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Jet vetoes play an important role at the LHC in the search for the Higgs and ultimately in precise

measurements of its properties. Many Higgs analyses divide the cross section into exclusive jet bins to

maximize the sensitivity in different production and decay channels. For a given jet category, the veto on

additional jets introduces sensitivity to soft and collinear emissions, which causes logarithms in the

perturbative expansion that need to be resummed to obtain precise predictions. We study the higher-order

resummation properties of several conceptually distinct kinematic variables that can be used to veto jets in

hadronic collisions. We consider two inclusive variables, the scalar sum over pT and beam thrust, and two

corresponding exclusive variables based on jet algorithms, namely, the largest pT and largest beam thrust

of a jet. The inclusive variables can, in principle, be resummed to higher orders. We show that for the jet-

based variables, there are dual effects due to clustering in the jet algorithm for both large and small jet

radius R that make a complete resummation at or beyond next-to-leading logarithmic order challenging.

For R� 1, the clustering of soft and collinear emissions gives Oð1Þ contributions starting at next-to-next-

to-leading logarithm that are not reproduced by an all-orders soft-collinear factorization formula and

therefore are not automatically resummed by it. For R � 1, clustering induces logarithms of R that

contribute at next-to-leading logarithm in the exponent of the cross section, which cannot be resummed

with currently available methods. We explicitly compute the leading jet clustering effects at Oð�2
sÞ and

comment on their numerical size.
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I. INTRODUCTION

The LHC is at the brink of discovering (or ruling out) a
standard-model-like Higgs boson [1,2]. Many Higgs and
new-physics analyses divide the data into categories based
on the number of hard jets in the final state. This ‘‘jet-
binning’’ significantly enhances the experimental sensitiv-
ity to various combinations of Higgs production and decay
channels. The experimental distinction between different
channels is of course an important requirement to deter-
mine the Higgs properties. Any coupling measurement
requires precise and reliable theory predictions of the jet
cross sections used in the experimental analysis.

By vetoing jets, one restricts the phase space for addi-
tional emissions. This makes the cross section sensitive to
soft and collinear radiation, which induces Sudakov double
logarithms of the jet-veto variable at each order in pertur-
bation theory. At small enough cuts the logarithmic cor-
rections become large and dominate the perturbative series,
which degrades the reliability of fixed-order perturbation
theory. To obtain precise predictions and robust uncertainty
estimates, it is important to understand the structure of
large logarithms and ideally resum them to all orders in
perturbation theory. The form of the jet-veto logarithms
and the precise structure of the logarithmic series depends
on the details of how the jet veto is imposed.

In this paper we consider four kinematic variables that
are conceptually and theoretically distinct, and study the
prospects for resumming the respective large logarithms

when these (types of) variables are used to veto central jets.
For definiteness, we will discuss the process gg ! H þ 0
jets in the following, but our analysis applies to the pro-
duction of any color-singlet in conjunction with a veto on
central jets. It also carries over to generic processes where
one requiresN signal jets in the final state and places a veto
on additional jets, i.e., when measuring an exclusive N-jet
cross section.
In principle, one can think of various kinematic varia-

bles that can be employed to enforce a veto on hard
emissions. The four variables we will discuss are summa-
rized in Table I and are described next. They are classified
as either inclusive or exclusive (jet-based) variables and
according to their sensitivity to either the virtuality or pT of
emissions.
The inclusive variables we consider are beam thrust [3]

and the scalar sum of pT ,

T B ¼ X
m

j ~pTmje�jym�Yj; (1)

TABLE I. Classification of different jet-veto variables.

Sensitive to

virtuality pT

Inclusive T B ET

Jet-based (exclusive) T j pTj

Constraint � T cut � pcut
T
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ET ¼ X
m

j ~pTmj; (2)

where ~pTm and ym are the transverse momenta and rapid-
ities with respect to the beam axis of all particles in the
final state, but excluding the Higgs decay products, and Y
is the rapidity of the Higgs boson.1 For these inclusive
variables, one sums over all hadrons m in the final state,
which at the perturbative level corresponds to constraining
the sum over all emissions. As a result, such inclusive
variables are theoretically the cleanest and best under-
stood. The complete resummation of logarithms at small
T B and ET has been carried out to next-to-next-to-leading
logarithm (NNLL) [4,5] and next-to-leading logarithm
(NLL) [6], respectively, and the extension to higher loga-
rithmic orders poses no conceptual difficulties. The inclu-
sive nature of these variables makes it challenging to
measure them in a hadron-collider environment. These
experimental issues can be mitigated by summing over
jets rather than hadrons, as is done in current event-shape
measurements at the LHC [7,8], or by only summing over
charged tracks, which can then be corrected for in the
measurement.

The difference between T B and ET is in the dif-
ferent rapidity weighting of emissions. In the rest frame
of the Higgs, where Y ¼ 0, T B is equivalent to the sum
over the small light-cone component of momenta, T B ¼P

kðEk � jpz
kjÞ � t=mH, where t is the spacelike virtuality

of the colliding hard partons after initial-state radiation.
Hence, by measuring beam thrust T B one is sensitive to
the virtuality scale of emissions. In contrast, by measuring
ET one is sensitive to the pT scale of emissions, and one
might call it ‘‘beam broadening.’’ This difference in sensi-
tivity to virtuality vs pT causes the logarithmic series at
small T B or ET to have very different structures. In the
parton shower, this difference is analogous to the different
Sudakov form factors for virtuality and pT ordered
showers.

The exclusive jet-based variables we consider are the
largest beam-thrust or pT of a jet, given by

T j ¼ max
m2jðRÞ

j ~pTmje�jym�Yj; (3)

pTj ¼ max
m2jðRÞ

j ~pTmj; (4)

where ~pTj and yj are the jet’s transverse momentum and

rapidity. They have the same sensitivity to the virtuality or
pT scale of emissions as their inclusive counterparts T B

and ET in Eqs. (1) and (2). The exclusive variables are
based on identifying jets jðRÞ of size R and considering the
largest contribution from a jet. Perturbatively, this corre-
sponds to constraining the maximum of all emissions at a

typical ‘‘resolution scale’’ R, which is in contrast to con-
straining the sum of emissions as in the inclusive variables.
We focus on jets using the kT class of algorithms [9–13].
The jet-based variables are more straightforward to use
experimentally, and a pT veto on jets using the anti-kT
algorithm is the common choice in experiments. On the
other hand, the variable’s inherent dependence on the jet
algorithm and the resolution scale R make them consid-
erably less tractable theoretically. The resummation for pTj

was considered recently in Refs. [14,15].
We implement the veto on central jets by putting a

constraint

T B � T cut; ET � pcut
T ;

T j � T cut; pTj � pcut
T ;

(5)

and define the small parameter � by

�2 ¼ T cut=mH or � ¼ pcut
T =mH: (6)

The cross section with a T cut or pcut
T contains Sudakov

logarithms �n
s ln

m� with m � 2n. In the region of small �
the logarithms dominate the cross section and we want to
resum them. At the same time, any nonlogarithmic con-
tributions that depend on T cut or pcut

T are suppressed by
relative powers of �, and can be added to the resummed
result.
For the jet-based variables, one can distinguish two

cases of how the jet size R is counted relative to �, we
can consider either R� � or R � �.2 For this distinction it
is irrelevant whether one considers R� 1 or R � 1. We
stress that which of these two formal cases is in the end
more appropriate in practice, for given numerical values of
R and T cut=mH or pcut

T =mH, is a separate question that
needs to be studied numerically and will be addressed in
Sec. V.
As we will show in this paper, there are competing

effects in either limit arising from the dependence on the
jet algorithm, which spoil the complete logarithmic resum-
mation. Jet algorithm dependent effects first arise atOð�2

sÞ
in the form

�2
sf

ð2Þ
algðRÞ ln�: (7)

The function fð2ÞalgðRÞ depends on the algorithm and the jet-

veto variable, and in general contains terms of OðR2Þ,
constant terms, and lnR terms. These were calculated in
Ref. [14] for the pTj veto.

For R � � the jet algorithm mixes soft and collinear
contributions in the measurement, giving rise to a term in
Eq. (7) of the form

1For cases like H ! WW where Y cannot be measured
directly, one can also consider the analog of T B defined in the
hadronic center-of-mass frame by setting Y ¼ 0 in Eq. (1).

2This counting is a natural proxy for the two general cases of R
either scaling as a positive power of � or R not scaling with �.
The difference amounts to whether we formally count OðRÞ
terms as power corrections in � or not and logarithms of R as
ln� or not.
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�2
sR

2 ln�; (8)

at leading order in R. When keeping the full R dependence,
these soft-collinear mixing terms inhibit an all-order soft-
collinear factorization in the measurement at leading
power in �. In Ref. [15], a factorization formula for the
pTj veto was presented in the limit � � R� 1. Their

derivation does not account for the effect of these mixing
terms to all orders, effectively assuming that they are
power-suppressed, and hence break down for R� 1.

For R� �, the mixing terms inhibiting the soft-collinear
factorization of the measurement can be regarded as power
corrections in �, so factorization goes through. However, in
this limit clustering effects that change the boundary of the
jet at each order in �s introduce corrections that depend on
lnR. These are referred to as clustering logarithms and
were first pointed out in Ref. [16] and were studied in

Refs. [17–21]. The clustering logarithms in fð2ÞalgðRÞ give a
contribution of the form

�2
s lnR ln�: (9)

They are distinct from those previously studied since they
are associated with collinear rather than soft divergences
within each jet. The Oð�2

sÞ term in Eq. (7) is the first in an
all-orders series of terms of the form

�n
sf

ðnÞ
algðRÞln�; fðnÞalgðRÞ� lnkR; k�n�1: (10)

For R� � we have to count lnR� ln�, so these clustering
logarithms give a new contribution at NLL at each higher
order in �s. Hence, they spoil the complete logarithmic
resummation at NLL and beyond.

At a formal level, this means one is stuck between a rock
and a hard place. We would like to consider R as small to
justify not resumming soft-collinear mixing terms, by
treating them as unresummed power corrections. But at
the same time we would like to treat R as large, to avoid
having to count lnR terms as large logarithms.

A possible way forward would be to resum those loga-
rithms whose all-order series is known while simulta-
neously quantifying the effect of the terms that cannot be
resummed. If these effects can be appropriately folded into
uncertainty estimates, then a reliable theoretical prediction
can be obtained. The formal power counting is less impor-
tant in this case, and effectively the two formal limits for R
are unified by reflecting the important terms from each case
in the perturbative uncertainties.

The remainder of this paper is organized as follows. In
Sec. II we present an overview of the necessary steps to
achieve soft-collinear factorization and resummation, fo-
cusing on the properties of the measurement. We present
the factorization formulas for the inclusive observables in
Sec. II A and for the exclusive observables in Sec. II B. In
Sec. III we discuss the soft-collinear mixing in detail and
show that it gives an OðR2Þ contribution to the rate. We
demonstrate this by power counting as well as explicit

calculation of the mixing terms at Oð�2
sÞ, the details of

which are given in Appendix B. In Sec. IV we discuss the
clustering logarithms in detail and calculate their contri-
bution atOð�2

sÞ, with the details of the calculation given in
Appendix C. We use non-Abelian exponentiation and the
collinear sensitivity of the clustering logarithms to show
that their contribution to the cross section exponentiates
and for R� � contributes at NLL in the exponent. In
Sec. V we summarize our findings and give an outlook
based on a numerical analysis of the size of the Oð�2

sÞ
mixing and clustering terms for different values of R.

II. FACTORIZATION FORMULAS

The large Sudakov logarithms in the jet-vetoed cross
sections arise as a remnant of the cancellation of soft and
collinear IR divergences between virtual and real contri-
butions. Their resummation is thus intimately tied to the
universal structure of QCD amplitudes in the soft and
collinear limit. Furthermore, resummation relies on the
fact that soft gluon emissions from energetic particles are
eikonal and that the total soft eikonal matrix element
factorizes from the remaining amplitude.
A convenient framework to study the logarithmic struc-

ture of the cross section is provided by soft-collinear effec-
tive theory (SCET) [22–27], whichmakes the soft-collinear
limit of QCD manifest at a Lagrangian and operator level
using a systematic power expansion in the small parameter
�. The resummation of Sudakov logarithms is then
achieved by standard effective-theory methods through a
systematic scale separation and renormalization group evo-
lution between the scales. For a detailed discussion of this
procedure in the context of SCET, we refer the reader to the
literature. In the following, we give a schematic overview
of the basic steps, concentrating on the features that are
important for our further analysis.
After matching full QCD onto SCET, the cross section in

SCET for gg ! H with no hard jets in the final states has
the schematic form (for details see, e.g., Refs. [3,5])

d�gg!H � jCggHð�Þj2
� hpapbOggHð�ÞyM̂OggHð�Þjpapbji: (11)

The incoming (anti)protons have momenta

p
�
a;b ¼ Ecm

n�a;b
2

with n
�
a ¼ ð1; ẑÞ; n

�
b ¼ ð1;�ẑÞ:

(12)

The Wilson coefficient CggHð�Þ arises from matching onto

the OggHð�Þ operator in SCET and encodes the hard-

scattering contributions, which live at the hard scale �H �
mH. The measurement operator M̂ implements the phase-
space cuts and measurements on the final state. The QCD
dynamics in the soft and collinear limits, at leading order in
the expansion parameter �, are encoded in the SCET
operator matrix element. At this point, the renormalization
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group evolution (RGE) of the hard Wilson coefficient can
be used to sum logarithms of the form lnð�cs=mHÞ � ln�
that arise as the ratio of some low soft-collinear scale
�sc � �mH (set by the measurement in the matrix ele-
ment) and the hard interaction scale �mH.

The matrix element in Eq. (11) contains further loga-
rithms of � due to the different scaling of soft and col-
linear contributions. These logarithms are part of the full
logarithmic structure of the cross section, and their resum-
mation requires the separation of soft and collinear con-
tributions. In SCET, this separation proceeds in two steps.
First, the decoupling of soft emissions happens via a field
redefinition of the collinear quark and gluon fields [25],
after which OggH takes the form

O ggH ¼ HOaOsOb ¼ HB�
na?T½Yy

naYnb�Bnb?�: (13)

Here, H is the Higgs field, Oa and Ob are collinear gluon
fields (Bn?) in the forward (na) and backward (nb) beam
directions, and Os is an operator of soft lightlike Wilson
lines (Yn) along the na and nb directions. After the soft-
collinear decoupling, the SCET Lagrangian contains no
interactions between soft and collinear fields at leading
order in �.

Second, the measurement M̂ must be separated into
collinear and soft components that act independently on
the soft and collinear final states. Schematically,

M̂ ¼ M̂a � M̂b � M̂s þ �M̂: (14)

The operators M̂a, M̂b, and M̂s are obtained by restrict-

ing M̂ to act only on na-collinear, nb-collinear, and soft
fields, respectively. The total contribution from the remain-

der �M̂ must be power suppressed in � (such that to all
orders it can contribute at most terms that scale like �lnn�).

With these two ingredients, the matrix element in
Eq. (11) factorizes into independent soft and collinear
matrix elements,

Bað�Þ � hpaO
y
aM̂aOapaið�Þ;

Bbð�Þ � hpbO
y
bM̂bObpbið�Þ;

Sð�Þ � h0Oy
sM̂sOs0ið�Þ:

(15)

Here S is a soft function and B is a beam function
[3,28,29], which describes the collinear initial-state radia-
tion from the parton entering the hard interaction, and can
be calculated perturbatively by matching onto the standard
parton distribution functions [see Eq. (B3)]. It follows that
the cross section factorizes as well,

d�gg!H � jCggHð�Þ2½Bað�Þ � Bbð�Þ � Sð�Þ�: (16)

The collinear and soft matrix elements are renormalized
objects and depend on a renormalization (or separation)
scale �. The RGE running between the natural collinear
and soft scales then resums logarithms of the form

lnð�c=�sÞ � ln� that are present in the soft-collinear ma-
trix element itself.
From this discussion, we can see that resumming the

logarithmic series in ln� requires an explicit separation of
the degrees of freedom whose associated scale depends on
�. In the effective-field theory context the resummation is
then achieved by RGE methods. The complete all-order
resummation requires this separation to hold to all orders
in perturbation theory. This is guaranteed for the hard-
scattering factorization in Eq. (11), which essentially
amounts to expanding QCD in the soft-collinear limit. It
also holds for the soft-collinear operator decoupling, which
is independent of the measurement. However, for the mea-
surement function it means that the separation in Eq. (14)
has to hold for any number of soft and collinear particles in
the final state. As we will see below, this requirement is
satisfied by the inclusive observables, but for the jet-based
observables it provides a nontrivial constraint and only
holds for R� �.
In the following we discuss the soft-collinear factoriza-

tion properties of our four observables and the resulting
factorization formulas for the cross section. We consider
the inclusive observables in Sec. II A and the jet-based
ones in Sec. II B. In Appendix A we discuss the RGE
constraints on the factorization formulas for these
observables.

A. Inclusive observables

The full measurement operator M̂ entering Eq. (11)
directly follows from the definitions of the observables in
Eqs. (1) and (2). For example, for beam thrust its action on
a given final state with a set of momenta fpmg is

M ðT BÞ ¼ �

�
T B �X

m

j ~pTmje�jym�Yj
�
; (17)

and analogously for ET . Since the inclusive observables
simply sum over particles, we can write them as a sum over
separate contributions from na-collinear, nb-collinear, and
soft particles,

T B ¼ T Ba þT Bb þT Bs;

ET ¼ ETa þ ETb þ ETs:
(18)

This means there is no contribution �M at leading power
which mixes the different sectors, and we can factorize the
measurement function in terms of a convolution,

MðkÞ ¼
Z

dkadkbdks�ðk� ka � kb � ksÞ
�MaðkaÞMbðkbÞMsðksÞ; (19)

where k here stands for either T B or ET . In the case ofT B

we have
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MaðT BaÞ ¼ �

�
T Ba �

X
m2na-coll

j ~pTmjeY�ym

�
;

MaðT BbÞ ¼ �

�
T Bb �

X
m2nb-coll

j ~pTmjeym�Y

�
;

MsðT BsÞ ¼ �

�
T Bs �

X
m2soft

j ~pTmje�jym�Yj
�
:

(20)

Note that for the collinear sectors, the contribution from
the respective opposite hemisphere does not contribute,
because it is power-suppressed. Similarly, for ET we have

MaðETaÞ ¼ �

�
ETa �

X
m2na-coll

j ~pTmj
�
;

MaðETbÞ ¼ �

�
ETb �

X
m2nb-coll

j ~pTmj
�
;

MsðETsÞ ¼ �

�
ETs �

X
m2soft

j ~pTmj
�
:

(21)

Using na and nb we define light-cone coordinates,

p� ¼ ðna 	 p; nb 	 p; p?Þ;

p� ¼ na 	 pn
�
b

2
þ nb 	 pn

�
a

2
þ p�

?:
(22)

In terms of these, na-collinear particles have momentum
scaling pa �mHð�2; 1; �Þ, while nb-collinear particles
have momentum scaling pb �mHð1; �2; �Þ. The soft and
collinear contributions to T B can be written as

T Ba ¼ eYna 	 Pa; T Bb ¼ e�Ynb 	 Pb;

T Bs ¼
X

m2soft

minfeYna 	 pm; e
�Ynb 	 pmg;

(23)

where Pa;b is the total momentum of all na;b-collinear
final-state particles. Since T B measures the small light-
cone components, soft particles that contribute to the mea-
surement of T B have ultrasoft (us) momentum scaling
pus �mHð�2; �2; �2Þ. The appropriate version of SCET
for this case is called SCETI. Since p

2
a;b � �2m2

H � p2
us �

�4m2
H, soft and collinear degrees of freedom in SCETI are

separated in virtuality and the RGE running in SCETI

describes evolution in invariant mass.
The factorization formula for the beam thrust distribu-

tion is [3,5]

d�

dT B

¼ �0HggðmH;�Þ
Z

dY
Z

dkadkbBgðmHka; xa;�Þ

� BgðmHkb; xb; �ÞSggB ðT B � ka � kb; �Þ; (24)

where

xa ¼ mH

Ecm

eY; xb ¼ mH

Ecm

e�Y; (25)

and

�0 ¼
ffiffiffi
2

p
GFm

2
H

576�E2
cm

: (26)

The convolution between beam and soft functions in
Eq. (24) is a direct consequence of the convolution of the
measurement in Eq. (19).
In contrast to T B, ET measures the perpendicular com-

ponent of momentum, which means soft particles contrib-
uting to the measurement of ET have soft momentum
scaling ps �mHð�; �; �Þ. The appropriate version of
SCET for this case is called SCETII. In SCETII, soft and
collinear degrees of freedom have the same virtuality
scaling, p2

a;b � p2
s � �2m2

H, but are still separated in ra-

pidity. As a result, the RGE running in SCETII describes
both evolution in invariant mass as well as rapidity [30,31].
The factorization formula for the ET distribution is [6]

d�

dET

¼�0HggðmH;�Þ
Z
dY

Z
dkadkbBgðmH;ka;xa;�;�Þ

�BgðmH;kb;xb;�;�ÞSggT ðET�ka�kb;�;�Þ: (27)

The soft and beam functions are different from those in
Eq. (24) because they contain a different measurement.
Beam functions with pT-dependence were studied in
SCET in Refs. [15,30–36]. Since the beam and soft func-
tions in Eq. (27) are renormalized and RG evolved in
rapidity, they depend on another scale � from this running.
Higher-order resummation at small T B and ET can be

carried out systematically using Eqs. (24) and (27).
Extending the T B resummation to N3LL requires deter-
mining the two-loop beam and soft functions, while resum-
ing ET to NNLL requires determining the two-loop beam
and soft noncusp anomalous dimensions.

B. Exclusive observables

Vetoes on individual jets rather than an inclusive veto on
the final state requires a more careful understanding of the
role of the jet algorithm. When putting a cut on T j or pTj

in Eqs. (3) and (4), the full measurement operator acting on
the complete final state in Eq. (11) is

MjetðT cutÞ ¼ Y
m2jðRÞ

�ðj ~pTmje�jym�Yj <T cutÞ;

Mjetðpcut
T Þ ¼ Y

m2jðRÞ
�ðj ~pTmj<pcut

T Þ;
(28)

where we consider jets jðRÞ defined by the kT class of
algorithms. Note that integrating T j or pTj up to a cut

turns the maximum condition in their definitions in Eqs. (3)
and (4) into the simple product of � functions in Eq. (28).
Hence, for the exclusive variables it is more convenient to
consider the integrated cross section with a cut rather than
the differential spectrum as in the inclusive variables.
We now want to separate the measurement function into

components that act independently on soft and collinear
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final states. That is, we want to express the full jet veto in
Eq. (28) as

M jetðkcutÞ ¼ Mjet
a ðkcutÞMjet

b ðkcutÞMjet
s ðkcutÞ

þ �MjetðkcutÞ; (29)

where here and in the remainder of this section, kcut stands

for either T cut or pcut
T . The functions Mjet

i ðkcutÞ for i ¼ a,
b, s are defined by the full measurement applied to
na-collinear, nb-collinear, and soft particles, respectively,
which also defines the remainder �MjetðkcutÞ. For this
separation to be meaningful, the remainder should be
power-suppressed, which requires that the full measure-
ment Mjet does not mix constraints on collinear and soft
particles. This is a nontrivial condition, since the veto on
any individual jet is not allowed to mix constraints between
sectors. If a jet has a collinear component pc and a soft
component ps, then the veto condition, e.g. for pcut

T , is

j ~pTc þ ~pTsj<pcut
T : (30)

This prevents Mjet from factorizing into separate soft and
collinear components and gives a contribution to �Mjet.
Therefore, to preserve factorization this scenario should
only happen with a power-suppressed rate, such that at
leading power each jet contains either only soft or only
collinear final states. In that case, we can perform the veto
separately on jets in each sector, i.e., we can write the
product over all jets in Eq. (28) as products over soft and
collinear jets as in Eq. (29).

We shall show that for R� �, �Mjet indeed gives a
power-suppressed contribution to the rate. In this limit, the
following factorization formula holds for the T j veto:

�ðT cutÞ ¼ �0HggðmH;�Þ
Z

dYB
jet
g ðmHT cut; xa;�Þ

� B
jet
g ðmHT cut; xb; �ÞSjetggðT cut; �Þ; (31)

where xa, xb and�0 are defined in Eqs. (25) and (26). In the
same limit, an analogous factorization formula holds for
the pTj veto:

�ðpcut
T Þ ¼ �0HggðmH;�Þ

Z
dYB

jet
g ðmH; p

cut
T ; xa; �; �Þ

� B
jet
g ðmH; p

cut
T ; xb; �; �ÞSjetggðpcut

T ; �; �Þ: (32)

An equivalent form of this factorization formula was de-
rived in Ref. [15], and the NLL resummation for pcut

T was
performed in Refs. [14,15].

In Ref. [14] jet-algorithm dependent effects were calcu-
lated at fixed Oð�2

sÞ. These results were interpreted in
Ref. [15] in terms of a two-loop anomalous dimension
and used to extend the resummation based on Eq. (32) to
NNLL, working in the limit � � R� 1 to avoid lnR
clustering logarithms. However, we will show explicitly
in the following that for R� 1 Eq. (32) do not reproduce
the all-order structure of QCD beyond NLL. We will also

see that for R� �, where the factorization formula holds,
only some parts of the Oð�2

sÞ contributions from Ref. [14]
are correctly interpreted in terms of anomalous dimensions
and used in conjunction with Eq. (32).
Since Mjet in Eq. (29) is a simple product, and not a

convolution as for the inclusive variables in Eq. (19), the
factorized cross sections in Eqs. (31) and (32) now contain
a product of beam and soft functions rather than a con-
volution. Also, each function explicitly depends on the jet
algorithm used, in addition to the jet-veto variable itself,
and includes R-dependent clustering effects. Note that the
Oð�sÞ results do not yet depend on the effects of the jet
algorithm. Nevertheless, the resummed cross sections are
different for the inclusive and exclusive observables start-
ing at NLL because of the different structures of their
factorization theorems. This reflects the fact that constrain-
ing the sum of emissions provides a very different phase-
space constraint than constraining each individual emission
for more than one emission.
To understand the role of the jet algorithm in vetoing on

individual jets and how it impacts the logarithmic series, it
is useful to express the measurement function in the form

Mjet ¼ ðMa þ �Mjet
a ÞðMb þ�Mjet

b Þ
� ðMs þ�Mjet

s Þ þ �Mjet; (33)

where �Mjet
i is defined to contain the jet-algorithm de-

pendence within each of the collinear and soft sectors,

M jet
i ðkcutÞ ¼ MiðkcutÞ þ �Mjet

i ðkcutÞ; (34)

for i ¼ a, b, s. The definition of �Mjet
i is subtle, since it

depends on what we define the corrections due to cluster-
ing relative to; namely, it depends on the precise choice of
Mi, which is independent of R and the jet algorithm. To
study the effect of clustering, we choose Mi to be the
inclusive T B or ET measurement,

M iðkcutÞ ¼ �

� X
m2ith-sector

km < kcut
�
; (35)

where km is the T B or ET contribution from each particle.
AtOð�sÞ there are no jet-algorithm effects, since there is

only a single, either soft or collinear, final-state particle.

This means that �Mð1Þ and �Mð1Þ
i are zero, and Mjetð1Þ

reduces to a sum over terms with one nontrivial constraint
in each sector,

M jetð1ÞðkcutÞ ¼ X
i¼a;b;s

�ðki < kcutÞ: (36)

This gives the sameOð�sÞ contribution as the integral over
the k ¼ T or ET distribution with k < kcut.
Starting at Oð�2

sÞ the role of the jet algorithm must be
understood. When R � �, soft-collinear mixing effects
are important. They give a correction to the cross section
of the form
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��
jet
SC

� jCggHð�Þj2hpapbjOggHð�Þy�M̂jetOggHð�Þjpapbi;
(37)

where the measurement operator �M̂jet
is defined by

Eq. (29) as the difference between the full measurement
and its restriction to the soft and collinear sectors. At
Oð�2

sÞ, the soft-collinear mixing contribution arises from
the independent emission of a collinear and soft particle as
shown in Fig. 1(a). It is given by the measurement function

�Mjetð2ÞðkcutÞ ¼ �Mjetð2Þ
as ðkcutÞ þ �Mjetð2Þ

bs ðkcutÞ; (38)

where the two terms correspond to a soft particle clustering
with either a na-collinear or nb-collinear particle. For the
kT-class algorithms, which cluster particles with �R< R,

�Mjetð2Þ
as ðkcutÞ ¼ �ð�Ras < RÞ½�ðkjet < kcutÞ

� �ðka < kcutÞ�ðks < kcutÞ�; (39)

where kjet is the value of the jet observable after combining

the soft and collinear particles. Since �Mjet is defined as
the correction to the factorized measurement, the second
term subtracts the corresponding Oð�2

sÞ contribution from

Mjetð1Þ
a Mjetð1Þ

s .
In Sec. III, we calculate the (leading) contribution from

Eq. (39) to the cross section explicitly, and we will see that
it has the form ��2

sR
2 lnðmH=k

cutÞ for both T j and pTj

vetoes. There are also factorized clustering corrections of

the same form in �Mjet
i (for i ¼ a, b, s) from two inde-

pendent emissions within each sector, and which are part of
the two-loop soft and beam functions. The total QCD
contribution from independent emissions thus arises as
the sum of the factorized contributions and the soft-
collinear mixing contribution. This shows explicitly that
the factorized cross sections in Eqs. (31) and (32) do
not reproduce the full NNLL structure of QCD for general
R� 1, since they do not contain the soft-collinear mixing
contributions.

When R� �, clustering corrections from independent
emissions, including the soft-collinear mixing term �Mjet,
can be regarded as power corrections. In this limit a

different type of clustering corrections in �Mjet
i become

important, arising from correlated emissions within the
beam and soft functions, as shown in Fig. 1(b). At Oð�2

sÞ
they are described by the measurement function

�Mjetð2Þ
i ðkcutÞ ¼ f�ð�R12 < RÞ�ðkjet < kcutÞ

þ �ð�R12 >RÞ�ðk1 < kcutÞ�ðk2 < kcutÞg
� �ðk1 þ k2 < kcutÞ; (40)

where particles 1 and 2 both belong to sector i. In Sec. IV
we calculate the contributions from Eq. (40), and we will
see that they have the form �2

s lnR lnðmH=k
cutÞ. We

also discuss the higher-order structure of clustering loga-
rithms and argue that at Oð�n

s Þ terms of the form
�n
s ln

n�1R lnðmH=k
cutÞ contribute in the exponent of the

cross section. For R� � these terms are NLL. Since the
coefficients of the clustering logarithms at each order con-
tain a genuinely new algorithm-dependent contribution,
which will generically be unrelated to lower orders, they
cannot be resummed with present methods [21].

1. Rapidity cutoffs on jets

In an experiment, the physical limitations of the detector
impose a rapidity cutoff on measured jets. The parton
luminosities naturally suppress forward, high-pT jets, but
in experimental analyses even moderate rapidity cutoffs
(e.g., a cutoff of ycut ¼ 2:5) are used. Monte Carlo studies
of the dependence on the cutoff with a pT veto on jets find a
negligible effect for ycut � 4:5 but an Oð10%Þ effect for
ycut � 2:5 in the range of typical pcut

T values [5,14].
The rapidity cutoff ycut regulates the rapidity divergen-

ces present in the soft and beam functions for the pTj veto.

In the bare functions, this effectively converts rapidity
divergences into factors of ycut. AtOð�sÞ, the RG structure
of the hard, beam, and soft functions implies that these
divergences have no effect on the fixed-order logarithms.
The first order that the effect of the rapidity cutoff on the
resummation can be observed is at Oð�2

sÞ, and, in princi-
ple, the cutoff could affect the Oð�2

s ln
2�Þ and Oð�2

s ln�Þ
terms. Although we do not consider these effects here, it
would be interesting to study their impact on the logarith-
mic structure and resummation in more detail.

III. SOFT-COLLINEAR MIXING

The jet algorithm used to defineT j and pTj gives rise to

jets that can contain both soft3 and collinear particles, and
the collinear beam radiation can give rise to multiple jets.
Placing a veto on such jets mixes the phase space con-
straints in each sector through conditions of the form

FIG. 1 (color online). (a) The contribution to soft-collinear
mixing at �2

s from the independent emission of a collinear and
soft gluon clustered into a single jet, relevant when R � �.
(b) Clustering corrections in the beam and soft functions from
correlated emissions, relevant when R� �.

3Our discussion in this section is mostly insensitive to whether
the soft radiation is described by ultrasoft modes (a T j veto,
SCETI) or soft modes (a pTj veto, SCETII), but we will point out
when subtleties arise.
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T c þT s � T cut; j ~pTc þ ~pTsj � pcut
T ; (41)

and this mixing contributes to �Mjet in Eq. (29). In this
section we show that these soft-collinear mixing contribu-
tions scale like R2, and so R must scale as � for these
effects to be power suppressed.

Clustering jet algorithms build jets by merging particles
in the final state according to a distance metric 	ij between

particles and a metric 	i for single particles. In each
clustering step, the minimum metric determines the action
of the algorithm. If the minimum is a pairwise metric then
that pair is merged into a new particle, and if the minimum
is a single particle then that particle is promoted to a jet.
For the anti-kT algorithm [13], these metrics are

	ij ¼ minðp�1
Ti ; p

�1
Tj Þ

�Rij

R
; 	i ¼ p�1

Ti : (42)

The algorithm will cluster particles with separation�Rij <

R together.4

Phase-space constraints from jet algorithms have been
studied in SCET in Refs. [37–40]. By applying the canoni-
cal scaling of soft and collinear particles to the anti-kT
metrics in Eq. (42) we can determine the typical behavior
of the algorithm. For example, for the case of a veto on the
jet pT , the metrics scale as

	cc�	ss���1

R
; 	sc���1

R
ln
1

�
; 	c�	s���1: (43)

This naive power counting suggests that clustering of soft
and collinear particles will typically not occur, since soft
particles are at central rapidities and collinear particles are
at large rapidities and as a result 	sc � f	cc; 	ss; 	c; 	sg
(for R� 1 or smaller). The ordering 	sc > 	ss, 	cc implies
that collinear and soft particles will separately cluster
among themselves before clustering with each other. The
ordering 	sc > 	c, 	s implies that (groups of) collinear
and soft particles will be promoted to jets before any soft-
collinear clustering between them can take place. A similar
argument applies to measuring T j.

Power counting along these lines, counting � � R �
lnð1=�Þ, was used in Ref. [15] to argue that, at leading
power, soft and collinear particles do not occupy the same
jet. However, the canonical scaling in Eq. (43) is not
sufficient to demonstrate that soft collinear clustering gives
only a power-suppressed contribution to the cross section
[41]. In particular, there is a collinear enhancement in soft
emissions along the beam directions (i.e., the direction of
the soft Wilson lines). This is straightforward to see from
the matrix element for eikonal emission,

A eikonal � dpT

pT

dyd
: (44)

The matrix element is flat in rapidity, meaning soft parti-
cles will populate jets at a forward rapidities at an equal
rate to jets at central rapidities. For a jet j in a given
direction, the rate for a soft particle to be radiated within
the cone of the jet scales as

Z 1

�1
dys

Z �

0

d
s

�
�ð�Rjs < RÞ � R2: (45)

If R� �, this rate is power suppressed and can be ne-
glected. We will see this scaling confirmed in the explicit
calculations of soft-collinear mixing below.
The geometry of jets at a hadron collider changes sig-

nificantly in the forward region. For central rapidities, the
clustering condition�Rij < R is approximated by �ij < R,

where � is the physical angle between i and j. At forward
rapidities, the jet subtends a smaller angle R� with respect
to the beam axis. The size of the jets in 
 remains un-
changed, so jets become elongated at forward rapidities. A
comparison between jets in y�
 space and ��
 space
is shown in Fig. 2. If a jet is at rapidity yj with a corre-

sponding angle to the beam �j, then

R� 
 2�j sinhR: (46)

At the characteristic angle �c � � of collinear emissions,
the size of the jet scales approximately as �R. This means
that collinear initial-state radiation from the incoming hard
partons can create multiple jets of size R in the final state,
since the size of the jet is smaller than (potentially para-
metrically smaller than) the total size of the collinear beam
sector, which is an angle of order � around the beam
direction. This is important because if each collinear sector
created a single jet (around the beam), a veto on jets
containing both soft and collinear particles would require
�Mjet to only depend on the total collinear momentum and
the measurement could therefore be expressed in a factor-
izable way. However this is not the case here. From this
analysis, we see that jets can contain both soft and collinear
particles. Vetoing on such jets requires a constraint on the

FIG. 2 (color online). The shape of jets in two spaces: y�

(left), the geometry where jets are found, and ��
 (right),
which is the physical geometry. As jets become forward, their
size in � shrinks. In the right figure, the dashed blue line shows
the approximate shape of jets if �Rij is replaced with the

physical angle �ij between particles.

4In some cases, a clustering sequence can pull two particles
farther than R away from each other. Such configurations tend to
be uncommon.
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combined soft and collinear contribution to the veto vari-
able, as in Eq. (41). Therefore, soft-collinear factorization
will be inhibited by these jets for R� 1.

We can calculate the correction to the cross section from

soft-collinear mixing, ��jet
SC in Eq. (37), for both jet-based

veto observables at Oð�2
sÞ. The mixing correction is given

by the measurement function �Mjetð2Þ in Eqs. (38) and (39)
inserted into matrix elements of OggH with one soft and

one collinear emission. Because of the soft-collinear de-
coupling this is simply the product of the Oð�sÞ matrix
elements for one soft and one collinear emission.

The form of the soft-collinear mixing terms are the same
as the Oð�2

sÞ corrections when two independent emissions
within either the soft or collinear sectors cluster (which is

contained in �Mjet
i ). Therefore, the total correction from

clustering of two independent emissions to the cross sec-
tion is given by

��indepð2Þ ¼ ��
indepð2Þ
SS þ ��

indepð2Þ
CC þ ��

jetð2Þ
SC ; (47)

where SS, CC, and SC denote the independent emission
contributions from the soft sector, collinear sector, and
from soft-collinear mixing, respectively. In addition to
the soft-collinear mixing term, we also calculate the cor-

rection from the soft sector, ��indep
SS .5 The calculations are

given in Appendix B, where we work to leading power in
R, OðR2Þ, and drop corrections of OðR4Þ.

The T j veto is easier to calculate, as dimensional regu-

larization fully handles all divergences. The soft-collinear

mixing, ��jet
SC, is the sum of contributions from each beam,

��jet
SCa

þ ��jet
SCb

and is given in Eq. (B27). This includes a

nontrivial zero-bin subtraction in the collinear sector. The

two contributions ��
jet
SCa

and ��
jet
SCb

are identical, and their

sum is

��
jetð2Þ
SC ðT cutÞ ¼ ��LO

�
�sCA

�

�
2 �2

3
R2 ln

mH

T cut
: (48)

Here �LO is the leading-order cross section, which is
given in Eq. (B6). We can see explicitly that the soft-
collinear mixing contains a single logarithm and scales
as R2, as expected from the naive scaling calculation in
Eq. (45). The soft independent emission contribution [see
Eq. (B12)] is

��
indepð2Þ
SS ðT cutÞ ¼ ��LO

1

�

�
�sCA

�

�
2
�

�2

T cut2

�
2� �2

12
R2:

(49)

The remaining contribution at this order is from the inde-

pendent emission of two collinear particles, ��indep
CC ,

whose form can be constrained by two facts. First, since
the effective theory reproduces the IR structure of QCD,
the collinear contribution must cancel the 1=� dependence

in ��
indep
SS . Second, the scale dependence of the collinear

matrix element can be determined by power counting. It

follows that the ��
indep
CC contribution must have the form

��indepð2Þ
CC ðT cutÞ ¼ �LO

1

�

�
�sCA

�

�
2
�

�2

mHT cut

�
2� �2

12
R2:

(50)

Combining all three contributions, the leading
R-dependent clustering effect from independent emissions
with a cut on T j is given by

�indepð2ÞðT cutÞ ¼ ��LO

�
�sCA

�

�
2 �2

2
R2 ln

mH

T cut
: (51)

For the pTj veto, the total Oð�2
sÞ clustering effect from

independent emissions in QCD, which includes the soft-
collinear contributions, was calculated in Ref. [14] and
found to be

��indepð2Þðpcut
T Þ ¼ ��LO

�
�sCA

�

�
2 �2

3
R2 ln

mH

pcut
T

: (52)

This result will serve as a partial cross check on our results.
To calculate the soft-collinear mixing contribution for the
pTj veto, we have to regulate rapidity divergences. We use

the analytic regulator [42] in this case, for which � plays
the same role as� in dimensional regularization, and � the
role of �. The soft-collinear mixing contributions are dif-

ferent for ��jet
SCa

and ��jet
SCb

, because of the asymmetry in

the regulator between the two collinear sectors. We find

��
jetð2Þ
SC ðpcut

T Þ ¼ ��
jetð2Þ
SCa

þ ��
jetð2Þ
SCb

¼ ��LO

1

�

�
�sCA

�

�
2 �2

6

� R2

��
�mH

ðpcut
T Þ2

�
2� �

�
�

mH

�
2�
�

¼ ��LO

�
�sCA

�

�
2 2�2

3
R2 ln

mH

pcut
T

: (53)

As for the T j veto, the soft-collinear mixing for the pTj

veto contains a single logarithm and scales as R2. The soft
independent emission contribution for pTj is scaleless and

thus vanishes

��indepð2Þ
SS ðpcut

T Þ ¼ 0: (54)

Hence, to reproduce the full independent emission result in
Eq. (52), the collinear contribution must be

��
indepð2Þ
CC ðpcut

T Þ ¼ �LO

�
�sCA

�

�
2 �2

3
R2 ln

mH

pcut
T

: (55)

The soft-collinear mixing contributions in Eqs. (48) and
(53) are not isolated toOð�2

sÞ. At higher orders, additional

5Determining the Oð�2
sÞ beam function matrix elements is

significantly more involved, and is not required to demonstrate
the presence of soft-collinear mixing. It is therefore beyond the
scope of this work.
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emissions can generate a tower of Sudakov double loga-
rithms on top of these results and also generate higher-
order mixing effects. Accurate uncertainty estimates re-
quire a better understanding of the soft-collinear mixing
terms at all orders.

IV. CLUSTERING LOGARITHMS

We now turn to the form of clustering logarithms in the
cross section. When R� �, the cross section �ðkcutÞ sat-
isfies the factorization formulas in Eqs. (31) and (32).
Clustering of final state soft and collinear particles can
give rise to logarithms of R that become important when
R � 1. These logarithms arise as the remnant of a col-
linear divergence between particles in the jet, and are
associated with connected webs (c-webs) in the matrix
element [43,44].

To see this, consider a two-parton final state with a pTj

veto. The measurement function can be written as a con-
straint on each particle’s pT plus a correction factor for
when they are clustered into a jet,

M jetð2Þ ¼ Mð2Þ
veto þ �Mjetð2Þ

veto ; (56)

where

Mð2Þ
veto ¼ �ðpT1 <pcut

T Þ�ðpT2 <pcut
T Þ;

�Mjetð2Þ
veto ¼ �ð�R12 < RÞ½�ðj ~pT1 þ ~pT2j< pcut

T Þ
� �ðpT1 < pcut

T Þ�ðpT2 < pcut
T Þ�: (57)

Each individual measurement, Mð2Þ
veto and �Mjetð2Þ

veto , is
separately IR unsafe if the matrix element has a collinear
singularity between the two particles. Since the total mea-

surement, Mjetð2Þ, is IR safe, the divergence cancels. The
remnant is logarithmic sensitivity to R, schematically

Mð2Þ
veto � 1

�
; �Mjetð2Þ

veto �� 1

�
R�2�;

Mð2Þ
veto þ �Mjetð2Þ

veto � lnR: (58)

This structure persists for more particles in the final state.
In general, if there are n final-state particles, there are at
most n� 1 collinear singularities between them, each of
which leads to a factor of lnR from clustering effects. We
will show that the general form of the leading clustering
logarithm at Oð�n

s Þ is

�LO

�
�s

�

�
n
CðnÞ
pT
ðlnRÞ lnmH

pcut
T

; (59)

where CðnÞ
pT
ðlnRÞ contains at most n� 1 logarithms of R

and the same form holds for T cut.

A. Oð�2
s Þ clustering logarithms

Although the division in Eq. (56) helps determine the
order of the clustering logarithms, it is not well suited
to define the clustering correction. Instead, we use the

division in Sec. II B, defining the clustering logarithms
relative to the inclusive measurement.
AtOð�2

sÞ, the clustering logarithms for the pT veto have
been calculated in Ref. [14]. We perform the soft function
clustering calculation for both pTj and T j in Appendix C,

since it is instructive to see the RG structure explicitly. The
bare soft function corrections forT j are given in Eq. (C18)

and for pTj in Eq. (C17), where for the latter we use the

rapidity regulator [30,31]. The bare corrections are UV-
divergent and give a contribution to the two-loop soft
anomalous dimensions of

��ð2Þ
S ðT cut; �Þ ¼

�
�s

�

�
2
Cð2Þ
T
ðlnRÞ;

���ð2Þ
S ðpcut

T ; �Þ ¼
�
�s

�

�
2
Cð2Þ
pT
ðlnRÞ;

(60)

where the coefficients are given by

Cð2Þ
T
ðlnRÞ ¼ C2

A

�
131� 12�2 � 132 ln2

18
lnR� 0:936

�

þ CATRnf

�
� 23� 24 ln2

9
lnRþ 0:748

�
;

Cð2Þ
pT
ðlnRÞ ¼ C2

A

�
131� 12�2 � 132 ln2

18
lnR� 1:12

�

þ CATRnf

�
� 23� 24 ln2

9
lnRþ 0:764

�
:

(61)

For the pT veto, the contribution to the cross section
stemming from this coefficient agrees with the results in
Ref. [14] for the lnR term. The constant terms depend the
observable the clustering effect is defined relative to. We
use the inclusive ET measurement, as in Eq. (40), for this
purpose, whereas Ref. [14] uses the total pT , which for two
particles is pT ¼ j ~pT1 þ ~pT2j. Either choice is possible
and we have checked that we reproduce the constant terms
in Ref. [14] when alternatively using their definition of the
clustering correction.
The soft anomalous dimension from these clustering

effects must be canceled by the anomalous dimensions of
the beam functions, since the total OggH matrix element

has only UV divergences that match the hard function, and
which are unrelated to clustering. It is worthwhile to note
that since no collinear singularities exist between soft and
collinear particles, the cancellation of the divergences in
the soft function from clustering must come entirely from
the beam functions. It cannot come from a soft-collinear
mixing term, which is power suppressed when R� �. The
cancellation of the beam and soft anomalous dimensions
from clustering leaves a fixed-order contribution that has a
logarithm of the ratio of the beam and soft scales. Note that
the scale accompanying� or � in the fixed-order beam and
soft functions is fixed by power counting. For the pT veto,
the beam � scale ismH and the soft � scale is pcut

T , while for
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theT veto, the beam scale is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mHT cut

q
and the soft scale is

T cut. Hence, the clustering effect at Oð�2
sÞ in the cross

section is

��ð2ÞðT cutÞ ¼ �LO

�
�s

�

�
2
ln

mH

T cut

1

2
Cð2Þ
T
ðlnRÞ;

��ð2Þðpcut
T Þ ¼ �LO

�
�s

�

�
2
ln
mH

pcut
T

Cð2Þ
pT
ðlnRÞ:

(62)

This formmatches that in Eq. (59). Because these terms are
connected with the anomalous dimension, it is possible to
resum the logarithm of lnðmH=k

cutÞ they contain. Since the
anomalous dimension contributions from clustering in-
volve only the beam and soft functions, the total evolution
factor from RG evolution for each veto observable is

Uð2Þ
� ð�S;�JÞ ¼ exp

�Z �J

�S

d�

�

�
�sð�Þ
�

�
2
Cð2Þ
T
ðlnRÞ

�
;

Uð2Þ
� ð�S; �JÞ ¼ exp

�Z �J

�S

d�

�

�
�sð�Þ
�

�
2
Cð2Þ
pT
ðlnRÞ

�
:

(63)

Although the logarithms of R are exponentiated here, they
are not connected with any scale in the effective theory.
Below, we will show that the logarithms of R indeed appear
in the exponent, meaning the above procedure is correct.
However, the noncusp anomalous dimension at Oð�n

s Þ
contains a term �lnn�1R, so for small R the perturbative
series for the anomalous dimensions contains large unre-
summed logarithms. Equivalently, the perturbative series
in the exponent is not resummed and contains terms
�n
s ln

n�1R lnðmH=k
cutÞ. For R� � these are unresummed

NLL corrections. Hence, the exponentiation of the Oð�2
sÞ

clustering logarithms is doing nothing to tame the NLL
clustering logarithms at higher orders. The complete re-
summation of the clustering logarithms would require us to
calculate the entire tower of coefficients simultaneously.

B. Higher-order structure of clustering logarithms

The higher-order clustering logarithms are simplest to
examine in the soft function, and RG constraints can be
used to relate them to the beam functions and determine the
overall effect on the cross section. The soft function at
Oð�n

s Þ can be written as

SðnÞðpcut
T Þ ¼

Z
d�nAnð�nÞMnð�n; p

cut
T Þ; (64)

where �n and An are the n-particle phase space and
matrix element. Non-Abelian exponentiation [43–46] im-
plies that the eikonal matrix elements exponentiate, and
can be factorized into c-web contributions, where a c-web
is a diagram connecting eikonal lines that cannot be sepa-
rated into lower order c-webs by cutting each eikonal line
once. This means that the amplitude can be written as

A nð�nÞ ¼
X
W

NW

� Y
w2W

Awð�nwÞ
�
; (65)

where W is a set of c-webs that partition the n-particle
state, and w is an individual c-web with nw particles. NW is
a combinatoric factor from exponentiation of the matrix
elements and Aw is the matrix element for the c-web w.
This factorization is useful because collinear singular-

ities between final-state partons only exist when they are in
the same c-web. Therefore if two partons in different
c-webs are clustered into the same jet then the rate is
suppressed by the area of the jet in rapidity and azimuthal
angle, which is OðR2Þ. At leading power, this implies that
each jet’s constituents are in the same c-web, and for a
given set of c-webs W the measurement function can be
factorized over this set:

M nð�n; p
cut
T Þ ¼ Y

w2W

Mnwð�nwÞ: (66)

Note that Mnw is the same measurement function as Mn

but over �nw instead of �n. Using the exponentiation of

matrix elements,

Sðpcut
T Þ ¼ exp

� X
c-webs w

Swðpcut
T Þ

�
; (67)

where

Sw ¼
Z

d�nwAð�nwÞMnwð�nw; p
cut
T Þ: (68)

As argued in Appendix A, RG invariance implies that the
clustering logarithms can enter into at most the noncusp
anomalous dimension for the beam and soft functions at
each order. For the pT jet veto, the clustering logarithms
will be a part of the � noncusp anomalous dimension.
Just as they did atOð�2

sÞ, collinear divergences between
particles in the c-web will produce logarithms of R as a
finite artifact of the divergence. Since there are at most
nw � 1 collinear divergences in a c-web of nw particles,
this implies there are at most nw � 1 logarithms of R.
Therefore, the general form of the clustering logarithms
in the soft function Sw for the c-web is, in the T veto case,

�SwðT cutÞ ¼
�
�s

�

�
nw
C
ðnwÞ
T

ðlnRÞ ln �

T cut
; (69)

and in the pT veto case,

�Swðpcut
T Þ ¼

�
�s

�

�
nw
CðnwÞ
pT

ðlnRÞ ln �

pcut
T

: (70)

Both CðnwÞ
T

and CðnwÞ
pT

contain at most nw � 1 powers of lnR.

These give rise to noncusp anomalous dimension contri-
butions. RG evolution of the soft function and beam func-
tion clustering logarithms from the c-webw gives rise to an
all-orders contribution to � of the form
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U
ðnwÞ
� ð�S;�JÞ¼ exp

�Z �J

�S

d�

�

�
�sð�Þ
�

�
nw
C
ðnwÞ
T

ðlnRÞ
�
;

UðnwÞ
� ð�S;�JÞ¼ exp

�Z �J

�S

d�

�

�
�sð�Þ
�

�
nw
CðnwÞ
pT

ðlnRÞ
�
:

(71)

Since CðnwÞ contains a lnnw�1R term, when R� � this
series is NLL. These terms are not directly obtained by
resummation of lower order terms, underscoring the break-
down of resummation unless the coefficients of the cluster-
ing logarithms can all be calculated at once.

V. CONCLUSIONS

Jet vetoes are an important part of many experimental
analyses. To obtain precise theoretical predictions, the
resummation of large logarithms of the jet-veto scale is
important, but they must account for effects of the jet
algorithm. The algorithm generates two effects that can
inhibit resummation, namely soft-collinear mixing and
clustering logarithms. From a formal perspective, there
are two scaling limits to consider, R� � and R � �.
Soft-collinear mixing arises at large values of the jet radius
R � � from correlations between soft and collinear radia-
tion into the same jet. This mixing affects the resummation
of logarithms of the veto scale at NNLL and beyond and
must be accounted for in order to prove an all-orders
factorization theorem. When R� �, soft-collinear mixing
effects are power suppressed, but clustering logarithms are
important, which are a remnant of collinear singularities
between particles in the jet that cancel in the total cross
section. In the small R limit, new clustering logarithms at
NLL arise at each order and cannot currently be resummed.
Therefore, there is a tradeoff between these effects depend-
ing on the value of R chosen, and it is important to under-
stand the relative sizes of these effects and incorporate
them into estimates of theory uncertainties.

In Sec. II, we contrasted the factorization picture for
inclusive observables T B and ET with the exclusive
jet-based observables T j and pTj. The factorization and

resummation for the inclusive observables are well under-
stood. In this paper we have explored the effects of soft-
collinear mixing and clustering on the factorization and
resummation for the exclusive observables. In Secs. III and
IV, we calculated the soft-collinear mixing and clustering
logarithms at Oð�2

sÞ.
The resummation for apTj vetowas recently considered in

Refs. [14,15]. In Ref. [14], the resummation was performed
to NLL, but the clustering logarithms were only included at
fixed Oð�2

sÞ. Our calculation of the leading clustering loga-
rithms agree with the analytic results given in Ref. [14].
Reference [15] works in the limit � � R� 1. They argue
that in this limit the factorization formula in Eq. (32) holds up
to Oð�Þ power corrections, and based on this extend the
resummation to NNLL. While clustering logarithms do not
pose a problem for R� 1, we disagree that the factorization
formula in Eq. (32) holds in this limit. Since soft-collinear
mixing contributions are in fact not power suppressed for
R� 1, the factorization formula does not reproduce the full
NNLL structure of the cross section at leading power.
Therefore, the impact of these terms on the perturbative
uncertainties found in Ref. [15] should be examined.
We can investigate the numerical size of the jet-

algorithm effects using Higgs production through gluon
fusion as an example. The cross section for a veto kcut on
T j or pTj can be expanded in fixed order as

�ðkcutÞ ¼ �LO þ �ð1ÞðkcutÞ þ �ð2ÞðkcutÞ þOð�3
sÞ; (72)

where�ðnÞ isOð�n
s Þ relative to�LO. TheOð�sÞ terms,�ð1Þ,

do not depend on the jet algorithm, and hence are the same
for T j, pTj and T B, ET , respectively. The Oð�2

sÞ terms,

�ð2Þ, include the effect of clustering logarithms,

��ð2ÞðlnRÞ, and soft-collinear mixing, ��ð2ÞðR2Þ,
�ð2ÞðkcutÞ � ��ð2ÞðlnRÞ; ��ð2ÞðR2Þ: (73)

In Fig. 3, we plot these terms in units of �LO as a func-
tion of pcut

T (left panel) and T cut (right panel), for
R ¼ 0:4 (solid curves) and R ¼ 1:0 (dashed curves). For

FIG. 3 (color online). Numerical size of variousOð�2
sÞ terms for a cut on pTj (left panel) and onT j (right panel) formH ¼ 125 GeV

at a 8 TeV LHC. The terms are scaled by the leading order cross section, �LO. We show two values of the jet radius, R ¼ 0:4 (solid
curves) and R ¼ 1:0 (dashed curves) for the kT class of jet algorithms. Shown are the Oð�2

sÞ contribution to the total inclusive cross
section with no veto, �ð2Þð1Þ, the full Oð�2

sÞ contribution with a jet veto, �ð2ÞðkcutÞ with kcut ¼ pcut
T or T cut, the Oð�2

sÞ clustering
logarithm corrections, ��ð2ÞðlnRÞ, and the soft-collinear mixing contribution, ��ð2Þ

SCðR2Þ. At small R, the clustering logarithms are

sizable while the soft-collinear mixing terms are small. At large R the situation is reversed.
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comparison, we also show the full Oð�2
sÞ correction to

the vetoed cross section, �ð2ÞðkcutÞ, as well as the Oð�2
sÞ

correction to the total cross section without a veto,

�ð2Þðkcut ¼ 1Þ [47–52].
The tradeoff between soft-collinear mixing and clus-

tering logarithms is clear in Fig. 3. For R ¼ 0:4, the
clustering logarithms dominate over the mixing terms.
For R ¼ 1:0, the mixing terms dominate over the clus-
tering logarithms. In each case, the size of the numeri-
cally more important term is an appreciable fraction of

the Oð�2
sÞ correction. The difference between �ð2ÞðkcutÞ

and �ð2Þð1Þ primarily comes from the logarithmic terms,

while the absolute size of �ð2ÞðkcutÞ relative to �ð2Þð1Þ is
indicative of the substantial cancellation between the jet-
veto logarithms and the large NNLO K-factor for the
total cross section [53]. Given that depending on R the
clustering or soft-collinear mixing terms are a sizable
fraction of the logarithms lnðmH=k

cutÞ that one is trying
to resum, it is crucial to understand their size at higher
orders and correctly fold them into resummed uncer-
tainty estimates. This has not been done in previous
studies of the Higgs cross section where resummation
for the pT veto is performed.

The standard jet radii in Higgs analyses are R ¼ 0:4 for
ATLAS and R ¼ 0:5 for CMS. As seen in Fig. 3, with these
values, at Oð�2

sÞ the clustering logarithms are numerically
important and the mixing terms can be regarded as power
corrections. This suggests that the phenomenologically
relevant limit is R� �, where soft-collinear factorization
can be applied but clustering logarithms should be re-
garded as NLL. To proceed one should study the impact
of the clustering logarithms on the resummed perturbative
series in order to properly take them into account in a
resummed uncertainty estimate. For this purpose, a calcu-
lation of the Oð�3

sÞ clustering logarithms would provide
very useful information.
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Note added in proof.—After this work was completed,
Ref. [55] appeared, where an NNLL resummation formula
for the cross section with a pT jet veto is presented for
R� 1 that accounts for the contributions due to soft-
collinear mixing. This formula is equivalent to modifying
Eq. (32) to include these terms by hand and is consistent

with our analysis that Eq. (32) by itself is insufficient to
perform the resummation beyond NLL when R� 1.
(Reference [55] does not discuss the case R� �.) The
structure of theOð�2

sÞ soft-collinear mixing terms suggests
that for the pT case one may be able to absorb them into the
beam and soft functions in Eq. (32) by performing addi-
tional collinear zero-bin subtractions in the soft sector. It is
an open question and beyond the scope of this work if such
an approach can be extended to all orders in �s such that
Eq. (32) becomes a valid all-order factorization theorem.

APPENDIX A: RENORMALIZATION GROUP
CONSTRAINTS

The anomalous dimensions of the beam and soft func-
tions for the four observables that we study are constrained
by RG invariance. We give a brief summary of the prop-
erties of the anomalous dimensions and the general form
for each observable. For the exclusive observables, we
work in terms of the veto variable T cut or pcut

T , and these
forms are useful when discussing clustering logarithms in
Sec. IV.
The hard function is universal for all the observables

used, and the hard anomalous dimension is

�gg
H ðmH;�Þ ¼ 2�g

cusp½�sð�Þ� lnm
2
H

�2
þ 2�g

H½�sð�Þ�: (A1)

Consistency of the factorization theorem requires that the
hard, beam, and soft anomalous dimensions cancel. For the
four observables, this consistency is slightly different.
For beam thrust, the consistency relation is

�gg
H ðmH;�Þ�ðT BÞ þ 2mH�

g
BðmHT B;�Þ

þ �gg
S ðT B;�Þ ¼ 0:

(A2)

Analogously, for the T j <T cut veto on jets, the consis-

tency relation is

�gg
H ðmH;�Þ þ 2�g

BðmHT cut; �Þ þ �gg
S ðT cut; �Þ ¼ 0:

(A3)

Both of these factorization theorems are described by
SCETI. The scale dependence in the beam and soft func-
tions is fixed by power counting; the beam function scale is
�2

B ¼ mHT and the soft function scale is �S ¼ T , where
T ¼ T B or T cut. This constrains the beam and soft
anomalous dimensions, so that the coefficients of the
cusp anomalous dimension are fixed relative to that of
the hard function. For beam thrust, these anomalous di-
mensions are

�g
Bðt; �Þ ¼ �2�g

cusp½�sð�Þ� 1

�2
L0

�
t

�2

�
þ �g

B½�sð�Þ��ðtÞ;

�gg
S ðk;�Þ ¼ 4�g

cusp½�sð�Þ� 1
�
L0

�
k

�

�
þ �gg

S ½�sð�Þ��ðkÞ;
(A4)
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where L0ðxÞ ¼ ½�ðxÞ=x�þ denotes the usual plus distribu-
tion. For a T j veto on jets, the anomalous dimensions are

�g
BðmHT cut; �Þ ¼ �2�g

cusp½�sð�Þ� lnmHT cut

�2

þ �g
B jet½�sð�Þ�;

�gg
S ðT cut; �Þ ¼ 4�g

cusp½�sð�Þ� lnT
cut

�
þ �gg

S jet½�sð�Þ�:
(A5)

The noncusp anomalous dimensions for these two observ-
ables agree at Oð�sÞ, but due to the different structure of
their factorization theorems (beam thrust contains a con-
volution while the T j veto does not), the resummed dis-

tributions only coincide at leading logarithm.
For the pT-based observables, which are described by

SCETII, rapidity divergences exist and must be separately
regulated. The rapidity renormalization group formalizes
the regularization of rapidity divergences by introducing
separate anomalous dimensions for the beam (or jet) and
soft functions [30,31]. This rapidity renormalization group
works much like the traditional RGE, with a scale � that is
the analog to the usual � scale.

Power counting and renormalization group invariance
provide strong constraints on the anomalous dimensions
for pT-based observables. Rapidity divergences are regu-
lated by factors inserted into soft and collinear Wilson
lines; in each sector the regulator and its scaling are

beam: �j �n 	 Pgj� � �ð�0Þ�;

soft: �jP3gj� � �ð�Þ�; (A6)

where P� is the momentum operator, and the group mo-
mentum (Pg) of connected webs of gluons is regulated. In

each beam function the large component of momentum is
regulated. This power counting implies that in the rapidity
RG the beam function scale is �B ¼ mH and the soft
function scale �S ¼ pT , where pT ¼ ET or pcut

T . In addi-
tion, in the standard RG in �, the beam and soft functions
live at the low scale, �B ¼ �S ¼ pT .
For the pT-based observables, there are two consistency

relations: one in �-space and one in �-space. For the
inclusive ET observable, the consistency relations are

0 ¼ �gg
H ðmH;�Þ�ðETÞ þ 2�

�;g
B ðmH; ET;�; �Þ

þ ��;gg
S ðET;�; �Þ;

0 ¼ 2��;g
B ðET;�; �Þ þ ��;gg

S ðET;�; �Þ:
(A7)

And for a pTj veto on jets, the consistency relations are

0 ¼ �gg
H ðmH;�Þ þ 2��;g

B ðmH; p
cut
T ; �; �Þ

þ �
�;gg
S ðpcut

T ; �; �Þ;
0 ¼ 2��;g

B ðpcut
T ; �; �Þ þ ��;gg

S ðpcut
T ; �; �Þ:

(A8)

The general forms of the beam and soft anomalous dimen-
sions can be constrained through these relations as well as
the exactness condition,

d

d ln�
��
Fð�; �Þ ¼ d

d ln�
��
F ð�; �Þ; (A9)

for F ¼ B, S. We ignore running coupling effects in this
exactness relation that will contribute to the � anomalous
dimensions starting at Oð�2

sÞ. For ET , the � anomalous
dimensions have the form

�
�;g
B ðmH; ET;�; �Þ ¼

�
2�g

cusp½�sð�Þ� ln �

mH

þ �
�;g
B ½�sð�Þ�

�
�ðETÞ þ ��½�sð�Þ� 1

�
L0

�
ET

�

�
;

�
�;g
S ðET;�; �Þ ¼

�
4�g

cusp½�sð�Þ� ln�
�
þ �

�;g
S ½�sð�Þ�

�
�ðETÞ � 2��½�sð�Þ� 1

�
L0

�
ET

�

�
;

(A10)

and the � anomalous dimensions have the form

��;g
B ðET;�; �Þ ¼ �2�g

cusp½�sð�Þ� 1
�
L0

�
ET

�

�
þ ��;g½�sð�Þ��ðETÞ;

��;g
S ðET;�; �Þ ¼ 4�g

cusp½�sð�Þ� 1
�
L0

�
ET

�

�
� 2��;g½�sð�Þ��ðETÞ:

(A11)

The cusp anomalous dimension dependence in the hard
function fixes every part of the beam and soft anomalous
dimensions except for the non-cusp terms and a cusp term
��½�sð�Þ� in the beam and soft � anomalous dimensions
that cancels between them. Because the beam and soft
functions have the same � scale, as long as they are RG
evolved in � in the same way this �� term will cancel. At
fixed-order, this cancellation is guaranteed and has no
effect on the fixed-order logarithms. It is absent in the

anomalous dimensions at Oð�sÞ, and may be absent at all
orders. Additionally, there is a constraint on the noncusp
anomalous dimensions from Eq. (A7), 2�g

H½�s� þ
2�

�;g
B ½�s� þ �

�;gg
S ½�s� ¼ 0. If the beam and soft functions

are RG evolved in � in the same way, then it is irrelevant
how the � noncusp anomalous dimensions are divided
between them, since only the sum matters.
For the pTj veto the � anomalous dimensions have the

form
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�
�;g
B ðmH;p

cut
T ;�;�Þ

¼2�g
cusp½�sð�Þ�ln �

mH

þ�
�;g
B jet½�sð�Þ�þ��½�sð�Þ�lnp

cut
T

�
;

��;g
S ðpcut

T ;�;�Þ

¼4�g
cusp½�sð�Þ�ln�

�
þ��;gg

S jet ½�sð�Þ��2��½�sð�Þ�lnp
cut
T

�
;

(A12)

and the � anomalous dimensions are

��;g
B ðpcut

T ;�; �Þ ¼ �2�g
cusp½�sð�Þ� lnp

cut
T

�
þ ��;g

jet ½�sð�Þ�;

��;g
S ðpcut

T ; �; �Þ ¼ 4�g
cusp½�sð�Þ� lnp

cut
T

�
� 2��;g

jet ½�sð�Þ�:
(A13)

The same considerations as for the ET observable apply
here. All the cusp parts are fixed by RG invariance with the
hard function, and the only nontrivial unconstrained terms
are the noncusp � anomalous dimensions of the beam and
soft functions.

If clustering effects are associated with divergences in
the beam and soft functions, then they can only impact the
noncusp beam and soft anomalous dimensions. This im-
plies that clustering corrections have at most a single
logarithm of the veto variable at each order. However, as
we saw in Sec. IV, they can produce additional logarithms
of the jet radius R, because these are not associated with
any scale and are therefore not constrained by the RGE.

APPENDIX B: SOFT-COLLINEAR
MIXING AT Oð�2

s Þ
In this appendix we present theOð�2

sÞ calculations of the
soft-collinear mixing contribution to the cross section, de-

noted as ��jetð2Þ
SC ¼ ��jetð2Þ

SCa
þ ��jetð2Þ

SCb
. As explained in

Sec. III, this contribution arises from a correlation in the

measurement between single independent emissions from
the soft and collinear sectors, and formally breaks factoriza-
tion if it is not power suppressed. These mixing terms have
the same form as the independent emission clustering terms
at Oð�2

sÞ in the soft and collinear sectors, and the total
Oð�2

sÞ clustering correction to the independent emission
contribution to the cross section is given by [see Eq. (47)]

��indepð2Þ ¼ ��indepð2Þ
SS þ ��indepð2Þ

CC þ ��jetð2Þ
SC : (B1)

The crucial result is that the soft-collinear mixing terms are
NNLL terms that scale as R2, requiring R to scale as � for
them to be formally power suppressed. We also calculate the
Oð�2

sÞ clustering contribution from independent emissions

in the soft function, ��indepð2Þ
SS .

The bare soft functions at Oð�sÞ and Oð�2
sÞ for inde-

pendent emission in MS (without a measurement
function) are

Sbð1Þ ¼ �sCA

�

e�E��2�

�ð1� �Þ
Z 1

0
dkþdk�ðkþk�Þ�1��;

Sbð2Þ ¼ 1

2
½Sbð1Þ�2; (B2)

where the label b stands for bare. We have implemented the
on-shell conditions and left only the þ, � light-cone
components unintegrated.
The gluon beam function Bg can be written as the

convolution between a perturbative function Iðt; z; �Þ
and the parton distribution function fgðx;�Þ [5,28],

Bgðt; x; �Þ ¼ X
j¼fg;q; �qg

Z 1

x

dz

z
Igjðt; z; �Þfj

�
x

z
;�

�
; (B3)

where t ¼ mHk
þ is the spacelike virtuality of the gluon

entering in the hard interaction. The tree level, Bð0Þ
g , bare

Oð�sÞ naive, ~Bbð1Þ
g , and zero-bin, Bbð1Þ

g;0 , beam functions

(without a measurement function) are [5]

Bð0Þ
g ¼ �gj

1

mH

�ðkþÞ�ð1� zÞ;

~Bbð1Þ
g ¼ �sCA

2�
�ðzÞP̂ggðzÞ 1

mH

e�E��2�

�ð1� �Þ
Z 1

0
dqþdq�ðqþÞ�1��ðq�Þ���

�
q� �mH

1� z

z

�
;

Bbð1Þ
g;0 ¼ �sCA

�

1

mH

�ð1� zÞ e
�E��2�

�ð1� �Þ
Z 1

0
dqþdq�ðqþÞ�1��ðq�Þ�1��;

Bbð1Þ
g ¼ ~Bbð1Þ

g �Bbð1Þ
g;0 ;

(B4)

where

P̂ ggðzÞ ¼ 2

�
z

1� z
þ 1� z

z
þ zð1� zÞ

�
: (B5)

We have dropped the quark contributions to the beam
function as they will not produce logarithms in the mixing

terms. In ~Bbð1Þ
g , there is a singularity as z ! 1 in the

unregularized splitting function P̂gg that is regulated by
q�. When considering the full measurement (both the
factorized and soft-collinear mixing terms), there is an
IR divergence in I that is canceled by the parton distribu-
tion functions; however, this cancellation occurs in the
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factorized measurement function and is not present in the
mixing term. The soft-collinear mixing correction has a
single divergence and Bbð1Þ

g is proportional to �ð1� zÞ,
meaning there is no nontrivial convolution with the parton
distribution functions. Therefore we will just compute the
coefficient of the leading order cross section,�LO, which is
given by

�LO ¼ �0H
ð0Þ
gg ðmH;�Þ

Z
dYfgðxa; �Þfgðxb; �Þ; (B6)

with xa;b ¼ ðmH=EcmÞe�Y .

1. Clustering effects for independent emissions
in the soft function

We perform the soft function calculations first, as
the techniques and results will be used later in the
soft-collinear mixing terms. The independent emission
terms are of the form

��
indepð2Þ
SS ðkcutÞ ¼ Sbð2Þ

Z �

0

d�


�
�Mjetð2Þ

s : (B7)

The integral over �
 does not need to be regulated since
there is no collinear divergence between the final-state
particles. The measurement function for a T j veto is

�Mjetð2Þ
s ðT cutÞ ¼ 2�ð�R12 < RÞ½�ðkþ1 þ kþ2 <T cutÞ

� �ðkþ1 <T cutÞ�ðkþ2 <T cutÞ�: (B8)

We have multiplied by 2 to account for the case where the
two gluons are both in the other hemisphere (where T is
equal to the minus component of momenta), and dropped
the OðR4Þ region of phase space where the two gluons are
in different hemispheres but still cluster. For a pTj veto, the

measurement function is

�Mjetð2Þ
s ðpcut

T Þ ¼ 2�ð�R12 < RÞ½�ðpT1 þ pT2 < pcut
T Þ

� �ðpT1 < pcut
T Þ�ðpT2 < pcut

T Þ�: (B9)

In this case we drop the OðR4Þ correction from using the
vector sum over transverse momenta in the combined
constraint.
To evaluate the matrix element, we use the variables

�y ¼ 1

2
ln
k�1 k

þ
2

kþ1 k
�
2

; yt ¼ 1

4
ln
k�1 k

�
2

kþ1 k
þ
2

;

T cut: T 1 ¼ kþ1 ; T 2 ¼ kþ2 ;

pcut
T : pT1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kþ1 k

�
1

q
; pT2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kþ2 k

�
2

q
:

(B10)

For the T j veto, the soft-function contribution is

��
indepð2Þ
SS ðT cutÞ ¼ �LO

2

�
�sCA

�

�
2 ðe�E�2Þ2�
�ð1� �Þ2 8

Z 1

0
dyte

�4�yt
Z 1

�1
d�y

Z �

0

d�


�
�ð�R12 <RÞ

Z 1

0
dT 1 dT 2ðT 1T 2Þ�1�2�

� ½�ðT 1 þT 2 <T cutÞ � �ðT 1 <T cutÞ�ðT 2 <T cutÞ�: (B11)

Only the integral over yt produces a divergence, and the
integrals are straightforward to evaluate. The divergent
term is

��
indepð2Þ
SS ðT cutÞ ¼ ��LO

1

�

�
�sCA

�

�
2
�

�

T cut

�
4� �2

12
R2:

(B12)

For pTj, we need to regulate the rapidity divergences, for
which we use the analytic regulator [42]. In this case, the
regulator factor is

�2�ðkþ1 kþ2 Þ�� ¼ �2�ðpT1pT2Þ��e4�yt : (B13)

The amplitude and measurement function are independent
of yt. Hence, the soft function is proportional toZ 1

�1
dyte

4�yt ¼
Z x

�1
dyte

4�yt þ
Z 1

x
dyte

4�yt

¼ 1

4�
½e4�x � e4�x� ¼ 0: (B14)

We made the reason why this integral is zero explicit by
breaking the range of integration into two parts: ð�1; xÞ

and ðx;1Þ. In the lower range �> 0 regulates the integral
and in the upper range �< 0 regulates the integral, and the
two terms cancel. (This is precisely equivalent to the case
of a scaleless integral in pure dimensional regularization
with � here playing the role of �.) Thus,

��
indepð2Þ
SS ðpcut

T Þ ¼ 0: (B15)

2. Soft-collinear mixing terms

The mixing term between soft and na-collinear emis-
sions at Oð�2

sÞ is given by

ðSCaÞ ¼ Bbð1Þ
g Sbð1Þ

Z �

0

d�


�
�Mjetð2Þ

as ; (B16)

and similarly for (SCb). We have included the integral over
the relative azimuthal angle �
 between the soft and
collinear particles. Since we are concerned with the leading
divergences, we do not need to regulate 
. The Oð�2

sÞ
measurement corrections for T j and pTj, �Mjetð2ÞðT cutÞ
and �Mjetð2Þðpcut

T Þ, are
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�Mjetð2ÞðT cutÞ ¼ �ð�Rsc < RÞ½�ðT c þT s <T cutÞ
� �ðT c <T cutÞ�ðT s <T cutÞ�;

�Mjetð2Þðpcut
T Þ ¼ �ð�Rsc < RÞ½�ðpTc þ pTs < pcut

T Þ
� �ðpTc < pcut

T Þ�ðpTs < pcut
T Þ�:

(B17)

For the T j veto, the two soft-collinear mixing terms,

(SCa) and (SCb), are equal. They are made up of the naive
and zero-bin beam function contributions, so that

ðSCÞ ¼ ðS~CÞ � ðSCð0ÞÞ: (B18)

The zero-bin of the beam function in each collinear sector
is equal to the soft function contribution, meaning

ðSCð0ÞÞ ¼ 2ðSSÞ: (B19)

Changing variables from k� to �y,

k� ¼ kþe2ðyc��yÞ; e�2yc ¼ qþz
mHð1� zÞ ; (B20)

the total correction from the naive beam function term in
the mixing is

ðS~CÞðT cutÞ¼ 2

�
�sCA

�

�
2 ðe�E�2Þ2�
�ð1��Þ2 �ðzÞP̂ggðzÞ

�
z

1�z

�
2�

� 1

m1þ2�
H

Z 1

�1
d�ye2��y

Z �

0

d�


�
�ð�R<RÞ

�
Z 1

0
dqþdkþðqþkþÞ�1�2�

�½�ðkþþqþ<T cutÞ��ðqþ<T cutÞ
��ðkþ<T cutÞ�: (B21)

The remaining integrals are finite, so we can set � ¼ 0 in
the integrand after pulling out an overall scale dependence
of ðT cutÞ�2�. The integrals over �y and �
 give

Z 1

�1
d�y

Z �

0

d�


�
�ð�R< RÞ ¼ 1

2
R2; (B22)

and the integrals over qþ and kþ give

Z 1

0
dqþdkþ

1

qþkþ
½�ðkþ þ qþ <T cutÞ

� �ðqþ <T cutÞ�ðkþ <T cutÞ� ¼ ��2

6
: (B23)

Thus,

ðS~CÞðT cutÞ ¼ �
�
�sCA

�

�
2 �ðzÞ
mH

P̂ggðzÞ
�

z

1� z

�
2�

�
�

�2

mHT cut

�
2� �2

6
R2: (B24)

Expanding z as a distribution about z ¼ 1 and keeping only
the divergent term,

�ðzÞP̂ggðzÞ
�

z

1� z

�
2� ¼ � 1

�
�ð1� zÞ þOð�0Þ; (B25)

the soft-collinear mixing term is

ðS~CÞðT cutÞ ¼ 1

�

�
�sCA

�

�
2 �ð1� zÞ

mH

�
�2

mHT cut

�
2� �2

6
R2:

(B26)

Subtracting the zero-bin contribution, which is twice
Eq. (B12), the correction to the cross section becomes

��
jetð2Þ
SC ðT cutÞ ¼ �LO

1

�

�
�sCA

�

�
2 �2

6
R2

�
��

�2

mHT cut

�
2� �

�
�2

ðT cutÞ2
�
2�
�

¼ ��LO

�
�sCA

�

�
2 �2

3
R2 ln

mH

T cut
: (B27)

For the pTj veto, the soft independent emission, and

therefore the zero-bin contribution, are zero. Hence, the
soft-collinear mixing terms are just given by the naive
contribution. To evaluate the matrix element, we change
variables from qþ, kþ to pTc, pTs, where

qþ ¼ p2
Tcz

mHð1� zÞ ; kþ ¼ pTse
�y mHð1� zÞ

pTcz
: (B28)

We also use the same change of variables from k� to�y as
in the T j veto. There are again rapidity divergences not

regulated by � for which we use the analytic regulator. The
regulator factor for (SCa) is

�2�ðqþkþÞ�� ¼ �2�ðpTcpTsÞ��

�
pTcz

mHð1� zÞ
��2�

: (B29)

The integrals over �y and �
 can be performed as before,
and we find

ðSCaÞðpcut
T Þ ¼

�
�sCA

�

�
2 ðe�E�2Þ2�
�ð1� �Þ2

1

mH

�ðzÞP̂ggðzÞ
�
1� z

z

�
2�ð�mHÞ2�R2

Z 1

0
dpTcdpTsp

�1�2��3�
Tc p�1�2���

Ts

� ½�ðpTc þ pTs < pcut
T Þ � �ðpTc < pcut

T Þ�ðpTs < pcut
T Þ�: (B30)

We can set � ¼ 0 everywhere, as there is only a rapidity divergence as z ! 1. Performing the final integrals, we find
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ðSCaÞðpcut
T Þ ¼ �

�
�sCA

�

�
2 �ðzÞ
mH

P̂ggðzÞ
�
1� z

z

�
2�
�
�mH

ðpcut
T Þ2

�
2� �2

6
R2: (B31)

Expanding in z to extract the divergence, we get

ðSCaÞðpcut
T Þ ¼ � 1

�

�
�sCA

�

�
2 �ð1� zÞ

mH

�
�mH

ðpcut
T Þ2

�
2� �2

6
R2: (B32)

This gives the following correction to the cross section

��jetð2Þ
SCa

ðpcut
T Þ ¼ ��LO

1

�

�
�sCA

�

�
2
�
�mH

ðpcut
T Þ2

�
2� �2

6
R2:

(B33)

The regulator for the mixing between soft and nb-collinear
sectors gives a difference scale dependence. In this case the
label component of collinear momentum is regulated,
which effectively amounts to regulating the minus momen-
tum component in the above calculation. This changes the
scale dependence to ð�=mHÞ2� with an overall minus sign:�

�mH

ðpcut
T Þ2

�
2� ! �ð�=mHÞ2�: (B34)

Thus the entire soft-collinear mixing contribution to the
cross section, ��

jet
SCa

þ ��
jet
SCb

, is

��jetð2Þ
SC ðpcut

T Þ ¼ ��LO

1

�

�
�sCA

�

�
2 �2

6
R2

�
��

�mH

ðpcut
T Þ2

�
2� �

�
�

mH

�
2�
�

¼ ��LO

�
�sCA

�

�
2 2�2

3
R2 ln

mH

pcut
T

: (B35)

APPENDIX C: CLUSTERING LOGARITHMS
IN THE SOFT FUNCTION AT Oð�2

s Þ
Clustering logarithms first occur at Oð�2

sÞ, and they are
easiest to calculate in the soft function. RG invariance can
be used to extract the beam function contributions, as
explained in Sec. IV.

The definition of what is a clustering effect is subtle
because one must define what the effect is relative to. One
ostensibly natural option is to define it relative to the cross
section if no clustering takes place. However, as explained
in Sec. IV, this measurement is infrared unsafe due to
collinear singularities between partons. A more sensible
‘‘primary’’ measurement are the inclusive T B or ET mea-
surements. These measurements are IR safe, and when a
set of particles becomes collinear their contribution to the
primary measurement is the same as the contribution to the

observable that is vetoed (the pT orT of the jet). Here, we
only keep the divergent term with the appropriate pcut

T and
T cut scale dependence, as this is the piece connected to the
soft and beam functions. The finite terms do not take part in
the resummation and can be captured as usual by matching
the resummed result to the full fixed-order result at NNLO.
The Oð�2

sÞ soft measurement function for the clustering
correction relative to the inclusive measurements is [see
Eq. (40)]

�Mjetð2Þ
s ðkcutÞ ¼ f�ð�R12 < RÞ�ðkjet < kcutÞ

þ �ð�R12 >RÞ�ðk1 < kcutÞ�ðk2 < kcutÞg
� �ðk1 þ k2 < kcutÞ; (C1)

where k ¼ T or pT . In this measurement function, kjet is

the observable for the clustered pair. For k ¼ T , T jet ¼
T 1 þT 2 except when the jet spans the boundary at the
Higgs rapidity. For k ¼ pT , the scalar sum of transverse
momenta is not the same as the magnitude of the vector
sum. However, when R� �, these differences become
power-suppressed for both the T and pT observables.
Since this is the limit we are working in, and we are
neglecting power-suppressed terms in this limit, the mea-
surement functions for the clustering effect simplify to

�Mjetð2ÞðkcutÞ ¼ �ð�R12 > RÞ½�ðk1 < kcutÞ�ðk2 < kcutÞ
� �ðk1 þ k2 < kcutÞ�: (C2)

The phase space constraint on �R12 suggests a convenient
set of coordinates for the calculation. In terms of the
rapidity yi, azimuthal angle 
i, and observable ki (where
k ¼ T or pT), the coordinates we use are

yt ¼ 1

2
ðy1 þ y2Þ; 
t ¼ 1

2
ð
1 þ
2Þ;

�y ¼ y1 � y2; �
 ¼ 
1 �
2;

kt ¼ k1 þ k2; z ¼ k1
kt
:

(C3)

The full Oð�2
sÞ soft function matrix elements can be found

in Ref. [54]. Using k ¼ pT , in terms of these coordinates
the non-Abelian soft matrix elements are
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AA ¼ 4g4C2
A

1

p4
Ttz

2ð1� zÞ2
1

cosh�y� cos�


1

z2 þ ð1� zÞ2 þ 2zð1� zÞ cosh�y
�
ðz2 þ ð1� zÞ2Þ

� cos�
� zð1� zÞð1� cos�
 cosh�yÞ þ ð1� �Þ

� z2ð1� zÞ2sinh2�y
ðcosh�y� cos�
Þðz2 þ ð1� zÞ2 þ 2zð1� zÞ cosh�yÞ

�
;

Af ¼ 4g4CATRnf
1

p4
Ttz

2ð1� zÞ2
1

ðcosh�y� cos�
Þ
1

ðz2 þ ð1� zÞ2 þ 2zð1� zÞ cosh�yÞ
�
zð1� zÞ

� � 2z2ð1� zÞ2sinh2�y
ðcosh�y� cos�
Þðz2 þ ð1� zÞ2 þ 2zð1� zÞ cosh�yÞ

�
: (C4)

In the small �R limit, the matrix elements simplify to

A R
A ¼ 4g4C2

A

1

p4
Ttz

2ð1� zÞ2
2

�R2

�
z2 þ ð1� zÞ2 þ 2z2ð1� zÞ2�y2

�R2

�
;

AR
f ¼ 4g4CATRnf

1

p4
Ttz

2ð1� zÞ2
2

�R2

�
zð1� zÞ � 4z2ð1� zÞ2�y2

�R2

�
:

(C5)

We start with the calculation for pTj. The measurement
function can be written as

�Mjet
s ðpcut

T Þ¼�ð�R>RÞ�
�
�
pcut
T <pTt<pcut

T

1

maxðz;1�zÞ
�
: (C6)

The matrix element and measurement function are inde-
pendent of yt, meaning the integral over yt is unregulated.
To regulate this rapidity divergence we use the rapidity
regulator, which regulates the z-component of the group
momentum for the c-web through the factor

�j2P3gj� ¼ �p
�
Tt

��������2z sinh

�
yt þ 1

2
�y

�

þ 2ð1� zÞ sinh
�
yt � 1

2
�y

���������
�

: (C7)

Integrating over yt then gives a single 1= divergence and
this is the only divergent part of the calculation,

�p
�
Tt

Z 1

�1
dyt

��������2z sinh

�
yt þ 1

2
�y

�

þ 2ð1� zÞ sinh
�
yt � 1

2
�y

���������
�

¼ 2


�p

�
Tt þOð0Þ: (C8)

The matrix element scales simply with pTt since it is the
only dimensionful variable, and so pTt can be easily inte-
grated against the measurement function including the
regulator factor. This integral is

Z 1

0
dpTtp

�1�4��
Tt �

�
pcut
T < pTt < pcut

T

1

maxðz; 1� zÞ
�

¼ �ðpcut
T Þ�4�� ln½maxðz; 1� zÞ�: (C9)

Carrying through the integrals over the on-shell conditions,
the soft function correction for the pT veto is

�Sbð2Þðpcut
T Þ ¼ � 8



1

ð4�Þ4
�
�

pcut
T

�
 Z 1

0
dz

Z 1

�1
d�y

Z �

0

d�


�

ln½maxðz; 1� zÞ�
zð1� zÞ �ð�R> RÞ½p4

Ttz
2ð1� zÞ2Aðz;�y;�
Þ�:

(C10)

The remaining integrals are finite and have the form

a lnRþ bþOðRÞ: (C11)

We determine a analytically and extract b numerically. To
determine the coefficient of lnR, we rewrite the matrix
element as the difference

A ¼ ðA�ARÞ þAR; (C12)

where AR is the matrix element expanded in the small R
limit, given in Eq. (C5). The difference A�AR is finite
as R ! 0, meaning that up to OðR2Þ corrections,

Z
d�yd�
�ð�R> RÞðA�ARÞ

¼
Z

d�yd�
ðA�ARÞ þOðR2Þ: (C13)
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Integrating the matrix element AR is simple, using the relations

Z 1

�1
d�y

Z �

0

d�


�

1

�R2
�ð�R> RÞ ¼ � lnRþ ln2�þOðRÞ;

Z 1

�1
d�y

Z �

0

d�


�

2�y2

�R4
�ð�R> RÞ ¼ � lnRþ ln2�þ 1

2
þOðRÞ:

(C14)

Carrying through the integrals, we obtain

Z 1

0
dz

Z 1

�1
d�y

Z �

0

d�


�

ln½maxðz; 1� zÞ�
zð1� zÞ ½p4

Ttz
2ð1� zÞ2AR

A��ð�R> RÞ

¼ 4g4C2
A

�
� 1

36
ð131� 12�2 � 132 ln2Þ lnRþ 1

72
½�13þ 12 ln2þ 2 lnð2�Þð131� 12�2 � 132 ln2Þ�

�
;

Z 1

0
dz

Z 1

�1
d�y

Z �

0

d�


�

ln½maxðz; 1� zÞ�
zð1� zÞ ½p4

Ttz
2ð1� zÞ2AR

f ��ð�R> RÞ

¼ 4g4CATRnf

�
1

18
ð23� 24 ln2Þ lnRþ 1

36
½13� 12 ln2� 2 lnð2�Þð23� 24 ln2Þ�

�
: (C15)

Performing the full integrals numerically, we get

Z 1

0
dz

Z 1

�1
d�y

Z �

0

d�


�

ln½maxðz; 1� zÞ�
zð1� zÞ ½p4

Ttz
2ð1� zÞ2ðAA �AR

AÞ� ¼ 4g4C2
Að4:66Þ;

Z 1

0
dz

Z 1

�1
d�y

Z �

0

d�


�

ln½maxðz; 1� zÞ�
zð1� zÞ ½p4

Ttz
2ð1� zÞ2ðAf �AR

f Þ� ¼ 4g4CATRnfð0:138Þ:
(C16)

Thus, the final result for the leading divergent corrections due to clustering in the bare soft function is

�Sbð2Þðpcut
T Þ ¼ 1



�
�s

�

�
2
�
�

pcut
T

�

�
C2
A

�
1

18
ð131� 12�2 � 132 ln2Þ lnR� 1:12

�

þ CATRnf

�
� 1

9
ð23� 24 ln2Þ lnRþ 0:764

��
: (C17)

Note that the constant terms,�1:12 andþ0:764, depend on
the choice of inclusive observable that the clustering effect is
defined relative to. Hence, they are different from those found
in Ref. [14], since here we use ET ¼ j ~pT1j þ j ~pT2j while
Ref. [14] uses the vector sum j ~pT1 þ ~pT2j. When using the
latter in our calculation we reproduce the results in Ref. [14].

The steps to calculate the clustering logarithms for T j

proceed analogously. The calculation is slightly more tedi-
ous due to the fact that a particle’s contribution to the
observable changes depending on what hemisphere it is
in. Therefore, there are two regions of rapidities y1;2 of the
two particles to consider:

(i) y1, y2 > 0 and y1, y2 < 0: Both particles are in the
same hemisphere. These configurations will contrib-
ute to the divergent terms.

(ii) y1 > 0, y2 < 0 and y1 < 0, y2 > 0: The particles are
in opposite hemispheres. This region does not con-
tribute to the divergent terms. The region of phase
space where particles can cluster scales as OðR4Þ
and can be neglected. The variables in Eq. (C3) are
also useful for this calculation. Carrying through the
calculation, we find the divergent terms contributing
to the bare soft function

�Sbð2ÞðT cutÞ ¼ 1

4�

�
�s

�

�
2
�

�

T cut

�
4�
�
C2
A

�
1

18
ð131� 12�2 � 132 ln2Þ lnR� 0:937

�

þ CATRnf

�
� 1

9
ð23� 24 ln2Þ lnRþ 0:747

��
: (C18)

Note that the divergent lnR terms are the same as for pTj, while the constant terms differ.
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