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The light-front dynamic of the scalar field model theory is analyzed to solve the two-body bound-state

problem. The light-front two-body bound-state equation is extended to the full light-front dynamic kernel

including the ladder, cross-ladder, stretched-box, and particle-antiparticle creation/annihilation effects to

study the contributions of higher Fock states. The light-front two-body equation is also modified by the

term corresponding to the self-energy corrections and counterterms. Using the variational principle, we

obtain the numerical result of the binding energy B versus the coupling constant � for various mass ratios

of the constituent particles including the cases of nonzero exchange particle mass. We also discuss the

correlation between the mass spectrum and the corresponding bound-state wave function.
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I. INTRODUCTION

For an accurate calculation of the spectra and wave
functions of hadrons, it is important to include the funda-
mental relativistic effects, such as the correct relativistic
energy-momentum relation, retardation effects, and
particle-antiparticle creation and annihilation. Since the
quarks and gluons inside the hadrons have negligible
masses and interact very strongly among themselves via
quantum chromodynamics (QCD), the relativistic effects
play a significant role in analyzing the mass spectra and the
wave function-related observables (e.g., form factors, gen-
eralized parton distributions, etc.), in particular, for the
low-lying hadrons. Although the ultimate goal is to analyze
the bound-state problem in QCD, prior to getting into the
rather complicated nature of QCD we may first investigate
much simpler bound-state systems provided by the Wick-
Cutkosky model [1,2] and the similar scalar field model
theories.

C. Savkli et al. [3–5] have already used a powerful
numerical approach known as the Feynman-Schwinger
representation approach, and investigated the scalar field
model theory which they called �2� theory within the
given precision of the numerical computation. The earlier
work with the Feynman-Schwinger representation to
scalar-scalar bound states was presented in Ref. [6]. The
works of C. Savkli et al. [3–5] investigated not only the
stability of �2� theories but also the cancellation among
the vertex corrections, overlapping self-energy, vacuum
polarizations, etc. In order to get the full result for two-
body bound states up to the second order in the coupling
constant �, it has been discussed that it may already be a
good approximation just to include the ladder, cross-ladder,
stretched-box, and the relevant self-energy corrections and
counterterms. This encouraged us to look into the scalar
fieldmodel theories with the analytical tools available to us.

An analytically tractable tool for the bound-state
problem—and what is also known as the most orthodox
tool for dealing with the relativistic two-body problem in

quantum field theory—is the Bethe-Salpeter formalism [7]
utilizing the Green’s functions of covariant perturbation
theory. In the ladder approximation of the Bethe-Salpeter
formalism the bound-state [1,2] problem has been ana-
lyzed for the system of two particles interacting with a
third scalar particle. However, this approach has funda-
mental difficulties with the relative time dependence and in
systematically including higher-order irreducible kernels,
such as crossed diagrams and vacuum fluctuations [8].
An alternative approach which can remove these diffi-

culties and restore a systematic perturbative calculation for
obtaining higher accuracy is the reformulation of the co-
variant Bethe-Salpeter equation at equal light-front time,
� ¼ tþ z=c [9–11]. This is equivalent to expressing the
Bethe-Salpeter equation in the infinite momentum frame
[12–17]. The light-front quantization method [18,19] pro-
vides a relativistic Hamiltonian formalism and a Fock-state
representation at equal light-front time �, which retains a
lot of the simplicity and utility of the Schrödinger non-
relativistic many-body theory [18]. This method not only
suppresses the vacuum fluctuations but also systematically
includes cross diagrams when higher Fock-state contribu-
tions are taken into account. The relativistic Hamiltonian
dynamics with equal light-front time � has been known as
the light-front dynamic (LFD).
Relativistic two-body bound-states have been analyzed

with the light-front formalism of the Bethe-Salpeter ap-
proach in the Wick-Cutkosky model [20,21]. The light-
front ladder approximation in the Wick-Cutkosky model
has been extended to the lowest order light-front Tamm-
Dancoff approximation, which includes the self-energy
corrections and counterterms [22]. The cross-ladder and
stretched-box up to second order in the coupling constant�
have also been included by V.A. Karmanov et al. [23,24].
However, the higher Fock-state contributions due to the
particle-antiparticle creation/annihilation process have not
yet been included in the cross-ladder contributions [25,26].
Also, the light-front bound-state analyses in the scalar
field model theories have largely been limited to the
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Wick-Cutkosky model which describes the bound-state
system with the equal constituent mass and the zero mass
of the exchange particle. Therefore, we investigate the
contributions of the higher Fock states due to the
particle-antiparticle creation/annihilation process and ana-
lyze the two-body bound-state problem in various combi-
nations of masses for the constituent and exchange
particles: e.g.,m1 ¼ m2 and � ¼ 0, when the two constitu-
ent particles �1 and �2 have the masses m1 and m2,
respectively, and the exchange particle has the mass �.

In Sec. II, we show the light-front formalism of the
Bethe-Salpeter equation with the variational method and
provide our variational wave function suitable for the case
of nonzero exchange particle mass �. In Sec. III, we
present the numerical results of the spectrum calculation
and relate them to the wave function renormalization and
the higher Fock-state contribution. The conclusion follows
in Sec. IV. The full expressions of the kernel and proba-
bilities of finding the lowest and higher Fock states are
summarized in Appendix A, Appendix B.

II. FORMALISM

A. The bound-state equation in LFD

For simplicity, we consider the scalar field model theo-
ries which describe bound states of two scalar particles�1,
�2 with masses m1 and m2 exchanging another scalar
particle � with mass �. While m1 � m2 and � � 0 in
general, the model with m1 ¼ m2 and � ¼ 0 has been
known as the Wick-Cutkosky model [1,2]. The relevant
interaction Lagrangian is given by

L ¼ gð�1
��1 þ�2

��2Þ�; (2.1)

where g is the coupling constant with the dimension of
mass and ��i (i ¼ 1, 2) is the conjugate field of �i. The
Bethe-Salpeter equation of this type of model has been
reformulated in LFD and the light-front ladder approxima-
tion has been extended to the lowest order light-front
Tamm-Dancoff approximation including the self-energy
effect [22]. The cross-ladder and stretched-box up to sec-
ond order in the coupling constant � have also been
included [23,24].

In this work, we also go beyond the light-front ladder
approximation to include the cross-ladder, stretched-box,
and the higher Fock-state contributions. In particular, the
higher Fock-state contributions (the particle-antiparticle
creation/annihilation effect), which has not been numeri-
cally analyzed in the previous literature [24–26], are in-
corporated. The light-front bound-state equation for this
theory is given by�
M2 �

~k2? þm2
1

x
�

~k2? þm2
2

1� x
� g2

16�2
fðx; ~k?Þ

�
c ðx; ~k?Þ

¼
Z dy

yð1� yÞ
d2 ~l?
16�3

Kðx; ~k?; y; ~l?Þc ðy; ~l?Þ; (2.2)

where Kðx; ~k?; y; ~l?Þ is the kernel of the bound-state equa-
tion, fðx; ~k?Þ is the self-energy correction, c ðx; ~k?Þ is the
light-front wave function of the bound state, and M is the
mass of the bound state. We denote the light-front longi-
tudinal momentum fraction as x, y, etc., and the transverse

momentum as ~k?, ~l?, etc. The kernel Kðx; ~k?; y; ~l?Þ
is provided up to order g4 including the ladder (L),
stretched-box (SB), cross-ladder (CL), and higher-Fock
(HF) kernels: i.e.,

Kðx; ~k?; y; ~l?Þ ¼ g2VLðx; ~k?; y; ~l?Þ

þ g4
Z

dz
d2 ~j?
16�3

½VSBðx; ~k?; y; ~l?; z; ~j?Þ

þ VCLðx; ~k?; y; ~l?; z; ~j?Þ
þ VHFðx; ~k?; y; ~l?; z; ~j?Þ�; (2.3)

while the self-energy corrections including counterterms
[22] are given by

fðx; ~k?Þ¼1

x

Z 1

0
dzlog

�
1þxð ~k2?þm2

1

x þ ~k2?þm2
2

1�x �M2Þzð1�zÞ
�2zþm2

1ð1�zÞ2
�

þ x$ð1�xÞ
m1$m2

 !
: (2.4)

Our self-energy correction given by Eq. (2.4) provides

dynamical mass shifts dependent on x and ~k? in the two-
body bound states and satisfies the renormalization condi-
tion that allows the two masses m1 and m2 to be physically
measurable above the scattering threshold. For � ¼ 0, the z
integration in Eq. (2.4) can be analytically performed and

fðx; ~k?Þ is given by

fðx; ~k?Þ ¼
ðM2 � ~k2?þm2

1

x � ~k2?þm2
2

1�x Þ
m2

1

�
log½ x

m2
1

ð ~k2?þm2
1

x þ ~k2?þm2
2

1�x �M2Þ�
1� x

m2
1

ð ~k2?þm2
1

x þ ~k2?þm2
2

1�x �M2Þ

þ x $ ð1� xÞ
m1 $ m2

 !
: (2.5)

As the works of C. Savkli et al. [3–5] indicated the
cancellation among the vertex corrections (overlapping
self-energy, vacuum polarizations, etc.), we do not include
them in the present work, but limit here only up to the four-
body Fock states in LFD. We will be content with taking

into account just the kernel Kðx; ~k?; y; ~l?Þ in Eq. (2.3) and

the self-energy correction term fðx; ~k?Þ in Eq. (2.4). While
the ladder kernel (VL) is given by
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VLðx; ~k?;y; ~l?Þ¼�ðx�yÞ
ðx�yÞ

1

M2� ~l2?þm2
1

y �ð ~k?�~l?Þ2þ�2

x�y � ~k2?þm2
2

1�x

þ x$y

~k?$ ~l?

 !
; (2.6)

the stretched-box (VSB), cross-ladder (VCL), and higher-
Fock (VHF) kernels can be written in the form

VSBðx; ~k?; y; ~l?; z; ~j?Þ ¼ 1

zðx� zÞðz� yÞð1� zÞ
X
i¼1;2

Vi;

(2.7)
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FIG. 2. Stretched-box LFD graphs.
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VCLðx; ~k?; y; ~l?; z; ~j?Þ

¼ 1

zðx� zÞðz� yÞð1� x� yþ zÞ
X8
i¼3

Vi; (2.8)

VHFðx; ~k?; y; ~l?; z; ~j?Þ
¼ 1

zðx� zÞðz� yÞð1� x� yþ zÞ ½VA þ VB�; (2.9)

where V1, V2, V3, V4, V5, V6, V7, V8, VA, and VB are
presented in Appendix A. The corresponding diagrams
are shown in Figs. 1–4. In particular, the particle-
antiparticle creation/annihilation process, which was not
included in the previous cross-ladder analysis [24], is
shown in Fig. 4. We denote this contribution as VHF.

B. Spectrum calculation with variational method

In order to solve Eq. (2.2) numerically, we utilize a
variational principle for a dimensionless coupling constant
� given by � ¼ g2=ð16�m1m2Þ. Taking the expectation
values with a variational wave function in Eq. (2.2), we get
the quadratic equation in terms of �:

�
M2�

~k2?þm2
1

x
�

~k2?þm2
2

1�x

�
¼�hVLiþ�

�
m1m2

�
f

�

þ�2hVSBþVCLþVHFi;
(2.10)

where more explicitly each of the expectation values are
given by

�
M2 �

~k2? þm2
1

x
�

~k2? þm2
2

1� x

�

¼
Z dx

xð1� xÞ
d2 ~k?
16�3

c yðx; ~k?Þ

�
�
M2 �

~k2? þm2
1

x
�

~k2? þm2
2

1� x

�
c ðx; ~k?Þ; (2.11)

�
m1m2

�
f

�
¼
Z dx

xð1� xÞ
d2 ~k?
16�3

c yðx; ~k?Þ

�m1m2

�
fðx; ~k?Þc ðx; ~k?Þ; (2.12)

hVLi ¼ 16�m1m2

Z dx

xð1� xÞ
d2 ~k?
16�3

dy

yð1� yÞ

� d2 ~l?
16�3

c yðx; ~k?ÞVLðx; ~k?; y; ~l?Þc ðy; ~l?Þ; (2.13)

hVSBi¼ð16�m1m2Þ2
Z dx

xð1�xÞ
d2 ~k?
16�3

Z dy

yð1�yÞ
d2 ~l?
16�3

�
Z
dz

d2 ~j?
16�3

c yðx; ~k?ÞVSBðx; ~k?;y; ~l?;z; ~j?Þc ðy; ~l?Þ;
(2.14)

hVCLi ¼ ð16�m1m2Þ2
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

�
Z

dz
d2 ~j?
16�3

c yðx; ~k?Þ

� VCLðx; ~k?; y; ~l?; z; ~j?Þc ðy; ~l?Þ; (2.15)

hVHFi ¼ ð16�m1m2Þ2
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

�
Z

dz
d2 ~j?
16�3

c yðx; ~k?Þ

� VHFðx; ~k?; y; ~l?; z; ~j?Þc ðy; ~l?Þ: (2.16)

For fixed binding energy B ¼ m1 þm2 �M, we solve the
quadratic equation of the coupling constant � and mini-
mize the corresponding expectation values to determine the
optimum relation between the binding energy B and the
coupling constant �:

� ¼
�hVL þ m1m2

� fi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hVL þ m1m2

� fi2 þ 4hM2 � ~k2?þm2
1

x � ~k2?þm2
2

1�x ihVCL þ VSB þ VHFi
r

2hVCL þ VSB þ VHFi : (2.17)

x
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FIG. 4. Higher-Fock LFD graphs.
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The minimum of � is found by varying the parameters in
the trial wave function c ðx; ~k?Þ. A judicious choice of trial
wave function is important to get the closest result to the
true minimum of �. To achieve this goal, we consider
available exact solutions in some limiting cases, e.g., the
solution of the nonrelativistic Schrödinger equation for the
Coulomb interaction.We also take into account the relation

of the light-front bound-state equation to the covariant
Bethe-Salpeter equation, since some analytic spectral
functions for the solution of the Bethe-Salpeter equation
are known in both weak and strong binding limits [27].
For the 1S state, we take the variational wave function
parameterized by

c ðx; ~k?Þ ¼ N1s

½C2 � ~k2?þm2
1

x � ~k2?þm2
2

1�x �
� 1

½C2 � ~k2?þm2
1

x � ~k2?þm2
2

1�x � 4�ð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

1 þm2
2Þ � ðm2

1
�m2

2
Þ2

ð
~k2?þm2

1
x þ

~k2?þm2
2

1�x Þ
� C2

s
Þ�ð1þ j2x� 1jÞ

;

(2.18)

where the normalization constant N1s cancels in the ratio
given by Eq. (2.17) and C is the variational parameter. The
factor (1þ j2x� 1j) in the denominator of Eq. (2.18)
stems from the weak-binding spectral function of the
Bethe-Salpeter solution as shown in Ref. [28]. Equation
(2.18) is the variational wave function suitable for the case
of nonzero exchange particle mass �. We tried the varia-
tional wave function without the � term in Eq. (2.18) as
well as other trial wave functions different from Eq. (2.18),
but found that the obtained expectation values of�were all
larger than what we get using Eq. (2.18). This convinced us
that the wave function given by Eq. (2.18) is an improve-
ment over any other variational wave functions that we
have considered. The origin of Eq. (2.18) may be attributed
to the exact solution of the Schrödinger equation with the
Hulthen potential [29–31]. Although the Schrödinger
equation with the Yukawa potential has not yet been ana-
lytically solved, the Hulthen potential behaves like the
Yukawa potential for small values of r, and the exact
solutions have been obtained for the Schrödinger equation
with the Hulthen potential. With the form of the variational
wave function given by Eq. (2.18) we are well-equipped to
compute mass spectra, even for the case of � � 0.

C. Analytic calculation of spectrum
and nonrelativistic limit

A simple analytic relation between the coupling constant
� and the binding energy B may be attained by following
the method presented in Refs. [20,22]. For example, if we

takeC ¼ M in Eq. (2.18) for the case ofm1 ¼ m2 ¼ m and
� ¼ 0, we get

c ðx; ~k?Þ ¼ N

½M2 � ~k2?þm2

xð1�xÞ�2ð1þ j2x� 1jÞ
: (2.19)

Without the factor (1þ j2x� 1j) in the denominator of
Eq. (2.19), this wave function corresponds to the 1S state
wave function of the Schrödinger equation with the
Coulomb potential. Equation (2.19) was used to find the
analytic expression for the binding energy of the 1S state of
the ladder approximation originally found in Refs. [20,21].
Including the self-energy correction, the following formula
was obtained [22]:

�

�
¼ fðu� 2Þ=ðu� 1Þ1=2g

�
1

2
�� tan�1ððu� 1Þ�1=2Þ

�

þ logð4=uÞ þ 2u

u� 2
log

2

u
; (2.20)

where � ¼ g2=ð16�m2Þ and u ¼ m2=ðm2 �M2=4Þ. In the
zero-binding limit, u ! 1, Eq. (2.20) leads to �

� ¼ �
2

ffiffiffi
u

p
,

which is the well-known Balmer formula for the 1S
state: i.e.,

2m�M ¼ m�2=4: (2.21)

Similarly, following the method presented in Ref. [22] as
well as in Ref. [20], we obtain the following relation for
m1 ¼ m2 ¼ m and � � 0:

�

�
¼ 8u2

Z 1

4
dt

ðt� 2Þð1þ �
m

ffiffiffi
u

p Þ2 logf u½4þtðt�4Þ�2
m2�

4ðt�4Þþu½4þðt�2Þðt�4Þ�2
m2�
g

ð�2

m2 u� 2Þ½tðt� 4Þ þ 4u�½tðt� 4Þð1þ �
m

ffiffiffi
u

p Þ2 þ 4u� � u
Z 1

0
dz log

�
1þ 2zð1� zÞ

�2

ðm2�M2

4 Þ
zþ uð1� zÞ2

�
: (2.22)

For � ¼ 0, Eq. (2.22) can be integrated and reduced to Eq. (2.20). Wewill discuss these relations further in the zero binding
energy region when we present our numerical results in Sec. III.
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D. Wave function renormalization and probabilities of
lowest and higher Fock states

The light-front quantization method provides a descrip-
tion of a bound-state jBi in a Fock-state representation at
equal �:

jBi ¼ h� ��jBij� ��i þ h� ���jBij� ���i
þ h� ����jBij� ����i þ � � � ; (2.23)

where the light-front two-body wave function c ðx; ~k?Þ
corresponds to the lowest Fock-state amplitude h� ��jBi.
The probability of finding the two-body state j� ��i is given
by the integration of the wave function squared:

PLow ¼
Z dx

xð1� xÞ
d2 ~k?
16�3

jc ðx; ~k?Þj2; (2.24)

where the subscript ‘‘Low’’ of PLow is introduced because
the two-body state is the lowest Fock state. The probability
of finding the higher Fock states can be obtained by differ-

entiating the kernel Kðx; ~k?; y; ~l?Þ in Eq. (2.3) with respect
to M2, as discussed in Refs. [22,32]: i.e.,

PHigh ¼
�
� @K

@M2

�
¼ �

Z dx

xð1� xÞ
d2 ~k?
16�3

dy

yð1� yÞ

� d2 ~l?
16�3

c yðx; ~k?Þ
�
@K

@M2

	
c ðy; ~l?Þ; (2.25)

where the subscript ‘‘High’’ of PHigh indicates the contri-

butions from the higher Fock states, such as three and four
bodies through VL, VSB, VCL, and VHF. Including the self-
energy correction, we may also renormalize the two-body
wave function, as discussed in Ref. [28]: i.e.,

~PLow ¼
Z dx

xð1� xÞ
d2 ~k?
16�3

�
�
1�

�
�m1m2

�

	
@fðx; ~k?Þ
@M2

�
j ~c ðx; ~k?Þj2; (2.26)

where ~c ðx; ~k?Þ is the wave function including the self-
energy correction. The probability of finding the higher
Fock states including the self-energy correction is given by

~PHigh ¼
�
� @K

@M2

�
¼ �

Z dx

xð1� xÞ
d2 ~k?
16�3

dy

yð1� yÞ

� d2 ~l?
16�3

~c yðx; ~k?Þ
�
@K

@M2

	
~c ðy; ~l?Þ: (2.27)

Since the kernelK can be decomposed into the contributions
from VL, VSB, VCL, and VHF, the probabilities PLow, ~PLow,
PHigh, and ~PHigh can also be decomposed into the corre-

sponding contributions. For example, up to the ladder and
cross-ladder, we may define the following probabilities1:

PL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

jc Lðx; ~k?Þj2; PLþCL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

jc LþCLðx; ~k?Þj2;

~PL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

�
1�

�
�m1m2

�

	
@fðx; ~k?Þ
@M2

�
j ~c Lðx; ~k?Þj2;

~PLþCL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

�
1�

�
�m1m2

�

	
@fðx; ~k?Þ
@M2

�
j ~c LþCLðx; ~k?Þj2;

PL
High ¼

�
� @ð�VLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

c y
Lðx; ~k?Þ

�
@VL

@M2

	
c Lðy; ~l?Þ;

PLþCL
High ¼

�
� @ð�VL þ �2VCLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

c y
LþCLðx; ~k?Þ

�
@VL

@M2

	
c LþCLðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

c y
LþCLðx; ~k?Þ

�
@VCL

@M2

	
c LþCLðy; ~l?Þ;

~PL
High ¼

�
� @ð�VLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

~c y
Lðx; ~k?Þ

�
@VL

@M2

	
~c Lðy; ~l?Þ;

~PLþCL
High ¼

�
� @ð�VL þ �2VCLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

~c y
LþCLðx; ~k?Þ

�
@VL

@M2

	
~c LþCLðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

~c y
LþCLðx; ~k?Þ

�
@VCL

@M2

	
~c LþCLðy; ~l?Þ; (2.28)

1See Appendix B for the full expression of PLow, ~PLow, PHigh, and ~PHigh.
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where c Lðx; ~k?Þ is the two-body wave function obtained
by including only the ladder kernel VL, while
c LþCLðx; ~k?Þ and ~c Lðx; ~k?Þ are the wave functions in-
cluding the cross-ladder kernel VCL and the self-energy
correction term fðx; ~k?Þ, respectively, in addition to VL.
Likewise, we define PLþCLþSB

Low , ~PLþCLþSB
Low , PLþCLþSB

High , and
~PLþCLþSB
High by adding the contribution from VSB. By adding

the contribution from VHF to this, we may also define
PLþCLþSBþHF
Low , ~PLþCLþSBþHF

Low , PLþCLþSBþHF
High , and

~PLþCLþSBþHF
High . Here, the factor 16�m1m2 in the relation

between � and g2 has been compensated for by the same
factor included in the definition of the expectation values
given by Eqs. (2.12), (2.13), (2.14), (2.15), and (2.16). We
note that the spectrum of the bound state is intimately
correlated with the corresponding bound-state wave func-
tion. Thus, it is interesting to compute the probabilities
PLow, ~PLow, PHigh, and ~PHigh with the specific contributions
from the kernel and/or the self-energy correction, and
discuss the correlation of these wave function-related ob-
servables with the results of the spectrum. We present the
probability ratios, such as PL

High=P
L
Low, PLþCL

High =PLþCL
Low ,

~PL
High= ~P

L
Low, etc., in the following section of numerical

results.

III. NUMERICAL RESULTS

A. Spectrum

We present the results for the binding energy B ¼ m1 þ
m2 �M as a function of the coupling constant � ¼
g2=ð16�m1m2Þ. Since we consider in general the m1 �
m2 and � � 0 cases as well as the special cases of m1 ¼
m2 or � ¼ 0, we present the numerical results of represen-
tative examples (�=m2 ¼ 0,0.15,0.5,1.0,2.5) with � �
m1=m2 ¼ 1 and 5:446� 10�4 in units where m2 ¼ 1.
Whether the range of the interaction between the two
constituents of the bound state is short or long depends
on the value of �: e.g., the Yukawa interaction with � � 0
or the Coulomb interaction with � ¼ 0. Also, the value of
� is linked to the modeling of the bound state: e.g., a
positronium or deuteron system with � ¼ 1, and a hydro-
gen atom with � ¼ 5:446� 10�4. Throughout the figures
that we present in this section, we use the same line style
but different thicknesses to make a correspondence
between with and without self-energy: e.g., Lþ CL and
Lþ CLþ self are depicted by thin and thick dotted lines,
respectively.

Figure 5 shows the case of � ¼ 1, � ¼ 0. The numerical
results of the ladder, Lþ CL, Lþ CLþ SB, and Lþ
CLþ SBþ HF with and without the self-energy correc-
tions obtained by the variational principle are presented
and compared with the available numerical or analytic
results. The nonrelativistic result given by Eq. (2.21) is
shown as the Balmer line (thick grey solid line) in the
far left of this figure, while the analytic result (Analytic
Lþ self) given by Eq. (2.20) is shown as a thin grey solid
line at the bottom of the figure. In the middle between these

two curves (Balmer line and Analytic Lþ self), our ladder
result (thin black dot-dashed line) is compared with the
previous numerical results (solid circles) provided by
Mangin-Brinet and Carbonell [33]. Although our method
of computation is different from theirs [33], our ladder
results are in good agreement, which lends confidence to
our variational calculation. Just next to the ladder result on
the right, the analytic result without the self-energy cor-
rection, i.e., without the last term in Eq. (2.20), is shown as
a thin grey dashed line. The analytic result agrees with the
numerical result in the weak-binding limit. Similarly, the
analytic result including the self-energy effect (Analytic
Lþ self) shown at the bottom of the figure is comparable
to the corresponding numerical results (Lþ self), drawn as
a thick black dot-dashed line just above the analytic result.
Between the Balmer line and the ladder result, one can see
the three curves of Lþ CL, Lþ CLþ SB, and Lþ CLþ
SBþ HF from right to left. Also, between the ladder result
and the Lþ self result at the bottom, one can see the three
corresponding curves including the self-energy effect.
These results indicate that the effect of the self-energy
term is highly repulsive, while the contribution from the
cross-ladder shows a large attractive effect. The difference
between the Lþ self and Lþ CLþ self is more signifi-
cant than the difference between the ladder and Lþ CL,
which indicates that the attractive effect from the cross-
ladder kernel is more significant when the self-energy
corrections are included. We note that the particle-
antiparticle creation/annihilation contribution from VHF

as well as the stretched-box contribution from VSB yield

FIG. 5. � ¼ 1, � ¼ 0. The numerical results of the ladder,
Lþ CL, Lþ CLþ SB, and Lþ CLþ SBþ HF with and with-
out the self-energy corrections obtained by the variational prin-
ciple. The ladder and Lþ self are compared with the
corresponding analytic results from Eq. (2.20). The Balmer
line is shown as the nonrelativistic result from Eq. (2.21). The
ladder is also compared with the previous data from Mangin-
Brinet and Carbonell [33].
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attractive effects and become larger as the coupling con-
stant � increases. Although the effect of the particle-
antiparticle creation/annihilation is very small in this
case (� ¼ 1, � ¼ 0), it appears more noticeable when
the self-energy corrections are included, as one can see
in the difference between the thick black solid and thick
black dashed lines. We present in Table I the variational
parameters (C) that are determined by the variational prin-
ciple to generate the Lþ CLþ SBþ HFþ self result
depicted by the thick black solid line in Fig. 5. This table
(Table I) is just exemplary since all other results are also
backed up by the corresponding variational parameters
determined by the variational principle.

In Fig. 6 we consider the case of � ¼ 1, � ¼ 2:5, where
we find that the particle-antiparticle creation/annihilation
contribution from VHF becomes quite substantial. The
contribution of VHF is much greater than that of VSB,
with or without the self-energy corrections. In particular,
with the self-energy corrections the VHF contribution be-
comes large enough to make the curve Lþ CLþ SBþ
HFþ self go above the ladder curve. We also note that the
bound states can be formed only with a sufficiently large
coupling since it is difficult to exchange a large mass
particle with insufficient coupling strength. Moreover,
due to the short range interaction in this case, the effects
of the self-energy and cross-ladder seem to appear quite
different when compared to those in the case of � ¼ 0.
Although we did not include the whole curve of Lþ self,
we note that � reaches 57.4 when the binding energy B
becomes 2m.

In Fig. 7, the ladder (thin black dot-dashed), Lþ CL
(thin black dotted), and Lþ CLþ SB (thin black dashed)
for the case of � ¼ 1, � ¼ 0:5 are compared with the
corresponding numerical data (solid circles, squares, and
stars, respectively) given by Carbonell and Karmanov
[24,34]. Our numerical results agree well with their results.
This indicates that our variational wave function in
Eq. (2.18), based on the solution for the Hulthen potential,
is reasonable for the � � 0 case. The thin black solid line
for Lþ CLþ SBþ HF is also displayed in this figure to
show the VHF effect.

Figure 8 presents the unequal mass case of� ¼ 5:446�
10�4, � ¼ 0. The ladder (thin black dot-dashed), Lþ CL
(thin black dotted), Lþ CLþ SB (thin black dashed), and

Lþ CLþ SBþ HF (thin black solid line) are shown in
this figure. Here, we see that the particle-antiparticle cre-
ation/annihilation contribution from VHF is non-negligible,
although the exchange particle mass is zero (� ¼ 0). All
the results including the self-energy effects, such as Lþ
self, Lþ CLþ self, Lþ CLþ SBþ self, and Lþ CLþ
SBþ HFþ self, are not shown in the figure because they
are all strongly suppressed in this case.
Figure 9 shows the case of � ¼ 5:446� 10�4, � ¼ 2:5.

We find that the particle-antiparticle creation/annihilation
contribution from VHF is significantly enhanced in this
case. We also note that the attractive effect of the cross-
ladder contribution becomes significant when the self-
energy is included, as one can see from the Lþ CLþ
self, Lþ CLþ SBþ self, and Lþ CLþ SBþ HFþ
self curves. However, the Lþ self result is away from
the other results and we note that � reaches 25.45 as the
binding energy B approaches to m.
These results confirm that the self-energy effect is re-

pulsive while the effect of the cross-ladder contribution is
attractive. Comparing the results with and without the self-
energy effect, we notice that the attractive effect from the
cross-ladder contribution is more significant when the self-
energy is included. Although the effects of the stretched-
box and the particle-antiparticle creation/annihilation are
also attractive, their contributions are not as significant as
the cross-ladder contribution. In particular, the effect of the
stretched-box is further reduced when � � 1 and � � 0.
Although the particle-antiparticle creation/annihilation

contribution is not so significant when � ¼ 1 and � ¼ 0, it
becomes non-negligible as � � 1 and/or � � 0. We
find that the VHF effect is the most significant in the case
of � � 1, � � 0, and is also non-negligible for the � � 1,
� � 0 and � ¼ 1, � ¼ 0 cases.

FIG. 6. � ¼ 1, � ¼ 2:5. The numerical results of the ladder,
Lþ CL, Lþ CLþ SB, and Lþ CLþ SBþ HF with and
without the self-energy corrections obtained by the variational
principle.

TABLE I. The variational parameters (C) that are determined
by the variational principle for the case of � ¼ 0, � ¼ 1:0 to
generate the Lþ CLþ SBþ HFþ self (thick black solid line)
in Fig. 5. The corresponding binding energies (B) are also shown
for the representative coupling constants (�).

�ð� ¼ 0;
� ¼ 1:0Þ 0.2 0.5 1.0 4.0 8.0 13.7

B 0.003 0.012 0.037 0.256 0.65 1.828

C 1.99650 1.98791 1.96263 1.74393 1.34632 0.17174
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B. Zero-binding limit

It has been indicated in Refs. [24,33,35,36] that for the
nonzero mass of the exchange particle �, the relativistic
ladder results in the weak-binding limit B ! 0 do not
coincide with the nonrelativistic result. We confirmed
this result as shown in Fig. 10. Our results of ladder (thin
black dot-dashed), Lþ CLþ SB (thin black dashed), and
Lþ CLþ SBþ HF (thin black solid line) are depicted for
� ¼ 0:15,0.5, and 1.0, and compared with the available
ladder (solid circles) and Lþ CLþ SB (stars) results from
Ref. [33]. Also, our results of the Schrödinger equation

with the Yukawa potential obtained by the variational
principle (thick grey solid line) are compared with the
corresponding results (diamonds) from Ref. [33]. Our re-
sults are in close agreement with all of the available results
from Ref. [33]. As one can see in Fig. 10, the discrepancy
between the nonrelativistic limit and the zero-binding limit
becomes larger as the exchange particle mass increases.
However, the cross-ladder and stretched-box reduce the
discrepancy. We notice that the particle-antiparticle crea-
tion/annihilation contribution from VHF further reduces the
discrepancy, although it is not as significant as the cross-
ladder and stretched-box. To show the more noticeable VHF

FIG. 7. � ¼ 1, � ¼ 0:5. The ladder is compared with the
corresponding analytic results from Eq. (2.22). The ladder, Lþ
CL, and Lþ CLþ SB are compared with the previous data.
(Data from Carbonell and Karmanov [24] and personal commu-
nication with Carbonell [34].)

FIG. 8. � ¼ 5:446� 10�4, � ¼ 0. The numerical results of
the ladder, Lþ CL, Lþ CLþ SB, and Lþ CLþ SBþ HF
without the self-energy corrections obtained by the variational
principle.

FIG. 9. � ¼ 5:446� 10�4, � ¼ 2:5. The numerical results of
the ladder, Lþ CL, Lþ CLþ SB, and Lþ CLþ SBþ HF
with and without the self-energy corrections obtained by the
variational principle.

FIG. 10. Zero binding energy region of the ladder, LDþ CLþ
SB, and LDþ CLþ SBþ HF results compared with the non-
relativistic ones (Schrödinger equation with Yukawa potential).
� ¼ 1, � ¼ 0:15, 0.5, and 1.0. (M. Mangin-Brinet and J.
Carbonell [33].)
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effect, we present the � ¼ 2:5 case in Fig. 11. One may
expect that the discrepancy would not be completely re-
moved unless all the irreducible kernels are included in the
relativistic bound-state equation.

C. Wave function renormalization and probabilities
of lowest and higher Fock states

In Sec. II D, we defined the probabilities of finding the
lowest two-body Fock state and the higher Fock states with
andwithout the self-energy correction. In particular, includ-
ing the self-energy correction, we have renormalized the
two-body wave function and defined the corresponding
probability with the renormalized wave function [see
Eq. (2.26)]. The probability of finding the higher Fock states
with the self-energy effect was also defined by Eq. (2.27).

In this subsection, we present the numerical results of
the probability ratios of PHigh=PLow without the self-energy

correction and ~PHigh= ~PLow with the self-energy correction.

In Figs. 12 and 13 we show the probability ratios for
PL
High=P

L
Low (thin black dot-dashed), PLþCL

High =PLþCL
Low (thin

black dotted), PLþCLþSB
High =PLþCLþSB

Low (thin black dashed),

and PLþCLþSBþHF
High =PLþCLþSBþHF

Low (thin black solid line), as

well as the probability ratios for ~PL
High=

~PL
Low (thick black

dot-dashed), ~PLþCL
High = ~PLþCL

Low (thick black dotted),
~PLþCLþSB
High = ~PLþCLþSB

Low (thick black dashed), and
~PLþCLþSBþHF
High = ~PLþCLþSBþHF

Low (thick black solid line), for

� ¼ 0 and 2.5, respectively, with � ¼ 1.
Whether or not the self-energy corrections are included,

we note that the probability ratios become larger as the
coupling constant � increases. This indicates that the
sector of the higher Fock states becomes more significant
as � increases. The probability ratio of the ladder with the
self-energy corrections is constantly lower than that of the

ladder without the self-energy corrections due to the highly
repulsive effect from the self-energy term.
In the case of � ¼ 1 and � ¼ 0, as shown in Fig. 12, the

attractive effect from the cross-ladder term in
~PLþCL
High = ~PLþCL

Low becomes so large that ~PLþCL
High = ~PLþCL

Low even

crosses over PLþCL
High =PLþCL

Low around � ¼ 1:5. This indicates

that the attractive effect from the cross-ladder kernel is
more enhanced when the self-energy corrections are in-
cluded. This behavior of the enhanced attractive effect
from the cross-ladder contribution with the inclusion of
the self-energy correction is consistent with what we have

FIG. 11. Zero binding energy region of the ladder, LDþ
CLþ SB, and LDþ CLþ SBþ HF results compared to the
nonrelativistic ones (Schrödinger equation with Yukawa poten-
tial). � ¼ 1, � ¼ 2:5.

FIG. 12. � ¼ 1, � ¼ 0. The numerical results of the proba-
bility ratios of PHigh=PLow (without self-energy corrections) and
~PHigh= ~PLow (with self-energy corrections) for the ladder, Lþ
CL, Lþ CLþ SB, and Lþ CLþ SBþ HF.

FIG. 13. � ¼ 1, � ¼ 2:5. The numerical results of the
probability ratios of PHigh=PLow (without self-energy correc-

tions) and ~PHigh= ~PLow (with self-energy corrections) for the

ladder, Lþ CL, Lþ CLþ SB, and Lþ CLþ SBþ HF.

CHUENG-RYONG JI AND YUKIHISA TOKUNAGA PHYSICAL REVIEW D 86, 054011 (2012)

054011-10



observed in our spectrum calculation (see, e.g., Fig. 5 and
the corresponding text in Sec. III A). This consistency
between the results of the wave function-related observ-
ables and the mass spectra manifests the correlation be-
tween the wave function and the corresponding mass
spectrum as the eigenfunction and the corresponding ei-
genvalue must be correlated in the bound-state calculation.

Due to the highly repulsive effect from the self-energy,
the probability ratio ~PL

High= ~P
L
Low (with self-energy) is lower

than PL
High=P

L
Low (without self-energy), indicating that the

probability of finding the higher Fock states is lower when
the self-energy effect is included without any significant
attractive channel, such as the cross-ladder contribution.
When the cross-ladder contribution is included, however,
there is a dramatic increase in the probability of finding the
higher Fock states. Without the self-energy effect, the ratio
PLþCL
High =PLþCL

Low is much higher than the ratio PL
High=P

L
Low.

With the self-energy effect, the increment of the ratio
~PLþCL
High = ~PLþCL

Low is more dramatic than that of the ratio
~PL
High= ~P

L
Low as the coupling constant � becomes larger,

even crossing over PLþCL
High =PLþCL

Low around � ¼ 1:5.

In the case of � ¼ 1 and � ¼ 2:5, as shown in Fig. 13,
we see again that the effect of the cross-ladder contribution
is highly attractive and enhances the probability of finding
the higher Fock states whether the self-energy corrections
are included or not. However, the increment of the ratio
~PLþCL
High = ~PLþCL

Low is not as dramatic as in the case of � ¼ 0

and the ratio ~PLþCL
High = ~PLþCL

Low does not cross over the ratio

PLþCL
High =PLþCL

Low . This appears to be consistent with the

reasoning that the probability of finding the higher Fock
states, including the very massive exchange particle of � ¼
2:5, is much less than the corresponding probability in-
volving the massless exchange particle of � ¼ 0.

IV. CONCLUSION

We have developed a variational method for solving the
scalar field model theory (m1 � m2, � � 0) up to second
order in the coupling constant �. The solutions for the
Schrödinger equation with the Hulthen potential can be
taken as a reasonable variational wave function for the
� � 0 case. We go beyond the light-front ladder approxi-
mation and extend to the full LFD kernel including the
ladder, cross-ladder, stretched-box, and particle-
antiparticle creation/annihilation contribution (VHF). We
also obtain the light-front two-body equation including
the self-energy corrections in the case of m1 � m2, � �
0. Our numerical results of the light-front formalism agree
well with the previous numerical data [24,33]. They are also
consistentwith our analytic result in theweak-binding limit.

Our results between the coupling constant � and the
binding energy B indicate that the self-energy effect is
repulsive, while all other effects that we took into account,
such as the ladder, cross-ladder, stretched-box, and
particle-antiparticle creation/annihilation contributions,

are attractive. Besides the ladder, the cross-ladder effect
is most significant among the attractive contributions. The
effect of the cross-ladder is more significant when the self-
energy is included. This implies that the conventional
ladder approximation alone cannot give a good approxi-
mation to the bound-state problem.
Although the particle-antiparticle creation/annihilation

contribution from VHF is not so significant for � ¼ 1 and
� ¼ 0, it becomes non-negligible as � � 1 and/or � � 0.
In particular, we find that the VHF effect is the most
significant in the case of � � 1, � � 0 and also non-
negligible in the � ¼ 1, � ¼ 0 or � � 1, � ¼ 0 case. In
contrast to this behavior of the VHF contribution, the effect
of the stretched-box VSB is more reduced as � � 1 and/or
� � 0.
We also note that the spectrum of the bound state is

intimately correlated with the corresponding bound-state
wave function. We see that the attractive effect of the cross-
ladder enhances the probability of finding the higher Fock
states whether the self-energy corrections are included or
not. In the case of � ¼ 0, without the self-energy effect, the
ratio PLþCL

High =PLþCL
Low is much higher than the ratio

PL
High=P

L
Low. Including the self-energy effect, the increment

of the probability ratio ~PLþCL
High = ~PLþCL

Low is more dramatic

than that of the ratio ~PL
High= ~P

L
Low as� increases. This seems

consistent with the result of the spectrum calculation ex-
hibiting the more pronounced cross-ladder effect when the
self-energy is included. As the exchange particle mass
increases, however, the probability of finding the higher
Fock states may be reduced, as one can understand from
the derivative of energy denominator involving the ex-
change particle mass. As such, in the case of � ¼ 2:5,
the increment of the ratio ~PLþCL

High = ~PLþCL
Low is not as dramatic

as in the case of � ¼ 0. The probability of finding the
higher Fock states with the massive exchange particle of
� ¼ 2:5 is much less than the corresponding probability
involving the massless exchange particle of � ¼ 0.
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APPENDIX A: FULL EXPRESSION
OF THE KERNEL

Corresponding to Figs. 2–4, respectively, the stretched-
box (VSB), cross-ladder (VCL), and higher-Fock (VHF)
kernels are written in the form
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VSB ¼ 1

zðx� zÞðz� yÞð1� zÞ
X
i¼1;2

Vi; (A1)

VCL ¼ 1

zðx� zÞðz� yÞð1� x� yþ zÞ
X8
i¼3

Vi; (A2)

VHF ¼ 1

zðx� zÞðz� yÞð1� x� yþ zÞ ½VA þ VB�; (A3)

where V1, V2, V3, V4, V5, V6, V7, V8, VA, and VB are given by

V1 ¼
�
M2 �

~k2? þm2
1

x
� ð ~j? � ~k?Þ2 þ �2

z� x
� ~j2? þm2

2

1� z

	�1
�
M2 �

~k2? þm2
1

x
� ð ~j? � ~k?Þ2 þ �2

z� x

� ð~l? � ~j?Þ2 þ �2

y� z
�

~l2? þm2
2

1� y

	�1
�
M2 � ~j2? þm2

1

z
� ð~l? � ~j?Þ2 þ �2

y� z
�

~l2? þm2
2

1� y

	�1
; (A4)

V2 ¼
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z
�

~k2? þm2
2

1� x

	�1
�
M2 �

~l2? þm2
1

y
� ð ~j? � ~l?Þ2 þ �2

z� y
� ~j2? þm2

2

1� z

	�1

�
�
M2 �

~l2? þm2
1

y
� ð ~k? � ~j?Þ2 þ �2

x� z
� ð ~j? � ~l?Þ2 þ �2

z� y
�

~k2? þm2
2

1� x

	�1
; (A5)

V3 ¼ �
�
M2 � ~j2? þm2

1

z
� ð~l? � ~j?Þ2 þ �2

y� z
�

~l2? þm2
2

1� y

	�1
�
M2 � ~j2? þm2

1

z
� ð~l? � ~j?Þ2 þ �2

y� z
� ð ~k? � ~j?Þ2 þ �2

x� z

� ð ~j? � ~k? � ~l?Þ2 þm2
2

1� x� yþ z

	�1
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z
�

~k2? þm2
2

1� x

	�1
; (A6)

V4 ¼ �
�
M2 �

~k2? þm2
1

x
� ð~l? � ~j?Þ2 þ �2

y� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z

� ð~l? � ~j?Þ2 þ �2

y� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
�
M2 �

~l2? þm2
1

y
� ð ~k? � ~j?Þ2 þ �2

x� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
;

(A7)

V5 ¼ �
�
M2 �

~k2? þm2
1

x
� ð~l? � ~j?Þ2 þ �2

y� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z

� ð~l? � ~j?Þ2 þ �2

y� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
�
M2 � ~j2? þm2

1

z
� ð~l? � ~j?Þ2 þ �2

y� z
�

~l2? þm2
2

1� y

	�1
; (A8)

V6 ¼ �
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z
�

~k2? þm2
2

1� x

	�1
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z
� ð~l? � ~j?Þ2 þ �2

y� z

� ð ~j? � ~k? � ~k?Þ2 þm2
2

1� x� yþ z

	�1
�
M2 �

~l2? þm2
1

y
� ð ~k? � ~j?Þ2 þ �2

x� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
; (A9)

V7 ¼
�
M2 �

~k2? þm2
1

x
� ð~l? � ~j?Þ2 þ �2

y� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
�
M2 �

~k2? þm2
1

x
� ð ~j? � ~k?Þ2 þ �2

z� x

� ð~l? � ~j?Þ2 þ �2

y� z
�

~l2? þm2
2

1� y

	�1
�
M2 � ~j2? þm2

1

z
� ð~l? � ~j?Þ2 þ �2

y� z
�

~l2? þm2
2

1� y

	�1
; (A10)
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V8 ¼
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z
�

~k2? þm2
2

1� x

	�1
�
M2 �

~l2? þm2
1

y
� ð ~k? � ~j?Þ2 þ �2

x� z

� ð ~j? � ~l?Þ2 þ �2

z� y
�

~k2? þm2
2

1� x

	�1
�
M2 �

~l2? þm2
1

y
� ð ~k? � ~j?Þ2 þ �2

x� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
; (A11)

VA ¼
�
M2 �

~l2? þm2
1

y
� ð ~k? � ~j?Þ2 þ �2

x� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
�
M2 �

~k2? þm2
1

x
� ~j2? þm2

1

z
�

~l2? þm2
1

y

� ð ~j? � ~k? � ~l?Þ2 þm2
2

1� x� yþ z

	�1
�
M2 �

~k2? þm2
1

x
� ð~l? � ~j?Þ2 þ �2

y� z
� ð ~j? � ~k? � ~l?Þ2 þm2

2

1� x� yþ z

	�1
; (A12)

VB ¼
�
M2 � ~j2? þm2

1

z
� ð ~k? � ~j?Þ2 þ �2

x� z
�

~k2? þm2
2

1� x

	�1
�
M2 � ~j2? þm2

1

z
�

~k2? þm2
2

1� x
�

~l2? þm2
2

1� y

� ð ~j? � ~k? � ~l?Þ2 þm2
2

1� x� yþ z

	�1
�
M2 � ~j2? þm2

1

z
� ð~l? � ~j?Þ2 þ �2

y� z
�

~l2? þm2
2

1� y

	�1
: (A13)

APPENDIX B: FULL EXPRESSIONS OF PLow AND PHigh

The full expressions of PLow and PHigh without the self-energy can be given by the following integrations:

PL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

jc Lðx; ~k?Þj2; (B1)

PLþCL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

jc LþCLðx; ~k?Þj2; (B2)

PLþCLþSB
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

jc LþCLþSBðx; ~k?Þj2; (B3)

PLþCLþSBþHF
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

jc LþCLþSBþHFðx; ~k?Þj2; (B4)

PL
High ¼

�
� @ð�VLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

c y
Lðx; ~k?Þ

�
@VL

@M2

	
c Lðy; ~l?Þ; (B5)

PLþCL
High ¼

�
� @ð�VL þ �2VCLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

c y
LþCLðx; ~k?Þ

�
@VL

@M2

	
c LþCLðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

c y
LþCLðx; ~k?Þ

�
@VCL

@M2

	
c LþCLðy; ~l?Þ; (B6)

PLþCLþSB
High ¼

�
� @ð�VL þ �2VCL þ �2VSBÞ

@M2

�

¼ �g2
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

c y
LþCLþSBðx; ~k?Þ

�
@VL

@M2

	
c LþCLþSBðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

c y
LþCLþSBðx; ~k?Þ

�
@VCL

@M2

	
c LþCLþSBðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

c y
LþCLþSBðx; ~k?Þ

�
@VSB

@M2

	
c LþCLþSBðy; ~l?Þ; (B7)

LIGHT-FRONT DYNAMIC ANALYSIS OF BOUND STATES . . . PHYSICAL REVIEW D 86, 054011 (2012)

054011-13



PLþCLþSBþHF
High ¼

�
�@ð�VL þ �2VCL þ �2VSB þ �2VHFÞ

@M2

�

¼ �g2
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

c y
LþCLþSBþHFðx; ~k?Þ

�
@VL

@M2

	
c LþCLþSBþHFðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

c y
LþCLþSBþHFðx; ~k?Þ

�
@VCL

@M2

	
c LþCLþSBþHFðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

c y
LþCLþSBþHFðx; ~k?Þ

�
@VSB

@M2

	
c LþCLþSBþHFðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

c y
LþCLþSBþHFðx; ~k?Þ

�
@VHF

@M2

	
c LþCLþSBþHFðy; ~l?Þ;

(B8)

where c ðx; ~k?Þ is the two-body wave function optimized by the variational parameter for the corresponding kernel and
coupling constant �. Likewise, the full expressions of ~PLow and ~PHigh with the self-energy can be given by the following
integrations:

~PL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

�
1�

�
�m1m2

�

	
@fðx; ~k?Þ
@M2

�
j ~c Lðx; ~k?Þj2; (B9)

~P LþCL
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

�
1�

�
�m1m2

�

	
@fðx; ~k?Þ
@M2

�
j ~c LþCLðx; ~k?Þj2; (B10)

~PLþCLþSB
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

�
1�

�
�m1m2

�

	
@fðx; ~k?Þ
@M2

�
j ~c LþCLþSBðx; ~k?Þj2; (B11)

~P LþCLþSBþHF
Low ¼

Z dx

xð1� xÞ
d2 ~k?
16�3

�
1�

�
�m1m2

�

	
@fðx; ~k?Þ
@M2

�
j ~c LþCLþSBþHFðx; ~k?Þj2; (B12)

~PL
High ¼

�
�@ð�VLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

~c y
Lðx; ~k?Þ

�
@VL

@M2

	
~c Lðy; ~l?Þ; (B13)

~PLþCL
High ¼

�
� @ð�VL þ �2VCLÞ

@M2

�
¼ �g2

Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

~c y
LþCLðx; ~k?Þ

�
@VL

@M2

	
~c LþCLðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

~c y
LþCLðx; ~k?Þ

�
@VCL

@M2

	
~c LþCLðy; ~l?Þ; (B14)

~PLþCLþSB
High ¼

�
�@ð�VL þ �2VCL þ �2VSBÞ

@M2

�

¼ �g2
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

~c y
LþCLþSBðx; ~k?Þ

�
@VL

@M2

	
~c LþCLþSBðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

~c y
LþCLþSBðx; ~k?Þ

�
@VCL

@M2

	
~c LþCLþSBðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

~c y
LþCLþSBðx; ~k?Þð

@VSB

@M2
Þ ~c LþCLþSBðy; ~l?Þ; (B15)
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~PLþCLþSBþHF
High ¼

�
�@ð�VL þ �2VCL þ �2VSB þ �2VHFÞ

@M2

�

¼ �g2
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

~c y
LþCLþSBþHFðx; ~k?Þ

�
@VL

@M2

	
~c LþCLþSBþHFðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

~c y
LþCLþSBþHFðx; ~k?Þ

�
@VCL

@M2

	
~c LþCLþSBþHFðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

~c y
LþCLþSBþHFðx; ~k?Þ

�
@VSB

@M2

	
~c LþCLþSBþHFðy; ~l?Þ

� g4
Z dx

xð1� xÞ
d2 ~k?
16�3

Z dy

yð1� yÞ
d2 ~l?
16�3

Z
dz

d2 ~j?
16�3

~c y
LþCLþSBþHFðx; ~k?Þ

�
@VHF

@M2

	
~c LþCLþSBþHFðy; ~l?Þ:

(B16)
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