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We calculate the ! ! �0�� and � ! �0�� electromagnetic transition form factors based on disper-

sion theory, relying solely on a previous dispersive analysis of the corresponding three-pion decays and

the pion vector form factor. We compare our findings to recent measurements of the! ! �0�þ�� decay

spectrum by the NA60 collaboration, and strongly encourage experimental investigation of the Okubo-

Zweig-Iizuka forbidden � ! �0‘þ‘� decays in order to understand the strong deviations from vector-

meson dominance found in these transition form factors.
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I. INTRODUCTION

In recent years, there has been intense renewed interest
in light-meson transition form factors due to their potential
role in the theoretical determinations of the anomalous
magnetic moment of the muon (see Ref. [1] for a review).
With more and more exclusive channels contributing to the
hadronic vacuum polarization measured experimentally
with unprecedented precision, it is believed that the had-
ronic contribution to light-by-light scattering may soon
constitute the dominant uncertainty [2]. While a full deter-
mination of the light-by-light scattering tensor remains a
formidable task, a combination of experimental data and
theoretical analyses may help to constrain one of the most
important contributions (and one of the few that are model-
independently accessible), namely the pseudoscalar (P ¼
�0, �, �0) pole terms. Their strength is determined e.g., for
the �0 pole contribution by the decay �0 ! ����, given
in terms of the doubly-virtual form factor
F�0���� ðM2

�0 ; q
2
1; q

2
2Þ (see e.g., Ref. [1] for precise defini-

tions), where q21=2 denote the two photon virtualities. As

these doubly virtual form factors, that are to be measured in
the rare decays P ! ‘þ‘�‘0þ‘0� (with branching ratios of
the order of 10�5), are difficult to determine precisely in
experiment, it is useful to note that they are intimately
linked (for specific values of one of the photon virtualities)
to vector-meson conversion decays: e.g.,
the form factor F�0���� ðM2

�0 ; q
2;M2

!Þ determines the

dilepton spectrum in ! ! �0‘þ‘�, the form factor
F����� ðM2

�; q
2;M2

�Þ can be measured in � ! �‘þ‘� etc.

The interactions of hadrons with (real and virtual) pho-
tons are often thought to be described at least to good
approximation in the picture of vector-meson dominance
(VMD): the q2-dependence of the form factors above
should largely be given by the propagator of a light inter-
mediate vector meson (�, !, �), see e.g., Refs. [3–6].

What is interesting about the vector-meson conversion
decays is that they show a very clear deviation from such
a simple VMD picture, as has been established in the decay
! ! �0�þ�� [7–9], and also in � ! �eþe� [10,11].
In this article, we will analyze two such vector-meson

transition form factors with the method of dispersion rela-
tions, concentrating on ! ! �0�� and � ! �0�� (the
latter being rarer due to the implied violation of the
Okubo-Zweig-Iizuka rule; see Ref. [12] for a recent theo-
retical work). One specific theoretical advantage of vector-
meson conversion decays, as opposed to the pseudoscalar
Dalitz decays, is that the isospin of the virtual photon is
fixed (in the approximation that isospin is conserved). In
the cases at hand, it needs to be an iso vector photon, hence
the lowest-lying intermediate states to contribute in a
dispersion relation are 2�, 4� etc. only, and experience
with pion-pion P-wave interactions suggests that the 2�
intermediate state will already saturate the dispersion rela-
tion to a large degree. As we will demonstrate below, a
dispersive reconstruction of the 2� contribution requires
two amplitudes as input: the corresponding V ! �þ���0

decay amplitude (in the appropriate partial wave), and the
pion (electromagnetic) vector form factor.
An analysis of the ! ! �0�� transition form factor

using dispersion theory has already been performed deca-
des ago [13] (although phenomenologically the focus of
that work lay more on the eþe� ! !�0 production cross
section). The reasons to take up this subject again are
manifold: we now have much more accurate experimental
as well as theoretical input at our disposal, both for the pion
vector form factor and the required pion-pion phase shifts;
furthermore, we have recently performed a dispersive
analysis of the three-pion decays of both ! and � that
treats final state interactions between all three pions rigor-
ously [14], which can now serve as the consistent input to
the investigation of the transition form factors. All these
ingredients of the analysis will be reviewed below.
As a final introductory remark, we note that in this

article, we will confine ourselves to an analysis of the
transition form factors in the kinematical region accessible
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in the corresponding vector-meson decays. We are aiming
for a precision analysis and hence refrain from analyzing
also the processes eþe� ! �0! [15–17] and eþe� !
�0� [18], as we expect these to be significantly more
dependent on information from the excited-resonance
region.

The outline of this article is as follows. We introduce the
necessary definitions concerning kinematics and partial-
wave decomposition in Sec. II. We discuss the dispersion
relation for the transition form factors in Sec. III, including
the two main elements required as input: the pion vector
form factor and the V ! �þ���0 partial-wave amplitude.
Numerical results for form factors, decay spectra, and
branching ratios are presented in Sec. IV, before we sum-
marize in Sec. V. Technical details on a representation of
the pion vector form factor including higher resonances are
relegated to an Appendix.

II. KINEMATICS AND PARTIAL-WAVE
DECOMPOSITION

We consider the decays of the lightest isoscalar vector
mesons into a �0 and a dilepton pair,

VðpVÞ!�0ðp0Þ‘þðp‘þÞ‘�ðp‘�Þ; V¼!=�; ‘¼e=�:

(1)

The V ! �0‘þ‘� amplitude is given as [19]

M V�0 ¼ ie2���	
n
�p�

0q
	 fV�0ðsÞ

s
�usðp‘�Þ�
vs0 ðp‘þÞ;

(2)

where q ¼ p‘þ þ p‘� , s ¼ ðpV � p0Þ2, n� is the polariza-
tion vector of the vector meson, and fV�0ðsÞ is the electro-
magnetic transition form factor of the vector meson. We
will also discuss the corresponding normalized form factor,

FV�0ðsÞ ¼ fV�0ðsÞ
fV�0ð0Þ : (3)

The differential decay rate in terms of this amplitude can
be written according to

d�V!�0‘þ‘�

ds
¼ 2	2

9�

�
1þ 2m2

‘

s

� q‘‘ðsÞq3V�0ðsÞ
M3

V

jfV�0ðsÞj2;
(4)

with the fine structure constant 	 ¼ e2=4� and masses of
vector meson, neutral pion, and leptons denoted by MV ,
M�0 , and m‘, respectively. The center-of-mass momenta
are given by

q2ABðsÞ ¼
�ðM2

A;M
2
B; sÞ

4s
; (5)

where �ðx; y; zÞ ¼ x2 þ y2 þ z2 � 2ðxyþ yzþ xzÞ is the
Källén function (and with the slight notational abuse
M‘ ¼: m‘ implied). Radiative corrections to Eq. (4) have
been calculated in Ref. [20]: they require a careful selec-

tion of kinematic cuts on the additional soft-photon radia-
tion for the eþe� final state, and are small everywhere
except near threshold for �þ��, where the Coulomb pole
is significant. The above relation for the V ! �0lþl�
spectrum is completely determined by fV�0ðsÞ aside from
a kinematical factor that is determined by the photon
propagator and phase space. Note finally that the corre-
sponding real-photon total decay rate is given by

�V!�0� ¼ 	ðM2
V �M2

�0Þ3
24M3

V

jfV�0ð0Þj2: (6)

In establishing a dispersion relation for the V ! �0��
transition form factors, the corresponding three-pion de-
cays VðpVÞ ! �þðpþÞ��ðp�Þ�0ðp0Þ play a central role.
We define s ¼ ðpV � p0Þ2, t ¼ ðpV � pþÞ2, and u ¼
ðpV � p�Þ2 with 3s0 ¼: sþ tþ u ¼ M2

V þ 3M2
�. We

note that due to technical reasons, the decay V ! 3� is
treated in the isospin limit, with M�0 ¼ M�� ¼: M�. The
amplitude is given as

M 3� ¼ i���	
n
�p�þp	�p



0F ðs; t; uÞ: (7)

Neglecting the discontinuities of F and higher partial
waves,1 we can decompose F ðs; t; uÞ in terms of functions
of a single variable with only a right-hand cut [14],

F ðs; t; uÞ ¼ F ðsÞ þF ðtÞ þF ðuÞ: (8)

For our analysis we will require the l ¼ 1 partial-wave
projection of F ðs; t; uÞ, which is given by

f1ðsÞ ¼ 3

4

Z 1

�1
dzð1� z2ÞF ðs; t; uÞ; (9)

where z ¼ ðt� uÞ=ð4q��ðsÞqV�0ðsÞÞ. Note that the angular
integration in Eq. (9) is a highly nontrivial issue due to the
fact that the cuts in the variables t and u need to be avoided;
compare the discussion in Appendix B of Ref. [14].

III. DISPERSION RELATION FOR THE
TRANSITION FORM FACTOR

To set up the dispersion relation for the transition form
factor, we calculate the two-pion discontinuity of the dia-
gram shown in Fig. 1. It is given as [13]

disc fV�0ðsÞ ¼ iq3��ðsÞ
6�

ffiffiffi
s

p FV�
� ðsÞf1ðsÞ�ðs� 4M2

�Þ; (10)

where FV
�ðsÞ is the pion vector form factor. Corrections to

Eq. (10) stem from heavier intermediate states of the
appropriate quantum numbers (isospin 1 P-wave states):
4�, K �K; . . . , which are expected to be suppressed signifi-
cantly due to phase space and their higher masses. We
therefore neglect these contributions in our analysis and

1A simplified model for additional F-wave contributions was
studied in Ref. [14] and found to yield entirely negligible
corrections.
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resort to elastic �� final states only. Given the standard
assumptions on the asymptotic high-energy behavior of the
pion form factor, FV

�ðsÞ ’ 1=s (modulo logarithms), and
the V ! 3� partial wave, f1ðsÞ ’ 1=s [14], Eq. (10) allows
for an unsubtracted dispersion relation [13]. As our analy-
sis, however, is confined to two-pion intermediate states
and neglects any higher contributions, we decide to employ
a once-subtracted solution of Eq. (10) instead,

fV�0ðsÞ ¼ fV�0ð0Þ þ s

12�2

Z 1

4M2
�

ds0
q3��ðs0ÞFV�

� ðs0Þf1ðs0Þ
s03=2ðs0 � sÞ ;

(11)

in order to suppress inelastic contributions. For the pre-
dictions of the s-dependence of the form factor, we fix the
subtraction constant fV�0ð0Þ to reproduce the V ! �0�
partial width according to Eq. (6). Assuming the validity of
an unsubtracted dispersion relation, the subtraction con-
stant and therefore the V ! �0� partial width can be
calculated by means of a sum rule,

fV�0ð0Þ ¼ 1

12�2

Z 1

4M2
�

ds0
q3��ðs0Þ
s03=2

FV�
� ðs0Þf1ðs0Þ; (12)

which is expected to show a more problematic convergence
behavior than the form factor dispersion relation. We will
quote results for this sum rule in Sec. IV in order to
quantify the potential role of heavier intermediate states
in the transition form factor. Nevertheless, Eq. (12) is a
remarkable result: as we will briefly reiterate below, in the
elastic approximation the pion vector form factor is en-
tirely given in terms of the �� P-wave phase shift 1

1ðsÞ,
which also determines the V ! 3� partial wave up to a
single subtraction constant that can be written as an overall
normalization [14]. This means that the ratio of branching
ratiosBðV ! �0�Þ=BðV ! 3�Þ is entirely determined by
1
1ðsÞ, up to inelastic corrections. This result is reminiscent

of the relation between these two decay modes utilized in
Refs. [21,22] as the leading order of a Lagrangian frame-
work for vector mesons.

In the following we will briefly discuss the two ingre-
dients to the dispersion integral, the pion vector form factor
FV
�ðsÞ and the V ! 3� partial-wave amplitude f1ðsÞ.

A. Pion vector form factor

In the elastic approximation, the pion vector form factor
fulfills the unitarity relation

discFV
�ðsÞ ¼ 2iFV

�ðsÞ�ðs� 4M2
�Þ sinðsÞe�iðsÞ; (13)

where ðsÞ ¼: 1
1ðsÞ is the �� P-wave phase shift. The

solution to Eq. (13) is given by the Omnès function,

FV
�ðsÞ ¼ �ðsÞ ¼ exp

�
s

�

Z 1

4M2
�

ds0
ðs0Þ

s0ðs0 � sÞ
�
; (14)

normalized to �ð0Þ ¼ 1. The omission of a polynomial in
s multiplying the Omnès function relies on the absence of
zeros in the form factor, see Ref. [23]. In a precision
analysis of the form factor extending beyond 1 GeV, one
has to account for the onset of inelasticities (dominantly
4� intermediate states), and, as far as data extracted from
eþe� ! �þ�� is concerned, �-! mixing. As we do not
have a consistent treatment of inelasticity effects in the
V ! 3� partial wave f1ðsÞ at our disposal (let alone iso-
spin breaking), we refrain from doing so.
We use the following approach to estimate uncertainties

generated by the input for the parameterization of the phase
shift. On the one hand, we will use parameterizations de-
rived from two different solutions of the pion-pion Roy
equations [24,25], which are valid roughly up to 1.3 GeV.
The pion form factor is known to excellent precision well
beyond that energy (see Refs. [26–28] for just the most
recent experimental results), indicating in particular contri-
butions from the excited resonances �0ð1450Þ and�00ð1700Þ.
To incorporate these higher resonance states we use the
phenomenological form factor suggested in Ref. [29] (and
briefly summarized in the Appendix), which we fit to the
experimental data of Ref. [26], extract the corresponding
phase, and match it smoothly to the phase shift solution of
Ref. [24] below 1GeV. The aforementioned procedure treats
the higher resonances �0 and �00 as purely elastic, which
they clearly are not (compare the more sophisticated form
factor representation of Ref. [30]); we merely use the phase
thus obtained as an indicator for uncertainties generated in
the energy range between roughly 1.3 GeV and 1.9 GeV.
As the Omnès representation requires the �� P-wave

phase shift up to infinity, we have to make assumptions
about its asymptotic behavior. We choose to smoothly guide
ðsÞ to �, so that we guarantee the correct asymptotic
behavior of FV

�ðsÞ ! s�1 for s ! 1. The point beyond
which the asymptotic behavior sets in is chosen to be � ¼
1:3 GeV for the Roy equation analyses [24,25], and � ¼
1:9 GeV for the phase derived from the form factor. The
resulting form factors corresponding to the different phases
are shown in Fig. 2 compared to the data of Ref. [26].

B. V ! 3� partial-wave amplitude

We only very briefly summarize the basics of the dis-
persive analysis of the V ! 3� decay amplitudes and refer

FIG. 1. Diagrammatic representation of the discontinuity of
the V ! �0‘þ‘� transition form factor. The gray circle denotes
the V ! 3� amplitude, whereas the white circle represents the
pion vector form factor.
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to Ref. [14] for further details. The partial-wave amplitude
f1ðsÞ fulfills the unitarity relation

disc f1ðsÞ ¼ discF ðsÞ
¼ 2iðF ðsÞ þ F̂ ðsÞÞ�ðs� 4M2

�Þ sinðsÞe�iðsÞ;
(15)

where the inhomogeneity F̂ ðsÞ is given by angular aver-
ages over F according to

F̂ ðsÞ¼3hð1�z2ÞF iðsÞ;
hznfiðsÞ¼1

2

Z 1

�1
dzznf

�
3s0�s

2
þ2q��ðsÞqV�0ðsÞz

�
: (16)

The function F̂ ðsÞ contains the left-hand cut contributions
due to crossed-channel singularities. In the case at hand,
the left-hand cut overlaps with the right-hand one, as for
MV > 3M�, s, t, and u can be simultaneously larger than
4M2

�, which they are inside the physical decay region. In
this sense, there is no meaningful way from the point of
view of dispersion theory to neglect the left-hand cut here.
The solution of Eq. (15) is given by a once-subtracted
dispersion relation,

F ðsÞ ¼ �ðsÞ
�
aþ s

�

Z 1

4M2
�

ds0

s0
sinðs0ÞF̂ ðs0Þ
j�ðs0Þjðs0 � sÞ

�
; (17)

where the subtraction constant a serves as an overall
normalization and is adjusted to reproduce the V ! 3�
partial width.

As Ref. [14] does not explicitly show the partial-wave

amplitude f1ðsÞ ¼ F ðsÞ þ F̂ ðsÞ that plays a central role in
the present investigation, we display its modulus and phase
both for! ! 3� and� ! 3�, as derived from the numeri-
cal results in Ref. [14] compared to the Omnès function

(whose phase of course is just ðsÞ) in Fig. 3. We note that
the partial waves bear very little similarity to the Omnès
function: there is a strong enhancement in the threshold
region below the � resonance, a large part of which can
be thought of as the partial-wave projected t- and u-channel
� exchanges in a VMD picture [13]. Furthermore, we note
that the phase of f1ðsÞ also does not follow ðsÞ: Watson’s
theorem does not hold due to three-pion cut effects, see
Fig. 4, which in particular allow for a nonvanishing imagi-
nary part of f1ðsÞ already at �� threshold.2 Finally, f1ðsÞ

FIG. 2. Pion vector form factor fit using a phase shift incorpo-
rating elastic �0, �00 resonances (solid line) and solutions of the
Roy equations of Refs. [24,25] (dashed and dotted lines), in
comparison to the experimental data of Ref. [26]. For details, see
main text.

FIG. 3. Modulus (upper panel) and phase (lower panel) of the
P partial wave f1ðsÞ, based on Ref. [14] both for ! ! 3� (solid
line) and � ! 3� (dotted line), in comparison to the Omnès
function (dashed line). We refrain from devising error bands and
fix the input for the phase according to Ref. [24] and the integral
cutoff in Eq. (17) to� ¼ 2:5 GeV. The normalization constant a
is set to 1.

2Note that this complication does not occur in Ref. [13] due to
the approximation of the left-hand cut contributions by � poles
only, neglecting the effects of the two-pion cut starting already at
t, u ¼ 4M2

�. As only the transition form factor of the ! and not
the one of the � is considered in Ref. [13], the � poles in
t-/u-channel lie outside the integration range that affects the
partial-wave projection.
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shows singular behavior at the pseudothreshold s ¼ ðMV �
M�Þ2, stemming from the diagrammatic topology shown in
Fig. 4; as discussed in Refs. [14,31], these singularities in
the discontinuity do not translate into singular behavior of
the form factor itself when evaluated at the upper rim of the
unitarity cut. In particular, the irregular phase in the vicinity
of the pseudothreshold is an artifact as a consequence of the
different divergences of real and imaginary parts from below
and above, and has no physical significance.

Returning to the dispersive representation of F ðsÞ, it
was shown in Ref. [14] that by oversubtracting the integral
Eq. (17) for � ! 3�,

F ðsÞ¼�ðsÞ
�
aþbsþs2

�

Z 1

4M2
�

ds0

s02
sinðs0ÞF̂ ðs0Þ
j�ðs0Þjðs0 �sÞ

�
; (18)

and adjusting the additional subtraction constant b, we
were able to achieve a perfect fit of the � ! 3� Dalitz
plot [32]. Since the fitted value for b differs from a sum
rule, as suggested by demanding the representations (17)
and (18) to be equal, Eq. (18) does not satisfy the high-
energy behavior for the partial-wave amplitude f1ðsÞ,
which therefore tends asymptotically towards a constant
instead of s�1; consequently, the integral (12) does not
converge, and we will not evaluate the sum rule for f��0ð0Þ
for the twice-subtracted solution of f1ðsÞ.

We will in general stabilize the high-energy behavior of
our dispersion integrals by manually leading F ðsÞ to
�2F ð�2Þ=s beyond a certain cutoff�2. There is no obvious
prescription as to when exactly the amplitude or the form
factor should show this asymptotic behavior; we choose the
point up to where we have adjusted our form factor repre-
sentation to data, that is � ¼ 1:8 GeV, and incorporate a
variation of the cutoff up to � ¼ 2:5 GeV in our error
considerations. This prescription assures that we have a
precision representation for the amplitude in the low-energy
regime as well as the correct high-energy behavior. By
varying the cutoff we assure that the intermediate-energy
regime is sufficiently suppressed so as not to taint our
numerical results, which we present in the following section.

IV. NUMERICAL RESULTS

For the numerical evaluation, we use the different pa-
rameterizations of the phase shift described in Sec. III A;

the same parameterization is always used consistently for
both pion form factor and V ! 3� partial wave. We vary
the cutoff of the dispersion integrals in Eqs. (11), (12), and
(17) (beyond which the assumed asymptotic behavior is
enforced by hand) between � ¼ 1:8 GeV and � ¼
2:5 GeV as detailed above. We note that it does not make
sense to vary the cutoff of the aforementioned integrals
individually: the uncertainties in our treatment are related
to our lack of knowledge concerning final state interac-
tions in the intermediate-energy range, and thus apply
equally to all considered dispersion integrals. The sub-
traction constants of the V ! 3� amplitudes are fixed
by the total widths �! ¼ 8:49� 0:08 MeV and �� ¼
4:26� 0:04 MeV together with the V ! 3� branching
ratios Bexpð! ! 3�Þ ¼ 0:892� 0:007, Bexpð� ! 3�Þ ¼
0:153� 0:003, the uncertainties of which we will always
neglect in the following. It turns out that for all of our
evaluations of the once-subtracted dispersion relation in
Eq. (11), a variation of the phase between the parameteri-
zation of Ref. [25] and the one derived from the form factor
spectrum along with an integral cutoff of � ¼ 1:8 GeV
gives rise to an enveloping uncertainty band.
For the following V ! �0� branching ratios determined

from Eq. (6) and the unsubtracted dispersion relation (12),
the parameterization of Ref. [24] and the one from the form
factor spectrum together with an integral cutoff of � ¼
2:5 GeV give rise to limiting values. We find

Bð! ! �0�Þ ¼ ð7:48 . . . 7:75Þ � 10�2;

Bð� ! �0�Þ ¼ ð1:28 . . . 1:37Þ � 10�3; (19)

which is to be checked against the experimental averages
Bexpð!!�0�Þ¼ ð8:28�0:28Þ�10�2, Bexpð�!�0�Þ¼
ð1:27�0:06Þ�10�3 [33]. We observe that the � ! �0�
partial width compares favorably to experiment, whereas
the result for ! ! �0� turns out to be slightly too low;
even then, the 2� intermediate state seems to saturate more
than 90% of the sum rule for this partial width. We note
that the most precise individual measurement of Bð! !
�0�Þ actually determines the ratio of branching ratios
Bexpð! ! �0�Þ=Bexpð! ! 3�Þ ¼ ð8:97� 0:16Þ � 10�2

[17], which is precisely the ratio we argued in Sec. III to be
a pure prediction due to the �� P-wave phase shift,
independent of any subtraction constant; for this quantity,
our numerical result amounts to

Bð! ! �0�Þ
Bð! ! 3�Þ ¼ ð8:39 . . . 8:69Þ � 10�2; (20)

hence suggesting a saturation of the sum rule even at the
95% level.
We stress, however, that due to the slow convergence

behavior of the integrand in Eq. (12), we do not consider
the sum rule results to be extremely reliable: they depend
rather strongly on the assumed intermediate and high-
energy behavior of the �� phase shift. For example, using

FIG. 4. Two-loop diagram contributing to the V ! 3� decay
amplitude, which has a singular discontinuity at the pseudothres-
hold s ¼ ðMV �M�Þ2 and leads to a nonvanishing phase/imagi-
nary part of the corresponding partial wave f1ðsÞ at threshold
s ¼ 4M2

�.

! ! �0�� AND � ! �0�� . . . PHYSICAL REVIEW D 86, 054013 (2012)

054013-5



a cutoff of � ¼ 1:8 GeV in the dispersion integral (12)
beyond which the asymptotic fall off is enforced by hand,
we find that this asymptotic region s >�2 still yields a
10% correction to the! ! �0� branching ratio. We there-
fore, rather take these as benchmark values to test the
accuracy of the approximation of using only two-pion
intermediate states in the dispersion relation: we expect
this to work better in the description of the s-dependence of
the transition form factor, in which we choose the sub-
traction constant in Eq. (11) fixed to the experimental
values of the V ! �0� partial widths. The errors on these
values contribute a large part to the uncertainty of the
transition form factor and the differential V ! �0‘þ‘�
decay width, which we will present in the following.

A. ! ! �0‘þ‘�

We start off by considering V ¼ !. In Fig. 5 we com-
pare the absolute value squared of the! ! �0�� transition
form factor (left panel) and the differential ! ! �0‘þ‘�
decay widths (right panel) calculated in our approach,
standard VMD with a finite energy-dependent width,3

and a chiral Lagrangian treatment with light vector mesons

from Refs. [34,35], to data from Refs. [7–9]. The disper-
sive approach leads to a significant enhancement of the
transition form factor over the pure VMD result, which in
turn results in an improved description of the data. Part of
this enhancement is even present if we use a simplified,
VMD-inspired! ! 3� partial wave f1ðsÞ ¼ a�ðsÞ inside
the dispersion integral. As Fig. 3 suggests, using the correct
full ! ! 3� P-wave mainly leads to a further enhance-
ment for invariant masses of the lepton pair near and
slightly above the two-pion threshold. We note that using
the slightly smaller sum rule value for the normalization of
the form factor (instead of the one determined from the
experimental ! ! �0� width) would further enhance
jF!�0ðsÞ � 1j2 by 5–10%, albeit at the expense of a sig-
nificantly enlarged uncertainty. However, we also find that
our analysis cannot account for the steep rise towards the
end of the decay region, which is somewhat better de-
scribed by the calculation in Refs. [34,35]. The size of
the discrepancy for large invariant masses is surprising
(note that the form factor in Fig. 5 is shown on a logarith-
mic scale), in particular given the level of agreement found
in the sum rule for the ! ! �0� branching ratio that
should converge rather worse. Within the dispersive frame-
work, it is therefore hard to think of a plausible explanation
for such a steep rise. We note that in contrast to � ! 3�,
we have not yet been able to test the ! ! 3� decay

FIG. 5. Left panel: Numerical results for the ! ! �0�� transition form factor. Top, right panel: Differential ! ! �0�þ�� decay
width. Bottom, right panel: Differential ! ! �0eþe� decay width. Data for the transition form factor and the differential ! !
�0�þ�� width is taken from Refs. [7–9] (we have not included the data set from Ref. [37] due to its fairly low statistics). We show
pure VMD (dotted line), the results of a chiral Lagrangian treatment with explicit vector mesons [34] (white shaded curve with solid
borders), and the dispersive solution for f1ðsÞ ¼ a�ðsÞ (gray shaded curve with dashed borders) as well as the full dispersive solution
(black hatched curve with solid borders). For ! ! �0eþe� we do not display the pure Omnès solution, since it is virtually
indistinguishable from the full dispersive result due to the strongly dominating kinematical factor in Eq. (4). The inset magnifies the
region above the two-muon threshold (vertical dashed line).

3This produces an almost negligible effect for V ¼ !, but
guarantees sensible results for V ¼ �.
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amplitude against experimental precision studies of the
Dalitz plot, so a remaining deficit in our input for f1ðsÞ
cannot rigorously be excluded. Still, given the analogy to
the � ! 3� study in Ref. [14], it is implausible that this
can account for the size of the difference.

The transition form factors are often characterized by
their slope at s ¼ 0:

bV�0 ¼ dFV�0ðsÞ
ds

��������s¼0
: (21)

We quote this slope in units of M�2
� (where we use M� ¼

775:5 MeV), such that VMD suggests b!�0 ¼ 1M�2
� . Our

dispersive analysis yields

b!�0 ¼ ð1:41 . . . 1:45ÞM�2
� ; (22)

therefore a significant enhancement with respect to the
VMD value, yet not as large as the theoretical value found
in Refs. [34,35], b!�0 � 2M�2

� , and significantly smaller

than the experimental determinations b!�0 ¼ ð3:72�
0:10� 0:03ÞM�2

� [8], b!�0 ¼ ð3:73� 0:04� 0:05ÞM�2
�

[9]. We note, however, that the latter experimental extrac-
tions are in principle model-dependent, as they rely on a
monopole parametrization.

In order to improve on the comparison of our form factor
description to the data, one may think of subtracting
Eq. (11) once more and treating the additional subtraction
constant as a free parameter, at the expense of spoiling the
high-energy behavior of the transition form factor. The
difference between the once- and twice-subtracted repre-
sentation amounts to an additive term �b!�0 � s, and it is
rather obvious that this term cannot account for the strong
curvature in the form factor at higher energies, such that
the overall picture is not drastically improved.
Furthermore, the value given in Eq. (22) amounts to a value
for the slope given by a sum rule, which would be expected
to converge much better than the one for f!�0ð0Þ in Eq.
(12), yet it yields a result ostensibly off by a large factor.

The differential decay width for ! ! �0�þ�� (top,
right panel in Fig. 5) is calculated according to Eq. (4).4 We
observe that the values of the form factor close to the end of
the decay region are actually strongly suppressed by phase
space. From that vantage point the situation does not look
as dire as when the form factor is considered directly;
however, due to the smallness of the errors of those values
our solution still deviates by several �. The integration of
the spectrum yields

B ð! ! �0�þ��Þ ¼ ð0:94 . . . 1:00Þ � 10�4; (23)

which agrees with the experimental average Bexpð! !
�0�þ��Þ ¼ ð1:3� 0:4Þ � 10�4 [33] within errors. This

is not surprising: as the largest deviations from the experi-
mental form factor are strongly suppressed by phase space,
they do not have a large influence on the partial width.
We also display the ! ! �0eþe� differential decay

width (bottom, right panel in Fig. 5), which has not been
measured yet. Phase space combined with the 1=s behavior
of the virtual photon lead to a strong enhancement near
threshold and a variation of the spectrum over many orders
of magnitude; we therefore only display the full dispersive
result, since it is almost indistinguishable from f1ðsÞ ¼
a�ðsÞ on this scale. For a better comparison to ! !
�0�þ��, we also show this spectrum restricted to ener-
gies

ffiffiffi
s

p � 2m�. As can be seen in Fig. 5, both leptonic

final states yield very similar amounts of events in this
energy range, where form factor effects (deviations from
pure QED) are felt most strongly. The integrated spectrum
for ! ! �0eþe� yields

B ð! ! �0eþe�Þ ¼ ð7:6 . . . 8:1Þ � 10�4; (24)

where the uncertainty is dominated by the normalization
given by Bð! ! �0�Þ—the s-dependent eþe� spectrum
is largely given by pure QED. Equation (24) is in perfect
agreement with the experimental value Bexpð! !
�0eþe�Þ ¼ ð7:7� 0:6Þ � 10�4 within uncertainties.

B. � ! �0‘þ‘�

Next we consider V ¼ �. The results are displayed in
Fig. 6 for the absolute value squared of the � ! �0��
transition form factor (left panel) and the differential � !
�0‘þ‘� decay widths (right panel). There are no experi-
mental data in any of the decay channels yet. For the � !
�0�� transition form factor we observe a similar behavior
as for the !: in the full decay region, the form factor
calculated with the dispersive approach is enhanced com-
pared to the pure VMD result; in addition, we observe the
two-pion threshold enhancement of the full dispersive
result with respect to f1ðsÞ ¼ a�ðsÞ. Due to the strong
rise of the full solution for f1ðsÞ towards this threshold, see
Fig. 3, the corresponding F��0ðsÞ almost approaches a

cusp-like behavior at s ¼ 4M2
�. Since the � as opposed

to the ! transition form factor encompasses the � reso-
nance region, we can also observe that the full solution for
f1ðsÞ slightly reduces the height of the resonance peak with
respect to the simplified assumption f1ðsÞ ¼ a�ðsÞ, which
agrees with our observations in Ref. [14]. We note that
using a twice-subtracted dispersion relation for the partial-
wave amplitude f1ðsÞ, with the additional subtraction con-
stant fitted to the � ! 3� Dalitz plot of Ref. [32] does not
change our results by all that much: the differences are
smaller than the overall uncertainty in our transition form
factor prediction. This corroborates our skepticism that an
imperfect determination of the ! ! 3� P-wave is the
likely source of the discrepancy seen in the ! transition
form factor data.

4The normalization of the VMD prediction is obtained from
the experimental ! ! �0� partial width, similar to the disper-
sive calculation. We refrain from displaying errors on the VMD
calculation thus induced, since it merely serves illustrative
purposes.
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Again, we also quote the derivative of the form factor
at s ¼ 0:

b��0 ¼ ð1:52 . . . 1:61ÞM�2
� ; (25)

which is still somewhat larger than b!�0 , see Eq. (22), but
again not nearly as large as the slopes found experimen-
tally in other vector-meson conversion decays.

The observations above concerning the differences of
the various theoretical predictions translate directly to the
� ! �0�þ�� differential decay spectrum (top, right
panel of Fig. 6). We find that the � resonance leaves a
clear imprint on the spectrum, as one observes a second
peak structure that counterbalances the dropoff of the
phase space factor. The integrated spectrum yields

Bonceð� ! �0�þ��Þ ¼ ð3:7 . . . 4:0Þ � 10�6;

Btwiceð� ! �0�þ��Þ ¼ ð3:8 . . . 4:1Þ � 10�6; (26)

for the once- and twice-subtracted � ! 3� partial-wave
amplitudes, respectively, perfectly compatible within the
error ranges. There is currently no experimental measure-
ment of the partial width to be compared with.

As for the corresponding ! decay, the differential � !
�0eþe� decay width is enhanced for small s by several
orders of magnitude; for this reason, we only display the
full dispersive solution based on the once-subtracted � !

3� partial wave f1ðsÞ, the alternatives being indistinguish-
able on this scale. Again, an insert concentrates on energies
above the two-muon threshold for better comparison of the
expected event rates in both final states. The results for the
integrated spectra are

Bonceð� ! �0eþe�Þ ¼ ð1:39 . . . 1:51Þ � 10�5;

Btwiceð� ! �0eþe�Þ ¼ ð1:40 . . . 1:53Þ � 10�5; (27)

for both of the full solutions, respectively. Compared with
the experimental value of Bexpð� ! �0eþe�Þ ¼ ð1:12�
0:28Þ � 10�5 [33], we find agreement within uncertainties.
We wish to emphasize the significance of an experimen-

tal investigation of the � ! �0�� transition form factor.
Deviations from the VMD picture now seem to be well
established in ! ! �0��; strikingly enough, both this and
the latest measurement of the transition form factor in� !
��� [11], when parametrized in terms of a monopole form
factor, yield monopole mass parameters significantly be-
low the scale of the physical vector mesons, but (of course)
too large to be accessible within the physical decay region.
This is different in � ! �0��: the � resonance can be
measured in this decay; if there systematically is a steep
form factor rise as seen in ! ! �0��, mapping it out in
full in � ! �0�� will help clarify its origin. From the
theoretical side, our dispersive analysis for this process is
based on a very precisely measured � ! 3� Dalitz plot,

FIG. 6. Left panel: Numerical results for the � ! �0�� transition form factor. Top, right panel: Differential � ! �0�þ�� decay
width. Bottom, right panel: Differential � ! �0eþe� decay width. We show pure VMD (dotted line), the dispersive solution for
f1ðsÞ ¼ a�ðsÞ (gray shaded curve with dashed borders), and the full dispersive solution with one subtraction (black hatched curve with
solid borders) and two subtractions (white shaded curve with dashed-dotted borders) in the � ! 3� partial wave. For � ! �0eþe�
we only show the once-subtracted dispersive solution, since again neither the Omnès solution nor the twice-subtracted one is visibly
distinguishable from the once-subtracted result on the scale shown. The inset magnifies the region above the two-muon threshold
(vertical dashed line).
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such that we are very confident about the reliability of our
prediction. We thus strongly advocate an experimental
analysis of the � ! �0�� form factor to the best possible
precision.

As a final illustration, we show the (experimentally
unobservable) phases of the V ! �0�� transition form
factors, both for ! and �, in Fig. 7. We calculate these
from the unsubtracted solution to the discontinuity
Eq. (10), as we can only fix the modulus of the subtraction
constant fV�0ð0Þ by means of the V ! �0� partial width
not its phase, which is nonvanishing due to the complex
discontinuity of the V ! 3� partial-wave amplitude f1ðsÞ.
Only the phases of the full dispersive calculations, as
compared to the �� P-wave phase shift, are displayed.
We refrain from showing the (small) error bands and fix the
input in complete analogy to Fig. 3. An additional conse-
quence of the complex discontinuity of the V ! 3�
partial-wave amplitude is that Watson’s final state theorem
also does not apply to the transition form factors, and their
phases are different from ðsÞ: three-pion cut effects, see
Fig. 8, produce nonvanishing imaginary parts/nonvanish-
ing phases of the transition form factors also below the ��
threshold, s < 4M2

�. We observe the transition form factor
phases to be significantly larger than ðsÞ above the two-
pion threshold, and a tendency to small negative values
below.

V. SUMMARY

In this article, we have analyzed the V ! �0�� electro-
magnetic transition form factors for V ¼ ! and V ¼ � by
means of a dispersive framework. It requires the corre-
sponding P-wave projection of the V ! �þ���0 decay
amplitudes, and the pion vector form factor as input, both
of which depend on the pion-pion P-wave scattering phase

shift as input and are otherwise predictions up to a sub-
traction constant determining the overall normalization of
the V ! 3� amplitudes. The consistent treatment of
crossed-channel effects in the V ! 3� partial-wave am-
plitudes by incorporating three-particle cuts leads to a
nontrivial analytic structure for the transition form factors;
in particular, its phase does not follow the �� P-wave
phase.
We have calculated the real-photon V ! �0� branching

ratios using a sum rule, which yields good agreement with
the experimental � ! �0� branching ratio and indicates
that the sum rule for ! ! �0� (which is much more
precisely determined experimentally) is saturated roughly
at the 90%–95% level by two-pion intermediate states. To
lessen the dependence on medium-to-high-energy input,
we have oversubtracted the dispersion relation for the form
factors and used the real-photon partial widths as input for
the subtraction constant. We found that this approach leads
to an enhancement compared to a pure VMD calculation
and thus to an improved description of experimental data
from NA60 for the ! ! �0�þ�� channel. Three-pion
effects in particular lead to an enhancement in the two-
pion threshold region.
We are unable to solve the puzzle of the steep rise in the

! ! �0�� transition form factor data close to the end of
the decay region. In order to try to better understand the
physical mechanism behind this enhancement, we strongly
advocate a measurement of the � ! �0�� transition form
factor: the fact that the physical region of the decay goes
beyond that of the corresponding! decay and incorporates
the � resonance peak suggests that it should give some
clues about the nature of this rise.
While our predictions for branching ratios of the various

V ! �0‘þ‘� channels are in good agreement with experi-
mental determinations, data on decay spectra only exists
for ! ! �0�þ��. It would certainly be helpful, espe-
cially in light of a theoretical analysis of contributions to
light-by-light scattering, if precision data for additional
channels could be obtained [36].
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APPENDIX: PION VECTOR FORM
FACTOR REPRESENTATION INCLUDING

HIGHER RESONANCES

To account for the effects of higher resonances in the
pion form factor, at least in the elastic approximation, we
use the analytic representation [29]

FV
�ðsÞ ¼

M2
� þ sð�ei�1 þ ei�2Þ
M2

� � s� iM���ðsÞ
exp

�
� sA�ðsÞ
96�2F2

�

�

� �sei�1

M2
�0 � s� iM�0��0 ðsÞ exp

�
� s��0A�ðsÞ

�M3
�0�3

�ðM2
�0 Þ

�

� sei�2

M2
�00 � s� iM�00��00 ðsÞ exp

�
� s��00A�ðsÞ
�M3

�00�3
�ðM2

�00 Þ
�
;

(A1)

where

A�ðsÞ ¼ log
M2

�

M2
�

þ 8M2
�

s
� 5

3
þ �3

�ðsÞ log1þ ��ðsÞ
1� ��ðsÞ ;

��ðsÞ ¼
M�s

96�F2
�

�3
�ðsÞ; ��ðsÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4M2

�

s

s
;

��0;�00 ðsÞ ¼ M�0;�00ffiffiffi
s

p
�

s� 4M2
�

M2
�0;�00 � 4M2

�

�
3=2

��0;�00 ; (A2)

and F� is the pion decay constant. We fit the various
masses, widths, and coupling constants to the �� !
���0�� data of Ref. [26] (thus eschewing the additional
complication of �-! mixing). Note that we have omitted
the kaon loop contributions to ��ðsÞ, so that our fit values

are slightly different as compared to Ref. [29]. We obtain

M�0 ¼ 1:44� 0:01 GeV; ��0 ¼ 0:34� 0:03 GeV;

� ¼ 0:097� 0:009; �1 ¼ 0:5� 0:2;

M�00 ¼ 1:71� 0:05 GeV; ��00 ¼ 0:13� 0:03 GeV;

 ¼ �0:02� 0:02; �2 ¼ 1:1� 0:6: (A3)
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