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We calculate inclusive hadrons production in pA collisions in the small-x saturation formalism at one-

loop order. The differential cross section is written into a factorization form in the coordinate space at the

next-to-leading order, while the naive form of the convolution in the transverse momentum space does not

hold. The rapidity divergence with small-x dipole gluon distribution of the nucleus is factorized into the

energy evolution of the dipole gluon distribution function, which is known as the Balitsky-Kovchegov

equation. Furthermore, the collinear divergences associated with the incoming parton distribution of the

nucleon and the outgoing fragmentation function of the final state hadron are factorized into the splittings

of the associated parton distribution and fragmentation functions, which allows us to reproduce the well-

known Dokshitzer-Gribov-Lipatov-Altarelli-Parisi equation. The hard coefficient function, which is finite

and free of divergence of any kind, is evaluated at one-loop order.
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I. INTRODUCTION

Inclusive hadron production in pA collisions has at-
tracted much theoretical interest in recent years [1–13].
In particular, the suppression of hadron production in the
forward dAu scattering at RHIC observed in the experi-
ments [14,15] has been regarded as one of the evidences for
the gluon saturation at small x in a large nucleus [7,8,16].
Saturation phenomenon at small x in nucleon and nucleus
plays an important role in high-energy hadronic scattering
[17–20]. In this paper, as an important step toward a
complete description of hadron production in pA collisions
in the saturation formalism, we calculate the one-loop
perturbative corrections. Previous attempts have been
made in the literature. In particular, in Ref. [5], part of
one-loop diagrams were evaluated. However, the rapidity
divergence is not identified and the collinear evolution
effects are not complete. Recently, some of the higher
order corrections were discussed in Ref. [9], where it was
referred as ‘‘inelastic’’ contribution. In the following, we
will calculate the complete next-to-leading-order (NLO)
corrections to this process in the saturation formalism.
A brief summary of our results has been published earlier
in Ref. [21].

Inclusive hadron production in pA collisions,

pþ A ! hþ X; (1)

can be viewed as a process where a parton from the nucleon
(with momentum p) scatters on the nucleus target (with
momentum PA), and fragments into a final state hadron
with momentum Ph. In the dense medium of the large
nucleus and at small x, the multiple interactions become
important, and we need to perform the relevant resumma-
tion to make the reliable predictions. This is particularly
important because the final state parton is a colored object.
Its interactions with the nucleus target before it fragments

into the hadron is crucial to understand the nuclear effects
in this process. In our calculations, we follow the high-
energy factorization, also called color-dipole or color-
glass-condensate, formalism [20,22,23] to evaluate the
above process up to one-loop order. We notice that alter-
native approaches have been proposed in the literature
[10–13] to calculate the nuclear effects in this process.
According to our calculations, the QCD factorization

formalism for the above process reads as

d3�pþA!hþX

dyd2p?
¼X

a

Z dz

z2
dx

x
�xfaðx;�ÞDh=cðz;�Þ

�
Z
½dx?�SYa;cð½x?�ÞH a!cð�s;�;½x?��Þ;

(2)

where � ¼ �=xzwith � ¼ p?ey=
ffiffiffi
s

p
, y and p? the rapidity

and transverse momentum for the final state hadron and
s the total center of mass energy square s ¼ ðpþ PAÞ2,
respectively. Schematically, this factorization is illustrated
in Fig. 1, where the incoming parton described by
the parton distribution faðxÞ scatters off the nuclear
target represented by multiple-point correlation function
SYð½x?�Þ, and fragments into the final state hadron defined
by the fragmentation function Dh=cðzÞ. All these quantities
have clear operator definitions in QCD. In particular, faðxÞ
and Dh=cðzÞ are collinear parton distribution and fragmen-

tation functions, which only depend on the longitudinal
momentum fraction x of the nucleon carried by the parton
a, and the momentum fraction z of parton c carried by the
final state hadron h, respectively. From the nucleus side, it
is the multi-point correlation functions denoted as SYa;cðx?Þ
(see the definitions below) that enters in the factorization
formula, depending on the flavor of the incoming and
outgoing partons and the gluon rapidity Y associated with
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the nucleus: Y � lnð1=xgÞ with xg being longitudinal

momentum fraction.
At the leading order, SY represent the two-point func-

tions, including the dipole gluon distribution functions
in the elementary and adjoint representations for the
quark- and gluon-initiated subprocesses [20], respectively.
Higher-order corrections will have terms that depend on
the correlation functions beyond the simple two-point
functions. Because of this reason, the integral ½dx?� rep-
resents all possible integrals at the particular order.

To evaluate NLO corrections, we will calculate the
gluon radiation contributions. At one-loop order, the gluon
radiation will introduce various divergences. The factori-
zation formula in Eq. (2) is to factorize these divergences
into the relevant factors. For example, there will be col-
linear divergences associated with the incoming parton
distribution and final state fragmentation functions. In
addition, there is the rapidity divergence associated with
SYð½x?�Þ. These divergences naturally show up in higher-
order calculations. The idea of the factorization is to dem-
onstrate that these divergences can be absorbed into the
various factors in the factorization formula. After subtract-
ing these divergences, we will obtain the hard factors
H a!c, which describes the partonic scattering amplitude
of parton a into a parton c in the dense medium. This hard
factor includes all order perturbative corrections, and can
be calculated order by order. Although there is no simple
k?-factorization form beyond leading-order formalism, we
will find that in the coordinate space, the cross section can
be written into a nice factorization form as Eq. (2). Besides
the explicit dependence on the variables shown in Eq. (2),

there are implicit dependences on p?½x?� in the hard
coefficients as well.
Two important variables are introduced to separate differ-

ent factorizations for the physics involved in this process:
the collinear factorization scale � and the energy evolution
rapidity dependence Y. The physics associated with �
follows the normal collinear QCD factorization, whereas
the rapidity factorization Y takes into account the small-x
factorization. The evolution with respect to � is controlled
by the usual Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution, whereas that for SYa by the Balitsky-
Kovchegov (BK) evolution [23,24]. In general, the energy
evolution of any correlation functions can be given by
the Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov,
Kovner equation [25], and the resulting equation is equiva-
lent to the BK equation for dipole amplitudes. In particular,
our one-loop calculations will demonstrate the important
contribution from this rapidity divergence. Schematically,
this factorization is shown in Fig. 1.
Our calculations, together with NLO DGLAP/BK evo-

lution equations, provide the complete formula for inclu-
sive hadron production at NLO. In terms of resummation,
we will be able to resum �sð�s lnk

2
?Þn and �sð�s ln1=xÞn

terms. The extra factor of �s can either come from the hard
factor, which is calculated in this manuscript, or arise from
the NLO DGLAP and BK evolution equations. These
calculations should be compared to the similar calculations
at next-to-leading order for the deep inelastic scattering
structure functions in the saturation formalism [26–28]. All
these calculations are important steps to demonstrate the
factorization for general hard processes in the small-x
saturation formalism [29]. The rest of the paper is organ-
ized as follows. In Sec. II, we discuss the leading-order
results for inclusive hadron production in pA collision,
where we also set up the framework for the NLO calcu-
lations. Section III. is divided into four subsections, in
which we calculate the NLO cross section for the q ! q,
g ! g, q ! g and g ! q channels. The summary and
further discussions are given in Sec. IV.

II. THE LEADING-ORDER SINGLE INCLUSIVE
CROSS SECTION

The leading-order result was first formulated in Ref. [1].
For the purpose of completeness, we briefly derive the
leading-order cross section to set up the baseline for the
NLO calculation. Let us begin with the quark channel in pA
collisions. As illustrated in Fig. 2, the multiple scattering
between the quark from the proton and the dense gluons
inside the nucleus target can be cast into the Wilson line

Uðx?Þ ¼ P exp

�
igS

Z þ1

�1
dxþTcA�

c ðxþ; x?Þ
�
; (3)

with A�
c ðxþ; x?Þ being the gluon field solution of the clas-

sical Yang-Mills equation inside the large nucleus target.

FIG. 1 (color online). Schematic plot of the factorization,
where H indicates the hard factor, R represents the rapidity
divergence, which is factorized into the dipole gluon distribution
of the target nucleus (A), Cp and Cf stand for the collinear

divergences, which are absorbed into the parton distribution
functions of the projectile proton (P) and hadron (Ph) fragmen-
tation functions, respectively. After subtracting these divergen-
ces, we shall obtain the hard factor H .
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Therefore, the leading-order cross section for producing
a quark with finite transverse momentum k? at rapidity y in
the channel qA ! qX can be written as

d�pA!qX
LO

d2k?dy
¼X

f

xqfðxÞ
Z d2x?d2y?

ð2�Þ2 e�ik?�ðx?�y?Þ

� 1

Nc

hTrUðx?ÞUyðy?ÞiY; (4)

with x ¼ k?ffiffi
s

p ey and xg ¼ k?ffiffi
s

p e�y. The notation h. . .iY indi-

cates the color-glass-condensate average of the color
charges over the nuclear wave function, where Y ’
ln1=xg and xg is the smallest longitudinal momentum

fraction of the probed gluons, and is determined by the
kinematics.1 Normally, we first compute the correlator
hTrUðx?ÞUyðy?Þi in the McLerran-Venugopalan (MV)
model [19] as the initial condition, and then we perform
the energy evolution for the correlator, which introduces
the rapidity (Y) dependence. The energy evolution equa-
tion at small x for dense nucleus targets is the BK equation,
as we shall demonstrate later when we remove the rapidity
divergence. When multiplied by the fragmentation func-
tion, the above result will lead to the differential cross
section for hadron production in pA collisions.

It is straightforward to include the gluon-initiated chan-
nel, and the full leading-order hadron production cross
section can be written as

d�pA!hX
LO

d2p?dyh
¼
Z 1

�

dz

z2

�X
f

xpqfðxpÞF ðk?ÞDh=qðzÞ

þ xpgðxpÞ ~F ðk?ÞDh=gðzÞ
�
; (5)

with p? ¼ zk?, xp ¼ p?
z
ffiffi
s

p eyh , � ¼ zxp and xg ¼ p?
z
ffiffi
s

p e�yh .

Here we have defined

F ðk?Þ ¼
Z d2x?d2y?

ð2�Þ2 e�ik?�ðx?�y?ÞSð2ÞY ðx?; y?Þ; (6)

with Sð2ÞY ðx?; y?Þ ¼ 1
Nc
hTrUðx?ÞUyðy?ÞiY . ~F ðk?Þ is de-

fined similarly but in the adjoint representation

~F ðk?Þ ¼
Z d2x?d2y?

ð2�Þ2 e�ik?�ðx?�y?Þ ~Sð2ÞY ðx?; y?Þ; (7)

where ~Sð2ÞY ðx?; y?Þ ¼ 1
N2
c�1

hTrWðx?ÞWyðy?ÞiY and WðxÞ
is a Wilson line in the adjoint representation. It represents
the multiple interaction between the final state gluon and
the nucleus target. In general, the adjoint Wilson lines can
be replaced by two fundamental Wilson lines by using the
identity

Wabðx?Þ ¼ 2Tr½TaUðx?ÞTbUyðx?Þ�; (8)

and the color matrices can be removed using the Fierz
identity Ta

ijT
a
kl ¼ 1

2�il�jk � 1
2Nc

�ij�kl. It is straightforward

to show that

~Sð2ÞY ðx?;y?Þ
¼ 1

N2
c�1

½hTrUðx?ÞUyðy?ÞTrUðy?ÞUyðx?ÞiY�1�; (9)

which, in the large Nc limit, allows us to write

~F ðk?Þ

¼
Z d2x?d2y?

ð2�Þ2 e�ik?�ðx?�y?ÞSð2ÞY ðx?;y?ÞSð2ÞY ðy?;x?Þ:
(10)

It is very important to keep in mind that the normaliza-

tion of the dipole amplitudes Sð2Þðx?; y?Þ is unity when
x? ¼ y?. In addition, since normally hTrUðx?ÞUyðy?ÞiY
is real, it is easy to see that Sð2Þðx?; y?Þ ¼ Sð2Þðy?; x?Þ. If
we further neglect the impact parameter dependence, one

will find that Sð2Þðx?; y?Þ ¼ exp½� Q2
s ðx?�y?Þ2

4 � in the MV

model, where Qs is the saturation momentum, which char-
acterizes the density of the target nucleus. The analytical
form of the dipole amplitude can help us to test the prop-
erties of dipole amplitudes mentioned above.
We would like to emphasize that in Eq. (5) we do not

include the transverse momentum dependence in the in-
coming parton distribution from the nucleon. In the for-
ward pA collisions, the transverse momentum dependence
from the incoming parton distribution of the nucleon is not
as important as that from the nucleus target. Therefore, in
the current calculations, we neglect this effect. As a con-
sistent check, the one-loop calculations in the following
support this assumption. In particular, the collinear diver-
gence associated with the incoming parton distribution
contains no transverse momentum dependence.

FIG. 2 (color online). Typical Feynman diagrams for the
leading-order quark production qA ! qþ X.

1Here we are only interested in the inelastic production of the
quark in the forward scattering, which produces quark with finite
transverse momentum. There is also elastic scattering contribu-
tion to the cross section, which generates vanishing k?, such asP

fxqfðxÞ�ð2Þðk?Þ
R
d2b to the total cross section.
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III. THE NEXT-TO-LEADING-ORDER
CROSS SECTION

In this section, we will present the detailed calculations
for the NLO corrections to the leading-order result in
Eq. (5). There are four partonic channels: q ! qg, g !
gg, q ! gq, g ! q �q. We will carry out the calculations for
these channels separately.

A. The quark channel q ! q

The quark production contribution contains the real and
virtual gluon radiation at the NLO. For the real contribu-
tion, we will calculate q ! qg first. The real diagrams with
a quark (with transverse coordinate b?) and gluon (with
transverse coordinate x?) in the final state, as shown in
Fig. 3, have been studied in Refs. [30–32]. We take
Eq. (78) of Ref. [32] as our starting point, which gives2

d�qA!qgX

d3k1d
3k2

¼ �SCF�ðpþ � kþ1 � kþ2 Þ
Z d2x?

ð2�Þ2
d2x0?
ð2�Þ2

d2b?
ð2�Þ2

d2b0?
ð2�Þ2 e

�ik1?�ðx?�x0?Þe�ik2?�ðb?�b0?Þ

� X
��	

c ��
�	ðu0?Þc �

�	ðu?Þ½Sð6ÞY ðb?; x?; b0?; x0?Þ þ Sð2ÞY ðv?; v0
?Þ � Sð3ÞY ðb?; x?; v0

?Þ � Sð3ÞY ðv?; x0?; b
0
?Þ�: (11)

where u? ¼ x? � b?, u0? ¼ x0? � b0?, v? ¼ ð1� �Þx? þ �b?, v0
? ¼ ð1� �Þx0? þ �b0? and

Sð6ÞY ðb?; x?; b0?; x0?Þ ¼
1

CFNc

hTrðUðb?ÞUyðb0?ÞTdTcÞ½Wðx?ÞWyðx0?Þ�cdiY; (12)

Sð3ÞY ðb?; x?; v0
?Þ ¼

1

CFNc

hTrðUðb?ÞTdUyðv0
?ÞTcÞWcdðx?ÞiY: (13)

For a right-moving massless quark, with initial longitudinal momentum pþ and no transverse momentum, the splitting
wave function in transverse coordinate space is given by [32]

c �
�	ðpþ; kþ1 ; r?Þ ¼ 2�i

ffiffiffiffiffiffi
2

kþ1

s 8>><
>>:

r?�
ð1Þ?
r2?

ð����	� þ ���þ�	þÞ; � ¼ 1;

r?�
ð2Þ?
r2?

ð��þ�	þ þ �����	�Þ; � ¼ 2:

; (14)

where � is the gluon polarization, �, 	 are helicities for
the incoming and outgoing quarks, and 1� � ¼ kþ

1

pþ is the
momentum fraction of the incoming quark carried by
the gluon. The above wave function is calculated in the
light-cone gauge in the infinite momentum frame (pþ ¼
1ffiffi
2

p ðp0 þ p3Þ ! 1). The Wilson lines, which represent the
multiple interactions, are constructed accordingly. Since
the Wilson lines in the fundamental representation and the
adjoint representation resum the multiple interactions of
quarks and gluons with the nucleus target, respectively, one
can easily see that these four terms in the last two lines of
the Eq. (11) correspond to those four graphs in Fig. 3. The
Sð6ÞY term, which corresponds to Fig. 3(a) and resums all the
multiple interactions between the quark-gluon pair and
the nucleus target, represents the case where interactions
take place after the splitting both in the amplitude and in
the conjugate amplitude. The Sð2ÞY term, which comes from
Fig. 3(b) resums the interactions before the splitting only
and the Sð3ÞY terms represent the interference terms as shown
in Figs. 3(c) and 3(d)

There are two contributions for inclusive hadron
production at the next-to-leading order, namely, quark

productions associated with Dh=q, which is indicated by

the cross in Fig. 3 (while the gluon is integrated) and gluon
productions associated with the fragmentation function
Dh=g (while the quark is integrated).

FIG. 3. The real diagrams for the next-to-leading-order quark
production qA ! qþ X.

2For convention reasons, we have interchanged the definition
of z and 1� z and replaced the variable z by �.
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Let us study the former case by integrating over the phase space of the final state gluon ðkþ1 ; k1?Þ. We can cast the real
contribution into

�s

2�2

Z dz

z2
Dh=qðzÞ

Z 1

�=z
d�

1þ �2

1� �
xqðxÞ

�
CF

Z
d2kg?Iðk?; kg?Þ þ Nc

2

Z
d2kg?d2kg1?J ðk?; kg?; kg1?Þ

�
; (15)

where x ¼ �=z� and CF ¼ ðN2
c � 1Þ=2Nc, and I and J are defined as

Iðk?;kg?Þ¼F ðkg?Þ
�

k?�kg?
ðk?�kg?Þ2

� k?��kg?
ðk?��kg?Þ2

�
2
;

J ðk?;kg?;kg1?Þ¼½F ðkg?Þ�ð2Þðkg1?�kg?Þ�Gðkg?;kg1?Þ�
2ðk?��kg?Þ� ðk?�kg1?Þ
ðk?��kg?Þ2ðk?�kg1?Þ2

; with

Gðk?; l?Þ¼
Z d2x?d2y?d2b?

ð2�Þ4 e�ik?�ðx?�b?Þ�il?�ðb?�y?ÞSð4ÞY ðx?;b?;y?Þ; (16)

and Sð4ÞY ðx?; b?; y?Þ ¼ 1
N2

c
hTr½Uðx?ÞUyðb?Þ�Tr½Uðb?ÞUyðy?Þ�iY . Several steps are necessary in deriving the above result

from Eq. (11). By integrating over the gluon momentum, we identify x? to x0?, which simplifies Sð6ÞY to Sð2Þðb?; b0?Þ. This is
expected, since we know the multiple interactions between the gluon and the nucleus target should cancel if the gluon is not
observed. Furthermore, using the Fierz identity, one can write

Sð3ÞY ðb?; x?; v0
?Þ ¼

Nc

2CF

½Sð4ÞY ðb?; x?; v0
?Þ �

1

N2
c

Sð2ÞY ðb?; v0
?Þ�; (17)

which only involves the Wilson lines in the fundamental
representation. Then, the final steps, which include the
Fourier transforms, as well as the convolutions of the
quark distribution and fragmentation function, are quite
straightforward.

Before we proceed to the calculations of the virtual
diagrams, we comment on the result shown in Eq. (15).
The major obstacles to evaluating the integrals in Eq. (15)
are the divergences. There are three types of singularities
lying in that equation, namely, the rapidity divergence,
which occurs at � ¼ 1 when the rapidity of the radiated
gluon becomes �1, and the collinear singularities, which
correspond to the cases where the final state gluon is either
collinear to the initial quark or final state quark. We shall
expect that the virtual diagrams cancel some part of the
divergences, while the uncancelled divergences shall be
absorbed into the renormalization of the quark distribution
and fragmentation functions as well as the target dipole

gluon distribution (Sð2ÞY ðx?; y?Þ). After these subtractions,
the remainder of the contributions should be finite and give
us the NLO correction to the single inclusive hadron
production cross section.

The evaluation of the virtual graphs as shown in Fig. 4
are quite simple in the dipole picture. Their contributions
are proportional to

� 2�sCF

Z d2v?
ð2�Þ2

d2v0
?

ð2�Þ2
d2u?
ð2�Þ2 e

�ik?�ðv?�v0
?Þ

� X
��	

c ��
�	ðu?Þc �

�	ðu?Þ

� ½Sð2ÞY ðv?; v0
?Þ � Sð3ÞY ðb?; x?; v0

?Þ�; (18)

where the factor of 2 takes care of the fact that the mirror
diagrams of Fig. 4 give the identical contributions when the
virtual loop is on the right side of the cut. It is straightfor-
ward to see that these two terms in the last line of Eq. (18)
correspond to the Figs. 4(a) and 4(b) respectively. This
eventually leads to

� �s

2�2

Z dz

z2
Dh=qðzÞxpqðxpÞ

Z 1

0
d�

1þ �2

1� �

�
�
CF

Z
d2q?Iðq?; k?Þ

þ Nc

2

Z
d2q?d2kg1?J ðq?; k?; kg1?Þ

�
; (19)

where explicitly one writes

Iðq?;k?Þ¼F ðk?Þ
�

q?�k?
ðq?�k?Þ2

� q?��k?
ðq?��k?Þ2

�
2
;

J ðq?;k?;kg1?Þ¼½F ðk?Þ�ð2Þðkg1?�k?Þ�Gðk?;kg1?Þ�

�2ðq?��k?Þ� ðq?�kg1?Þ
ðq?��k?Þ2ðq?�kg1?Þ2

: (20)

It is easy to see that the virtual contributions indeed contain
three types of singularities as we mentioned before. There
are two important features that we wish to emphasize here.
First, the rapidity divergence term is only proportional to
Nc=2 since I vanishes at � ! 1 limit. This agrees with the
BK equation since there is no 1=N2

c corrections to the
leading-order BK equation. Second, when one integrates
over the quark transverse momentum k?, the rapidity
divergence disappears due to the complete cancellation
between the real and virtual contributions.
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1. The rapidity divergence

Now we are ready to evaluate NLO contributions by the
following procedures. First, we remove the rapidity diver-
gence terms from the real and virtual contributions by
doing the following subtractions

F ðk?Þ ¼ F ð0Þðk?Þ � �sNc

2�2

Z 1

0

d�

1� �

�
Z d2x?d2y?d2b?

ð2�Þ2 e�ik?�ðx?�y?Þ

� ðx? � y?Þ2
ðx? � b?Þ2ðy? � b?Þ2

� ½Sð2ÞY ðx?; y?Þ � Sð4ÞY ðx?; b?; y?Þ�; (21)

where F ð0Þðk?Þ is the bare dipole gluon distribution that
appears in the leading-order cross section as in Eq. (5) and
it is divergent. F ðk?Þ is the renormalized dipole gluon
distribution and it is assumed to be finite. We can always
decompose the dipole splitting kernel as

ðx? � y?Þ2
ðx? � b?Þ2ðy? � b?Þ2

¼ 1

ðx? � b?Þ2
þ 1

ðy? � b?Þ2

� 2ðx? � b?Þ � ðy? � b?Þ
ðx? � b?Þ2ðy? � b?Þ2

;

(22)

where the first two terms are removed from the virtual
contribution, while the last term is removed from the real
diagrams. This procedure is similar to that for the collinear
factorization, where we modify the bare leading-order
parton distributions to the finite parton distribution with
the higher-order radiation. Using Eqs. (6) and (21), we can
see that the differential change of the dipole amplitude

Sð2ÞY ðx?; y?Þ yields the BK equation

@

@Y
Sð2ÞY ðx?; y?Þ ¼ ��sNc

2�2

Z d2b?ðx? � y?Þ2
ðx? � b?Þ2ðy? � b?Þ2

�½Sð2ÞY ðx?; y?Þ � Sð4ÞY ðx?; b?; y?Þ�:
(23)

It is important to note that if we conduct the leading-order
classical calculation, we will not get any energy depen-
dence, namely the Y dependence, in the scattering ampli-
tudes. It is the BK evolution equation as shown above,
which gives the energy dependence to those scattering
amplitudes. To derive the BK equation from Eqs. (6)
and (21), one needs to reset the upper limit of the d�
integral in Eq. (21) to 1� e�Y , with Y being the total
rapidity gap between the projectile proton and the target
nucleus. Here Y ! 1 as the center of mass energy
s ! 1. By doing so, we introduce the rapidity Y de-
pendence, namely the energy dependence, of the two-

point function Sð2ÞY ðx?; y?Þ, from which the BK equation
can be understood and therefore derived. Another way
to derive this equation is to slightly move away from
the light cone as in the derivation of the Balitsky
equation [23]. The rapidity divergence is an artifact
that we put both the projectile and targets on the light
cone in the high-energy limit. By slightly tilting away
from the light cone, we can modify the � integral and

obtain
R
1
0

d�
1��þe�Y . In addition, when one integrates over

the transverse momentum k? as in Eq. (21), one finds
that the rapidity divergence disappears as expected [33].
The physical interpretation of the rapidity divergence

subtraction is quite interesting. The soft gluon is emitted
from the projectile proton with momentum ð1� �Þpþ, and
it is easy to see that the rapidity of this soft gluon goes to
�1 when � ! 1 since the radiated gluon is now in the
region k�g � kþg . As a matter of fact, this soft gluon can be

regarded as collinear to the target nucleus, which is moving
on the backward light cone with the rapidity close to �1
and P�

A � Pþ
A . Therefore, it is quite natural to renormalize

this soft gluon into the gluon distribution function of the
target nucleus through the BK evolution equation.
After the subtraction of the rapidity divergence, both the

real and the virtual contributions become regulated in
terms of the d� integral, which leads to the change of the

splitting function into 1þ�2

ð1��Þþ . Here we introduce the fol-

lowing property of the plus function

Z 1

a
d�ðfð�ÞÞþgð�Þ

¼
Z 1

a
d�fð�Þ½gð�Þ�gð1Þ��gð1Þ

Z a

0
d�fð�Þ; (24)

where gð�Þ can be any nonsingular functions, while fð�Þ is
singular at � ¼ 1 and ðfð�ÞÞþ is regulated.

2. The collinear divergence

The second step is to use the dimensional regularization

(D ¼ 4� 2
) and follow the MS subtraction scheme, in
order to compute and remove the collinear divergence from
both real and virtual contributions. For convenience, we
introduce the following integrals:

FIG. 4. Typical virtual diagrams for the next-to-leading-order
quark production qA ! qþ X. The graph similar to (a) where
the virtual loop comes after the interaction with the target, and
all the mirror graphs are not shown here, but included in the
final result.
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I1ðk?Þ¼
Z d2kg?

ð2�Þ2 F ðkg?Þ 1

ðk?�kg?Þ2
;

I2ðk?Þ¼
Z d2kg?

ð2�Þ2 F ðkg?Þ
ðk?�kg?Þ� ðk?��kg?Þ
ðk?�kg?Þ2ðk?��kg?Þ2

;

I3ðk?Þ¼
Z d2kg?d2kg1?

ð2�Þ2 Gðkg?;kg1?Þ

� ðk?�kg1?Þ� ðk?��kg?Þ
ðk?�kg1?Þ2ðk?��kg?Þ2

: (25)

Clearly, there is no divergence in I3. Let us take the
evaluation of I1ðk?Þ as an example. As standard procedure
in the dimensional regularization (D ¼ 4� 2
) and the

MS subtraction scheme, we change the integral
R d2kg?

ð2�Þ2
into �2


R d2�2
kg?
ð2�Þ2�2
 where� is the scale dependence coming

from the strong coupling g. Using Eq. (6) and the identity

Z
d2�2
q?e�iq?�r? �

2


q2?
¼ �

�
�2r2?
4�

�


�ð�
Þ; (26)

together with the convention 1

̂ ¼ 1


 � �E þ ln4�, we

can find

I1ðk?Þ ¼ 1

4�

Z d2x?d2y?
ð2�Þ2 e�ik?�r?Sð2ÞY ðx?; y?Þ

�
�
� 1


̂
þ ln

c20
�2r2?

�
; (27)

where c0 ¼ 2e��E , �E is the Euler constant and
r? ¼ x? � y?.

To evaluate I2ðk?Þ, we first rewrite it as

I2ðk?Þ ¼ � 1

4�
F ðk?Þ lnð1� �Þ2 þ I21ðk?Þ; (28)

where I21 is finite and defined as

I21ðk?Þ ¼
Z d2kg?

ð2�Þ2
�
F ðkg?Þ

ðk? � kg?Þ � ðk? � �kg?Þ
ðk? � kg?Þ2ðk? � �kg?Þ2

�F ðk?Þ
ðk? � kg?Þ � ð�k? � kg?Þ
ðk? � kg?Þ2ð�k? � kg?Þ2

�F ðk?Þ
kg? � ðk? � kg?Þ
k2g?ðk? � kg?Þ2

�
: (29)

The basic idea is to subtract a term that is proportional
to lnð1� �Þ2 from I2. It is quite straightforward to
show that the last two terms in the above equation give
F ðk?Þ lnð1� �Þ2 by using the integral identity

Z d2kg?
ð2�Þ2

�ðk? � kg?Þ � ð�k?� kg?Þ
ðk?� kg?Þ2ð�k? � kg?Þ2

� kg? � ðkg?� k?Þ
k2g?ðkg?� k?Þ2

�

¼ 1

4�
ln

1

ð1��Þ2 : (30)

To compute and remove the collinear divergence in the
virtual diagrams, one needs to use the following integral

�2

Z d2�2
l?

ð2�Þ2�2


�2

ðl? � �Þ2l2?
¼ 1

2�

�
� 1


̂
þ ln

�2

�2

�
; (31)

where the usual Feynman integral trick is used in the
derivation. Therefore, setting the quark distribution, the
fragmentation function, and the splitting function aside,
the virtual contribution can be cast into

Ivðk?Þ ¼ �F ðk?Þ
2�

��
� 1


̂
þ ln

k2?
�2

�
CF

þ
�
CF � Nc

2

�
lnð1� �Þ2

�
� Nc

2
I3vðk?Þ; (32)

where I3vðk?Þ is finite and defined as

I3vðk?Þ ¼ 2
Z d2q?d2kg1?

ð2�Þ2 Gðk?; kg1?Þ
�
q? � ðq? � k?Þ
q2?ðq? � k?Þ2

� ðq? � �k?Þ � ðq? � kg1?Þ
ðq? � �k?Þ2ðq? � kg1?Þ2

�

¼
Z d2kg1?

2�
Gðk?; kg1?Þ ln

ðkg1? � �k?Þ2
k2?

: (33)

To derive the above expressions, Eq. (30) is used repeat-
edly. It is also useful to notice that

Z
d2k1?e�ik1?� �r? ln

ðk1? � �0k?Þ2
k2?

¼ 4�

�
�ð�r?Þ

Z d2r0?
r02?

eik?�r
0
? � 1

�r2?
e�i�0k?��r?

�
; (34)

which can lead us to the final factorized formula.
By combining the collinear singularities from both real

and virtual diagrams, we find the coefficient of the col-
linear singularities becomes P qqð�Þ, which is defined as

P qqð�Þ ¼
�
1þ �2

1� �

�
þ
¼ 1þ �2

ð1� �Þþ þ 3

2
�ð1� �Þ: (35)

Now we are ready to remove the collinear singularities by
redefining the quark distribution and the quark fragmenta-
tion function as follows:

qðx; �Þ ¼ qð0ÞðxÞ � 1


̂

�sð�Þ
2�

Z 1

x

d�

�
CFP qqð�Þq

�
x

�

�
;

(36)

Dh=qðz;�Þ¼Dð0Þ
h=qðzÞ�

1


̂

�sð�Þ
2�

Z 1

z

d�

�
CFP qqð�ÞDh=q

�
z

�

�
;

(37)

which is in agreement with the well-known DGLAP equa-
tion for the quark channel. We will be able to recover the
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full DGLAP equation once we finish the calculation on all
channels. Using Eq. (5) and combining it with the NLO
real and virtual contributions, it is almost trivial to show
Eq. (36). It is a little bit less trivial to derive Eq. (37). By
combining the relevant terms in the real and virtual con-
tributions, we obtain a term that reads

�1


̂

�sð�Þ
2�

Z 1

�

dz

z2
Dh=qðzÞ

Z 1

�=z
d�CFP qqð�ÞxqðxÞ 1

�2
F
�
k?
�

�
:

(38)

By changing variable z0 ¼ z�, we can rewrite the above
term as

�1


̂

�sð�Þ
2�

Z 1

�

dz0

z02
xqðxÞF

�
p?
z0

�Z 1

z0

d�

�
CFP qqð�ÞDh=q

�
z0

�

�
;

(39)

which allows us to arrive at Eq. (37) easily by combining
this term with Eq. (5).

One might worry about the term that is proportional to
1
2�F ðk?ÞðCF � Nc

2 Þ lnð1� �Þ2 since it is logarithmically

divergent when � ! 1. Let us show that this singularity
will also cancel between the real and virtual contributions
as follows

�Z 1

�=z
d�

1þ �2

ð1� �Þþ xqðxÞ lnð1� �Þ2 � xpqðxpÞ

�
Z 1

0
d�

1þ �2

ð1� �Þþ lnð1� �Þ2
�

¼
Z 1

�=z
d�

�ð1þ �2Þ lnð1� �Þ2
1� �

�
þ
xqðxÞ; (40)

where the first term on the left-hand side of the above
equation comes from the real diagrams, while the second
term comes from the virtual graphs. Here we have used
Eq. (24) again.

3. Finite contributions

Now we have removed all the collinear singularities by
renormalizing the quark distribution and the quark frag-
mentation function. The rest of the contribution should be
finite. The last procedure is to assemble all the finite terms
into a factorized formula. For the quark channel contribu-
tion: qA ! hþ X, we find that the factorization formula
can be explicitly written as

d3�pþA!hþX

dyd2p?

¼
Z dz

z2
dx

x
�xqðx;�ÞDh=qðz;�Þ

Z d2x?d2y?
ð2�Þ2

� fSð2ÞY ðx?; y?Þ
�
H ð0Þ

2qq þ� �s

2�
H ð1Þ

2qq

�

þ
Z d2b?

ð2�Þ2 S
ð4Þ
Y ðx?; b?; y?Þ �s

2�
H ð1Þ

4qqg; (41)

up to one-loop order. The leading-order results have been
calculated as shown in Eq. (5), from which we have

H ð0Þ
2qq ¼ e�ik?�r?�ð1� �Þ; (42)

where k? ¼ p?=z and r? ¼ x? � y?. Our objective here
is to compute the hard coefficients H ð1Þ

2qq and H ð1Þ
4qq. It is

just straightforward to show that H ð1Þ
2qq reads as follows:

H ð1Þ
2qq ¼ CFP qqð�Þ ln c20

r2?�
2

�
e�ik?�r? þ 1

�2
e�i

k?
� �r?

�

� 3CF�ð1� �Þe�ik?�r? ln
c20

r2?k
2
?

� ð2CF � NcÞe�ik?�r?
�

1þ �2

ð1� �Þþ
~I21

�
�ð1þ �2Þ lnð1� �Þ2

1� �

�
þ

�
; (43)

where the terms in the first line come from the finite
logarithmic terms in I1ðk?Þ and Ivðk?Þ, and ~I21 is calcu-
lated from I21ðk?Þ, which yields

~I21 ¼
Z d2b?

�

�
e�ið1��Þk?�b?

�
b? � ð�b? � r?Þ
b2?ð�b? � r?Þ2

� 1

b2?

�

þ e�ik?�b? 1

b2?

�
: (44)

It is clear that the last term comes from the lnð1� �Þ2
terms as we have shown in Eq. (40). It is also important to
note that the second line in Eq. (43) (the I2ðk?Þ type term)
drops out if we take large Nc limit. The large Nc will
greatly simplify our calculation in many aspects, as we
will show in the following sections. Furthermore, by
choosing � ¼ c0=r? for the factorization scale, we can
further simplify the above expressions. In the end, only the
last term in the first line of the Eq. (43) survives. Since r?
is of the order 1=Qs in the saturation regime, one can easily
see that the factorization scale � ’ Qs in terms of the
above choice.

The second hard coefficient H ð1Þ
4qq is related to the non-

linear terms such as I3ðk?Þ and I3vðk?Þ, which give
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H ð1Þ
4qq ¼ �4�Nce

�ik?�r?
�
e�i1��

� k?�ðx?�b?Þ 1þ �2

ð1� �Þþ
1

�

� x? � b?
ðx? � b?Þ2

� y? � b?
ðy? � b?Þ2

� �ð1� �Þ
Z 1

0
d�0 1þ �02

ð1� �0Þþ
�
e�ið1��0Þk?�ðy?�b?Þ

ðb? � y?Þ2

� �ð2Þðb? � y?Þ
Z

d2r0?
eik?�r

0
?

r02?

��
; (45)

where the first and second term in the curly brackets are
calculated from I3ðk?Þ and I3vðk?Þ, respectively.

To summarize the above results, we have demon-
strated the QCD factorization for inclusive hadron
production in the quark channel of pA collisions in
the saturation formalism, and we have computed the
NLO cross section in this processes. Clearly, the naive
form of the k? factorization formula, which involves
the convolution of unintegrated gluon distributions in
the transverse momentum space, does not hold. Other
channels can be calculated accordingly following the
same procedure.

4. The McLerran-Venugopalan model

In this subsection, we calculate the hard coefficients in
the well-known MV model [19,34,35]. In terms of the
phenomenological application with additional parametri-

zation of the saturation momentum, it is also known as
Golec-Biernat-Wüsthoff (GBW) model [36]. In the MV
and GBW model, if we neglect the impact parameter
dependence for the sake of simplicity, the dipole scattering
amplitude is parametrized as

Sð2ÞMVðx?; y?Þ ¼ exp

�
�ðx? � y?Þ2Q2

s

4

�
; (46)

which leads to F ðq?Þ ¼ S?
�Q2

s
expð� q2?

Q2
s
Þ, where S? is

the transverse area of the target hadron. In addition,
if we further take the large Nc limit, the integral
d2x?d2y?d2b? can be performed explicitly, which
leads to the differential cross section depending on
p? and Qs,

d3�pþA!hþX

dyd2p?
¼
Z dz

z2
dx

x
�xqðx;�ÞDh=qðz;�Þ

�
�

�H ð0Þ
2qq þ

�s

2�
�H ð1Þ

2qq þ
�s

2�
�H ð1Þ

4qq

�
;

(47)

where

�H ð0Þ
2qq ¼ �ð1� �Þ S?

�Q2
s

exp

�
� k2?
Q2

s

�
; (48)

�H ð1Þ
2qq ¼ Nc

2
P qqð�ÞF ðk?Þ

�
ln

Q2
s

�2e�E
þ exp

�
k2?
Q2

s

�
Lð1;0Þ

�
�1;� k2?

Q2
s

��
þ 1

�2

Nc

2
P qqð�ÞF

�
k?
�

��
ln

Q2
s

�2e�E

þ exp

�
k2?

�2Q2
s

�
Lð1;0Þ

�
�1;� k2?

�2Q2
s

�
‘

�
� �ð1� �Þ 3Nc

2
F ðk?Þ

�
ln

Q2
s

k2?e
�E

þ exp

�
k2?
Q2

s

�
Lð1;0Þ

�
�1;� k2?

Q2
s

��
; (49)

�H ð1Þ
4qq ¼ �S?Nc

�

1þ �2

ð1� �Þþ
1

k2?

�
1� exp

�
� k2?
Q2

s

���
1� exp

�
� k2?
�2Q2

s

��
þ Nc�ð1� �ÞF ðk?Þ

�
3

2
ln

Q2
s

k2?e
�E

þ
Z 1

0
d�0 1þ �02

ð1� �0Þþ exp

�
��02k2?

Q2
s

�
Lð1;0Þ

�
�1;

�02k2?
Q2

s

��
; (50)

where k? ¼ p?=z as above and Lð1;0Þð�1;�xÞ ¼
�½�E þ �ð0;�xÞ þ logð�xÞ�e�x is the multivariate
Laguerre polynomial. Lð1;0Þð�1;�xÞ is zero at x ¼ 0, 1,
and reaches its maximum at x around 2.

An important aspect of the above results is that we can
compare them with the collinear factorization results in the
dilute limit. For example, the forward quark production in
pp collisions is dominated by the t channel qg ! qg
subprocess in the collinear factorization calculation.
Because of the t channel dominance, we find that the
differential cross section can be written as

d3�ðpp ! qþ xÞ
d2k?dy

��������forward limit

¼
Z
x0
min

dx0

x0
xqðxÞ�

2
s

k4?
2x0gðx0Þ; (51)

in the forward limit, where k? and y are the transverse
momentum and rapidity of the final state quark, respec-
tively. The above result was obtained by taking the limit of
�t̂ � ŝ	�û for the Mandelstam variables in the par-
tonic cross section. Here, qðxÞ and gðxÞ are quark and gluon
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distributions from the incoming two nucleons,
respectively.

As a consistency check, we can take the dilute limit,
which gives k2? � Q2

s , and obtain the leading contribution

of Eq. (47), which reads

d3�pþA!hþX

dyd2p?

��������dilute

¼
Z dz

z2
Dh=qðz; �Þ

Z d�

1� �
xqðx;�Þ �s

2�

2NcS?Q2
s

�k4?
:

(52)

In arriving at the above result, we have also taken the limit
� ! 1 (note that � � 1 for real contributions due to sub-
traction), which corresponds to the limit �t̂ � ŝ	�û.
We further notice that the quark saturation momentum

[34,37] Q2
s ¼ 4�2�s

Nc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

p
�x0Gðx0Þ with x0Gðx0Þ corre-

sponding to the gluon distribution in a nucleon, � being the
nuclear density, R being the size of the target nucleus and b
being the impact parameter. In the dilute regime, the gluon
distribution is additive in the target nucleus, which allows

us to write x0GAðx0Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

p
S?�x0Gðx0Þ ¼ Ax0Gðx0Þ

with A being the nuclear number.3 At the end of the day, by

setting d�
1�� ¼ dx0

x0 , which recovers the integration over the

gluon longitudinal momentum fraction, we can obtain

d3�pþA!hþX

dyd2p?

��������dilute

¼
Z dz

z2
Dh=qðz; �Þ

Z dx0

x0
xqðx;�Þ 2�

2
sx

0GAðx0Þ
k4?

; (53)

which agrees with the collinear factorization result for the
quark channel. The comparison for all other channels shall
follow in the same way. In conclusion, the factorization in
Eq. (2) is consistent with the collinear factorization result
in the dilute limit in the forward pA collisions.

B. The gluon channel g ! g

The computation for the g ! g channel is very similar
to the calculation we have done for the q ! q channel.
However, there is an additional complication in this calcu-
lation. As we will show later in the detailed derivation, the
sextupole, namely the correlation of six fundamental
Wilson lines in a single trace, will start to appear in the
cross section. The small-x evolution equation of sextupoles
[38] is different from the well-known BK equation, which
is derived for dipoles. This is normal, since the quadrupoles
also follow a different version of small-x evolution equa-
tion [30,39]. The numerical study of the evolution for
sextupoles is not yet available. Fortunately, the contribu-

tion from sextupoles is suppressed by a factor 1
N2
c
as com-

pared to other terms. In addition, in principle, the four-

point function Sð4Þðx?; b?; y?Þ can not be factorized into

Sð2Þðx?; b?ÞSð2Þðb?; y?Þ unless the large Nc limit is taken.
By taking the large Nc limit, not only can we simplify the
calculation significantly, but also we can show that all the

relevant S-matrices are dipole amplitude Sð2Þ, which is
universal at both leading order and NLO. From the univer-
sality point of view, it seems that the large Nc limit is
essential to the factorization. Therefore, in our following
derivation, we will take the large Nc limit right away, but
we will comment on the property of the Nc corrections.
The real diagrams, as shown in Fig. 5, have been studied

in Ref. [32]. Let us first analyze the S matrices associated
with each graph in Fig. 5. For Fig. 5(a), before we integrate
out the phase space of the unobserved gluon, we find that
the multiple scattering gives hfade½Wðx?ÞWyðx0?Þ�db �½Wðb?ÞWyðb0?Þ�ecfabciY , where x? and x0? are the trans-

verse coordinates of the observed gluon in the amplitude
and complex conjugate amplitude, respectively. Here,
b? and b0? are the coordinates of the unobserved gluon.

By integrating over the phase space of the unobserved
gluon, we identify b? to b0? which allows us to

greatly simplify the above expression and obtain
NcðhTrUyðx?ÞUðx0?ÞTrUyðx0?ÞUðx?ÞiY � 1Þ. The interac-

tion between the unobserved gluon and the nucleus
target is canceled, as expected. By taking the large Nc

limit, we can further drop the second term and factorize

the results into NcS
ð2Þðx?; x0?ÞSð2Þðx0?; x?Þ, where a fac-

tor of 1
N2

c
has been attached as the color average.4

FIG. 5. The real diagrams for the next-to-leading-order gluon
production gA ! gþ X.

3Rigorously, one should write S? ¼ R
d2b and use the relation

that �
R
d2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � b2

p
¼ � 4�

3 R3 ¼ A.

4Strictly speaking, this factor should be 1
N2

c�1
, since the

number of gluon color is N2
c � 1. In the large Nc limit, we just

put it as N2
c .
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Similarly, the Fig. 5(b) yields NcS
ð2Þðv?; v0

?Þ�
Sð2Þðv0

?; v?Þ, with v?¼�x?þð1��Þb? and v0
? ¼

�x0? þ ð1� �Þb?.5 For Fig. 5(c), we find the scattering

matrix is proportional to

hfadeWdbðx?ÞWecðb?ÞffbcWafðv0
?ÞiY

¼ hTrUyðv0
?ÞUðx?ÞTrUyðx?ÞUðb?ÞTrUyðb?ÞUðv0

?ÞiY
� hTrUyðx?ÞUðv0

?ÞUyðb?ÞUðx?ÞUyðv0
?ÞUðb?ÞiY;

(54)

where we have used Eq. (8) and ifabcTc ¼ ½Ta; Tb� in
the derivation. In addition, we have assumed that the
expectation value of the Wilson lines is real, which
allows us to get, for example,

hTrUyðv0
?ÞUðx?ÞTrUyðx?ÞUðb?ÞTrUyðb?ÞUðv0

?ÞiY
¼ hTrUyðx?ÞUðv0

?ÞTrUyðv0
?ÞUðb?ÞTrUyðb?ÞUðx?ÞiY:

(55)

The last term on the right-hand side of Eq. (54) is the
sextupole that we discussed earlier and it is suppressed by
1
N2
c
as compared to the first term. It is easy to see that the first

term is proportional to N3
c since it has three color traces.

Therefore, we obtain that Fig. 5(c) gives NcS
ð2Þðx?;v0

?Þ�
Sð2Þðv0

?;b?ÞSð2Þðb?;x?Þ in the large Nc limit. Similarly,

following the same procedure, we find that Fig. 5(d) yields

NcS
ð2Þðv?; x0?ÞSð2Þðx0?; b?ÞSð2Þðb?; v?Þ.

Now we can follow Ref. [32] and write down the cross
section of producing a hadron with p? at rapidity y from a
gluon as follows

d�pA!hX
real

d2p?dy
¼ �sNc

Z 1

�

dz

z2
Dh=gðzÞ

Z 1

�=z
d�xgðxÞ

Z d2x?
ð2�Þ2

d2x0?
ð2�Þ2

d2b?
ð2�Þ2 e

�ik?�ðx?�x0?Þ

� X
��	

c ��
gg�	ðu0?Þc �

gg�	ðu?Þ½Sð2Þðx?; x0?ÞSð2Þðx0?; x?Þ þ Sð2Þðv?; v0
?ÞSð2Þðv0

?; v?Þ

� Sð2Þðx?; v0
?ÞSð2Þðv0

?; b?ÞSð2Þðb?; x?Þ � Sð2Þðv?; x0?ÞSð2Þðx0?; b?ÞSð2Þðb?; v?Þ�; (56)

where the g ! gg splitting kernel is found to be6

X
��	

c ��
gg�	ð�; u0?Þc �

gg�	ð�; u?Þ ¼ 4ð2�Þ2
�

�

1� �
þ 1� �

�
þ �ð1� �Þ

�
u0? � u?
u02?u

2
?

; (57)

with u? ¼ x? � b? and u0? ¼ x0? � b?. In addition, we find that the � dependence of the splitting function is symmetric

under the interchange � $ ð1� �Þ, and can be simply written as ½1��ð1��Þ�2
�ð1��Þ . It is clear that the real contributions contain

the rapidity divergence at � ! 1 limit.
Similar to the quark channel, the virtual gluon diagrams as shown in Fig. 6 can be calculated accordingly, and we

obtain

� 2

2
�sNc

Z 1

�

dz

z2
Dh=gðzÞxpgðxpÞ

Z 1

0
d�

Z d2v?
ð2�Þ2

d2v0
?

ð2�Þ2
d2u?
ð2�Þ2 e

�ik?�ðv?�v0
?Þ

� X
��	

c ��
gg�	ðpþ; �; u?Þc �

gg�	ðpþ; �; u?Þ½Sð2Þðv?; v0
?ÞSð2Þðv0

?; v?Þ � Sð2Þðb?; x?ÞSð2Þðx?; v0
?ÞSð2Þðv0

?; b?Þ�; (58)

where the factor of 2 comes from the fact that the mirror
diagrams give the identical contributions when the virtual
loop on the right side of the cut, while the factor of 1

2 is the
symmetry factor arising from two identical gluons in the
closed gluon loop. The virtual contribution contains rapid-
ity divergence when � approaches 0 and 1. This is easy to

understand, since the virtual gluon loop contribution is
symmetric under the interchange � $ ð1� �Þ. Assuming
that Sð2Þðx?; x0?Þ ¼ Sð2Þðx0?; x?Þ and using x? ¼
v? þ ð1� �Þu? and b? ¼ v? � �u?, one can easily
show that the last line of Eq. (58) is symmetric under the
interchange � $ ð1� �Þ. Therefore, we can rewrite the
splitting function ½ �

1�� þ 1��
� þ �ð1� �Þ� as 2½ �

1��þ
1
2�ð1��Þ� for the virtual part. Now the virtual contribution
only contains rapidity singularity at � ¼ 1.
Following the procedure that we have illustrated above

for the quark channel, we remove the rapidity divergence
terms from the real and virtual contributions by doing the
following subtractions

5The way that we choose to define v? and v0
? here is to put the

rapidity divergence at �¼1 according to the convention that the
unobserved gluon’s longitudinal momentum becomes infinitely
soft.

6Here we have included the factor of 1
pþ , which is in the

splitting kernel, into the cross section.
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~F ðk?Þ¼ ~F ð0Þðk?Þ��sNc

�2

Z 1

0

d�

1��

�
Z d2x?d2y?d2b?

ð2�Þ2 e�ik?�ðx?�y?Þ

� ðx?�y?Þ2
ðx?�b?Þ2ðy?�b?Þ2

½Sð2Þðx?;y?ÞSð2Þðy?;x?Þ

�Sð2Þðx?;y?ÞSð2Þðy?;b?ÞSð2Þðb?;x?Þ�; (61)

where ~F ð0Þðk?Þ is the bare dipole gluon distribution in the
adjoint representation, which appears in the leading-order

cross section as in Eq. (5) and it is divergent. ~F ðk?Þ is the
renormalized dipole gluon in the adjoint representation
distribution and it is assumed to be finite. To arrive at
Eq. (61), we have taken the large Nc limit, which allows
us to neglect the sextupole and constant term, which are
suppressed by 1

N2
c
. The full subtraction should include those

terms as well.
Now we are ready to show that Eq. (61) is equivalent to

the adjoint representation of the BK equation. The non-
linear small-x evolution equation for a color dipole in some
arbitrary representation R can be found in Eq. (5.18) in
Ref. [40]. This equation reads

@

@Y
htrRVy

x?Vy?iY

¼ ��s

�2

Z d2z?ðx? � y?Þ2
ðx? � z?Þ2ðy? � z?Þ2

� ½CRhtrRVy
x?Vy?iY � htrRVy

z?t
aVz?V

y
x?t

aVy?iY�;
(62)

where V is the Wilson line in the R representation. If one
takes the fundamental representation, one can easily re-
cover the BK equation as shown in Eq. (23). If one sets
V ¼ W and uses the adjoint representation for the color
matrices tabc ¼ �ifabc, one can use Eq. (8) to convert

everything into the fundamental representation. It is
straightforward to find CR ¼ Nc and

htrAWy
x?Wy?iY ¼ hTrUyðx?ÞUðy?ÞTrUyðy?ÞUðx?ÞiY � 1

htrAWy
z? t

aWz?W
y
x?t

aWy?iY
¼ hTrUyðx?ÞUðy?ÞTrUyðz?ÞUðx?ÞTrUyðy?ÞUðz?ÞiY

� hTrUyðx?ÞUðy?ÞUyðz?ÞUðx?ÞUyðy?ÞUðz?ÞiY;
(63)

where we have also assumed all the correlation functions
on the right-hand side of the above equation are real. By
putting the above expressions into Eq. (62), we can obtain
the adjoint representation of the BK equation, which is in
complete agreement with Eq. (61) if one also includes the
large Nc corrections in Eq. (54). This version of the BK
equation actually contains the sextupole correlation term
and constant term, which coincide with Eq. (54) and the
discussion above. One can see that the cancellation of
the rapidity divergence is complete, even if one includes
all the large Nc corrections. After the subtraction of the
rapidity divergence, the splitting functions become regu-
lated and we can replace 1

1�� by
1

ð1��Þþ .
Furthermore, before we take care of the collinear singu-

larities, we should also compute the quark loop virtual
diagrams as shown in Fig. 7,

�2�sNfTR

Z 1

�

dz

z2
Dh=gðzÞxpgðxpÞ

�
Z 1

0
d�
Z d2v?
ð2�Þ2

d2v0
?

ð2�Þ2
d2u?
ð2�Þ2e

�ik?�ðv?�v0
?Þ

�X
��	

c ��
q �q�	ðpþ;�;u?Þc �

q �q�	ðpþ;�;u?Þ

�½Sð2Þðv?;v0
?ÞSð2Þðv0

?;v?Þ�Sð2Þðx?;v0
?ÞSð2Þðv0

?;b?Þ�;
(64)

where TR ¼ 1
2 and the g ! q �q splitting kernel is found to beX

��	

c ��
q �q�	ðpþ; �; u?Þc �

q �q�	ðpþ; �; u?Þ

¼ 2ð2�Þ2½�2 þ ð1� �Þ2� 1

u2?
: (65)

FIG. 6. Typical virtual gluon loop diagrams for the next-to-
leading-order gluon production gA ! gþ X. The graph is simi-
lar to (a), where the virtual loop comes after the interaction with
the target, and all the mirror graphs are not shown here, but
included in the final result.

FIG. 7. Typical virtual quark loop diagrams for the next-to-
leading-order gluon production gA ! gþ X. The graph is simi-
lar to (b), where the virtual loop comes after the interaction with
the target, and all the mirror graphs are not shown here, but
included in the final result.
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Normally the g ! q �q channel is suppressed by one
factor of 1=Nc as compared to other leading Nc chan-
nels. However, the quark loop gains a factor of Nf since

different flavors of quarks can enter the virtual quark
loop. Nf is usually taken to be 3, which is the same as

Nc. Therefore, we also compute this channel since this

might be as important as other contributions in terms of
the numerical studies. There is no rapidity divergence in
the quark loop contribution, however, it does contain
collinear divergence.
To compute and remove the collinear divergence,

we define

Kðk?; l?; q?Þ ¼
Z d2x?d2b?d2y?d2x0?

ð2�Þ6 e�ik?�ðx?�b?Þ�il?�ðb?�y?Þ�iq?�ðy?�x0?ÞSð2Þðx?; b?ÞSð2Þðb?; y?ÞSð2Þðy?; x0?Þ; (66)

where the variable x0? is redundant and can be integrated out to give the area of the target nucleus, if one neglects the impact
factor dependence. This allows us to transform Eq. (56) into

d�pA!hX
real

d2p?dy
¼ �sNc

�2

Z 1

�

dz

z2
Dh=gðzÞ

Z 1

�=z
d�

½1� �ð1� �Þ�2
�ð1� �Þþ xgðxÞ

Z
d2q1?d2q2?d2q3?Kðq1?; q2?; q3?Þ

�
�������� k? � q1? þ q3?
ðk? � q1? þ q3?Þ2

� k? � �q1? þ �q2?
ðk? � �q1? þ �q2?Þ2

��������
2

:

It is quite clear that among those three terms in the above equation, 1
ðk?�q1?þq3?Þ2 term gives the collinear singularity that

should be absorbed by the gluon distribution, 1
ðk?��q1?þ�q2?Þ2 term yields the collinear singularity that should be associated

to the fragmentation function, while the crossing term is finite. Similarly, the virtual gluon loop contribution can be
transformed into

� �sNc

�2

Z 1

�

dz

z2
Dh=gðzÞxpgðxpÞ

Z 1

0
d�

�
�

ð1� �Þþ þ 1

2
�ð1� �Þ

�Z
d2q1?d2q2?Kðq1?; q2?; q2? � k?Þ

�
Z

d2l?j l?
l2?

� l? � �k? þ q2? � q1?
ðl? � �k? þ q2? � q1?Þ2

��������
2

; (67)

and the quark loop term can be turned into.

� �sNfTR

2�2

Z 1

�

dz

z2
Dh=gðzÞxpgðxpÞ

Z 1

0
d�½�2 þ ð1� �Þ2�

Z
d2q1?Gðq1?; q1? � k?Þ

�
Z

d2l?
��������l?l2? � l? � �k? þ q1?

ðl? � �k? þ q1?Þ2
��������

2

: (68)

It is straightforward then to use Eq. (31) to compute col-
linear singularity for the virtual contributions.

By combining the collinear singularities from both real
and virtual diagrams, we find the coefficient of the col-
linear singularities becomes P ggð�Þ, which is defined as

P ggð�Þ ¼ 2

�
�

ð1� �Þþ þ 1� �

�
þ �ð1� �Þ

�

þ
�
11

6
� 2NfTR

3Nc

�
�ð1� �Þ; (69)

where the first term comes from the real diagrams, the
term that is proportional to 11

6 �ð1� �Þ comes from the

virtual gluon loop diagrams, and the term that is sup-
pressed by 1=Nc is the quark loop contribution. Now
we are ready to remove the collinear singularities by

redefining the gluon distribution and the gluon fragmen-
tation function as follows:

gðx;�Þ ¼ gð0ÞðxÞ � 1


̂

�sð�Þ
2�

Z 1

x

d�

�
NcP ggð�Þg

�
x

�

�
; (70)

Dh=gðz; �Þ ¼ Dð0Þh=gðzÞ

� 1


̂

�sð�Þ
2�

Z 1

z

d�

�
NcP ggð�ÞDh=g

�
z

�

�
; (71)

which is in agreement with the DGLAP equation for the
gluon channel.
Now we are ready to assemble all the rest of the finite

terms into the hard factors. Let us take the finite terms
left in the virtual contribution as an example. Using
Eq. (41) to perform the l? integration, the finite terms
are proportional to
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Z
d2q1?d2q2?Kðq1?; q2?; q2? � k?Þ

�
ln
k2?
�2

þ ln
ðl? � �k? þ q2? � q1?Þ2

k2?

�
: (72)

The evaluation of the first term is trivial, since it is independent of �; qi?. Using Eqs. (34) and (66), the second term yields7

Z d2x?d2b?d2y?
ð2�Þ4 Sð2Þðx?; b?ÞSð2Þðb?; y?ÞSð2Þðy?; x?Þe�ik?�ðx?�y?Þ4�

�
�ð2Þðb? � x?Þ

Z
d2r0?

eik?�r0?
r02?

� e�i�0k?�ðb?�x?Þ

ðb? � x?Þ2
�
:

(73)

Summarizing the above calculations, for the gluon channel contribution: gA ! h=gþ X, we find that the factorization
formula can be explicitly written as

d3�pþA!h=gþX

dyd2p?
¼
Z dz

z2
dx

x
�xgðx;�ÞDh=gðz;�Þ

�Z d2x?d2y?
ð2�Þ2 Sð2ÞY ðx?; y?ÞSð2ÞY ðy?; x?Þ

�
H ð0Þ

2gg þ
�s

2�
H ð1Þ

2gg

�

þ
Z d2x?d2y?d2b?

ð2�Þ4 Sð2ÞY ðx?; b?ÞSð2ÞY ðb?; y?Þ �s

2�
H ð1Þ

2q �q

þ
Z d2x?d2y?d2b?

ð2�Þ4 Sð2ÞY ðx?; b?ÞSð2ÞY ðb?; y?ÞSð2ÞY ðy?; x?Þ �s

2�
H ð1Þ

6gg

�
: (74)

The leading-order results have been calculated as shown in Eq. (5), from which we have

H ð0Þ
2gg ¼ e�ik?�r?�ð1� �Þ; (75)

where k? ¼ p?=z and r? ¼ x? � y?. It is straightforward to show that H ð1Þ
2gg and H ð1Þ

6gg read as follows

H ð1Þ
2gg ¼ NcP ggð�Þ ln c20

r2?�
2

�
e�ik?�r? þ 1

�2
e�i

k?
� �r?

�
�
�
11

3
� 4NfTR

3Nc

�
Nc�ð1� �Þe�ik?�r? ln

c20
r2?k

2
?
; (76)

H ð1Þ
2q �q ¼ 8�NfTRe

�ik?�ðy?�b?Þ�ð1� �Þ
Z 1

0
d�0½�02 þ ð1� �0Þ2�

�
e�i�0k?�ðx?�y?Þ

ðx? � y?Þ2
� �ð2Þðx? � y?Þ

Z
d2r0?

eik?�r
0
?

r02?

�
; (77)

and

H ð1Þ
6gg ¼ �16�Nce

�ik?�r?
�
e�i

k?
� �ðy�bÞ ½1� �ð1� �Þ�2

ð1� �Þþ
1

�2

x? � y?
ðx? � y?Þ2

� b? � y?
ðb? � y?Þ2

� �ð1� �Þ
Z 1

0
d�0

�
�0

ð1� �0Þþ þ 1

2
�0ð1� �0Þ

��
e�i�0k?�ðy?�b?Þ

ðb? � y?Þ2
� �ð2Þðb? � y?Þ

Z
d2r0?

eik?�r0?
r02?

��
: (78)

Again, by choosing � ¼ c0=r? for the factorization scale, we can further simplify H ð1Þ
2gg and obtain H ð1Þ

2gg ¼
�ð113 � 4NfTR

3Nc
ÞNc�ð1� �Þe�ik?�r? ln c20

r2?k
2
?
.

C. The quark to gluon channel q ! g

This channel is relatively simpler than the q ! q channel for two reasons: first, there are no virtual graphs; second, there
is no rapidity divergence in the real contributions, since the lower limit of the gluon longitudinal momentum is bounded by
the hadron longitudinal momentum. It is quite straightforward to write down the cross section for this process by
integrating out the phase space of the final state quark ðkþ2 ; k2?Þ in Eq. (11). Then, we can transform the cross section
into momentum space and take the large Nc limit. In the end, we obtain

7The expression in Eq. (73) looks slightly different from the final results as shown in Eq. (78). Since the S matrices are symmetrical
among all the transverse coordinates, which are all integrated over in the end, one can exchange the definition of variables x? $ y?
and reverse the orientation of all the coordinates in Eq. (73). This allows us to show that these two expressions are equivalent.
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d�pA!h=gþX
NLO>

d2p?dy
¼ �sNc

4�2

Z 1

�

dz

z2
Dh=gðzÞ

Z 1

�=z

d�

�
xqðxÞ½1þ ð1� �Þ2�

Z
d2q1?d2q2?Gðq1?; q2?Þ

�
�������� k? � q1? � q2?
ðk? � q1? � q2?Þ2

� k? � �q2?
ðk? � �q2?Þ2

��������
2

; (79)

where we have defined � to be the longitudinal momentum fraction of the gluon with respect to the initial quark. The
production of small-x gluons in pA collisions has been studied quite some time ago in Ref. [41]. We find complete
agreement between our calculation and the partonic results in Eqs (56–58) of Ref. [41] if we remove the gluon
fragmentation function and the quark distribution, and take the limit � ! 0 with dy ¼ d�

� .
Following the same procedure, we remove the collinear singularities as follows:

gðx;�Þ ¼ gð0ÞðxÞ � 1


̂

�sð�Þ
2�

Z 1

x

d�

�
CFP gqð�Þq

�
x

�

�
; (80)

Dh=qðz;�Þ ¼ Dð0Þ
h=qðzÞ �

1


̂

�sð�Þ
2�

Z 1

z

d�

�
CFP gqð�ÞDh=g

�
z

�

�
; (81)

where we renormalize the gluon distribution and quark fragmentation function in this off diagonal channel. Here we have

defined P gqð�Þ ¼ 1
� ½1þ ð1� �Þ2� and substituted Nc

2 by CF since they are equal in the large Nc limit.

Therefore, we find the factorized cross section in this channel can be written as

d3�pþA!h=gþX

dyd2p?
¼
Z dz

z2
dx

x
�xqðx;�ÞDh=gðz; �Þ �s

2�

�Z d2x?d2y?
ð2�Þ2 Sð2ÞY ðx?; y?Þ½H ð1;1Þ

2gq þ Sð2ÞY ðy?; x?ÞH ð1;2Þ
2gq �

þ
Z d2x?d2y?d2b?

ð2�Þ4 Sð4ÞY ðx?; b?; y?ÞH ð1Þ
4gq

�
: (82)

By defining W ðk1?; k2?Þ ¼ e�ik1?�ðx?�y?Þ�ik2?�ðy?�b?Þ, we find

H ð1;1Þ
2gq ¼ Nc

2

1

�2
e�i

k?
� �r?Pgqð�Þ ln c20

r2?�
2
;

H ð1;2Þ
2gq ¼ Nc

2
e�ik?�r?Pgqð�Þ ln c20

r2?�
2
;

H ð1Þ
4gq ¼ �4�NcW

�
k?
�

; k?
�
Pgqð�Þ 1�

x? � y?
ðx? � y?Þ2

� b? � y?
ðb? � y?Þ2

:

(83)

We can also choose � ¼ c0=r? for the factorization scale, which yields H ð1;1Þ
2gq ¼ H ð1;2Þ

2gq ¼ 0.

D. The gluon channel g ! q

To complete the calculation for all the channels, we should compute the g ! q �q, although it is suppressed by a factor of
1
Nc
. For the gluon channel g ! q �q, we can start from Eq. (88) of Ref. [32], which allows us to obtain

d�pA!h=qX
NLO

d2k?dy
¼ �s

2�2
TR

Z 1

�

dz

z2
Dh=qðzÞ

Z 1

�=z
d�xgðxÞ½ð1� �Þ2 þ �2�

�
Z

d2q1?d2q2?Gðq1?; q2?Þ
�������� k? � �q1? � �q2?
ðk? � �q1? � �q2?Þ2

� k? � q2?
ðk? � q2?Þ2

��������
2

: (84)

Following the above procedure, we remove the collinear singularities as follows:

qðx;�Þ ¼ qð0ÞðxÞ � 1


̂

�sð�Þ
2�

Z 1

x

d�

�
TRP qgð�Þg

�
x

�

�
; (85)

Dh=gðz;�Þ ¼ Dð0Þ
h=gðzÞ �

1


̂

�sð�Þ
2�

Z 1

z

d�

�
TRP qgð�ÞDh=q

�
z

�

�
; (86)

where we renormalize the quark distribution and gluon fragmentation function in this off diagonal channel. HereP qgð�Þ ¼
½ð1� �Þ2 þ �2�. In the end, the factorization formula for the cross section is
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d3�pþA!h=qþX

dyd2p?
¼
Z dz

z2
dx

x
�xgðx;�ÞDh=qðz;�Þ �s

2�

�Z d2x?d2y?
ð2�Þ2 Sð2ÞY ðx?; y?Þ½H ð1;1Þ

2qg þ Sð2ÞY ðx?; y?ÞH ð1;2Þ
2qg �

þ
Z d2x?d2y?d2b?

ð2�Þ4 Sð4ÞY ðx?; b?; y?ÞH ð1Þ
4qg

�
; (87)

with8

H ð1;1Þ
2qg ¼ 1

2
e�ik?�r?Pqgð�Þ

�
ln

c20
r2?�

2
� 1

�
;

H ð1;2Þ
2qg ¼ 1

2

1

�2
e�i

k?
� �r?Pqgð�Þ

�
ln

c20
r2?�

2
� 1

�
;

H ð1Þ
4qg ¼ �4�W

�
k?;

k?
�

�
Pqgð�Þ 1�

x? � y?
ðx? � y?Þ2

� b? � y?
ðb? � y?Þ2

:

(88)

IV. CONCLUSION

In summary, we have calculated the NLO correction to inclusive hadron production in pA collisions in the small-x
saturation formalism. The collinear divergences are shown to be factorized into the splittings of the parton distribution
from the incoming nucleon and the fragmentation function for the final state hadron. As we have shown above, the
renormalization of the parton distributions of the proton and fragmentation functions follow the well-known DGLAP
equation

qðx;�Þ
gðx;�Þ

 !
¼ qð0ÞðxÞ

gð0ÞðxÞ

 !
� 1


̂

�ð�Þ
2�

Z 1

x

d�

�

CFPqqð�Þ TRPqgð�Þ
CFPgqð�Þ NcPggð�Þ

 !
qðx=�Þ
gðx=�Þ

 !
; (89)

and

Dh=qðz;�Þ
Dh=gðz;�Þ

 !
ðÞ ¼

Dð0Þ
h=qðzÞ

Dð0Þ
h=gðzÞ

0
@

1
A� 1


̂

�ð�Þ
2�

Z 1

z

d�

�

CFPqqð�Þ CFPgqð�Þ
TRPqgð�Þ NcPggð�Þ

 !
Dh=qðz=�Þ
Dh=gðz=�Þ

 !
; (90)

respectively. The rapidity divergence at one-loop order is
factorized into the BK evolution in either fundamental
representation or adjoint representation for the dipole
gluon distribution of the nucleus. The hard coefficients
are calculated up to one-loop order without taking the large
Nc limit for the quark q ! q channel. For some technical
reasons, especially avoiding the sextupoles, as we have
explained during the derivation, we take the large Nc limit
for other channels. In principle, using these hard coeffi-
cients together with the NLO parton distributions and
fragmentation functions as well as the NLO small-x evo-
lution equation [42,43] for dipole amplitudes, one can
obtain the complete NLO cross section of the inclusive
hadron production in pA collisions in the large Nc limit.

The corrections to this NLO order cross section are either
of order�2

s or suppressed by
1
N2

c
. As to the running coupling

effects [44] in our hybrid factorization formalism, we have
no �s dependence at the leading order (�s has been ab-
sorbed into the definition of the saturation momentum),
and one power of �s at the NLO, thus we find that the one-
loop approximation for the running coupling should be
sufficient.
We have shown that the differential cross section for

inclusive hadron productions in pA collisions can be writ-
ten in a factorization form in the coordinate space. The
factorization scale dependence in the hard coefficients
reflects the DGLAP evolutions for the quark distributions
and fragmentation functions. It is interesting to note that
similar coordinate dependence (associated with r?) has
also been found in the transverse momentum resummation
formalism derived for the Drell-Yan lepton pair production
in Ref. [45]. On the other hand, the hard coefficients in our
case do not contain double logarithms, therefore there is no
need for the Sudakov resummation for forward inclusive
hadron production in pA collisions.

8In the dimensional regularization, the most common conven-
tion for the gluon spin average is to use 1

2ð1�
Þ ¼ 1
2 ð1þ 
þ � � �Þ.

The term that is proportional to 
 can combine with the 1

 pole

terms and give a finite contribution, as seen in the second term in

the square brackets in H ð1;1Þ
2qg and H ð1;2Þ

2qg .
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Adding all the channels together in the large Nc limit gives

d3�pþA!hþX

dyd2p?
¼
Z dz

z2
dx

x
�½xqðx;�Þ; xgðx;�Þ� Sqq Sqg

Sgq Sgg

" #
Dh=qðz; �Þ
Dh=gðz; �Þ

" #
; (91)

with factorization scale chosen as � ¼ c0=r? and

Sqq ¼
Z d2x?d2y?

ð2�Þ2 Sð2ÞY ðx?; y?Þe�ik?�r?�ð1� �Þ
�
1� �s

2�
3CF ln

c20
r2?k

2
?

�
þ
Z d2x?d2y?d2b?

ð2�Þ4 Sð4ÞY ðx?; b?; y?Þ �s

2�
H ð1Þ

4qq;

(92)

Sqg ¼ �s

2�

Z d2x?d2y?d2b?
ð2�Þ4 Sð4ÞY ðx?; b?; y?ÞH ð1Þ

4gq; (93)

Sgq ¼ �s

2�

Z d2x?d2y?
ð2�Þ2 Sð2ÞY ðx?; y?Þ½H ð1;1Þ

2qg þ Sð2ÞY ðx?; y?ÞH ð1;2Þ
2qg � þ

�s

2�

Z d2x?d2y?d2b?
ð2�Þ4 Sð4ÞY ðx?; b?; y?ÞH ð1Þ

4qg; (94)

Sgg ¼
Z d2x?d2y?

ð2�Þ2 Sð2ÞY ðx?; y?ÞSð2ÞY ðy?; x?Þe�ik?�r?�ð1� �Þ
�
1� �s

2�
Nc

�
11

3
� 4NfTR

3Nc

�
ln

c20
r2?k

2
?

�

þ
Z d2x?d2y?d2b?

ð2�Þ4 Sð2ÞY ðx?; b?ÞSð2ÞY ðb?; y?Þ �s

2�
H ð1Þ

2q �q

þ
Z d2x?d2y?d2b?

ð2�Þ4 Sð2ÞY ðx?; b?ÞSð2ÞY ðb?; y?ÞSð2ÞY ðy?; x?Þ �s

2�
H ð1Þ

6gg; (95)

where all the hard factors are defined in previous section.
Since now the factorization scale � depends on r?, the
parton distributions and fragmentations function should
change accordingly when we integrate over all the coor-
dinates. In other words, the above expression should be
understood as if the parton distributions and fragmentation
functions are written inside those coordinate integrals.

In addition, we have also demonstrated that all the hard
factors can be calculated easily in the well-known MVand
GBWmodel and we have shown that our results agree with
the collinear factorization results in the dilute limit.

In the above calculations, we focus on the hadron pro-
duction in the forward pA collisions, where we can safely
neglect the transverse momentum effects from the incom-
ing parton distributions of the nucleon. The explicit calcu-
lations at one-loop order in the above also support this
factorization, i.e., the collinear divergence associated with
the incoming parton distribution from the nucleon does
not contain the transverse momentum dependence. The

situation may change if we have both small x effects
from nucleon and nucleus, such as in the mid-rapidity
in pA collisions at the LHC, when the transverse momen-
tum effects from the gluon distribution of nucleon be-
come important. It is in this region that a naive
k?-factorization has been derived [2,4] and has been
widely used in the literature. It will be interesting to
extend our calculations to this kinematics too. We leave
this for a future publication.
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