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In conventional treatments, predictions from fixed-order perturbative QCD calculations cannot be fixed

with certainty because of ambiguities in the choice of the renormalization scale as well as the

renormalization scheme. In this paper we present a general discussion of the constraints of the

renormalization group (RG) invariance on the choice of the renormalization scale. We adopt the RG-

based equations, which incorporate the scheme parameters, for a general exposition of RG invariance,

since they simultaneously express the invariance of physical observables under both the variation of the

renormalization scale and the renormalization scheme parameters. We then discuss the self-consistency

requirements of the RG, such as reflexivity, symmetry, and transitivity, which must be satisfied by the

scale-setting method. The principle of minimal sensitivity requires the slope of the approximant of an

observable to vanish at the renormalization point. This criterion provides a scheme-independent estima-

tion, but it violates the symmetry and transitivity properties of the RG and does not reproduce the Gell-

Mann-Low scale for QED observables. The principle of maximum conformality (PMC) satisfies all of the

deductions of the RG invariance—reflectivity, symmetry, and transitivity. Using the PMC, all non-

conformal f�R
i g terms (R stands for an arbitrary renormalization scheme) in the perturbative expansion

series are summed into the running coupling, and one obtains a unique, scale-fixed, scheme-independent

prediction at any finite order. The PMC scales and the resulting finite-order PMC predictions are both to

high accuracy independent of the choice of initial renormalization scale, consistent with RG invariance.

Moreover, after PMC scale setting, the residual initial scale dependence at fixed order owing to unknown

higher-order f�ig terms can be substantially suppressed. The PMC thus eliminates a serious systematic

scale error in perturbative quantum chromodynamics predictions, greatly improving the precision of tests

of the Standard Model and the sensitivity to new physics at collider and other experiments.
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I. INTRODUCTION

Given the perturbative series for a physical quantity

�n ¼ C0�
p
s ð�Þ þXn

i¼1

Cið�Þ�pþi
s ð�Þ; (1)

expanded to nth order in the QCD strong coupling constant
�sð�Þ, the renormalization scale � must be specified in
order to obtain a definite prediction. The common practice
adopted in the literature is to simply guess a renormaliza-
tion scale� ¼ Q, keep it fixed during the calculation (Q is
usually assumed to be a typical momentum transfer of the
process), and then vary it over an arbitrary range, e.g.,
½Q=2; 2Q�, in order to ascertain the scale uncertainty.
However, there are many weak points of this conventional
scale-setting method:

(1) Although the infinite perturbative series �n!1
summed to all orders is renormalization-scale

independent, the scale dependence from �sð�Þ and
Cið�Þ does not exactly cancel at finite order, leading
to a renormalization-scale ambiguity.

(2) The fixed-order estimate in the conventional proce-
dure is also scheme dependent; i.e., different choices
of renormalization scheme R will lead to different
theoretical estimates. This is the well-known renor-
malization scheme ambiguity [1–11].

(3) The conventional scale choice can give unphysical
results: For example, for the case of W-boson plus
three-jet production at the hadronic colliders, taking
� to be the W-boson transverse energy, the conven-
tional scale-setting method even predicts negative
QCD cross section at the next-to-leading order
(NLO) [12,13].

(4) As has been shown in Ref. [14], taking an incor-
rect renormalization scale underestimates the
top quark forward-backward asymmetry at the
Tevatron.

(5) It should be recalled that there is no ambiguity in
setting the renormalization scale in QED.
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(i) In QED, the coupling �ðq2Þ is conventionally de-
fined in the Gell-Mann-Low (GM-L) scheme [15]
from the potential between heavy charges, and it is
normalized at q2 ¼ 0 to the fine-structure constant
�ð0Þ ’ 1=137:0359 . . . [16].

(ii) Because of the Ward-Takahashi identity [17], the
divergences in the vertex and fermion wave-
function corrections cancel, and the ultraviolet di-
vergence associated with the vacuum polarization
defines a natural scale for the coupling constant
�ðq2Þwith q2 being the squared momentum transfer
for the photon propagator. This fact was first ob-
served by Gell-Mann and Low [15]; i.e., in the
standard GM-L scheme, the renormalization scale
is simply the virtuality of the exchanged photon.
For example, the renormalization scale for the
electron-muon elastic scattering based on one-
photon exchange is the virtuality of the exchanged
photon, i.e., �2

GM-L ¼ t ¼ q2. One can, of course,

choose any initial renormalization scale t0 for cal-
culating the QED amplitude; however, the final
result will not depend on the choice of t0, since

�ðtÞ ¼ �ðt0Þ
½1��ðt; t0Þ� ; (2)

where

�ðt; t0Þ ¼ ½�ðtÞ ��ðt0Þ�
½1��ðt0Þ� ;

naturally sums all vacuum polarization contribu-
tions, both proper and improper, to the dressed
photon propagator. [Here �ðtÞ ¼ �ðt; 0Þ is the
sum of proper vacuum polarization insertions, sub-
tracted at t ¼ 0.] The invariance of the result on the
initial scale t0 is the property used to derive the
Callan-Symanzik equations [18,19]. There is, there-
fore, no reason to vary �GM-L by a factor of 1=2 or
2, since the photon virtuality t is the unique, opti-
mized scale in the GM-L scheme.

(iii) The renormalization scale in QED is unique in any
scheme including dimensional regularization; dif-
ferent schemes can be connected to the GM-L
scheme by commensurate scale relations (CSRs)
[20], a topic that we discuss below. The computa-

tion of higher-order f�R
i g functions is thus impor-

tant for perturbative calculations at the highest
orders [21–23].

(6) There are uncanceled large logarithms, as well as
renormalon terms in higher orders that diverge as

½n!ð�R
i Þn�n

s � [24]. The convergence of the pertur-
bative series is thus problematic using conventional
scale setting. For certain processes such as the top-
quark pair production, it is found that the total cross
section for the (q �q) channel, q �q ! tþ �t, at the next-
to-next-to-leading order (NNLO) is about 50% of

the NLO cross section using conventional scale
setting [25–27]. Thus, to derive a dependable per-
turbative estimate, one evidently needs to do even
higher order calculations.

(7) The conventional estimate shows a strong depen-
dence on the choice of the renormalization scale �.
It is clearly artificial to guess a renormalization scale
� ¼ Q and to study its uncertainty by simply vary-
ing � in the arbitrary range ½Q=2; 2Q�. Why is the
scale uncertainty estimated only by varying a factor
of 1=2 or 2, and not, say, 10Q? For example,
Ref. [28] shows that after including the first and
second order corrections to several deep inelastic
sum rules that are attributable to heavy flavor
contributions, it is found that the effective scale
�� 6:5Q, where the typical scale Q ¼ m with m
being the corresponding heavy quark mass.
Moreover, sometimes, there are several choices for
the typical momentum transfer of the process, all of
which can be taken as the renormalization scale,
such as the heavy quark mass and the collision
energy of the subprocess. Which invariant provides
the correct theoretical estimate?
Using conventional scale setting, there is no definite
answer to these questions. One may argue that the
correct renormalization scale for the fixed-order
prediction can be decided by comparing with the
experimental data, but this surely is process depen-
dent and greatly depresses the predictive power of
the perturbative quantum chromodynamics (pQCD)
theory.

Thus, in summary, the conventional scale setting assigns
an arbitrary range and an arbitrary systematic error to
fixed-order pQCD predictions. In fact, as we discuss in
this article, this ad hoc assignment of the range and asso-
ciated systematic error is unnecessary and can be
eliminated.
One may ask: For a general fixed-order calculation, what

is the correct physical scale or optimized scale? To our
understanding, it should provide a prediction independent

FIG. 1 (color online). Pictorial representation of the optimized
renormalization scale �opt. Taking electron-muon elastic scat-

tering through one-photon exchange as an example: In the GM-L
scheme, the optimized scale is �2

opt ¼ t, which corresponds to

the scale-invariant value �ðtÞ. As a comparison, the values of �
at fixed orders for different choices of t0 ¼ Q2

i (i ¼ 1; 2; 3; . . . )
are shown by thin-and-solid curves.

STANLEY J. BRODSKYAND XING-GANG WU PHYSICAL REVIEW D 86, 054018 (2012)

054018-2



of the renormalization scheme and the choice of initial
scale. A pictorial representation of what is the optimized
renormalization scale is shown in Fig. 1, where the
electron-muon elastic scattering through one-photon ex-
change is taken as an illustration. In the GM-L scheme, the
optimized scale �2

opt ¼ t, which corresponds to the scale-

invariant value �ðtÞ. Moreover, by using the proper scale-
setting method, such as the newly suggested principle of
maximum conformality (PMC) [25,29–31], the prediction
is also scheme independent and the arguments of the
coupling in different schemes have the correct displace-
ment. For example, by using the PMC procedure for QED
one obtains the correct displacement between the argument

of the coupling in the MS scheme relative to the GM-L
scheme at one loop [32]1

�GM-LðtÞ ¼ �MSðe�5=3tÞ: (3)

As a comparison, the values of � at fixed orders for
different choices of t0 ¼ Q2

i (i ¼ 1; 2; 3; . . . ) are shown by
thin-and-solid curves in Fig. 1. A particular choice of t0
using conventional scale setting may lead to a value of �
close to �ðtÞ, but this would only be a lucky guess and not
the correct answer. As one includes higher-and-higher
orders, the guessed scale will lead to a better estimate. In
fact, when doing the perturbative calculation up to infinite
order, any choice of t0 will lead to the correct value �ðtÞ as
required by the renormalization group (RG) invariance.
However, if one chooses t0 ¼ t, the complete all-orders
result is obtained from the onset.

Does there exist such an optimized renormalization scale
for a general process in non-Abelian QCD? If it does exist,
how can one set it at finite order in a systematic and process-
independent way? This is not an easy task. Various scale-
setting procedures have been proposed since the 1980s for
deriving an optimized scale, such as fastest apparent con-
vergence (FAC) [4–6],2 the principle of minimum sensitiv-
ity (PMS) [7–10], the Brodsky-Lepage-Mackenzie (BLM)
[11] procedure, and its extended versions such as the
dressed skeleton expansion [34,35], the sequential se-
BLM and x-BLM methods [36–38], and the PMC. A
short review of FAC, BLM, and PMS can be found in
Ref. [39]. In principle, the correctness of a scale-setting
method can be judged by the experimental data. However,
as we shall discuss, there are self-consistency theoretical
requirements that shed light on the reliability of the scale-
setting method [40].

Clearly, the prediction for any physical observable
must be independent of the choice of renormalization

scheme; this is the central property of the RG invariance
[18,19,41–43]. As we shall discuss, the RG-based
equations [7–10] that incorporate the scheme parameters
provide a convenient way for estimating both the scale
and scheme dependence of the QCD predictions for a
physical process [7–10,30,44]. In this paper, we will utilize
such RG-based equations for a general discussion of the
RG invariance. We will discuss in detail the self-
consistency requirements of the RG [40], such as reflex-
ivity, symmetry, and transitivity, which must be satisfied by
a scale-setting method. We will then show whether the
scale-setting methods, FAC, BLM/PMC, and PMS, satisfy
these requirements.
The remaining parts of this paper are organized as

follows: in Sec. II, we give a general demonstration of
the RG invariance with the help of the RG-based equations.
In Sec. III, we discuss the self-consistency requirements
for a scale-setting method, where a graphical explanation
of these requirements is also given. In Secs. IV and V, we
present a detailed discussion on PMC and PMS scale-
setting methods, respectively. Section VI provides a
summary.

II. RENORMALIZATION-GROUP-BASED
EQUATIONS AND THE RENORMALIZATION-

GROUP INVARIANCE

The scale dependence of the running coupling in gauge
theory is controlled by the RG equation

�R ¼ @

@ ln�2

�
�R
s ð�Þ
4�

�
¼ �X1

i¼0

�R
i

�
�R
s ð�Þ
4�

�
iþ2

; (4)

where the superscript R stands for an arbitrary renormal-

ization scheme, such as MS scheme [45],MS scheme [32],

and MOM scheme [46]. Note that the �R
i functions for the

MS and MS schemes are the same [47]. Various terms in

�R
0 ; �R

1 ; . . . , correspond to one-loop, two-loop, . . . , con-

tributions, respectively. In general, the f�R
i g are scheme

dependent and depend on the quark massmf. According to

the decoupling theorem, a quark with mass mf � � can

be ignored, and we can often neglect mf terms when

mf � �. Then, for every renormalization scale �, one

can divide the quarks into active ones with mf ¼ 0 and

inactive ones that can be ignored. Within this framework, it

is well known that the first two coefficients �R
0;1 are uni-

versal; i.e., �R
0 � 11� 2nf=3 and �R

1 � 102� 38nf=3

for nf-active flavors. Hereafter, we simply write them as

�0 and�1. It is noted that an analytic extension of�
MS
s that

incorporates the finite-mass quark threshold effects into the
running of the coupling has been suggested in Ref. [48].
However, numerically, it is found that taking finite quark
mass effects into account analytically in the running, rather
than using a fixed nf between thresholds, leads to effects of

1The displacement for higher-order corrections can be ob-
tained by carefully dealing with the differences of the f�ig series
under different renormalization schemes.

2As argued by Grunberg [6] and Krasnikov [33], it is better
to be called as the RG-improved effective coupling method.
For simplicity, we retain the name as FAC as suggested by
Stevenson [8].
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the order of 1% for the one-loop running coupling [48].

Here we will work with the conventional f�R
i g functions.

It will be convenient to use the first two universal
coefficients �0 and �1 to rescale the coupling constant
and the scale parameter in Eq. (4). By rescaling the cou-
pling constant and the scale parameters as [44]

aR ¼ �1

4��0

�R
s and �R ¼ �2

0

�1

ln�2;

one can express the RG equation (4) in a simpler canonical
form

daR

d�R
¼ �ðaRÞ2½1þ aR þ cR2 ðaRÞ2 þ cR3 ðaRÞ3 þ � � ��;

(5)

where cRi ¼ �R
i �i�1

0 =�i
1 for i ¼ 2; 3; . . . .

As an extension of the ordinary coupling constant,
one can define a universal coupling constant að�; fcigÞ to
include the dependence on the scheme parameters
fcig, which satisfies the following extended RG-based
equations [44]:

�ða; fcigÞ ¼ @a

@�
¼ �a2½1þ aþ c2a

2 þ c3a
3 þ � � ��;

(6)

�nða; fcigÞ ¼ @a

@cn
¼ ��ða; fcigÞ

Z a

0

xnþ2dx

�2ðx; fcigÞ
: (7)

The scale equation (6) can be used to evolve the universal
coupling function from one scale to another. The scheme
equation (7), which was first suggested by Stevenson [8],
can be used to relate the coupling functions under different
schemes by changing fcig. A solution of the scale equation
up to four-loop level has been given in Ref. [30], which
agrees with that of the conventional RG equation obtained
in the literature; cf., Ref. [49]. By comparing Eq. (5) with
Eq. (6), there exists a value of � ¼ �R for which

aRð�RÞ ¼ að�R; fcRi gÞ: (8)

This shows that any coupling constant aRð�RÞ can be
expressed by the universal coupling constant að�; fcigÞ
under proper correspondence; i.e., the coupling constant

aRð�RÞ can be treated as a special case of the universal
coupling constant að�; fcigÞ: Any usual coupling constant

aRð�RÞ is equal to a universal coupling að�R; fcigÞ
by setting fcig to be fcRi g, since both coupling constants
satisfy the same RG equation by using the same scheme
parameters.

Grunberg has pointed out that [4–6] any perturbatively
calculable physical quantity can be used to define an
effective coupling constant by incorporating the entire
radiative corrections into its definition. The effective cou-
pling constant satisfies the same RG equation (and hence
the same RG-based equations) as the usual (universal)

coupling constant. Thus, the running behavior for both
the effective coupling constant and the usual (universal)
coupling constant are the same if their RG-based equations
are calculated under the same choice of scheme parame-
ters. This idea has later been discussed in detail by
Refs. [50,51]. Such an effective coupling constant can be
used as a reference to define the renormalization proce-

dure, such as MS scheme and MS scheme.
The RG invariance states that a physical quantity should

be independent of the renormalization scale and renormal-
ization scheme [18,19,41–43]. This shows that if the ef-

fective coupling constant að�R; fcRi gÞ corresponds to a
physical observable, it should be independent of any other
scale �S and any other scheme parameters fcSj g; i.e.,

@að�R; fcRi gÞ
@�S

� 0 ½scale invariance�; (9)

@að�R; fcRi gÞ
@cSj

� 0 ½scheme invariance�: (10)

Demonstration: We provide an intuitive demonstration
for the RG invariance from the above RG-based equations.

Given two effective coupling constants að�R; fcRi gÞ and
að�S ; fcSi gÞ defined under two different schemes R and S,
one can expand að�R; fcRi gÞ in a power series of
að�S ; fcSi gÞ through a Taylor expansion:

að�R; fcRi gÞ
¼ að�S þ ��; fcSi þ �cigÞ
¼ að�S ; fcSi gÞ þ

�
@a

@�

�
S
��þX

i

�
@a

@ci

�
S
�ci

þ 1

2!

��
@2a

@�2

�
S
��2 þ 2

�
@2a

@�@ci

�
S
�� �ci þ

X
i;j

�
@2a

@ci@cj

�
S
�ci �cj

�

þ 1

3!

��
@3a

@�3

�
S
��3 þ � � �

�
þ � � � ; (11)

where �� ¼ �R � �S, �ci ¼ cRi � cSi , and the subscript S
next to the partial derivatives means they are evaluated at
the point ð�S ; fcSi gÞ.
The right-hand side of Eq. (11) can be regrouped accord-

ing to the different orders of scheme parameters f �cig. After
differentiating both sides of Eq. (11) over �S, we obtain

@að�R; fcRi gÞ
@�S

¼ @ðnþ1Það�S ; fcSi gÞ
@�ðnþ1Þ

S

��n

n!

þX
i

@ðnþ1Það�S ; fcSi gÞ
@cSi @�

ðnÞ
S

��n�1 �ci
ðn� 1Þ!þ � � � ;

(12)

where n stands for the highest perturbative order for a
fixed-order calculation. It is noted that Eq. (12) can
be further simplified with the help of RG equations
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(6) and (7). If we set n ! 1, the right-hand side of Eq. (12)
tends to zero, and we obtain the scale-invariance equation

(9). This shows that if að�R; fcRi gÞ corresponds to a physi-
cal observable (corresponding to the case of n ! 1), it
will be independent of any other scale �S. Similarly, doing

the first derivative of að�R; fcRi gÞ with respect to the
scheme parameter cSj , one can obtain the scheme-

invariance equation (10).
In other words, if one uses an effective coupling constant

að�S; fcSi gÞ under the renormalization scheme S and with
an initial renormalization scale f�Sg to predict the value of

að�R; fcRi gÞ, the RG invariances (9) and (10) tell us the
following:

(i) If we have summed all types of cSi terms (or equiv-
alently the f�S

i g terms) into the coupling constant, as
is the case of an infinite-order calculation, then our

final prediction of að�R; fcRi gÞ will be independent
of any choice of initial scale �S and renormalization
scheme S.

(ii) According to Eq. (12), for a fixed-order estimation
(i.e., n � 1), there is some residual initial-scale
dependence. This is reasonable: As shown by
Eq. (11), for a fixed-order calculation, the unknown
f�S

i g terms in the higher orders are necessary to
cancel the scale dependence from the lower-order
terms.
If we can find a proper way to sum up all the known
types of f�S

i g terms into the coupling constant, and
at the same time suppress the contributions from
those unknown types of f�S

i g terms effectively, such
residual initial scale dependence can be greatly sup-
pressed. The PMC has been designed for such a
purpose [29–31], whose properties will be discussed
in more detail in the following sections.

(iii) If setting all the differences of the renormalization
scheme parameters, �ci � 0 (i ¼ 1; 2; . . . ), Eq. (11)
returns to a scale-expansion series for the coupling
constant expanding over itself but specified at an-
other scale; i.e.,

að�R;fcRi gÞ¼að�S ;fcRi gÞþ
�
@að�S;fcRi gÞ

@�S

�
��

þ 1

2!

�
@2að�S;fcRi gÞ

@�2S

�
��2

þ 1

3!

�
@3að�S;fcRi gÞ

@�3S

�
��3þ��� : (13)

Using the RG scale equation (6), the right-hand
side of the above equation can be rewritten as a

perturbative series of að�S; fcRi gÞ, whose coeffi-

cient at each order is a f�R
i g series.

If one considers Nc to be an analytic variable, then the
scale setting known from the non-Abelian theory SUðNcÞ
must agree with the Abelian QED theory at Nc ! 0. This

shows that the above discussions are also suitable for QED;
i.e., by taking the limit Nc ! 0 at fixed � ¼ CF�s with
CF ¼ ðN2

c � 1Þ=2Nc, we effectively return to the QED
case [52,53].

III. SELF-CONSISTENCY REQUIREMENTS
FOR A SCALE-SETTING METHOD

It has been noted that if one knows how to set the
optimal scale in all cases, then one can translate the result
freely from one scheme to another scheme through proper
scale relations [34,35]. This observation has later been
emphasized in Ref. [20], where the scale transformation
among different schemes are called CSRs. It shows that
even though the expansion coefficients could be different
under different renormalization schemes, after a proper
scale setting, one can find a relation between the effective
renormalization scales, which ensures the total result re-
mains the same under any renormalization schemes. For
simplicity, following the suggestion of Ref. [40], we omit
the scheme parameters in the coupling constant in discus-
sing the self-consistent requirements for a scale-setting
method, but will retrieve them when necessary.
In principle, the correctness of a scale-setting method

can be judged by experimental data. However, it has been
suggested that some self-consistency requirements can
shed light on the reliability of the scale-setting method
[40], in which some initial discussions have been pre-
sented. These requirements together with their explana-
tions are listed in the following:
(1) Existence and uniqueness of the renormalization

scale�. Any scale-setting method must satisfy these
two requirements.

(2) Reflexivity. Given an effective coupling�sð�Þ speci-
fied at a renormalization scale �, we can express it
in terms of itself but specified at another renormal-
ization scale �0,

�sð�Þ ¼ �sð�0Þ þ f1ð�;�0Þ�2
sð�0Þ þ � � � ; (14)

where f1ð�;�0Þ / lnð�2=�02Þ. When the scale�0 is
chosen to be �, the above equation reduces to a
trivial identity.
From the scale invariance (9), up to infinite orders,
we have

@�sð�Þ
@ ln�02 � 0: (15)

This, inversely, means that if �sð�Þ is known (say,
an experimentally measured effective coupling),
and we try to use the above perturbative equation
to predict�sð�Þ from itself, then any deviation of�0
from � would lead to an inaccurate result owing to
the truncation of expansion series.
More explicitly, for a fixed-order expansion with the
highest perturbative order n, from Eq. (12), we
obtain
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@�sð�Þ
@ ln�02 / ðln�2=�02Þn

n!

@ðnþ1Þ�sð�0Þ
@ðln�02Þðnþ1Þ :

This shows, generally, the right-hand side of
Eq. (14) depends on �0 at any fixed order.
Thus, to get a correct fixed-order estimate for�sð�Þ,
a self-consistency scale setting must take the unique
value�0 ¼ � on the right-hand side of Eq. (14). If a
scale setting satisfies such property, we say it is
reflexive.
It is found that the reflexivity is a basic requirement
for a self-consistency scale-setting method and for
the physical (effective) coupling constant �sð�Þ,
which provides the necessary condition for the fol-
lowing two properties: symmetry and transitivity;
i.e., if a scale setting does not satisfy the reflexivity,
it cannot satisfy the following two properties: sym-
metry and transitivity either.

(3) Symmetry. Given two different effective coupling
constants �s1ð�1Þ and �s2ð�2Þ under two different
renormalization schemes, we can expand any one of
them in terms of the other:

�s1ð�1Þ ¼ �s2ð�2Þ þ r12ð�1; �2Þ�2
s2ð�2Þ þ � � � ;

�s2ð�2Þ ¼ �s1ð�1Þ þ r21ð�2; �1Þ�2
s1ð�1Þ þ � � � :

After a general scale setting, we have

�s1ð�1Þ ¼ �s2ð��
2Þ þ ~r12ð�1; �

�
2Þ�2

s2ð��
2Þ þ � � � ;

�s2ð�2Þ ¼ �s1ð��
1Þ þ ~r21ð�2; �

�
1Þ�2

s1ð��
1Þ þ � � � :

Note the following:
(i) The new effective scales ��

1;2 may or may not be

equal to �1;2, depending on the choice of the scale-

setting method. The coefficients ~r12 and ~r21 are
changed accordingly in order to obtain a consistent
result.

(ii) We have implicitly set the effective scales at NLO
level to be equal to the LO ones. We will adopt this
choice throughout the paper. The effective scales for
the highest-order terms are usually taken as the
same effective scales at the one-lower order, since
they are the scales strictly set by the known terms
[30,44].
Setting ��

2 ¼ �21�1 and ��
1 ¼ �12�2, if

�12�21 ¼ 1; (16)

we say that the scale setting is symmetric.
Explanation: If ��

2 ¼ �21�1 and ��
1 ¼ �12�2, we

obtain

�s1ð�1Þ ¼ �s2ð�21�1Þ
þ ~r12ð�1; �21�1Þ�2

s2ð�21�1Þ þ � � �
(17)

and

�s2ð�2Þ ¼ �s1ð�12�2Þ
þ ~r21ð�2; �12�2Þ�2

s1ð�12�2Þ þ � � � :
(18)

As a combination of Eqs. (17) and (18), we obtain

�s1ð�1Þ ¼ �s1ð�12�21�1Þ þ ½~r12ð�1; �21�1Þ
þ ~r21ð�21�1; �12�21�1Þ��2

s1ð�12�21�1Þ
þ � � � : (19)

From the reflexivity property, if a scale setting is
symmetric, i.e., satisfying Eq. (16), we will obtain

~r 12ð�1; �
�
2Þ þ ~r21ð�2; �

�
1Þ ¼ 0; (20)

and vice versa. This shows that the symmetry prop-
erty (16) and the relation (20) are mutually neces-
sary and sufficient conditions.
The symmetry feature is necessary since it further
gives us a unique relation for the scales before and
after the scale setting,

�1�2 ¼ ��
1�

�
2:

(4) Transitivity. Given three effective coupling con-
stants �s1ð�1Þ, �s2ð�2Þ, and �s3ð�3Þ under three
renormalization schemes, we can expand any one of
them in terms of the other; i.e.,

�s1ð�1Þ ¼ �s2ð�2Þ þ r12ð�1; �2Þ�2
s2ð�2Þ þ � � � ;

�s2ð�2Þ ¼ �s3ð�3Þ þ r23ð�2; �3Þ�2
s3ð�3Þ þ � � � ;

�s3ð�3Þ ¼ �s1ð�1Þ þ r31ð�3; �1Þ�2
s1ð�1Þ þ � � � :

After a general scale setting, we obtain

�s1ð�1Þ ¼ �s2ð��
2Þ þ ~r12ð�1; �

�
2Þ�2

s2ð��
2Þ þ � � � ;

�s2ð�2Þ ¼ �s3ð��
3Þ þ ~r23ð�2; �

�
3Þ�2

s3ð��
3Þ þ � � � ;

�s3ð�3Þ ¼ �s1ð��
1Þ þ ~r13ð�3; �

�
1Þ�2

s1ð��
1Þ þ � � � :

Setting ��
2 ¼ �21�1, ��

3 ¼ �32�2, and ��
1 ¼

�13�3, if

�13�32�21 ¼ 1; (21)

we say that the scale setting is transitive.
Explanation: If ��

2 ¼ �21�1, ��
3 ¼ �32�2, and

��
1 ¼ �13�3, we obtain

�s1ð�1Þ ¼ �s2ð�21�1Þ
þ ~r12ð�1; �21�1Þ�2

s2ð�21�1Þ þ � � � ;
(22)

�s2ð�2Þ ¼ �s3ð�32�2Þ
þ ~r23ð�2; �32�2Þ�2

s3ð�32�2Þ þ � � � ;
(23)
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�s3ð�3Þ ¼ �s1ð�13�3Þ
þ ~r31ð�3; �13�3Þ�2

s1ð�13�3Þ þ � � � :
(24)

As a combination of Eqs. (22)–(24), we obtain

�s1ð�1Þ¼�s1ð�13�32�21�1Þþ�2
s1ð�13�32�21�1Þ

	½~r31ð�32�21�1;�13�32�21�1Þ
þ~r23ð�21�1;�32�21�1Þþ~r12ð�1;�21�1Þ�
þ���: (25)

From the reflexivity property, if a scale setting is
transitive, i.e., satisfying Eq. (21), we will obtain

~r 12ð�1;�
�
2Þþ~r23ð��

2;�
�
3Þþ~r31ð��

3;�1Þ¼0; (26)

and vice versa. This shows that the transitivity prop-
erty (21) and the relation (26) are mutually neces-
sary and sufficient conditions.
The transitivity property shows that under a proper
scale-setting method, we have �21 � �23�31, which
means that the scale ratio �21 for any two effective
couplings �s1 and �s2 is independent of the choice
of an intermediate effective coupling �s3 under any
renormalization scheme. Thus the relation between
any two observables is independent of the choice of
renormalization scheme. In fact, the transitivity
property provides the theoretical foundation for
the existence of CSRs among different physical
observables [20].
The transitivity feature gives us a unique relation for
all the scales before and after the scale setting,

�1�2�3 ¼ ��
1�

�
2�

�
3:

The transitivity property is very important for a self-
consistency scale setting, which is a natural require-
ment from the RG invariance. It has already been
pointed out that why the renormalization group is
called a group is mainly because of such a transi-
tivity property [41–43].
The transitivity property (21) can be extended to an
arbitrary number of effective coupling constants;
i.e., if we have nth effective coupling constants,
which are related with a similar manner as above,
then their transitivity relation is

�1n�nðn�1Þ � � ��32�21 ¼ 1: (27)

One may observe that the symmetry is a special case
of transitivity, since if setting �s3ð�3Þ � �s1ð�1Þ,
we have �11 � 1 and ~r11ð�1; �1Þ � 0 owing to the
reflexivity, which thus changes the transitive rela-
tion �13�32�21 ¼ 1 into the symmetric relation
�12�21 ¼ 1.

As a summary, a scale-setting method that satisfies the
existence and uniqueness of the renormalization scale,

reflexivity, symmetry, and transitivity effectively estab-
lishes equivalent relations among all the effective coupling
constants and, thus, among all the physical observables.

A Graphic explanation of these requirements

In this subsection, we present a more intuitive explana-
tion of these requirements based on the universal coupling
að�; fcigÞ and the RG-based equations (6) and (7).
In the RG-based equations (6) and (7), there is no

explicit reference to the QCD parameters, such as the
number of colors or the number of active flavors.
Therefore, aside from its infinite dimensional character,
að�; fcigÞ is just a mathematical function like, say, Bessel
functions or any other special functions [44]. In practice,
because of the unknown higher-order scheme parameters
fcig, we need to truncate the beta function �ða; fcigÞ and
solve the universal coupling constant að�; fcigÞ in a finite-
dimensional subspace; i.e., we need to evaluate að�; fcigÞ in
a subspace where higher order fcig terms are zero. In
principle, this function can be computed to an arbitrary
degree of precision, limited only by the truncation of the
fundamental beta function.
In this formalism, any two effective coupling constants

can be related by some evolution path on the hypersurface
defined by að�; fcigÞ. In Fig. 2 we illustrate the paths that
represent the operations of reflexivity, symmetry, and tran-
sitivity. We can pictorially visualize that the evolution
paths satisfy all three self-consistency properties. A closed
path starting and ending at the same point A represents
the operation of identity. Since the predicted value does
not depend on the chosen path, if the effective coupling
constant at A is aA, after completing the path we will also
end up with an effective coupling aA. Similarly, if we

FIG. 2 (color online). Pictorial representation of the self-
consistency of the scale-setting method through the universal
coupling function að�; fcigÞ. Point A with a closed path repre-
sents the operation of reflexivity. The paths BC and CB represent
the operation of symmetry, and the paths DF, FE, and DE
represent the operation of transitivity.
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evolve aB at B to a value aC at C, we are guaranteed that
when we evolve aC at C back to point B, the result will be
aB. Hence, the evolution equations also satisfy symmetry.
Transitivity follows in a similar manner; i.e., going directly
from D to E gives the same result as going from D to E
through a third point F.

In the following two sections, we will make a detailed
discussion on how these self-consistency conditions are
satisfied or broken by the two frequently adopted scale-
setting methods: BLM/PMC and PMS. As for FAC, its
FAC scale is determined by requiring all higher-order
corrections to be zero.3 FAC satisfies all the above men-
tioned self-consistent requirements, whose demonstration
is similar to that of BLM/PMC and is simpler [40], so we
will not repeat it here.

IV. THE PMC SCALE SETTING

The PMC provides the principle underlying BLM scale
setting, so if not specially stated, we usually treat them on
equal footing.

A. What is PMC?

In the original BLM paper [11], the physical observable
is expanded as

� ¼ C0�s;MSð�Þ
�
1þ ðAnf þ BÞ�s;MSð�Þ

�

�
; (28)

where � is the renormalization scale, and the nf term is

attributable to the quark vacuum polarization. For clarity,

we have taken the familiarMS scheme. When absorbing all
the NLO terms involving nf into the running coupling, we

obtain [11]

� ¼ C0�s;MSð��Þ
�
1þ C�

1

�s;MSð��Þ
�

�
; (29)

where

�� ¼ � expð3AÞ and C�
1 ¼

33

2
Aþ B: (30)

The new scale �� and the coefficient C�
1 are nf indepen-

dent. The term 33A=2 in C�
1 serves to remove that part of

the constant B that renormalizes the NLO coupling
constant.

Through these procedures, it was suggested that the
pQCD convergence can be greatly improved [11].
However, after a proper extension of BLM, it can do
much more than that.

In deriving Eq. (29), Brodsky, Lepage, and Mackenzie
already observed that to derive the correct scheme-

independent LO QED/QCD scale, one should deal with
the �0 term rather than the nf term. This point has lately

been emphasized in Refs. [54,55], where an interesting
feature for the NLO Balitsky-Fadin-Kuraev-Lipatov
Pomeron intercept function !ðQ2; 0Þ has been found; i.e.,
after using BLM scale setting, the function !ðQ2; 0Þ has a
very weak dependence on the gluon virtuality Q2 in com-
parison with that derived from the conventional scale

setting under the MOM scheme and MS scheme [54].
The BLM has also been applied with some modifications
for determining the effective scale in lattice perturbative
theory by Lepage and Mackenzie [56], which greatly
enhances the predictive power of lattice perturbative the-
ory. However, BLM in its original form is difficult to apply
to higher-order calculations because of the emergence of
higher-order nf terms as n2f term, n3f term, etc.

As an extension of BLM scale setting, a program to deal
with higher order nf terms associated with renormalization

has been raised in Ref. [36], which suggests that one can
expand the effective scale as a perturbative series. Later on,
an enhanced discussion of this suggestion up to NNLO
level has been presented in Ref. [20], where the perturba-
tive series of the effective scale is exponentiated, which is
consistent with PMC procedure. In that work it is pointed
out that the n2f term at the NNLO should be first identified

with the �2
0 term and then be absorbed into the coupling

constant.4

The pioneering work for PMC is done in Ref. [29],
which shows that a single global PMC scale, valid at LO,
can be derived from basic properties of the perturbative
QCD cross section. Later on, explicit formulas for setting
PMC scales up to NNLO has been presented in Ref. [30]. It
has also been pointed out that by introducing the PMC-
BLM correspondence principle, we can improve the pre-
vious BLM procedure to deal with the process up to all
orders, whose estimation is the same as PMC. In this sense,
we say that PMC and BLM are equivalent to each other.
Recently, by applying PMC to the top-quark pair hadro-
production up to the NNLO level at the Tevatron and LHC
colliders, the most striking feature of PMC has been ob-
served, which shows that the PMC scales and the resulting
finite-order PMC predictions are both to high accuracy
independent of the choice of an initial renormalization
scale, consistent with RG invariance [14,25,31]. This im-
plies that the serious systematic renormalization scale error
introduced by using conventional scale setting can be
eliminated by PMC through a self-consistency way.
A ‘‘flow chart’’ that illustrates the PMC procedure is

presented in Fig. 3, where R stands for an arbitrary renor-

3This method itself is useful to define an effective coupling
constant for a physical process [4–6]. However, it will give
wrong results when applied to QED processes. The FAC forces
all higher-order corrections to vanish and runs the risk of the
better approximation being dragged down by the poorer one [8].

4Strictly, together with the nf term at the same order, it should
be arranged into a proper linear combination of the �1 term and
the �2

0 term; the �2
0 term will be absorbed into the LO PMC

scale, and the �1 term will be absorbed into the NLO PMC
scale [30].
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malization scheme. The PMC provides an unambiguous
and systematic way to set the optimized renormalization
scale up to all orders; i.e., we first arrange all the coef-
ficients, which usually are given as a series in nf, for each

perturbative order into f�R
i g terms or non-f�R

i g terms, and

absorb different types of the f�R
i g term into the running

coupling constant, order by order.5 Different types of the

f�R
i g term are absorbed into different PMC scales.

Different skeleton graphs can have different PMC scales.
The PMC scales themselves will be a perturbative expan-
sion series in �s. After this procedure, all nonconformal

f�R
i g terms in the perturbative expansion are resummed

into the running couplings so that the remaining terms in
the perturbative series are identical to that of a conformal

theory; i.e., the corresponding theory with f�R
i g � f0g.

As a simple explanation of PMC, for the coefficient
C1ð�Þ at the NLO level, we have

C 1ð�Þ ¼ C10ð�Þ þ C11ð�Þnf; (31)

¼ ~C10ð�Þ þ ~C11ð�Þ�0; (32)

where � stands for an arbitrary initial renormalization
scale, the coefficients C10ð�Þ and C11ð�Þ are nf indepen-

dent, ~C10 ¼ C10 þ 33
2 C11, and

~C11 ¼ � 3
2 C11. The LO PMC

scale �PMC is then set by the condition

~C 11ð�PMCÞ ¼ 0: (33)

This prescription ensures that, as in QED, vacuum polar-
ization contributions attributable to the light-fermion pairs

are absorbed into the coupling constant. Note that because

C11 / ~C11, one can practically obtain the PMC scale by
using the equation C11ð�PMCÞ � 0, which is usually
adopted in the literature.6 However, one should keep in
mind that Eq. (33) is exact.
The PMC-BLM correspondence principle suggested in

Ref. [30] is based on the fact that the purpose of the
running coupling in any gauge theory is to sum up all the

terms involving the f�R
i g functions; conversely, one can

find all the needed f�R
i g terms at any relevant order by

identifying terms arising from the order-by-order expan-
sion of the running coupling. This principle provides a one-

to-one correspondence between the nf series and the �R
i

series, and it provides a practical way of identifying the

terms in the nf series in the required �R
i series. The f�R

i g
series derived from Eq. (13) provides the foundation for the
PMC-BLM correspondence principle, since it shows which

f�R
i g terms should be kept at a specific perturbative order.

This procedure provides a convenient and consistent way

of treating the f�R
i g terms in the perturbative series. Its

advantages will be shown in the next subsection. Such a

choice of f�R
i g series is not completely identical to the

suggestion of Refs. [36–38,57]. In Refs. [36–38], as an
extension of BLM scale setting to all orders, the large �0

approximation is adopted with some modifications to sim-
plify the calculation (called the seBLM and the xBLM
approaches [37]).7

B. The properties of PMC

It is straightforward to verify that PMC satisfies all the
self-consistency requirements outlined above.
(1) The existence and uniqueness of the renormaliza-

tion scale � are guaranteed, since the scale-setting
conditions for PMC are often linear equations in
ln�2.
As a simpler explanation, if the NLO coefficient
C1ð�Þ in Eq. (1) has the form

C 1ð�Þ ¼ ðaþ bnfÞ þ ðcþ dnfÞ ln�2; (34)

where a, b, c, and d are constants free of nf. The LO

PMC scale can be set as

ln�LO
PMC ¼ � b

2d
þOð�sÞ; (35)

where the higher-order �s terms will be deter-
mined by nf terms at the NLO level or even higher

levels.

FIG. 3 (color online). A ‘‘flow chart’’ that illustrates the PMC
procedure, where R stands for an arbitrary renormalization
scheme.

5In practice, we can directly deal with nf terms of the
coefficients without changing them into f�R

i g terms and elimi-
nate the nf terms from the highest power to none also in an
order-by-order manner. The results are the same because of the
PMC-BLM correspondence [30].

6This should be used with care, since if C10 is a constant free of
scale, then such a practical way will give the wrong NLO
coefficient rather than the correct one ~C10.

7Theoretical differences for different treatments will be dis-
cussed in more detail and will be presented elsewhere.
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(2) Reflexivity is satisfied. The PMC requires all
lnð�2=�02Þ terms in Eq. (14) to vanish; thus we
obtain

�0 ¼ �:

(3) Symmetry is trivial, because after PMC scale set-
ting, we always have

~r 12ð�1; �
�
2Þ ¼ �~r21ð�2; �

�
1Þ:

That is, the two NLO coefficients differ only by a

sign. Thus, requiring one of them to be f�R
i g inde-

pendent is equivalent to requiring the other one also

to be f�R
i g independent. This argument ensures the

symmetric relation, �12�21 ¼ 1, is satisfied after
PMC scale setting.

(4) Transitivity is also satisfied by PMC. After PMC
scale setting, the two coefficients ~r12ð�1; �

�
2Þ and

~r23ð��
2; �

�
3Þ in the following two series:

�s1ð�1Þ¼�s2ð��
2Þþ~r12ð�1;�

�
2Þ�2

s2ð��
2ÞþOð�3

s2Þ
(36)

and

�s2ð��
2Þ¼�s3ð��

3Þþ~r23ð��
2;�

�
3Þ�2

s3ð��
3ÞþOð�3

s3Þ;
(37)

should be independent of f�ig. After substituting
Eq. (37) into Eq. (36), we obtain

�s1ð�1Þ¼�s3ð��
3Þþ½~r12ð�1;�

�
2Þ

þ~r23ð��
2;�

�
3Þ��2

s3ð�3ÞþOð�3
s3Þ: (38)

We see that the new NLO coefficient ½~r12ð�1; �
�
2Þ þ

~r23ð��
2; �

�
3Þ� will also be f�R

i g independent, since it
is the sum of two f�R

i g-independent quantities.
These arguments ensure the transitive relation,
�31 ¼ �32�21, will be satisfied after PMC scale
setting.

As a combination of all the above mentioned PMC
features, the advantages of PMC are clear8:

(1) It keeps the information of the higher-order correc-
tions but in a more convergent perturbative series.
After PMC scale setting, the divergent renormalon
series with n! growth disappear in the perturbative

series, so that a more convergent perturbative series
is obtained. Such better convergence has already
been found in the original BLM paper [11] and the
following BLM literature even at the NLO level.

(2) After PMC scale setting, the renormalization scale
dependence is transformed to the initial renormal-
ization scale dependence, and it is found that such
initial renormalization scale dependence can be
highly suppressed or even eliminated:

(i) The resulting expressions are conformally invariant
and thus do not depend on the choice of renormal-
ization scheme.

(ii) One can obtain proper scale displacements among
the PMC scales that are derived under different
schemes or conventions.

(iii) One can obtain the CSR between any two physical
observables such as the generalized Crewther rela-
tion connecting the Bjorken sum rule to the eþe�
annihilation cross section. Many leading order
CSRs have been derived in Ref. [20]. The CSRs
have no scale ambiguity and are independent of the
choice of renormalization scheme. The relative
scales in the CSR ensure that two observables
pass through each quark threshold in synchrony.
The coefficients in the CSR can be identified with
those obtained in conformally invariant gauge
theory [38,58–61].

(iv) There can be some residual scheme dependence for
a fixed-order calculation owing to unknown higher-
order terms. However, this scheme dependence can
be highly suppressed in a similar way as that of the
residual initial scale dependence; such effects
can be estimated by using the RG-based scheme
equations [30,44].

(3) The PMC provides a fundamental and systematic
way to set the optimized renormalization scale for
the fixed-order calculation. In principle, PMC needs
an initial renormalization scale to initialize it.
However, it is found that the estimates after PMC
scale setting are independent of any choice of the
initial renormalization scale—even the PMC scales
themselves are independent of any choice of initial
scale and are ‘‘physical’’ at any fixed order. This is
because the PMC scale itself is a perturbative series

and the unknown higher-order f�R
i g terms are to be

absorbed into the higher-order term of PMC scale
and will be strongly power suppressed. One example
of this behavior is shown in Refs. [14,25,31], where
the top-quark pair total cross section and the top-
quark pair forward-backward asymmetry are almost
free from the choice of initial renormalization scale
even at the NNLO level.

(4) Moreover, it is found that the PMC scale setting can
also be adopted for the QED case. The variable NC

can be taken as an analytic variable. In the Abelian

8In the PMC, the same procedure is valid for both spacelike
and timelike arguments; in particular, this leads to well-behaved
perturbative expansion, since all the large f�R

i g-dependent terms
on the timelike side involving �2 terms are fully absorbed into
the coupling. The PMC does not change the spacelike or timelike
nature of the initial renormalization scale Q0, since, in general,
all the PMC scales are equal to Q0 times an exponential
factor [30].
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limit NC ! 0 at fixed � ¼ CF�s with CF¼
ðN2

c�1Þ=2Nc [52], the PMC method agrees with the
standard Gell-Mann-Low procedure for setting the
renormalization scale in QED, a consistency re-
quirement of analyticity of Yang-Mills gauge
theories.

(5) After PMC scale setting, the number of active fla-
vors nf is correctly determined [48]. Using the PMC

ensures that the expansion is unchanged as one
passes each quark threshold, since all vacuum-
polarization effects attributable to each new quark
are automatically absorbed into the effective cou-
pling constant.

(6) The argument of the running coupling has timelike
or spacelike values appropriate to the physics of the
PMC scale; for example, the scale of the QED
coupling that sums all vacuum polarization correc-
tions in the lowest order eþe� ! �þ�� amplitude
is �ðtÞ in the Gell-Mann-Low scheme. As in QED,
the running QCD coupling is complex in the time-
like domain, reflecting the contribution of diagrams
with physical unitarity cuts.

V. THE PMS SCALE SETTING

A. What is PMS?

The PMS states that [7–10] if an estimate depends on
some unphysical parameters,9 then their values should be
chosen so as to minimize the sensitivity of the estimate to
small variations in these parameters; i.e., this method
chooses �PMS at the stationary point of �N:

@�N

@�

���������¼�PMS

� 0; (39)

or

@�N

@ lnð�2Þ
���������¼�PMS

� 0: (40)

Here Eq. (40) can be solved with the help of the usual
renormalization group equation (4).

B. The properties of PMS

Unlike the case of PMC, in general, there are no known
theorems that guarantee the existence or the uniqueness of
the PMS solution. Although for practical cases, PMS does
provide solutions, and when there are more than one
solution usually only one of them lies in the physically
reasonable region [7–10], these observations alone do not
guarantee that PMS will be trouble-free for new processes.

To discuss PMS properties in a renormalization scheme-
independent way, following the suggestion of Ref. [40], we
adopt the ’t Hooft scheme [62] to define the running

behavior of the effective coupling constant. Under the
’t Hooft scheme, all the scheme parameters fcig are set to
zero, and Eq. (6) simplifies to

da

d�
¼ �a2ð1þ aÞ; (41)

whose solution can be written as

� ¼ 1

a
þ ln

�
a

1þ a

�
: (42)

In the above solution, for convenience, we have redefined �

as
�2
0

�1
lnð �2

�0tH2
QCD

Þ, where �0tH
QCD is the asymptotic scale under

the ’t Hooft scheme. The ’t Hooft coupling constant has a
formal singularity, að�; fcigÞ � að0; f0gÞ ¼ 1, which pro-
vides a precise definition for the asymptotic scale �0tH

QCD

[62]; i.e., it is defined to be the pole of the coupling
function.
Given two effective coupling constants a1 and a2 under

the ’t Hooft scheme, they are related by the perturbative
series

a1ð�1Þ ¼ a2ð�2Þ þ ð�2 � �1Þa22ð�2Þ þ � � � : (43)

PMS proposes the choice of �2 (or equivalently, �2) at the
stationary point, i.e.,

da1
d�2

¼ 0 ¼ d

d�2
½a2ð�2Þ þ ð�2 � �1Þa22ð�2Þ�: (44)

Then, we obtain the condition

1þ a2 ¼ 1

2ð�1 � �2Þ : (45)

In order to obtain �2 in terms of �1, one must solve the last
equation in conjunction with

1

a2
þ log

�
a2

1þ a2

�
¼ �2: (46)

FIG. 4 (color online). The dependence of the PMS scale pa-
rameter �2 as a function of the external scale parameter �1.

9Here the unphysical parameter means that which is known
not to affect the true result.
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In Fig. 4 we present the graphical solution of the PMS
scale parameter �2 as a function of the external scale
parameter �1. One may observe two points:

(i) �2 
 �1 � 1
2 . Since �2 � �1 in any cases, so PMS

explicitly violates the reflexivity. For a fixed-order
estimation, when one uses an effective coupling
constant to predict itself, the application of PMS
would lead to an inaccurate result.

(ii) In the large momentum region (�1 � 1), we obtain
a2ð�2Þ ! 0, and

�2 ’ �1 � 1

2
: (47)

Under the same renormalization scheme R, we have
the same asymptotic parameter �0tH-R

QCD for both a1
and a2. Here �

0tH-R
QCD is the ’t Hooft scale associated

with the R scheme, where the word associated
means we are choosing the particular ’t Hooft
scheme that shares the same ’t Hooft scale with
the R scheme. Then the relation (47) in terms of
�1 and �2 becomes

�2 ’ �1 exp

�
� �1

4�2
0

�
: (48)

More generally, it is found that after PMS scale setting,
the scale displacement between any two scales �i and �j

in the large momentum region is

�ij ¼ �i

�j

’ exp

�
� �1

4�2
0

�
: (49)

This would mean that

�12�21 ’ exp

�
� �1

2�2
0

�
� 1; (50)

�13�32�21 ’ exp

�
� 3�1

4�2
0

�
� 1: (51)

This shows that the PMS does not satisfy the symmetry and
transitivity requirements. Let us point out that adding the
scheme-parameter optimization in PMS does not change
any of the above conclusions. It only makes the solution
much more complicated [63]. The inability of PMS to meet
these self-consistency requirements resides in that the
derivative operations in general do not commute with the
operations of reflexivity, symmetry, and transitivity.

As argued in Sec. III, any truncated perturbative series
will explicitly break RG invariance (9); i.e., Eq. (9) can be
only approximately satisfied for any fixed-order estimation.
The precision depends on which perturbative order we have
calculated, the convergence of the perturbative series, and
how we set the renormalization scale. As shown by Eq. (40),
the PMS requires the truncated series, i.e., the approximant
of a physical observable, to satisfy the RG invariance near
� ¼ �PMS. This provides the underlying reason for why

PMS does not satisfy the reflexivity, symmetry, and transi-
tivity properties. This shows the necessity of further careful
studies of theoretical principles lying below PMS.
The PMC and PMS scale-setting methods each gives

specific predictions for physical observables at finite order;
however, their predictions are very different:

(i) The PMC sums all f�R
i g terms in an arbitrary renor-

malization scheme R in the fixed-order prediction
into the running coupling, leaving the conformal
series. It satisfies all of the RG properties, reflexivity,
symmetry, and transitivity. The PMC prediction is
thus scheme independent, and it automatically as-
signs the correct displacement of the intrinsic scales
between schemes. The variation of the prediction
away from the PMC scale exposes the nonzero

f�R
i g-dependent terms. The PMC prediction does

have small residual dependence on the initial choice
of scale owing to the truncated unknown higher-

order f�R
i g terms, which will be highly suppressed

by the proper choice of PMC scales.
(ii) The PMS chooses the renormalization scale such

that the first derivative of the fixed-order calculation
with respect to the scale vanishes. This criterion of
minimal sensitivity gives predictions that are not the
same as the conformal prediction, and the PMS
prediction depends on the choice of renormalization
scheme,10 and it disagrees with QED scale setting in
the Abelian limit. For example, in the case of
eþe� ! gq �q, the PMS scale decreases with in-
creasing gluon jet mass and increasing flavor num-
ber, opposite to the correct physical behavior [64].
The PMS does not satisfy the RG properties of
symmetry, reflexivity, and transitivity, so that rela-
tions between observables depend on the choice of
the intermediate renormalization scheme.

VI. SUMMARY

The conventional scale-setting procedure assigns an
arbitrary range and an arbitrary systematic error to fixed-
order pQCD predictions. As we have discussed in this
article, this ad hoc assignment of the range and associated
systematic error is unnecessary and can be eliminated by a
proper scale-setting method.
Renormalization group invariance (9) states that a physi-

cal quantity should be independent of the renormalization
scale and renormalization scheme. With the help of the
RG-based equations that incorporate the scheme parame-
ters, we have presented a general demonstration for the RG
invariance by setting the perturbative series up to infinite
orders.

10As shown in Ref. [63], by using the PMS together with the
scheme equations (7) and the scheme-independent equation (10),
such renormalization scheme dependence can be reduced to a
certain degree through an order-by-order procedure.
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We have discussed the necessary self-consistency con-
ditions for a scale-setting method, such as the existence
and uniqueness of the renormalization scale, reflexivity,
symmetry, and transitivity. There properties are natural
deductions of RG invariance. We have shown that PMC
satisfies these requirements, whereas the PMS does not.
We have also pictorially argued that the formalism based
on the RG-based equations satisfies all these requirements
for scale and scheme variation.

The PMS requires that the slope of the approximant of
an observable vanishes at the renormalization point. With
the help of the RG-based equations, it has been argued that
PMS can provide renormalization-scheme-dependent esti-
mates [7–10]. We have shown that the PMS violates the
symmetry and transitivity properties of the renormalization
group, and it does not reproduce the Gell-Mann-Low scale
for QED observables. Equation (51) shows that the relation
between any two physical observables after PMS scale
setting depends on which renormalization scheme is
chosen for the calculation, which explicitly breaks the
group properties of the RG equations. In addition, the
application of PMS to jet production gives unphysical
results [64], since it sums physics into the running coupling
not associated with renormalization. This implies the ne-
cessity of further careful studies of theoretical principles
lying below PMS.

The PMC provides a fundamental and systematic way to
set the optimized renormalization scale at fixed order in
pQCD. The PMC has a solid theoretical background
[29,30], it provides the underlying principle for BLM,
and many PMC features have already been noted in the
BLM literature. Most important, it is found after standard
PMC scale setting, the theoretical prediction is essentially
independent of the choice of initial renormalization scale,
and the theorist’s choice of renormalization scheme is
consistent with the RG invariance.

The most important goal for a scale-setting method is to
eliminate the renormalization scheme and initial scale
dependences—more fundamental requirements than im-
proving convergence of the pQCD series. In the literature,
however, some extensions of BLM scale setting have con-
centrated on how to improve the pQCD convergence, such
as the large �0 expansion [65] and the sequential BLM
(seBLM) and xBLM [36–38]. In fact, once one sets the
scales properly, as PMC does, much better pQCD conver-
gence than the conventional scale-setting method is auto-
matic, since the divergent renormalon series with n!
growth has been absorbed into the effective scales and
disappears in the perturbative series. An example of this
improved convergence can be found in our analysis for

the top-quark pair production at the NNLO level
[14,25,31].
Two more subtle points for PMC scale setting:
(i) In some specific kinematical regions, such as for the

heavy quark pair production in the threshold region,
Coulomb-type corrections will lead to sizable con-
tributions that are enhanced by factors of �=v, and
the PMC scale can be relatively soft for v ! 0 (v,
the heavy quark velocity). Thus the terms that are
proportional to (�=v) or ð�=vÞ2 should be treated
separately in that different PMC scales are adopted
in the estimation [25,66].

(ii) The factorization scale �f that enters into the pre-

dictions for QCD inclusive reactions is introduced
to match nonperturbative and perturbative aspects
of the parton distributions in hadrons. The factori-
zation scale occurs even for a conformal theory with

f�R
i g ¼ 0, where �s is constant. The factorization

scale should be chosen to match the nonperturbative
bound state dynamics with perturbative Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution. This can
be done explicitly for electron-atom or atom-atom
inelastic scattering processes in QED using the
known bound state dynamics of atoms. This could
also be done in hadron physics using nonperturba-
tive models such as anti-de Sitter/QCD and light-
front holography; recent reviews can be found in
Refs. [67,68]. There is clearly no reason to equate
the factorization scale to the renormalization scale
[69]. We expect that the factorization scale ambigu-
ity will also be reduced by applying the PMC scale
setting to the kernels of Dokshitzer-Gribov-Lipatov-
Altarelli-Parisi evolution equations.

In summary, the systematic application of the PMC can
eliminate a major ambiguity of pQCD predictions from
scale and scheme ambiguities, thus greatly improving the
precision of tests of the Standard Model and the sensitivity
to new physics at colliders and other experiments.
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