O�s¼2
i ð3 GeVÞ ¼ Zij

Z2
q

ð3 GeVÞO�s¼2
j : (8)

V. PHYSICAL RESULTS AND
ERROR ESTIMATION

Once the bare ratios have been renormalized, we
extrapolate them to the physical kaon mass. We have ex-
plored different strategies, such as a simple polynomial
form or next-to-leading-order chiral perturbation theory
(ChPT) predictions [39]. The value of the simulated unitary
strange mass differs somewhat from the physical one;
therefore, we perform an interpolation using a partially
quenched strange quark. We find that the RBSM’s exhibit
a very mild quark mass dependence (see Fig. 4 [43]);
therefore, we take the results obtained with the polynomial
Ansatz as our central values [44].
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FIG. 3 (color online). Renormalization factors of the four-
quark operators. At each value of the simulated momentum p,
we run to the scale of 3 GeV and convert to MS. The remaining
scale dependence can be imputed to the truncation of the
perturbative expansion. We show only the Z factors allowed
by chiral symmetry.
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Our final results are the RBSM
i quoted in MS at 3 GeV

given in Table I. For completeness, we also convert these to
the BSM bag parameters, using Eq. (6) [45]. We also note
that, using the same framework, the SM contribution is

found to be B1 ¼ BK ¼ 0:517ð4Þstat in the MS scheme at
3 GeV, whereas a continuum value of 0:529ð5Þstatð19Þsyst
was quoted in [4]. The difference comes from the fact that a
different intermediate scheme was used in [4] (such a
difference is accounted for in our estimation of the system-
atic errors). From the same reference, the discretization
effects for BK on this lattice are seen to be of the order of
1.5%. Since we have only one lattice spacing for the BSM
ratios, we make the assumption that the discretization
errors are of the same size as those affecting BK, and
estimate a 1.5% error to all the different operators. This
might appear like a crude estimate, but this effect is
expected to be subdominant compared to other sources
of systematic errors. The next systematic error (called
‘‘extr.’’) represents the spread of the results obtained
from different extrapolation strategies to the physical
point. The systematic error associated with the nonpertur-
bative renormalization (NPR) has been estimated from the
breaking of chiral symmetry. The mixing of the ð6; �6Þ with
the (8, 8) operators is forbidden by chiral symmetry but
likely to be enhanced by the exchange of light pseudoscalar
particles. As the matrix element of O�s¼2

4 is numerically

large, this nonphysical mixing has an effect on O�s¼2
2 and

O�s¼2
3 of the order of 8%–9%. As discussed in the previous

section, this unwanted infrared effect is absent if a non-
exceptional scheme is used. The last error we quote
(‘‘PT’’) arises from the matching between the intermediate

RI-MOM scheme andMS, which is performed at one-loop
order in perturbation theory [46,47] in the three-flavor
theory. The associated error is obtained by taking half the
difference between the leading-order and the next-to-
leading-order result [48]. We note that this error is one of
the dominant ones in our budget, and we expect this error
to be reduced by an important factor if a nonexceptional
scheme were used, since the latter are known to converge
faster in perturbation theory. We neglect the finite volume
effects that have been found to be small in [4], as one can
expect from the value of m�L� 4 for our lightest pion
mass m� � 290 MeV.

VI. CONCLUSIONS

We have computed the electroweak matrix elements of
the �s ¼ 2 four-quark operators that contribute to neutral
kaon mixing beyond the SM. Our work improves on the
previous studies by using both dynamical and chiral fer-
mions. We confirm the effect seen in a previous quenched
computation [21], where a large enhancement of the non-
standard matrix elements were observed. The errors quoted
in this work are of the order of 10%. We note that the main
limitation of this study comes from the lack of matching
factors between nonexceptional renormalization schemes

(such as SMOM [4]) and MS. Once these factors are
available, we expect to reach a precision better than 5%.
We also plan to utilize another lattice spacing in order to
have a better handle on the discretization effects.
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APPENDIX

We have computed the nonperturbative scale evolution
of the RBSM’s between 3 and 2 GeV and then converted

the results to MS using one-loop perturbation theory
[46,47]:
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FIG. 4 (color online). Renormalized BSM ratios RBSM
i in func-

tion of the bare valence quark mass. We show the three unitary
light quarks for both the unitary strange (upward blue triangles)
and the partially quenched strange (downward blue triangles),
together with their extrapolations in the light sector (blue and red
circles) and their interpolation to the physical kaon mass (black
squares).

TABLE I. Final results of this work: the first two columns
show the ratios RBSM

i and the corresponding bag parameters Bi in

MS at 3 GeV, together with their total error, combining system-
atics and statistics. In the remaining columns, we give our error
budget for the RBSM, detailing the contributions in percentage of
the different sources of systematics (see text for more details).

RBSM
i Bi Stat. Discr. Extr. NPR PT Total

2 �15:3ð1:7Þ 0.43(5) 1.3 1.5 4.0 9.4 4.7 11.3

3 5.4(0.6) 0.75(9) 2.0 1.5 3.9 7.8 7.6 12.0

4 29.3(2.9) 0.69(7) 1.3 1.5 4.1 3.0 8.2 9.8

5 6.6(0.9) 0.47(6) 2.1 1.5 3.8 3.2 12.6 13.8
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UMSð2 GeV; 3 GeVÞ ¼

1 0 0 0 0

0 0:87 0:02 0 0

0 0:09 1:09 0 0

0 0 0 0:86 �0:01

0 0 0 �0:03 0:98

0
BBBBBBBB@

1
CCCCCCCCA
: (A1)

Our conventions are such that

RBSMð2 GeVÞ ¼ UMSð2 GeV; 3 GeVÞRBSMð3 GeVÞ: (A2)
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