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Studying the substructure of jets has become a powerful tool for event discrimination and for studying

QCD. Typically, jet substructure studies rely on Monte Carlo simulation for vetting their usefulness;

however, when possible, it is also important to compute observables with analytic methods. Here, we

present a global next-to-leading-log resummation of the angular correlation function which measures the

contribution to the mass of a jet from constituents that are within an angle R with respect to one another.

For a scale-invariant jet, the angular correlation function should scale as a power of R. Deviations from

this behavior can be traced to the breaking of scale invariance in QCD. To do the resummation, we use

soft-collinear effective theory relying on the recent proof of factorization of jet observables at eþe�

colliders. Nontrivial requirements of factorization of the angular correlation function are discussed. The

calculation is compared to the Monte Carlo parton shower and next-to-leading order results. The different

calculations are important in distinct phase space regions and exhibit that jets in QCD are, to very good

approximation, scale invariant over a wide dynamical range.
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I. INTRODUCTION

The current success of the Large Hadron Collider
(LHC), its high center of mass energies, its significant
delivered integrated luminosity, and its high-precision ex-
periments have ushered in a new era of particle physics.
Particles and jets with significant transverse boosts are now
being copiously produced. An entire field of studying the
substructure of highly boosted jets has grown up out of the
study of these objects and many methods have been pro-
posed to study QCD. In addition, procedures for discrimi-
nating QCD jets from jets initiated by heavy particle
decays have been introduced and new measurements of
these methods are being completed [1,2]. To understand
these methods in detail, most analyses have relied on
Monte Carlo simulation as the basis of study. However,
Monte Carlo simulations have limitations, and, where pos-
sible, it is vital to also compute the observables to higher
orders in QCD so as to have another handle on their
behavior.

An important contribution to this effort of computing jet
observables is resummation of large logarithms that arise
in fixed-order perturbation theory. Jets are objects that are
typically dominated by soft or collinear emissions and so it
is necessary to resum the logarithms that exist for an
accurate prediction of an observable. Very recently, groups
have computed resummed contributions to light jet masses
at hadron colliders [3] and N subjettiness [4,5] in color-
singlet jets at the LHC [6]. Reference [6], in particular,
relied on the factorization of color singlet processes at
hadron colliders to reinterpret results from eþe� colliders.
Computing the resummed contribution to generic observ-
ables at hadron colliders is made more difficult by the color

flow throughout the collision which can destroy factoriza-
tion. To avoid discussion of these issues, here we will only
consider jet observables at eþe� colliders. In this paper, we
will discuss the resummation of the angular correlation
function introduced in [7] using soft collinear effective
theory (SCET) [8–11].
The angular correlation function GðRÞ was defined in

[7] as

G ðRÞ ¼ X
i�j

p?ip?j�R
2
ij�ðR� �RijÞ; (1)

for studying the substructure of jets at the LHC. �Rij is the

boost-invariant angle between particles i and j; the sum
runs over all constituents of a jet and � is the Heaviside
theta function. The angular correlation function has dis-
tinct properties for scaleless jets versus jets with at least
one heavy mass scale. In particular, any structure in the
angular correlation function should be distributed roughly
as RD, where D is a constant, for a scaleless jet. It was
shown that by exploiting the different behavior of the
angular distribution of hard structure in QCD jets versus
jets initiated by heavy particle decay, an efficient tagging
algorithm could be defined.
Reference [12] continued studying the properties of

the angular correlation function, focusing on average prop-
erties of QCD jets. It was shown through simple calcula-
tions that, for QCD jets, the angular correlation function
averaged over an ensemble of jets should approximately
scale as

hGðRÞi ’ R2; (2)

where the angle brackets are defined by*larkoski@stanford.edu
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hGðRÞi ¼ 1

Njets

XNjets

i¼1

GðRÞi: (3)

Deviations from R2 are due to the running coupling and
higher order effects. The introduction of an ensemble
averaged angular correlation function allows for a rigorous
definition of the dimension of a QCD jet which is also
infrared and collinear (IRC) safe. This dimension is de-
fined to be the average angular structure function h�Gi and
is the power to which the average angular correlation
function scales with R:

h�GðRÞi � d loghGðRÞi
d logR

: (4)

For QCD jets, h�Gi � 2. In [12], it was also shown that the
scaling of nonperturbative physics in R is distinctly differ-
ent, and this was used to determine the average energy
density of the underlying event.

Here, we will continue the work of [12] and compute the
average angular structure function by resummation within
the context of SCET. Our analysis is only truly appropriate
at eþe� colliders, but we expect that the largest effect in
going to hadron colliders is the contribution of the under-
lying event. For this calculation, we introduce generalized
correlation functions G�ðRÞ parametrized by an index �:

G �ðRÞ ¼ 1

2E2
J

X
i�j

EiEj sin�ijtan
��1

�ij
2
�ðR� �ijÞ: (5)

The form of the angular correlation function is similar to
jet angularity [13,14] and close in form and spirit to an
event shape introduced in [15]. However, for our purposes
here, we choose to index the parameter � such that the
angular correlation function is IRC safe for all �> 0. In
the small angle limit, this reduces to Eq. (1) with� ¼ 2 (up
to normalization). The parameter � allows for a study of
the behavior of the angular correlation function with an-
gular scales weighted differently. Analogously to the an-
gular structure function, we define a generalized average
angular structure function

h�G�i � d loghG�i
d logR

: (6)

The calculation and interpretation of average angular struc-
ture function will be the focus of this paper.

In Sec. II, we discuss the factorization of jet observables
in SCET and the computation of the angular correlation
function including global next-to-leading-log (NLL) con-
tributions for jets defined by a kT-type algorithm [16,17].
The existence of a factorization theorem for the angular
correlation function is nontrivial. We will discuss the con-
sistency conditions that the angular correlation function

satisfies for factorization. We will also briefly discuss how
the results obtained here can be used in a calculation of the
angular correlation function at the LHC. In Sec. III we
compare the SCET calculation to a next-to-leading-order
(NLO) calculation of the angular correlation function.
Resummation and fixed-order corrections affect different
parts of distributions and so the differences between the
resummed calculation and the fixed-order result give some
sense as to the importance of these effects. This analysis
leads to Sec. IV, where we present a comparison between
the SCET calculation and the output of parton shower
Monte Carlo. We observe significant differences between
SCET and Monte Carlo, but higher fixed order effects are
substantial. We discuss some of the uncertainties in the
parton shower studying the effect of the evolution variable
on the value of the angular structure function. Finally, we
present our conclusions in Sec. V.

II. SCET CALCULATION

SCET is an effective theory of QCD in which all modes
of QCD are integrated out except those corresponding to
soft or collinear modes. Collinear and soft modes are
defined by their scaling with power counting parameter �:

collinear � ð�2; 1; �Þ; soft� ð�2; �2; �2Þ;

which is the scaling of the þ, � and transverse compo-
nents of the momenta, respectively. � is a parameter that is
defined for a particular process or observable; for example,
for computing the distribution of jet masses, ��
mJ=p?J � 1. The fact that � � 1 allows for a systematic
expansion in powers of �. Higher order terms in � are
power suppressed (much like the subleading terms in the
twist expansion).
For an event shape observable O that factorizes, the

cross section can be written in the schematic form:

d�

dO
¼ Hð�Þ

�Y
ni

JniðO;�Þ
�
� SðO;�Þ; (7)

where Hð�Þ is the hard function, which matches the full
QCD result at a scale �, Jð�;ni;OÞ is the jet function for
the contribution to the observable O from ni-collinear
modes, and Sð�;OÞ is the soft function for the contribution
to the observable O from the soft modes. � represents a
convolution between the jet and soft functions. All func-
tions depend on the factorization scale �.
Factorization of jet observables in SCET was first ex-

hibited in [18,19]. Reference [19] computed individual jet
angularities to NLL in eþe� collisions. It was shown that
factorization of the cross section for jet observables in
eþe� ! N jets has the form
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d�

dO1 � � �dOM

¼ Hðn1; . . . ; nN;�Þ
�YM
i¼1

JniðOi;�Þ
�
� Sn1���nN ðO1; . . . ;OM;�Þ YN

j¼Mþ1

Jð�Þ; (8)

where M � N of the jet observables Oi have been mea-
sured. Jet directions are denoted by ni and JðOi;�Þ is the
jet function for a jet in which the observable Oi has been
measured and Jð�Þ is a jet function for a jet which has not
been measured. We will refer to these as the measured and
unmeasured jet functions, respectively. A similar nomen-
clature will be used for the soft functions. Jet algorithm
dependence and jet energies have been suppressed. An
important point from [19] is that factorization requires
that the jets be well-separated, namely, that

tij ¼
tan

c ij

2

tanR0

2

� 1; (9)

where c ij the is angle between any pair of jets i, j and R0 is
the jet algorithm radius. We will assume that this condition
is met in the following and leave any discussion of subtle-
ties to [19]. A nontrivial requirement of the factorization is
the independence of the cross section on the factorization
scale�. This requirement leads to a constraint that the sum
of the anomalous dimensions of the hard, jet, and soft
functions is zero. We will show that this holds for the
angular correlation function.

We will use the results of the factorization theorem
proven in [18,19] to compute the distribution of the angular
correlation function from Eq. (5). In particular, we are
interested in the ensemble average of the angular structure
function as defined in Eq. (6). Note that this observable is
independent of any normalization factor of the angular
correlation function; thus, with the goal of computing the
average angular structure function, it is consistent to ignore
factors that are independent of G� and the angular resolu-
tion parameter R. Thus, for the purposes of this paper, we
can ignore the overall factors in the factorized form of the
cross section of the hard function and the unmeasured jet
functions. In this case, the factorized form of the cross
section becomes

d�

dG�1 � � �dG�M

¼ Cð�Þ
�YM
i¼1

JniðG�i;�Þ
�

� Sn1���nN ðG�1; . . . ;G�M;�Þ; (10)

where Cð�Þ is independent of G� and the resolution pa-
rameter R.

In this section, we present a calculation of the jet and
soft functions for the angular correlation function for jets
defined by a kT algorithm. We first argue that the angular
correlation function is computable in SCET and relate its
form at NLO to the form of jet angularity at NLO. This
comparison will allow us to relate the calculation of the
angular correlation function to the work in [19]. We then

present a calculation of the measured jet and soft functions
of the angular correlation function. From these results, we
can determine the anomalous dimensions of the jet and soft
functions and will show the consistency of the factorization
relies on a nontrivial cancellation of dependence on the
angular resolution R between the jet and soft functions. We
can then resum up to the next-to-leading logs of the jet and
soft functions by the renormalization group. Note that we
do not attempt to resum nonglobal logs [20] that arise due
to the nontrivial phase space constraints of the jet algo-
rithm or the angular correlation function. From the re-
summed expression of the angular correlation function,
we find the ensemble average and compute the average
angular structure function numerically.
It should be stressed that nonglobal logarithms are

ignored in this study. The angular correlation function for
a jet requires several phase space constraints; the jet algo-
rithm, soft jet vetoes, the resolution parameter R, etc.
These provide numerous sources for nonglobal logarithms
which cannot be resummed analytically. The study of non-
global logarithms in QCD cross sections is a subtle and
evolving story. For recent work in this direction, especially
in the context of nonglobal logarithms from jet clustering,
see, for example, [21–26]. It is outside the scope of this
paper to discuss nonglobal logarithms further.

A. Factorization of the angular correlation function

Factorization of jet observables requires that soft modes
only resolve the entire jet and not individual collinear
modes contributing to the jet. Angularity �a is a one
parameter family of observables defined as [13,14]

�a ¼ 1

2EJ

X
i2J

e��ið1�aÞp?i; (11)

where J is the jet, p?i is the momentum of particle i
transverse to the jet axis and �i is the rapidity of particle
i with respect to the jet axis:

�i ¼ � logtan
�i
2
: (12)

Angularity is IRC safe for a < 2. The separation of soft
and collinear modes in angularity is simple to show. To
leading power in �,

�a ¼ 1

2EJ

X
C2J

e��Cð1�aÞp?C þ 1

2EJ

X
S2J

e��Sð1�aÞp?S

¼ �Ca þ �Sa; (13)

where C and S represent the collinear and soft modes,
respectively. Note that the soft modes do not affect the
location of the jet center to leading power in �.
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Factorization of angularities exists only for a < 1 due to
the presence of logarithms of rapidity; however, recently it
was shown that these logarithms can be controlled [27,28].
We will show that angularity and the angular correlation
function have similarities which will allow us to use many
of the results from [19] here.

To justify the use of SCET for computing the angular
correlation function, we must first show that the angular
correlation function does not mix soft and collinear modes.
This argument was presented in [12] (based on arguments
from [29]), but we present it here for completeness. In
terms of soft and collinear modes, the angular correlation
function can be expressed as

G �ðRÞ ¼ 1

2E2
J

X
i�j

EiEj sin�ijtan
��1

�ij
2
�ðR� �ijÞ

¼ 1

2E2
J

X
i;j2C

EiEj sin�ijtan
��1

�ij
2
�ðR� �ijÞ

þ 1

2E2
J

X
i;j2S

EiEj sin�ijtan
��1

�ij
2
�ðR� �ijÞ

þ 1

2E2
J

X
C;S

ECES sin�CStan
��1 �CS

2
�ðR� �CSÞ:

(14)

Note that, to NLO, there is no soft-soft correlation contri-
bution to the angular correlation function because such a
term would require the radiation of two soft gluons which
first occurs at NNLO. To accuracy of the leading power in
�, we can exchange the collinear modes with the jet itself
in the collinear-soft term. Explicitly,

�CS ¼ �JS þOð�Þ; (15)

as the angle of the soft modes with respect to the jet center
scales as �JS � 1. Appropriate for NLO or NLL, the an-
gular correlation function can be written as

G �ðRÞ ¼ 1

2E2
J

X
i;j2C

EiEj sin�ijtan
��1

�ij
2
�ðR� �ijÞ

þ 1

2EJ

X
S

ES sin�JStan
��1 �JS

2
�ðR� �JSÞ:

(16)

Thus, the collinear and soft modes are decoupled to leading
power and so the angular correlation function is factoriz-
able, and hence computable, in SCET.

To NLO, a jet is composed of at most two particles, so
the form of many observables simplifies substantially at
this order. The form of the angular correlation function
from Eq. (5) was chosen so as to be similar in form to
angularity. The contribution to the angularity and the an-
gular correlation function from collinear modes is distinct.
The measured jet functions will need to be recomputed for
the angular correlation function. However, the contribu-

tions to the angularity and the angular correlation function
from soft modes are simply related:

G S
�ðRÞ ¼ ES

2EJ

sin�JStan
��1 �JS

2
�ðR� �JSÞ

¼ �S2���ðR� �JSÞ: (17)

This observation will allow us to recycle the soft function
calculation for angularity for the angular correlation
function.
An important point to note here is that the scaling of the

angle between collinear modes i and j goes like �ij � �.

Thus, to leading power, the angular correlation function for
the collinear-collinear contribution can be written as

G CC
� ¼ 1

2E2
J

X
i;j2C

EiEj sin�ijtan
��1

�ij
2
�ðR� �ijÞ

¼ 1

E2
J

X
i;j2C

EiEjtan
�
�ij
2
�ðR� �ijÞ: (18)

We will use this form of the collinear-collinear contribu-
tion to the angular correlation function for computing the
measured jet functions.
Throughout this paper, we will only consider jets with a

single collinear sector. Small values of the angular corre-
lation function are not enough to guarantee that the jet has
only a single collinear sector; however, we believe that
contributions from multiple collinear sectors is subdomi-
nant. Our reasoning is as follows. First, at large values of
R� R0, the angular correlation function is essentially an
angular-weighted jet mass measure. In this case, additional
collinear sectors would be correlated increasing the value
of the angular correlation function substantially. At small
R, there are two options: either collinear sectors are still
correlated or they are uncorrelated. If the collinear sectors
are still correlated at small R (they are within an angle R of
one another), then logarithms of this angle will appear.
However, the logarithms of the angle between the separate
collinear modes should be subdominant to the logarithms
of the resolution parameter of the angular correlation func-
tion, R. We do not attempt to resum the latter logarithms in
this paper. If the collinear sectors are uncorrelated and
separated by an angle larger than R, then the jet effectively
breaks up into several smaller jets each with similar scaling
properties as R ! 0. In sum, we expect the effect of addi-
tional collinear sectors to be significantly subdominant so
as to be consistently ignored in this study. We believe the
absence of fixed-order terms is a more important omission.

B. Measured jet functions

The leading power contribution to the measured jet
functions at NLO comes from two collinear particles
which are clustered in the jet and can be computed from
cutting one-loop SCET diagrams. The phase space inte-
grals can be extended over the entire range of momentum
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for the collinear particles in the jet as long as the contri-
bution from the zero momentum bin is subtracted [30].
In particular, we consider a jet with light cone momentum
l ¼ ðlþ; !; 0Þ which splits to two collinear particles
with light cone momenta q ¼ ðqþ; q�;q?Þ and l� q ¼
ðlþ � qþ; !� q�;�q?Þ. The zero-bin subtraction term
can be determined from the measured jet function by
taking the scaling q� �2. We will refer to contribution
to the jet function that does not include the zero-bin sub-
traction as the naı̈ve contribution.

To compute the measured jet function, we will need to
enforce phase space cuts from the jet algorithm and the
observable. We will compute the jet function for a kT-type
jet algorithm as defined by a jet radius R0. At NLO, all kT
algorithms are the same and two particles are clustered in
the jet if their angular separation is less than R0. This leads
to the phase space constraint

�kT ¼ �

�
cosR0 � q � ðl� qÞ

jqj ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðl� qÞ2p �

¼ �

�
tan2

R0

2
� qþ!2

q�ð!� q�Þ2
�
; (19)

where on the right, the leading scaling behavior was kept.
The jet algorithm constraint for the zero-bin subtraction
term is then

�ð0Þ
kT

¼ �

�
tan2

R0

2
� qþ

q�

�
: (20)

The phase space constraints for the angular correlation
function are more subtle. The � function which constrains

a jet to have angular correlation function G�, �R ¼
�ðG� � Ĝ�Þ, is

�R ¼ �

�
G� �!��2ð!� q�Þ1��ðq�Þ1��=2

	 ðqþÞ�=2�
�
tan2

R

2
� qþ!2

q�ð!� q�Þ2
��
; (21)

where R is the resolution parameter of the angular corre-
lation function. For a kT-type jet at NLO, the angular
correlation function vanishes if R> R0; thus, we will
assume that R< R0 in the following. This � function can
be decomposed depending on the value of � function as

�R ¼ �

�
G� �!��2ð!� q�Þ1��ðq�Þ1��=2

	ðqþÞ�=2�
�
tan2

R

2
� qþ!2

q�ð!� q�Þ2
��

¼ �ðG� �!��2ð!� q�Þ1��ðq�Þ1��=2

	ðqþÞ�=2Þ�
�
tan2

R

2
� qþ!2

q�ð!� q�Þ2
�

þ �ðG�Þ�
�

qþ!2

q�ð!� q�Þ2 � tan2
R

2

�
: (22)

The � function for the zero-bin subtraction term is found
by taking q� �2:

�ð0Þ
R ¼ �ðG� �!�1ðq�Þ1��=2ðqþÞ�=2Þ�

�
tan2

R

2
� qþ

q�

�

þ �ðG�Þ�
�
qþ

q�
� tan2

R

2

�
: (23)

1. Measured quark jet function

The naı̈ve contribution to the measured quark jet func-
tion can be computed in dimensional regularization from
the diagrams shown in Fig. 1:

~Jq!ðG�Þ ¼ g2�2	CF

Z dlþ

2


1

ðlþÞ2
Z ddq

ð2
Þd
�
4
lþ

q�
þ ðd� 2Þ l

þ � qþ

!� q�

�
2
�ðqþq� � q2?Þ�ðq�Þ

	�ðqþÞ2
�
�
lþ � qþ � q2?

!� q�

�
�ð!� q�Þ�ðlþ � qþÞ�

�
tan2

R0

2
� qþ!2

q�ð!� q�Þ2
�

	
�
�ðG� �!��2ð!� q�Þ1��ðq�Þ1��=2ðqþÞ�=2Þ�

�
tan2

R

2
� qþ!2

q�ð!� q�Þ2
�

þ �ðG�Þ�
�

qþ!2

q�ð!� q�Þ2 � tan2
R

2

��
: (24)

We take d ¼ 4� 2	. The coefficient to the �ðG�Þ term can be found by integrating over G�. The terms that remain areþ
distributions, which integrate to zero. The zero-bin subtraction term follows from taking the scaling limit q� �2 of the
naı̈ve jet function above:
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Jqð0Þ! ðG�Þ ¼ 4g2�2	CF

Z dlþ

2


1

lþ
Z ddq

ð2
Þd
1

q�
2
�ðqþq� � q2?Þ�ðq�Þ�ðqþÞ2
�ðlþ � qþÞ�ðlþ � qþÞ

	�

�
tan2

R0

2
� qþ

q�

��
�ðG� �!�1ðq�Þ1��=2ðqþÞ�=2Þ�

�
tan2

R

2
� qþ

q�

�
þ �ðG�Þ�

�
qþ

q�
� tan2

R

2

��
: (25)

The term proportional to �ðG�Þ is scaleless and integrates to zero in pure dimensional regulation.

Employing a MS scheme, we find the measured quark jet function for kT-type jet algorithms of G� to be

Jq!ðG�Þ ¼ ~Jq!ðG�Þ � Jqð0Þ! ðG�Þ

¼ �sCF

2


��
�

�� 1

1

	2
þ 3

2

1

	
þ �

�� 1

log�
2

!2

	
þ 1

	
log

tan2 R
2

tan2 R0

2

�
�ðG�Þ � 2

�� 1

1

	

�
�ðG�Þ
G�

�
þ

�
þ Jq!ðG�; 	

0Þ; (26)

where Jq!ðG�; 	
0Þ consists of terms that are finite as 	 ! 0.

These terms are presented in Appendix A. The definition of
the þ distribution is also given in Appendix A. Note that
the 1=	 terms for the angular correlation function are the
same as those for angularity from [19] with � ! 2� a
plus an additional term of the logarithm of the ratio of
scales; the resolution scale R and the jet radius R0. This
term contributes to the anomalous dimension of the jet
function. In principle, these logarithms could be attempted

to be resummed. However, note that the resolution scale R
can never practically be parametrically smaller than the jet
radius R0, so these logarithms never become large. Thus,
we will not worry about resumming these logarithms.

2. Measured gluon jet function

The naı̈ve contribution to the measured gluon jet func-
tion can be computed from the diagrams shown in Fig. 2:

~Jg!ðG�Þ ¼ 2g2�2	
Z dlþ

2


1

lþ
Z ddq

ð2
Þd
1

!� q�
2
�ðqþq� � q2?Þ2
�

�
lþ � qþ � q2?

!� q�

��
nFTR

�
1� 2

1� 	

qþq�

!lþ

�

� CA

�
2� !

q�
� !

!� q�
� qþq�

!lþ

��
�ðq�Þ�ðqþÞ�ð!� q�Þ�ðlþ � qþÞ�

�
tan2

R0

2
� qþ!2

q�ð!� q�Þ2
�

	
�
�ðG� �!��2ð!� q�Þ1��ðq�Þ1��=2ðqþÞ�=2Þ�

�
tan2

R

2
� qþ!2

q�ð!� q�Þ2
�

þ �ðG�Þ�
�

qþ!2

q�ð!� q�Þ2 � tan2
R

2

��
: (27)

FIG. 2. SCET Feynman diagrams contributing to the gluon jet function. Diagrams (F) and (G) have mirrored counterparts which are
not shown.

FIG. 1. SCET Feynman diagrams contributing to the quark jet function.
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The coefficient of the �ðG�Þ term can be found by integrating over G�. The terms that remain are þ distributions, which
integrate to zero. The zero-bin subtraction term follows from taking the scaling limit l� q� q� �2 of the naı̈ve jet
function above:

Jgð0Þ! ðG�Þ ¼ 4g2�2	CA

Z dlþ

2


1

lþ
Z ddq

ð2
Þd
1

q�
2
�ðqþq� � q2?Þ�ðq�Þ�ðqþÞ2
�ðlþ � qþÞ�ðlþ � qþÞ

	�

�
tan2

R0

2
� qþ

q�

��
�ðG� �!�1ðq�Þ1��=2ðqþÞ�=2Þ�

�
tan2

R

2
� qþ

q�

�
þ �ðG�Þ�

�
qþ

q�
� tan2

R

2

��
: (28)

The term proportional to �ðG�Þ integrates to zero in pure dimensional regulation. This zero-bin subtraction term is exactly
the same up to color factors as the quark jet function zero-bin subtraction.

Employing a MS scheme, we find the measured gluon jet function for the kT-type jet algorithms of G� to be

Jg!ðG�Þ ¼ ~Jg!ðG�Þ � Jgð0Þ! ðG�Þ

¼ �s

2


��
CA

�

�� 1

1

	2
þ �0

2	
þ CA

�

�� 1

log�
2

!2

	
þ CA

	
log

tan2 R
2

tan2 R0

2

�
�ðG�Þ � 2CA

	ð�� 1Þ
�
�ðG�Þ
G�

�
þ

�
þ Jg!ðG�; 	

0Þ;

(29)

where Jg!ðG�; 	
0Þ consists of terms that are finite as 	 ! 0. These terms are presented in Appendix A. �0 is the coefficient

of the one-loop � function:

�0 ¼ 11

3
CA � 2

3
NF; (30)

with TR ¼ 1
2 . As with the quark jet function, the 1=	 terms are the same as those for angularity from [19] with � ! 2� a

plus an additional term of the logarithm of the ratio of the resolution parameter R to the jet radius R0.

C. Measured soft function

As shown above, there is a simple relationship between the form of angularity for soft modes and the angular correlation
for soft modes. This relationship will allow us to use the results from [19] in computing the measured soft function for the
angular correlation function. First, we consider the phase space constraints from the jet algorithm and the angular
correlation function. For the kT jet algorithm, soft radiation must be within the jet radius R0 of the jet axis to be included:

�kT ¼ �

�
tan2

R0

2
� kþ

k�

�
: (31)

The � function that constrains the soft modes to contribute an amount Ga to the angular correlation function is

�R ¼ �

�
G� �!�1ðk�Þ1��=2ðkþÞ�=2�

�
tan2

R

2
� kþ

k�

��

¼ �ðG� �!�1ðk�Þ1��=2ðkþÞ�=2Þ�
�
tan2

R

2
� kþ

k�

�
þ �ðG�Þ�

�
kþ

k�
� tan2

R

2

�
: (32)

The measured soft function of a gluon emitted from lines i and j into a jet is

Smeas
ij ðG�Þ ¼ �g2�2	Ti � Tj

Z ddk

ð2
Þd
ni � nj

ðni � kÞðnj � kÞ 2
�ðk
2Þ�ðk0Þ�kT�R

¼ �g2�2	Ti � Tj

Z ddk

ð2
Þd
ni � nj

ðni � kÞðnj � kÞ 2
�ðk
2Þ�ðk0Þ�

�
tan2

R0

2
� kþ

k�

�

	
�
�ðG� �!�1ðk�Þ1��=2ðkþÞ�=2Þ�

�
tan2

R

2
� kþ

k�

�
þ �ðG�Þ�

�
kþ

k�
� tan2

R

2

��
: (33)

Note that the integral proportional to �ðG�Þ is scaleless and so vanishes in pure dimensional regularization. Also, the
integral is only nonzero if R< R0 and so the � function from the jet algorithm is redundant. Thus, we can write the soft
function as
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Smeas
ij ðG�Þ¼�g2�2	Ti �Tj

Z ddk

ð2
Þd

	 ni �nj
ðni �kÞðnj �kÞ2
�ðk

2Þ�ðk0Þ�
�
tan2

R

2
�kþ

k�

�

	�ðG��!�1ðk�Þ1��=2ðkþÞ�=2Þ: (34)

This is the same form of the measured soft function as for
angularity with a jet radius equal to Rwhich was computed
in [19]. Up to terms that are suppressed by 1=t2 from
Eq. (9), the measured soft function for jet i is

SmeasðGi�Þ ¼ � �s

2

T2
i

1

�� 1

��
1

	2
þ 1

	
log

�2tan2ð��1Þ R
2

!2

� 
2

12
þ 1

2
log2

�2tan2ð��1Þ R
2

!2

�
�ðGi�Þ

� 2

��
1

	
þ log

�2tan2ð��1Þ R
2

G2
i�!

2

�
�ðGi�Þ
Gi�

�
þ

�
;

(35)

where T2
i is the square of the color in the jet.

D. Anomalous dimensions and consistency conditions

A nontrivial requirement of the factorization is that the
physical cross section should be independent of the facto-
rization scale �. A consequence of this is that the anoma-
lous dimensions of the hard, jet and soft functions must
sum to 0. The requirement is

0 ¼
�
�Hð�Þ þ �unmeas

S ð�Þ þ X
i6	meas

�Jið�Þ
�
�ðG�Þ

þ X
i2meas

ð�JiðGi
�;�Þ þ �meas

S ðGi
�;�ÞÞ; (36)

where �H, �S, and �J are the anomalous dimensions of the
hard, soft, and jet functions. The � dependence must be
summed over the measured and unmeasured jet and soft
functions. The sum of the hard, unmeasured soft and un-
measured jet anomalous dimensions to NLO is

�Hð�Þ þ �unmeas
S ð�Þ þ X

i6	meas

�Jið�Þ

¼ ��s




X
i2meas

T2
i log

�2

!2
i tan

2 R0

2

� X
i2meas

�i; (37)

where �i depends on the flavor of the jet:

�q ¼ 3�s

2

CF; �g ¼ �s




11CA � 2NF

6
¼ �s

2

�0;

(38)

for quark and gluon jets, respectively. We will show that
the measured jet and soft function anomalous dimensions
for the angular correlation function are exactly what is
required to satisfy Eq. (36).

The anomalous dimensions of the measured jet or soft
functions are given by the coefficient of the 1=	 terms from
Eqs. (26), (29), and (35). The anomalous dimensions of the
quark and gluon jet functions can be written collectively as

�JiðGi
�Þ¼

�
�s



T2
i

�
�

��1
log

�2

!2
i

þ log
tan2R2
tan2R0

2

�
þ�i

�
�ðG�Þ

�2
�s



T2
i

1

��1

�
�ðG�Þ
G�

�
þ
; (39)

where �i is defined in Eq. (38). Note the nontrivial depen-
dence of the anomalous dimension on both the jet radius
and the resolution parameter of the angular correlation
function. The anomalous dimension of the measured soft
function for a quark or gluon jet is

�meas
S ðGi

�Þ ¼ ��s



T2
i

1

�� 1

�
�ðG�Þ log

�2tan2ð��1Þ R
2

!2
i

� 2

�
�ðG�Þ
G�

�
þ

�
: (40)

As mentioned earlier, jet angularity is not factorizable for
a ¼ 1 and here we see that the anomalous dimensions of
the angular correlation jet and soft functions become
meaningless for � ¼ 1, signaling a breakdown of factori-
zation. For the angular correlation function, we are most
interested in � ¼ 2, so we will not consider this issue
further here.
Summing over the measured jet and soft function

anomalous dimensions, we findX
i2meas

ð�JiðGi
�;�Þ þ �meas

S ðGi
�;�ÞÞ

¼
�
�s




X
i2meas

T2
i log

�2

!2
i tan

2 R0

2

þ X
i2meas

�i

�
�ðG�Þ: (41)

Note that there is a nontrivial cancellation of the angular
correlation function resolution parameter R between the jet
and soft functions. This contribution exactly cancels that
from the hard and unmeasured jet and soft functions in
Eq. (37), consistent with the factorization requirement.

E. Resummation and averaging

To proceed with the resummation to NLL of the jet and
soft functions, we will make a few observations. First, as
mentioned earlier, because we are ultimately interested in
the average angular structure function, we can ignore
factors in the resummed cross section that are independent
of G� or the resolution parameter R. Thus, we will not
discuss nor resum the hard function nor the unmeasured jet
and soft functions. Also, we will only consider a single
measured jet in an event. This prevents a study of interjet
correlations of the angular correlation function, but for this
paper we are most interested in the intrajet dynamics.
Anyway, the existence of factorization of jet observables
essentially trivializes correlations between jets since it

ANDREW J. LARKOSKI PHYSICAL REVIEW D 86, 054004 (2012)

054004-8



implies that correlations can only come from the soft
function. From these observations, we only need to resum
the measured jet and soft functions of a single jet.

With these considerations, we will need to compute the
convolution between the measured jet and soft functions:

d�

dG�

/
Z

dG0
�JðG� � G0

�;�J;�ÞSðG0
�;�S;�Þ; (42)

where �J and �S are the jet and soft scales, respectively.
We refer the reader to [19] for the details of generic NLL-
level resummation. Here, we will use the results collected
there appropriate for the angular correlation function. The
resummed differential cross section for the angular corre-
lation function of a single measured jet at NLL is

d�

dG�

/
�
�J

!

�
�!J

�
�Stan

��1 R
2

!

�
!S½1þ fJðG�Þ þ fSðG�Þ


	 eKJþKSþ�Eð!Jþ!SÞ

�ð�!J �!SÞ
�

1

G1þ!Sþ!J
�

�
þ
: (43)

! is the—component of the jet’s momentum and �E is the
Euler-Mascheroni constant. The functions !J, !S, KJ, KS,
fJ, and fS are written in detail in Appendix B. They depend
on the jet and soft scales and the factorization scale �. The
jet and soft scales will be, in general, sensitive to the value
of G� and the resolution parameter R. At very small values
of G�, the resummed distribution can become negative
and, in general, will need to be matched onto a nonpertur-
bative shape function in that region. We do not attempt to
correct the shape at very small Ga and instead just set the
cross section to zero where it would otherwise be negative.

The average angular correlation function can then be
computed from the cross section in Eq. (43) by integrating
over G�:

hG�ðRÞi ¼
Z Gmax

�

0
dG�

d�

dG�

G�

/
Z Gmax

�

0
dG�

�
�J

!

�
�!J

�
�Stan

��1 R
2

!

�
!S

	 eKJþKSþ�Eð!Jþ!SÞ

�ð�!J �!SÞ
½1þ fJ þ fS


G!Sþ!J
�

; (44)

where Gmax
� ¼ tan�R

2

4 is the maximum value of the angular

correlation function for a jet with two constituents. We
choose the scales �J and �S so as to eliminate the loga-
rithms that remain in the resummed distribution. The
choice of these scales can be seen from the form of the
fJ and fS terms as given in the Appendices. We find

�J ¼ !G1=�
� ; �S ¼ !G�

tan��1 R
2

: (45)

With this choice of scales, the average angular correlation
function simplifies:

hG�ðRÞi /
Z Gmax

�

0
dG�

eKJþKSþ�Eð!Jþ!SÞ

�ð�!J �!SÞ ½1þ fJ þ fS
:
(46)

Note, however, that there is nontrivial dependence on G�

in the functions !J, !S, KJ, and KS. Finally, to determine
h�G�i, we compute

h�G�i ¼ d loghG�i
d logR

: (47)

Plots of the average angular structure function as computed
in SCET and compared to Monte Carlo and NLO correc-
tions will be presented in the following sections.
While resummation of the angular correlation function

is necessary for an accurate description of the singular
regions of phase space, it is not obvious how important
resummation is for the average angular correlation func-
tion. Resummation of the distribution d�=dG� tames the
singularity at small values of G� and produces a peak. The
resummation contribution to the distribution is most im-
portant near the peak while fixed-order contributions are
most important in the tail, at large values of G�. However,
the average angular correlation function is sensitive to
both the resummed and fixed-order contributions. To get
a sense of the importance of the resummed contribution,
we can compare the location of the peak in d�=dG� to the
maximum G� value possible for a jet with two constitu-
ents. If the ratio of the location of the peak to the maximum
value of G� is small, resummation effects are minimal
while if that ratio is large, then the resummed contribution
dominates.
The comparison of the location of the peak in d�

dG�
to the

maximum value ofG� is shown in Fig. 3. Here, we have set
� ¼ 2 for illustration and the plot shows how the location
of the peak relative to the maximum value changes as the
resolution parameter R decreases. When R ¼ R0, the an-
gular correlation function is just the jet mass and the ratio is

0.2 0.4 0.6 0.8 1.0
R

0.005

0.010

0.050

0.100

R peak

R max

FIG. 3 (color online). Plots of the ratio between the location of
the peak in d�

dG�
to the maximum value of G� over a range in R.

For illustration, � ¼ 2 and the red (blue) curve is quark (gluon)
jets. The jet radius is R0 ¼ 1:0 and we have set the hard, jet, and
soft scales as in Eq. (45).
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relatively small for both quark and gluon jets. However, as
R is decreased from R0, the ratio increases, reflecting the
greater importance of the resummed contribution with
respect to fixed-order corrections. Thus, we expect that
the fixed-order contribution to the average angular corre-
lation and structure functions is largest at R� R0 while the
resummed contribution becomes more important at smaller
R. This will be discussed later when comparing the re-
summed calculation to Monte Carlo and NLO calculation
of the average angular structure function.

1. Lowest-order expansion

Before continuing, it is illuminating to expand the an-
gular correlation function to lowest order in the coupling
�s. To do this, we will need to expand Eq. (43) to Oð�sÞ.
The form of all of the functions in Eq. (43) are given in
Appendix B and, in particular, the expansions of the
Gamma, harmonic number, and polygamma functions are
needed. The necessary expansions are given in the
Appendices. To leading order in �s, we find

d�

dG�

/ �sð�Þ
2


T2
i

�
4 logtan

R

2
� 4

�
logG�

� 1

�

�
ci þ log

tan2 R
2

tan2 R0

2

��
1

G�

þOð�2
sÞ; (48)

where the factor ci depends on the flavor of the jet:

cq ¼ 3

2
; cg ¼ �0

2CA

: (49)

To compute this, we have set the jet and soft scales so as to
minimize the logarithms that appear in the cross section as
defined in Eq. (45). In this expression, note that the non-
cusp piece of the anomalous dimension of the measured jet
functions appears in the term in parentheses.

From this expression for the cross section differential in
the angular correlation function, we integrate over G� to
compute the average angular correlation function. To
Oð�sÞ, we find

hG�i �
Z tanaR

2
4

0
dG�

d�

dG�

G�

/
Z tan�R

2
4

0
dG�

�sð�Þ
2


T2
i

�
4 logtan

R

2
� 4

�
logG�

� 1

�

�
ci þ log

tan2 R
2

tan2 R0

2

��
1

G�

G�

¼ �sð�Þ
2


T2
i

tan� R
2

�

�
1þ log4� ci

4
� 1

4
log

tan2 R
2

tan2 R0

2

�

þOð�2
sÞ: (50)

Any overall factor independent of R does not affect the
average angular structure function because

h�G�ðRÞi � d loghG�i
d logR

¼ R

hG�i
dhG�i
dR

: (51)

To lowest order, the average angular structure function is
independent of �s and only dependent on the color of the
jet through the ci term. Equation (50) results in the average
angular structure function of

h�G�ðRÞi ¼ R

sinR

�
�� 2

4þ 4 log4� ðci þ log
tan2R2
tan2

R0
2

Þ

�

þOð�sð�ÞÞ: (52)

Equation (52) contains much of the physics that we
expect affects the form of the angular structure function.
The naı̈ve expectation for h�G�i is h�G�i ’ �. Equation
(52) contains an Oð1Þ correction to this result that is
negative. This was interpreted in [12] as an effect due to
the running coupling. However, here, this is probably not
the source of this effect because even for fixed coupling the
negative term exists. This is instead probably due to SCET
itself because only collinear and soft emissions are in-
cluded with respect to full QCD. Including all terms in
the resummed result should decrease the average angular
structure function further due to both the running coupling
and because an arbitrary number of soft and collinear
emissions are considered.
Also, note that the term ci is larger for quarks than for

gluons with sufficiently many flavors of quarks:

cq ¼ 3

2
� 11

6
� Nf

9
¼ cg; (53)

forNf � 3. This implies that, for sufficiently many flavors,

h�G�ig > h�G�iq, an observation that was also made in

[12]. There, this was attributed to the fact that gluons have
more color than quarks and so radiate more at larger
angles, effectively decreasing the strength of the collinear
singularity with respect to quarks. We expect that the
resummation magnifies the distinction between quarks
and gluons.
Another interesting observation to be made about the

form of the angular structure function is that, to this order,
it is Lorentz invariant. We then expect that all jets, regard-
less of energy (so long as it is above the hadronization scale
of QCD), have an angular structure function that deviates
only slightly from the form in Eq. (52). In particular, note
that Eq. (52) is the infinite jet energy limit of the (all-
orders) angular structure function. The contribution of
higher orders to the angular structure function would con-
tain prefactors of �sð�Þ which would vanish as � ! 1. If
we ignore the finite R terms from the expansion of sine and
tangent, h�G�ðRÞi is very flat, signifying very near scale
invariance over a large dynamical range R. Flatness is only
broken by a term that goes like 1= log R

R0
which is only

important at very small R=R0.
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It is accurate, then, to represent the angular structure
function in the form (again, ignoring the finite R terms
from sine and tangent)

h�G�ðRÞi ’ �� �ASF; (54)

where �ASF might be called the anomalous dimension of a
QCD jet and is independent of �. This anomalous dimen-
sion is a robust quantity that is intrinsic to the flavor of the
jet and properties of QCD. Measuring this property of the
angular structure function in data would be very interest-
ing. It is important to note, however, for all of the above
comments, Oð�sÞ contributions to the average angular
structure function have been ignored. These are expected
to be comparable in size to the second term in Eq. (52).
Note in particular that NNLO contributions can be just as,
or even more, important than the contributions from re-
summation. Indeed, for jets with three constituents, it was
computed in [12] that the effect at this order is to increase
the average angular structure function.

F. Non-Perturbative physics effects

In addition to the perturbative physics contribution to the
angular structure function, we would also like to under-
stand the effects from nonperturbative physics. For jets
produced in an eþe� collider, the dominant nonperturba-
tive effect is from hadronization. A simple physical argu-
ment can be used to determine how hadronization affects
the angular structure function. The partons created from
the parton shower will be connected to one another by
color strings which stretch across the event. After the
termination of the parton shower at an energy scale of
about 1 GeV, these color strings are allowed to break to
create a quark-antiquark pair if it is energetically favorable.
This string breaking continues until all particles are con-
nected by strings with sufficiently low tension and are then
associated into hadrons. In the process of breaking the
strings and creating quark pairs, the number of particles
that are created at small angles with respect to one another
increases from that which was created in the perturbative
parton shower. Thus, hadronization increases particle pro-
duction at small angles, effectively increasing the strength
of the collinear singularity and decreasing the value of the
average angular structure function.

The effect of hadronization decreasing the average an-
gular structure function can also be quantitatively studied.
Note that the angular correlation function is just the
(squared) mass of a jet from constituents that are separated
by angular scale R or less. Dasgupta, Magnea, and Salam
[31] studied the effect of nonperturbative physics on the
transverse momentum and mass distributions of jets at
hadron colliders. For the mass, they found that the leading
correction due to hadronization is

h�M2i � CR0 þOðR3
0Þ; (55)

where C is independent of R0, the jet radius. For the
angular correlation function, we expect that the effect of
hadronization would also result in a correction propor-
tional to R, the resolution parameter of the angular corre-
lation function. We can write

hG�ðRÞi ’ CpertR
� þ Cnon�pertR; (56)

where Cpert is the perturbative contribution to the angular

correlation function and Cnonpert is the nonperturbative

contribution. The average angular structure function that
follows from this is

h�G�ðRÞi ¼
�CpertR

� þ Cnon�pertR

CpertR
� þ Cnon�pertR

< �; (57)

where the inequality follows when �> 1. Note that the
perturbative angular structure function is approximately �
and so, indeed, hadronization effects decrease the value of
the angular structure function.
The argument presented here and in [31] relies on

the one-gluon approximation to determine the effect of
hadronization. Universality of the hadronization and power
correction effects was argued with the one-gluon approxi-
mation in Refs. [32,33] and demonstrated for event shapes
in SCET in Refs. [34,35]. The arguments in Refs. [34,35]
relied on the boost invariance of the soft function for back-
to-back jets. How the argument might extend to an arbi-
trary number of jets in arbitrary directions is unclear as the
boost invariance is, at least naı̈vely, broken. We will not
discuss how this might be extended, but we note that,
because of the qualitative and quantitive arguments from
the one-gluon approximation, we expect that the universal-
ity holds in SCET.

G. The angular correlation function at the LHC

Finally, we will discuss how the results obtained here for
the SCET resummation might be extended to the LHC, to
processes initiated by pp collisions. For an observable O
that factorizes at hadron colliders, the cross section can be
written in the schematic form [36–38]

d�

dO
¼Hð�Þ	CabBað�ÞBbð�Þ�

�Y
ni

JniðO;�Þ
�
�SðO;�Þ:

(58)

The beam functions Bi encode the properties of the initial
parton i and the matrix Cab weights the colliding partons
by the appropriate cross section. Indices a and b are
implicitly summed over. In this case, the flavor of the jet
functions depends on the flavor of the initial colliding
partons which affects the admixture of quark and gluon
jets that contribute to O. Note also that the soft function
includes contributions from radiation from initial state
partons. Therefore, while not necessarily manifest in
Eq. (58), the beam functions implicitly affect the jet and
soft functions.
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Nevertheless, we expect that the angular correlation
function has nice factorization properties at hadron col-
liders. With the goal of computing the average angular
structure function, we can again ignore anything in the
factorization of the angular correlation function that is
independent of Ga or the resolution parameter R:

d�

dG�i

/CabBað�ÞBbð�Þ�JniðG�i;�Þ
�Sna;nb;n1���nN ðG�i;�Þ; (59)

where we have chosen to measure G� in jet i in an event
with N jets. Dependence on the beam functions has been
retained, however. This is because, for a given set of jets
1; . . . ; N, different initial states contribute to the cross
section with different weights. Thus, the beam function
contribution to the factorization, CabBað�ÞBbð�Þ, is ac-
tually not an overall constant factor and so must be in-
cluded. Note also that the color of the colliding partons
affects the radiation included in the soft function. The
beam functions are universal and so can be computed
once and for all. While this is not a rigorous proof of
factorization of the angular correlation function, many of
the results obtained in the eþe� collider context should be
able to be recycled for the hadron collider case. This
deserves significant future study.

III. COMPARISON TO FIXED-ORDER
CALCULATION

In this and the following section, we will focus most of
our attention on the (proper) angular correlation function
with � ¼ 2:

G 2ðRÞ � GðRÞ ¼ 1

2E2
J

X
i�j

EiEj sin�ij tan
�ij
2
�ðR� �ijÞ:

(60)

To evaluate this jet observable in SCET, we must choose
the hard, jet, and soft scales. For many of the comparison
plots we choose the following scales:

�H ¼ !; �J ¼ !G1=2; �S ¼ !G
tanR2

: (61)

These choices of scales minimize logarithms that appear in
the resummed distribution. However, it is important to
understand the dependence of the result on the choice of
these scales and so we will also present plots in which the
scales are varied by the standard factors of 2 and 1=2. The
evaluation of the average angular structure function from
the SCET cross section is done numerically. Note that for
consistency of the factorization the jet scale �J must be
larger than the soft scale �S which is the requirement that
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(b) Hard scale variation
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(c) Jet scale variation
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FIG. 4 (color online). Plots of the average angular structure function for quark (red) and gluon (blue) jets. Figure 4(a) compares the
curves from SCET resummation (solid) to anti-kT jets from PYTHIA8 (dashed). The PYTHIA8 curves were computed from 3 jet final
states in which all jets had equal energy. Figsures 4(b)–4(d) compare the PYTHIA8 curves to SCET bands in which the hard, jet, and soft
scales have been varied by a factor of 2. To make these curves, the jet radius has been set to be R0 ¼ 1:0 and the energy of the jets is
300 GeV.
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tan
R

2
� G1=2: (64)

To maintain this separation, the resolution parameter can-
not be too small; we will only consider R * 0:1. For
smaller values of R, logarithms of R become large and
must be resummed, which is beyond the scope of this
paper.

The average angular structure function as computed in
SCET is plotted in Fig. 4 where the curves for quark and
gluon jets are compared to the output of PYTHIA8. The
PYTHIA8 curves will be discussed in the next section.

Figure 4(a) compares the quark and gluon curves with
the hard, jet, and soft scales set to their values in
Eq. (61). The observations from the previous section are
apparent with the quark average angular structure function
less than the gluon average angular structure function and
both slightly less than 2. The scale variations of these
curves are shown in Figs. 4(b)–4(d). Note that in particular
there is relatively wide range over which the angular
structure function varies when the jet and soft scales are
changed by a factor of 2.

Because the average angular correlation function is
defined by integrating over the entire range ofG�, its value
and shape is sensitive to radiation in all regions of phase
space. Resummation is necessary for an accurate descrip-
tion of the physics in the singular regions of phase space
while higher fixed-order contributions are necessary for a
good description in the nonsingular regions of phase space.
A proper treatment of resummation and fixed-order in-
volves consistently matching the two contributions so
that the resulting distribution is accurate order by order
in �s over the entire phase space. This matching is a
nontrivial procedure and, instead, we will just focus on
the contribution from higher fixed-order matrix elements.
This will give us a sense, at least, for how fixed order and
resummation affect the average angular structure function.

To do this, we use NLOJetþþ v. 4.1.3 [39,40], based
on the dipole subtraction method of [41], to compute the
average angular structure function to NLO in eþe� colli-
sions. NLOJetþþ can compute matrix elements to NLO
for up to 4 final state partons (and, at tree level, up to 5 final
state partons) and so, by demanding jet requirements,
produces jets with very few constituents in them. This
results in very inefficient calculation of cross sections.
Also, the public version of NLOJetþþ does not record
flavor information of partons so the identity of quark and
gluon jets cannot be easily determined. Further, it is not
enough that the cross section differential in the angular
correlation function at fixed R is smooth for the average
angular structure function to be smooth. The distributions
must also be smooth over R so that the derivative that
defines the average angular structure function is well-
behaved. To assuage these issues, in this section, we will
define an event-wide angular correlation function, where
the sum in Eq. (5) runs over all particles in the event.

The event-wide angular correlation function is defined
over all particles in the event with no jet algorithm cut. In
the limit that there are three final state particles this reduces
precisely to the angular correlation function of the hardest
jet, extending up to an R of about the radius of the hardest
jet. The angular correlation function will only include the
contribution from the two closest partons because the third
parton must be very far away in angle. This argument
doesn’t hold at higher orders, but for those cases we expect
that the event-wide definition will be an average over the
angular correlation functions of quark and gluon jets.
We present the calculation of the average angular struc-

ture function fromNLOJetþþ for three final state partons
to NLO in Fig. 5. The center of mass energy is taken to be
600 GeV in eþe� collisions. At a eþe� collider, most of
the time, the hardest jet will contain a quark and a radiated
gluon so we compare the output of NLOJetþþ to NLL
resummation results for quark jets. Figure 5 also contains
two curves of quark jets from PYTHIA8 which will be
discussed in the next section. The NLO calculation of the
angular structure function is approximately flat and greater
than 2 which we interpret as an effective weakening of the
collinear singularity due to the presence of wide-angle
radiation. The fact that the NLO result is slightly larger
that 2 was anticipated in [12] where it was shown that a jet
with three constituents should have an average angular
structure function larger than 2 by a term proportinal to
�s. Matching the calculations from NLL and NLO would
produce a curve that interpolates between the NLL result at
small R and the NLO result at large R.
To generate the NLOJetþþ curve, about one trillion

events were processed over about 1 CPU year. Even with
this many events, the average angular structure function
from NLOJetþþ is still quite noisy. However, the noise
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FIG. 5 (color online). Comparison of NLOJetþþ calculation
of the event-wide average angular structure function in 3 jet final
states to NLO (dotted) to SCET NLL resummation of the
average angular structure function for quark jets (solid). Two
curves from PYTHIA8 are shown: the dashed curve is the average
angular structure function for quark jets from eþe� ! 3 jets and
the dot-dashed curve is the average angular structure function
from eþe� ! 2 jets.
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can be reduced by averaging the angular structure function
over a small range in R at each point. This was done for the
curve in Fig. 5. Computing the average angular structure
function in 4 jet final states to NLO was attempted in the
same CPU time as the 3 jet results. However, the resulting
curves were much too noisy to be used. To produce curves
at higher orders using NLOJetþþ probably requires cen-
turies of CPU time for distributions to converge. However,
other programs such as BlackHat [42] might be better-
suited to higher multiplicity final states at NLO. Work in
this direction is ongoing.

IV. PARTON SHOWER
MONTE CARLO COMPARISON

In this section, we compare our calculation of the aver-
age angular structure function from SCET to the output of
Monte Carlo event generator and parton shower. Through
the Sudakov factor which dictates the probability that no
branchings occur between two scales of an evolution vari-
able, the parton shower resums logarithms of the evolution
variable that arise from soft and collinear emissions.
Monte Carlo generators create fully exclusive events and
so the process of resummation of the logarithms is distinct
from that in SCET, for example, and examining the differ-
ences is interesting. The parameter that defines the evolu-
tion in the parton shower is also (relatively) arbitrary and
different choices of the evolution variable lead to different
emphases on soft or collinear splittings. In addition, ha-
dronization and other nonperturbative physics is described
by phenomenological models which can be used to under-
stand the size and effect of power-suppressed contributions
to observables. All of these points and their effects will
explored in this section.

For most of the Monte Carlo comparison, we first gen-
erated tree-level events for the process eþe� ! q �qg using
MADGRAPH5 v. 1.4.5 [43] at center-of-mass energy of

900 GeV. These partons are required to each have equal
energy E ¼ 300 GeV so that they are well-separated and
factorization-breaking terms in the soft function are mini-
mized. These events were then showered using the
pT-ordered shower of PYTHIA8 v. 8.162 [44]. All default
settings of PYTHIA8 were used except for turning hadroni-
zation on and off to study the difference. In most plots
hadronization in PYTHIA8 has been turned off. To study the
effect of using different evolution variables in the parton
shower, we shower the MADGRAPH events with VINCIA

v. 1.0.28 [45]. From the showered events, jets were found
with the FASTJET v. 3.0.2 [46] implementation of the anti-kT
algorithm [47]. We choose the jet radius to be R0 ¼ 1:0.
The three hardest jets are required to have energy between
250 and 350 GeV and we identify jets as coming from a
quark or gluon by demanding that the cosine of the angle
between the jet axis and the direction of a parton from
MADGRAPH be greater than 0.9.

In Fig. 4, we plot the average angular structure function
for quark and gluon jets identified in PYTHIA8 (with no
hadronization) and the angular structure function as com-
puted in SCET. Note that the average angular structure
function as computed in SCET is significantly smaller than
that from PYTHIA8, especially at larger R. This difference
can be attributed to higher order effects which were shown
in the previous section to increase the value of the average
angular structure function. Figure 4 also illustrates the
distinction between quark and gluon jets. For most of the
range of 0<R< 1, the average angular structure function
for gluon jets is greater than that for quark jets, reflecting
the fact that gluons have more color and radiate more at
wider angles than do quarks. This effect is present in both
the PYTHIA8 curves and the resummed calculation. Because
the SCET calculation only included effects from jets with
at most two constituents, the curves terminate precisely at
the jet radius of R0 ¼ 1:0. For these anti-kT jets in PYTHIA8,
the edge effects from the jet algorithm are small, extending
only over a range of at most R ¼ 0:8 to R ¼ 1:2. Also, we
have not plotted the SCET curves below R ¼ 0:1, where
they begin to deviate substantially from their value at
larger R.
Figure 5 compares the average angular structure func-

tion from NLOJetþþ to quark jets in SCET and two
different curves from PYTHIA8. The different PYTHIA8

curves exhibit the affect of wide angle radiation captured
by the jet on the average angular structure function. In that
figure, the dashed curve is the quark jet average angular
structure function from the PYTHIA8 sample described
above. The dotted-dashed curve is the average angular
structure function from quark jets from eþe� ! q �q
samples generated and showered in (otherwise default)
PYTHIA8. The center of mass energy was set to be

600 GeV and the jets were required to have energy within
50 of 300 GeV. Higher order effects are obvious. The
PYTHIA8 curves agree well with one another at small R
up to R� 0:6 and then diverge at larger R. The jets in the 3
jet sample collect wide-angle radiation from the neighbor-
ing jets which increases the average angular structure
function at large R. To fully understand the rise within an
analytic calculation requires matching fixed-order to re-
summed result. Fixed-order contributions are responsible
for the wide-angle emissions that increase the average
angular structure function because SCET factorization
effectively decouples the jets.
As discussed in Sec. II F, we expect the effect from

nonperturbative physics on the angular structure function
to be small and relatively well-understood. In particular,
relying on arguments from the one-gluon approximation,
we expect that hadronization increases the strength of the
collinear singularity and that this effect is most prominent
at small values of R. In Fig. 6, we have plotted the average
angular structure function for quarks and gluons compar-
ing the curves with hadronization turned on or off. Indeed,
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the effect is small but unambiguous: hadronization effec-
tively increases the strength of the collinear singularity. As
discussed earlier, extending the arguments from [34,35] on
the effect of nonperturbative physics would be greatly
desired to fully describe (at least) average behavior of
hadronization for events with multiple jets.

A. Monte Carlo error estimates

Finally in this section, we would like to get a handle on
the error or uncertainty in the Monte Carlo parton shower
in PYTHIA. Typically, this is done by studying the output of
different tunes of the same Monte Carlo program or com-
paring different Monte Carlo programs altogether. In par-
ticular, as is relevant for the parton shower, the evolution
variable of the parton shower dictates when and how
emissions should occur. Reference [48] observed differ-
ences in event shape variables as computed in PYTHIA 6.4

[49] between two tunes; one pT-ordered and the other
virtuality ordered. However, these two tunes had other
distinctions as well and so purely the effect of the evolution
variable is obscured. Also, comparing two different
Monte Carlos is subtle because the number of differences
is typically huge and so isolating effects of single parame-
ters or choices is very difficult.

Here, we would like to study the effect of different
evolution variables in the parton shower. The choice of
the evolution variable is only a change of variables in the
Sudakov form factor and so must produce the exact same
leading-log resummation for any (consistent) choice of
evolution variable. However, the choice of evolution vari-
able can lead to higher log-order effects through the scale
at which �s is evaluated or by emphasizing soft over col-
linear splittings, for example. To study the differences, we
use the VINCIA [45] parton shower plug-in for PYTHIA8

which is based on 2-to-3 splittings as opposed to the
standard 1-to-2 splittings as in PYTHIA and HERWIG [50].
VINCIA includes a flag which allows the user to change only

the evolution variable. For concreteness, we will consider
pT-ordering and virtuality ordering.
In Fig. 7 we have plotted the SCET resummation and

PYTHIA8 output for the average angular structure function

as well as a band which extends over the range between the
output of the pT-ordered and the virtuality ordered shower
in VINCIA. The exact same requirements on the jets were
made in the VINCIA sample as in the PYTHIA8 sample as
described earlier. Over most of the range in R, the lower
edge of the VINCIA band is set by the pT-ordered shower
and upper edge by the virtuality ordered shower. This is
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(b) Identified quark jets

FIG. 6 (color online). Comparison of the average angular structure function as computed in PYTHIA8 with (dotted) and without
(dashed) hadronization.
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FIG. 7 (color online). Comparison of SCET computation (solid) and PYTHIA8 (dashed) of average angular structure function to the
output of VINCIA Monte Carlo parton shower with two different evolution variables: pT and virtuality. The shaded region lies between
the curves from VINCIA.
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expected as the pT-ordered shower emphasizes collinear
emissions more than the virtuality-ordered shower. Note
also that the band is slightly above the output of the pT

ordered shower in PYTHIA8. Part of this effect could be due
to the default matrix element matching in VINCIA: final
states with up to 5 partons are matched to tree-level matrix
elements. Regardless of the details, the effect of changing
the evolution variable is large. Understanding if and how
parton showers resum higher order logarithms with differ-
ent evolution variables, matching schemes, etc., is neces-
sary to understand the source of the differences.

V. CONCLUSIONS

The average angular correlation and structure functions
capture the average scaling properties of QCD jets. We
have presented a calculation of the angular correlation
function to NLL accuracy in SCET and compared this
result to the PYTHIA8 Monte Carlo parton shower and to
fixed-order results from NLOJetþþ. Comparing the re-
summed SCET result to the fixed-orderNLOJetþþ result
provides a good understanding as to the behavior of the
parton shower result. However, for a full understanding,
matching of the resummed and fixed-order distributions is
required. Much like the jet shape [16], the average angular
structure function could be used for tuning of the
Monte Carlo. Because it is a two-point correlation func-
tion, the angular correlation function captures distinct
information from the jet shape and so this tuning would
be nontrivial.

There are several directions for extending the study
presented here. First, it would be desirable to compute
the angular correlation function in collisions at the LHC.
It remains an outstanding problem to use SCET to resum
logarithms for arbitrary observables in hadron colliders
because factorization of the (colored) initial and final states
is highly nontrivial. However, using the observations from
Sec. II G, the computation of the average angular structure
function at hadron colliders might only require a reinter-
pretation of the results presented here. Recently, NLO
results were obtained for pp ! 4j events [51] from which
any IRC-safe observable could be computed. In particular,
for four final state partons, the hardest jet can contain up to
three constituents which would be beyond the resummed
order in the SCET calculation. Also, at a hadron collider,
underlying event or pile-up produce significant back-
ground radiation that can be collected into a jet. A proce-
dure to determine the contribution to a jet from these
nonperturbative sources is necessary to properly determine
jet energy scales and to study substructure. The results
presented here could be used to determine the average
contribution to a jet using the procedure introduced in [12].

For a more accurate prediction of the angular correlation
function, matching of NLL and NLO results must be done
to have good control of the distribution over the entire
phase space. Factorization of jet observables allows for a

process-independent computation of the NLL resummed
result; however, the fixed-order calculation is process de-
pendent and must be couched in a particular study. We
showed that the average angular structure function is sensi-
tive to wide-angle radiation so matching is vital for accurate
predictions. NLOJetþþ or results like those from [51] are
promising in their applicability to generic processes. It is
unlikely that QCD jet observables can be reliably computed
to NNLL or beyond analytically because non-global loga-
rithms become important. Nevertheless, by studying limit-
ing behavior such as in [6] the effect of these nonglobal
logarithms might be reduced.
Finally, as there exist few jet substructure observables

that have been (or even can be) computed with analytic
methods, it is important to compute those that are possible.
The calculation of the angular correlation function pro-
vides powerful insight into the behavior of QCD and the
dynamic properties of jets. Though scale-invariance is
broken in QCD by a running coupling, jets maintain a
fractal, conformal structure to very good approximation
over a wide dynamical range.
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APPENDIX: A. MEASURED JET FUNCTIONS

Here, we present the finite pieces of the measured jet
functions for quark and gluon jets as defined by a kT-type
algorithm for the angular correlation function. These func-
tions are composed of contributions from � functions
and þ distributions. For a function gðxÞ, we define
the þ distribution as [52]

½gðxÞ�ðxÞ
þ ¼ gðxÞ�ðxÞ � �ðxÞ
Z 1

0
dx0gðx0Þ; (A1)

so that Z 1

0
dx½gðxÞ�ðxÞ
þ ¼ 0: (A2)

From this definition, it is straightforward to compute the
measured jet functions. The terms that are infinite in four
dimensions were presented in Sec. II B. The terms that are
finite in four dimensions are, for a quark jet:
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For a gluon jet, the finite terms are
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Gmax
� is the largest value that G� can take for a jet with two

constituents:

G max
� ¼ tan� R

2

4
; (A5)

where we have taken the leading � dependence for the
collinear modes.

APPENDIX: B. RESUMMED DISTRIBUTION FOR
ANGULAR CORRELATION FUNCTION

The expression for the resummed cross section is
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!J, !S, KJ, and KS result from the resummation of the
individual jet and soft functions [53–57]. The functions!J

and !K are defined by !J � !Fð�;�JÞ and !S �
�!Fð�;�SÞ, where
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�0 is the coefficient of the one-loop � function as defined
in Eq. (30) and �1 is the two-loop coeffcient:

�1 ¼ 34

3
C2
A � 10

3
CANf � 2CFNf: (B3)

r is the ratio of the strong coupling at two scales:

r ¼ �sð�Þ
�sð�0Þ ; (B4)

and the energy dependence of the strong coupling is given
by the two-loop expression
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for �s evaluated at the two scales� andQ. The terms �0
cusp

and �1
cusp are the one- and two-loop coefficients of the cusp

anomalous dimension. Their ratio is given by [58]
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The function KJ is given by
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i defined as
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where ci is defined in Eq. (49). KS is defined similarly
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�sð�Þ

þ
�
�1
cusp

�0
cusp

��1

�0

�
1�rþ logr

4

þ �1

8
�0

log2r

�
:

(B9)

The functions fJ and fS are generated by the convolu-
tion of the jet and soft functions. Accurate to NLL, they are

fJðG�;�;�JÞ ¼ �sð�JÞT2
i

2

�ðGmax

� �G�Þ
�

2�

�� 1
log2

�J

!G1=�
�

þ log2tan2
R0

2
þ ð�� 1Þlog2tan2 R

2
� 2ci logtan

R0

2

þ 1

�� 1

2

�

�

2

6
� c ð1Þð�!J �!SÞ

�
þ

�
ci þ log

tan2 R
2

tan2 R0

2

þ 2

�� 1
Hð�1�!J �!SÞ

��
2 log

�J

!G1=�
�

þ 1

�
Hð�1�!J �!SÞ

��
; (B10)

and

fSðG�;�;�SÞ¼��sð�SÞ



T2
i

��1

	
��

log
�Stan

��1R
2

!G�

þHð�1�!J�!SÞ
�
2

þ
2

6
�c ð1Þð�!J�!SÞ

�
: (B11)

HðxÞ is the harmonic number function defined by

HðxÞ ¼
Z 1

0

1� tx

1� t
dt; (B12)

and c ð1ÞðxÞ is the trigamma function

c ð1ÞðxÞ ¼
Z 1

0

te�xt

1� e�t dt: (B13)

Note that the logarithms in these functions can be mini-
mized by choosing

�J ¼ !G1=�
� ; �S ¼ !G�

tan��1 R
2

: (B14)

For expansion of the resummed distribution, the follow-
ing relations are needed:

Hð�1� 	Þ2 � c ð1Þð�	Þ ¼ �
2

2
þOð	Þ; (B15)

Hð�1� 	Þ
�ð�	Þ ¼ �1þ �E	þOð	2Þ: (B16)
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