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We present a general relativistic framework for the calculation of the electroweak structure of

heavy-light mesons within constituent-quark models. To this aim the physical processes in which the

structure is measured, i.e., electron-meson scattering and semileptonic weak decays, are treated in a

Poincaré-invariant way by making use of the point form of relativistic quantum mechanics. The

electromagnetic and weak meson currents are extracted from the 1-�- and 1-W-exchange amplitudes

that result from a Bakamjian-Thomas type mass operator for the respective systems. The covariant

decomposition of these currents provides the electromagnetic and weak (transition) form factors.

Problems with cluster separability, which are inherent in the Bakamjian-Thomas construction, are

discussed and it is shown how to keep them under control. It is proved that the heavy-quark limit of

the electroweak form factors leads to one universal function, the Isgur-Wise function, confirming that the

requirements of heavy-quark symmetry are satisfied. A simple analytical expression is given for the Isgur-

Wise function and its agreement with a corresponding front-form calculation is verified numerically.

Electromagnetic form factors for B� and Dþ and weak B ! Dð�Þ decay form factors are calculated with a

simple harmonic-oscillator wave function and heavy-quark symmetry breaking due to finite masses of the

heavy quarks is discussed.
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I. INTRODUCTION

A proper relativistic formulation of the electroweak
structure of few-body bound states poses several problems.
Even if one has model wave functions for the few-body
bound states one is interested in, it is not straightforward to
construct electromagnetic and weak currents with all the
properties they should have. Two basic features are
Poincaré covariance and cluster separability [1–3]. The
latter means that the bound-state current should become a
sum of subsystem currents, if the interaction between the
subsystems is turned off. This property is closely related to
the requirement that the charge of the whole system should
be the sum of the subsystem charges, irrespective of
whether the interaction is present or not [4]. Electro-
magnetic currents should, furthermore, satisfy current
conservation and in the case of electroweak currents of
heavy-light systems one has restrictions coming from
heavy-quark symmetry that should be satisfied if the mass
of the heavy quark goes to infinity [5–7]. This is the topic
whichwewill concentrate on in this paper, keeping, of course,
also the other requirements for a reasonable current in mind.

The main ingredients in the construction of currents are
the wave functions of the incoming and outgoing few-body
bound states. Since momentum is transferred to the bound
state in the course of an electroweak process, one has to
know how to boost the wave function, which is usually
calculated for the bound state at rest, to the initial and final
states, respectively. A procedure which provides wave

functions for interacting few-body systems with well-
defined relativistic boost properties is the so-called
Bakamjian-Thomas construction [3,8]. It gives an interact-
ing representation of the Poincaré algebra on a few-body
Hilbert space, allows even for instantaneous interactions,
and it works in the three common forms of relativistic
Hamiltonian dynamics [9]: the instant form, the front
form and the point form. These forms are characterized
by which of the Poincaré generators contain interaction
terms and which are interaction free. In the point form,
which we are going to use, all four components of the
4-momentum operator are interaction dependent, whereas
the Lorentz generators stay free of interactions. As a con-
sequence boosts and the addition of angular momenta
become simple.
There is a long list of papers in which relativistic

constituent-quark models serve as a starting point for the
calculation of the electroweak structure of heavy-light
mesons. A lot of these calculations have been done in front
form, like e.g., those in Refs. [10–14], to mention a few. In
these papers the electromagnetic and weak meson currents
are usually approximated by one-body currents, which
means that those currents are assumed to be a sum of
contributions in which the gauge boson couples only to
one of the constituents, whereas the others act as specta-
tors. It is well known that this approximation leads to
problems with covariance of the currents in front form
and in instant form [4]. The form factors extracted from
such a one-body approximation of a current depend, in
general, on the frame in which the approximation is made.
In the covariant front-form formulation suggested in
Ref. [15] this problem is circumvented by introducing

*maria.gomez-rocha@uni-graz.at
†wolfgang.schweiger@uni-graz.at

PHYSICAL REVIEW D 86, 053010 (2012)

1550-7998=2012=86(5)=053010(19) 053010-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.86.053010


additional, spurious covariants and form factors that are
associated with the chosen orientation of the light front.
Another way to cure this problem is the introduction of a
nonvalence contribution leading to a so-called Z graph
[16,17]. Such a nonvalence contribution to the currents is
also included in an effective way in the instant-form ap-
proach of Ebert et al. [18]. This is a very sophisticated
constituent-quark model for heavy-light systems based on
a quasipotential approach. A whole series of papers by
Ebert and collaborators deals very comprehensively with
spectroscopy, structure and decays of heavy-light mesons
and baryons. In connection with instant-form constituent-
quark models one should also mention the papers of Le
Yaouanc et al. (see, e.g., Ref. [19] and references therein).
They were the first to prove that covariance of a one-body
current is recovered, if the mass of the heavy quark goes to
infinity [20]. Thereby they made use of the known boost
properties of wave functions within the Bakamjian-
Thomas formulation of relativistic quantum mechanics.

On the contrary, the literature on point-form calculations
of heavy-light systems is very sparse, although the point
form seems to be particularly suited for the treatment of
these kinds of systems. We are only aware of two papers by
Keister [21,22]. This is one of our motivations to inves-
tigate the electroweak structure of heavy-light mesons
within the point form of relativistic dynamics. Although
it is possible to formulate a covariant one-body current in
point form [23,24], we will adopt a different strategy.
Instead of making a particular ansatz for the electromag-
netic and weak currents and extract the form factors from
these currents, we rather want to derive these currents in
such a way that they are compatible with the binding
forces. The idea is to treat the physical processes in which
the electroweak form factors are measured in a Poincaré-
invariant way by means of the Bakamjian-Thomas formal-
ism. This gives us 1-�- and 1-W-exchange amplitudes
from which the currents and form factors can be extracted.
This kind of procedure has already been applied success-
fully to calculate electromagnetic form factors of spin-0
and spin-1 two-body bound states consisting of equal-mass
particles [25,26]. These calculations were restricted to
spacelike momentum transfers. For instantaneous binding
forces the results were found to be equivalent with those
obtained with a one-body ansatz for the current in the
covariant front-form approach [15]. The present paper is
an extension of the foregoing work to unequal-mass con-
stituents and to weak decay form factors in the timelike
momentum-transfer region. It is also intended as a check
whether the additional restrictions coming from heavy-
quark symmetry can be accounted for within our approach.

The general Poincaré-invariant framework that we use to
describe electron-meson scattering and semileptonic weak
decays of mesons will be introduced in Sec. II. It is a
relativistic multichannel formalism for a Bakamjian-
Thomas type mass operator [3,8] that is represented

in a velocity-state basis [27]. This multichannel for-
mulation is necessary to account for the dynamics of �-
and W-exchange, respectively. The 1-�-exchange
amplitude for electron scattering off a confined quark-
antiquark pair is derived in Sec. II B, the 1-W-exchange
amplitude for the semileptonic decay of a confined quark-
antiquark state into another (confined) quark-antiquark
state in Sec. II C. Since these amplitudes have the usual
structure, namely lepton current contracted with hadron
current times a gauge-boson propagator, it is easy to iden-
tify the electromagnetic and weak hadron currents. This is
explicitly done for pseudoscalar mesons and pseudoscalar-
to-pseudoscalar as well as pseudoscalar-to-vector transi-
tions assuming that the mesons are pure s wave. The
Lorentz structure of the resulting electromagnetic and
weak currents is then analyzed in Sec. III. As a result of
this analysis we obtain the electroweak form factors.
Section III A contains also a short discussion of cluster
problems, connected with the Bakamjian-Thomas con-
struction, and their effect on the electromagnetic
current. The limit of heavy-quark mass going to infinity
is investigated in Sec. IV. The precise definition of the
‘‘heavy-quark limit’’ (h.q.l.) is introduced and it is proved
that the h.q.l. of the electromagnetic and weak form factors
yields a single universal function, the Isgur-Wise function.
Model calculations of the electromagnetic Dþ and B�

form factors and weak B ! Dð�Þ decay form factors for
physical masses of the heavy quarks are presented in
Sec. V. These are contrasted with the Isgur-Wise function
to estimate heavy-quark-symmetry breaking effects due to
finite masses of the heavy quarks. Our summary and con-
clusions are finally given in Sec. VI.

II. COUPLED-CHANNEL FORMALISM

A. Prerequisites

In the point-form version of the Bakamjian-Thomas
construction the 4-momentum operator for an interacting
few-body system is written as a product of an interaction-
dependent mass operator times a free 4-velocity opera-
tor [3],

P̂ � ¼ M̂V̂�
free ¼ ðM̂free þ M̂intÞV̂�

free: (1)

Relativistic invariance holds if the interaction term M̂int is a

Lorentz scalar and commutes with V̂�
free. Equation (1)

implies that the overall velocity of the system can be easily
separated from the internal motion and one can concentrate

on studying the mass operator M̂ which is a function of the
internal variables only.
In this type of approach the operators of interest are most

conveniently represented in a velocity-state basis [27]. An

n-particle velocity state jv; ~k1; �1; ~k2; �2; . . . ; ~kn;�ni is
just a multiparticle momentum state in the rest frame that
is boosted to overall 4-velocity v (v�v

� ¼ 1) by means of

a canonical spin boost BcðvÞ [3]:
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jv; ~k1; �1; ~k2; �2; . . . ; ~kn; �ni
:¼ ÛBcðvÞj ~k1; �1; ~k2; �2; . . . ; ~kn; �ni

with
Xn
i¼1

~ki ¼ 0: (2)

The�i s are the spin projections of the individual particles.

By construction one of the ~kis is redundant. Velocity states
are orthogonal

hv0; ~k01; �0
1;

~k02; �0
2; . . . ;

~k0n; �0
njv; ~k1; �1; ~k2; �2; . . . ; ~kn; �ni

¼ v0�
3ð ~v0 � ~vÞ ð2�Þ

32!kn

ðPn
i¼1 !kiÞ3

�Yn�1

i¼1

ð2�Þ32!ki�
3ð ~k0i � ~kiÞ

�

�
�Yn
i¼1

��0
i�i

�
(3)

and satisfy the completeness relation

11;2;...n¼
Xj1

�1¼�j1

Xj2
�2¼�j2

...
Xjn

�n¼�jn

Z d3v

ð2�Þ3v0

�Yn�1

i¼1

d3ki
ð2�Þ32!ki

�

�ðPn
i¼1!kiÞ3
2!kn

jv; ~k1;�1; ~k2;�2;...; ~kn;�ni

�hv; ~k1;�1; ~k2;�2;...; ~kn;�nj; (4)

with mi, !ki
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ ~k2i

q
, and ji being the mass, the

energy, and the spin of the ith particle, respectively.
Without loss of generality we have taken the nth momen-
tum to be redundant.

One of the big advantages of velocity states as compared
with the usual momentum states is their simple behavior
under a Lorentz transformation �:

Û�jv; ~k1; �1; ~k2; �2; . . . ; ~kn; �ni

¼ X
�0

1
;�0

2
;...;�0

n

�Yn
i¼1

Dji
�0

i�i
½RWðv;�Þ�

�

� j�v;RWðv;�Þk������������������!
1; �

0
1;RWðv;�Þk������������������!

2;

�0
2; . . . ;RWðv;�Þk������������������!

n; �
0
ni; (5)

with the Wigner-rotation matrix

RWðv;�Þ ¼ B�1
c ð�vÞ�BcðvÞ: (6)

Since the Wigner rotations are the same for all particles
angular momenta can be added as in nonrelativistic quan-
tum mechanics. In a velocity-state basis the Bakamjian-
Thomas type 4-momentum operator, Eq. (1), is diagonal in
the 4-velocity v.

B. Electron-meson scattering

We extract the electromagnetic meson current and
the corresponding form factors from the invariant
1-�-exchange amplitude for electron-meson scattering.

This requires us to take the dynamics of the exchanged
photon fully into account. Hence we formulate the scatter-
ing of an electron by a (composite) meson on a Hilbert
space that is a direct sum of eQ �q and eQ �q� Hilbert spaces.

If the eigenstates jc i of the total mass operator M̂
are decomposed into eQ �q and eQ �q� components, i.e.,
jc i ¼ jc eQ �qi þ jc eQ �q�i, the mass-eigenvalue equations

for these components may be written in the form0
@ M̂conf

eQ �q K̂�

K̂y
� M̂conf

eQ �q�

1
A
0
@ jc eQ �qi
jc eQ �q�i

1
A ¼ m

0
@ jc eQ �qi
jc eQ �q�i

1
A: (7)

K̂y
� and K̂� are vertex operators that describe the emission

and absorption of a photon by the electron or (anti)quark.
Without loss of generality we have assumed that the quark
Qð¼ c; bÞ is the heavy and the antiquark �qð¼ �u; �d; �sÞ the
light mesonic constituent, respectively. The instantaneous
confining interaction between quark and antiquark is al-
ready included in the diagonal elements of this matrix mass
operator, i.e.,

M̂conf
eQ �q¼ M̂eQ �qþ V̂ð3Þ

conf ; M̂conf
eQ �q�¼ M̂eQ �q�þ V̂ð4Þ

conf ; (8)

with V̂ð3Þ
conf and V̂ð4Þ

conf denoting the embedding of the

confining Q �q potential into the 3- and 4-particle Hilbert
spaces [3].
The invariant 1-�-exchange amplitude for electron-

meson scattering is now obtained by taking appropriate

matrix elements of the optical potential V̂optðmÞ that enters
the equation for jc eQ �qi after a Feshbach reduction:
ðM̂conf

eQ �q þ K̂�ðm� M̂conf
eQ �q�Þ�1K̂y

�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
V̂optðmÞ

Þjc eQ �qi ¼ mjc eQ �qi: (9)

What we need are matrix elements of the optical potential

V̂optðmÞ between (velocity) eigenstates of the channel mass

operator

M̂conf
eQ �qjv; ~ke; �e

; ~k�;��
; �i

¼ ð!ke
þ!k�

Þjv; ~ke; �e
; ~k�;��

; �i: (10)

�
�
denotes the spin orientation of the confined Q �q bound

state, and � is a shorthand notation for the remaining
discrete quantum numbers necessary to specify it uniquely.
The energy of theQ �q bound state with quantum numbers�

and massm� is!k�
¼ ðm2

� þ ~k2�Þ1=2. Eigenstates of M̂conf
eQ �q�

are introduced in an analogous way. Later on we will also

need (velocity) eigenstates of the free mass operators M̂eQ �q

and M̂eQ �q�. To make a clear distinction between states with

a confined Q �q pair from those with a free Q �q pair we
underline velocities, momenta and spin projections for
the former. For the calculation of electromagnetic meson

form factors only on-shell matrix elements of V̂optðmÞ are
required with the discrete quantum numbers � being those
of the meson of interest. The further analysis of these
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on-shell matrix elements is accomplished by inserting com-

pleteness relations for the eigenstates of M̂conf
eQ �q�, M̂eQ �q and

M̂eQ �q� at the appropriate places:

hv0; ~k0e; �0
e
; ~k0�;�0

�
; �jV̂optðmÞjv; ~ke; �e

; ~k�;��
; �ios

¼ hv0; ~k0e; �0
e
; ~k0�;�0

�
; �j1eQ �qK̂�1eQ �q�ðM̂conf

eQ �q� �mÞ�1

� 1conf
eQ �q�1eQ �q�K̂

y
�1eQ �qjv; ~ke;�e

; ~k�;��
; �ios: (11)

The subscript ‘‘os’’ means on-shell, i.e.,m ¼ !ke
þ!k�

¼
!k0e þ!k0� , !ke

¼ !k0e and !k�
¼ !k0� . After insertion of

the completeness relations one ends up with matrix

elements of the form hv; ~ke;�e; ~kQ;�Q; ~k �q;� �qjv; ~ke;
�

e
; ~k�;��

; �i, hv; ~ke;�e; ~kQ;�Q; ~k �q;� �q; ~k�;��jv; ~ke;�e
;

~k�;��
;�; ~k�;��

i, hv0; ~k0e; �0
e; ~k

0
Q;�

0
Q;

~k0�q; �0
�q; ~k

0
�;�

0
�jK̂yj

v; ~ke; �e; ~kQ;�Q; ~k �q; � �qi and the Hermitian conjugates,

respectively. The first two are just wave functions of the
confinedQ �q pair and a free electron (and photon). The third
describes the transition from a freeQ �qe state to a freeQ �qe�
state by emission of a photon and is calculated from the
usual interaction densityLem

int ðxÞ of spinor quantum electro-

dynamics [28]:

hv0; ~k0e; �0
e; ~k

0
Q;�

0
Q;

~k0�q; �0
�q; ~k

0
�;�

0
�jK̂yjv; ~ke; �e; ~kQ;�Q; ~k �q; � �qi

¼ Nv0�
3ð ~v0 � ~vÞh ~k0e; �0

e; ~k
0
Q;�

0
Q;

~k0�q; �0
�q; ~k

0
�;�

0
�jL̂em

int ð0Þj ~ke; �e; ~kQ;�Q; ~k �q; � �qi: (12)

The normalization factor N is determined by the normalization of the velocity states. Explicit expressions for all the matrix
elements aregiven inRef. [25].Using these analytical resultswecan show that theon-shellmatrix elements of theoptical potential
have the structure that one expects from the invariant 1-�-exchange amplitude, namely the electron current j�e contractedwith the
hadron current ~J�½�� and multiplied with the covariant photon propagator (� g��=Q

2) (times some kinematical factors):

hv0; ~k0e; �0
e
; ~k0�;�0

�
; �jV̂optðmÞjv; ~ke; �e

; ~k�;��
; �ios

¼ v0�
3ð ~v0 � ~vÞ ð2�Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!k0e þ!k0�Þ3
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð!ke
þ!k�

Þ3
q ð�e2Þ �u�0

e
ð~k0eÞ��u�

e
ð~keÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

j
�
e ð~k0e;�0

e
;~ke;�e

Þ

ð�g��Þ
Q2

ðQQJ
�
Qð. . .Þ þQ �qJ

�
�qð. . .ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

~J�½��ð~k0�;�0
�
;~k�;��

Þ

: (13)

Here we have introduced the (negative) square of the
(spacelike) 4-momentum-transfer Q2 ¼ �q

�
q�, with

q� ¼ ðk� � k0�Þ� ¼ ðk0e � keÞ�. e, QQjej and Q �qjej de-
note the electric charges of the electron, the quark and
the antiquark, respectively. We want to emphasize that the
kinematical factor in front of Eq. (13) and thus the nor-
malization of the meson current ~J�½�� is uniquely fixed. It
must be identical with the one that comes out if the optical
potential is derived in an analogous way for the scattering

of an electron by a point-like meson with discrete quantum

numbers � (see Refs. [25,26]). Since the point-like current

is known this kinematical factor can be uniquely identified.

The two parts of the meson current, J�Q and J��q , correspond
to the coupling of the photon to the quark or the antiquark,

respectively. If � are the discrete quantum numbers of a

pseudoscalar ground-state meson (�
�
¼ �0

�
¼ 0) it has to

be a pure s wave and we find that

J�Qð~k0�; ~k�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!k�

!k0�
p

4�

Z d3 ~k0�q
2!kQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!kQ þ!k �q

!k0
Q
þ!k0�q

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!~k0Q

þ!~k0�q

!~kQ
þ!~k �q

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!~kQ

!~k �q

!~k0Q
!~k0�q

vuut � X
�Q;�

0
Q¼�1

2

�u�0
Q
ð ~k0QÞ��u�Q

ð ~kQÞ

�D1=2
�Q�

0
Q

�
RW

� ~kQ
mQ

; BcðvQ �qÞ
�
R�1
W

� ~k �q

m �q

; BcðvQ �qÞ
�
RW

� ~k0�q
m �q

; Bcðv0
Q �qÞ

�
R�1
W

� ~k0Q
mQ

;Bcðv0
Q �qÞ

���

� c �ðj~~k0�qjÞc ðj~~k �qjÞ: (14)

The corresponding expression for J��q is obtained by inter-
changing Q and �q in Eq. (14). The quantities with a tilde
are defined in the rest frame of the Q �q subsystem. The
s-wave bound-state wave function c ð�Þ is also defined in
this frame and normalized according toZ 1

0
d��2c �ð�Þc ð�Þ ¼ 1: (15)

The transformation between theQ �q rest frame and theQ �qe
rest frame is accomplished by means of a canonical spin
boost [3]

BcðvÞ ¼ v0 vT

v 1þ v0�1
v2

vvT

 !
(16)

with
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v ¼ vQ �q ¼ kQ þ k �q

mQ �q

(17)

and

mQ �q ¼ !~kQ
þ!~k �q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!kQ þ!k �q

Þ2 � ð ~kQ þ ~k �qÞ2
q

(18)

denoting the invariant mass of the (unbound)Q �q pair. Here
it is useful to note that, due to our center-of-mass kinemat-
ics, ~ke þ ~kQ þ ~k �q ¼ ~ke þ ~k� ¼ 0 and hence ~kQþ ~k �q¼ ~k�
such that ~vQ �q ¼ ~k�=mQ �q. Analogous relations hold for
v0
Q �q and the primed momenta. This implies further that

not all of the 4-momentum that is transferred via the
photon to the Q �q bound state is also transferred to
the active constituent. Only the 3-momentum transfer is
the same. For the quark being the active particle we have,
e.g., ~q ¼ ~k� � ~k0� ¼ ~kQ � ~k0Q ¼: ~qquark. On the other hand
one has!k�

¼ !k0� and hence q
0 ¼ 0, whereas, in general,

q0quark :¼ !kQ �!k0
Q
� 0. If the photon couples to the

quark, the spectator condition k �q ¼ k0�q for the antiquark
implies the relation

~k �q ¼ B�1
c ðvQ �qÞk �q ¼ B�1

c ðvQ �qÞk0�q ¼ B�1
c ðvQ �qÞBcðv0

Q �qÞ~k0�q:
(19)

The 4-momenta ~kð0ÞQ for the active quark are then uniquely
determined by ~~k

ð0Þ
Q ¼ �~~k

ð0Þ
�q . Associated with the boosts that

connect incoming and outgoing wave functions are Wigner
rotations of the quark and antiquark spins. The correspond-
ing Wigner D functions can be combined to the single one
showing up in Eq. (14) by means of the spectator condi-
tions and the Clebsch coefficients that couple the quark and
the antiquark spins to zero meson spin (see, e.g., Ref. [26]).

Having obtained the microscopic expression for the elec-
tromagnetic meson current ~J�½�� [cf., Eqs. (13) and (14)], we
will show in the sequel how the derivation of the weak
current, as occurring in semileptonic meson decays, is
accomplished within our relativistic coupled-channel
framework.

C. Semileptonic meson decay

In order to get the full (leading-order) invariant ampli-
tude for the semileptonic weak decay of a heavy-light
meson � into another heavy-light meson �0 one needs at
least four channels. This can be seen immediately, if one
decomposes this amplitude into its time-ordered contri-
butions. This decomposition is depicted in Fig. 1 for the
�B0 ! Dð�Þþe ��e decay on which we will concentrate in
the following. In addition to the incoming b �d channel
and the outgoing c �de ��e channel one needs a c �dW and a
b �dWe ��e channel to account for the intermediate states in
which the W boson is in flight. The matrix mass operator
acting on all these channels has the form

M̂conf
b �d

0 K̂c �dW!b �d K̂b �dWe ��e!b �d

0 M̂conf
c �de ��e

K̂c �dW!c �de ��e
K̂b �dWe ��e!c �de ��e

K̂y
c �dW!b �d

K̂y
c �dW!c �de ��e

M̂conf
c �dW

0

K̂y
b �dWe ��e!b �d

K̂y
b �dWe ��e!c �de ��e

0 M̂conf
b �dWe ��e

0
BBBBBBBB@

1
CCCCCCCCA
:

(20)

As in the electromagnetic case an instantaneous confining
potential between the quark-antiquark pair is included in
the channel mass operators on the diagonal. What we are
interested in is the transition from the b �d to the c �de ��e

channel. As can be seen from Eq. (20) this cannot happen
directly. It only works via the intermediate states that
contain the W. The corresponding (optical) transition po-

tential V̂b �d!c �de ��e
opt ðmÞ may be again obtained by applying a

Feshbach reduction to eliminate the c �dW and the b �dWe ��e

channels such that one ends up with a mass eigenvalue
problem for the (coupled) b �d and c �de ��e system. The
transition potential has then the form

V̂b �d!c �de ��e
opt ðmÞ ¼ K̂c �dW!c �de ��e

ðm�Mconf
c �dW

Þ�1K̂y
c �dW!b �d

þ K̂b �dWe ��e!c �de ��e
ðm� M̂conf

b �dWe ��e
Þ�1

� K̂y
b �dWe ��e!b �d

: (21)

The two terms on the right-hand side correspond to the two
time orderings of the W exchange that are depicted in
Fig. 1.
Like in the electromagnetic case the weak hadronic

current and the B ! Dð�Þ decay form factors are extracted

from on-shell matrix elements of V̂b �d!c �de ��e
opt ðmÞ, i.e., from

hv0; ~k0e;�0
e
; ~k0��e

; ~k0�0 ;�0
�0 ;�

0jV̂b �d!c �de ��e
opt ðmÞj~k�;��

;�ios; (22)

where the discrete quantum numbers � and �0 of the

confined heavy-light system are those of the B and Dð�Þ,
respectively. ‘‘On shell’’ means now that m ¼ mB ¼
!k�

¼ !k0
�0
þ!k0e þ!k0��e

. For the analysis of these matrix

elements we can proceed as in the electromagnetic case.
One has to insert the appropriate completeness relations at
the pertinent places. This leads again to wave functions for

the confinedQð0Þ �q pair in combination with a freeW and/or
a free e- ��e pair. The matrix elements of the weak vertex

operators K̂c �dW!b �d, etc., can be derived from the weak
interaction density Lwk

int ðxÞ in analogy to Eq. (12). After

FIG. 1. The two time-ordered contributions to the semilep-
tonic weak decay of a �B0 into a Dð�Þþ meson.
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insertion of the analytical expressions for the wave
functions and the vertex matrix elements into Eq. (22)
we observe again that the on-shell matrix elements

of Vb �d!c �de ��e
opt ðmÞ have the same structure as the invariant

B ! Dð�Þe ��e decay amplitude that results from leading-
order covariant perturbation theory:

hv0; ~k0e; �0
e
; ~k0��e

; ~k0�0 ; �0
�0 ; �

0jV̂b �d!c �de ��e
opt ðmÞj~k�;��

; �ios
¼ v0�

3ð ~v0 � ~vÞ ð2�Þ3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!k0e þ!k0��e

þ!k0
�0
Þ3

q ffiffiffiffiffiffiffiffi
!3

k�

q

� e2

2sin2#w

Vcb

1

2
�u�0

e
ð~k0eÞ��ð1� �5Þv�0

��e

ð~k0��e
Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

j
�
�e!eð~k0e;�0

e
;~k0��e ;�

0
��e
Þ

� ð�g��Þ
ðk0e þ k0��e

Þ2 �m2
W

1

2
J��!�0 ð~k0�0 ; �0

�0 ; ~k�;��
Þ: (23)

Here #w denotes the electroweak mixing angle and e the
usual elementary electric charge and Vcb is the Cabibbo-
Kobayashi-Maskawa matrix element occurring at theWbc
vertex. Like in the electromagnetic case the kinematical
factor in front and hence the normalization of the weak
hadronic transition current J��!�0 is uniquely fixed. The

only difference between the two time orderings contribut-
ing to the decay amplitude comes from the propagator in
the intermediate state. Summing the two propagators (and
dividing by 2!kW

) leads to the covariantW propagator that

occurs in Eq. (23).
Let now � be the quantum numbers of a Bmeson and �0

those of a D meson. Since B and D have to be pure s wave
the weak transition current becomes

J�B!Dð~k0D; ~kB ¼ ~0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!kB

!k0D
p

4�

Z d3 ~k0�q
2!kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!~k0c þ!~k0�q

!k0c þ!k0�q

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!~kb

!~k �q

!~k0c!~k0�q

vuut

�
� X
�b;�

0
c¼�1

2

�u�0
c
ð ~k0cÞ��ð1� �5Þu�b

ð ~kbÞ

�D1=2
�b�

0
c

�
RW

� ~k0�q
m �q

; Bcðv0
c �qÞ
�
R�1
W

� ~k0c
mc

; Bcðv0
c �qÞ
���

� c �
Dðj~~k

0
�qjÞc Bðj~~k �qjÞ: (24)

c B as well as c D (and in the following c D�) are normal-
ized as in Eq. (15). The primed constituents’ momenta are

related by k0c ¼ Bcðv0
c �qÞ~k0c, k0�q ¼ Bcðv0

c �qÞ~k0�q, where ~~k
0
�q ¼

�~~k
0
c and ~v0

c �q ¼ ~k0D=ð!~k0c þ!~k0�q
Þ. Since the B meson is at

rest and the antiquark obeys a spectator condition the

unprimed momenta are then given by ~k �q ¼ ~~k �q ¼ �~~kb ¼
� ~kb ¼ ~k0�q.

If �0 are the quantum numbers of a D� meson one has a
pseudoscalar-to-vector transition. For such a transition
both the vector and axial-vector part of the weak current
contribute. For B andD� being again pure swave (neglect-
ing possible d-wave contributions in D�) the weak transi-
tion current differs then from the one in Eq. (24) mainly by
Wigner D functions and Clebsch-Gordans:

J�B!D� ð~k0D� ; �0
D� ; ~kB ¼ ~0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi!kB

!k0
D�

p
4�

Z d3 ~k0�q
2!kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!~k0c þ!~k0�q

!k0c þ!k0�q

vuut ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!~kb

!~k �q

!~k0c!~k0�q

vuut

�
� X
�b;�

0
c; ~�

0
c; ~�

0
�q¼�1

2

�u�0
c
ð ~k0cÞ��ð1� �5Þu�b

ð ~kbÞ

� ffiffiffi
2

p ð�1Þ12��bC
1�0

D�
1
2 ~�

0
c
1
2 ~�

0
�q

D1=2
~�0
c�

0
c

�
R�1
W

� ~k0c
mc

; Bcðv0
c �qÞ
��

�D1=2
~�0
�q��b

�
R�1
W

� ~k0�q
m �q

; B�1
c ðv0

c �qÞ
���

c �
D� ðj~~k0�qjÞc Bðj~~k �qjÞ:

(25)

The next stepwill be to analyze the covariant structure of the
microscopic meson (transition) currents (14), (24), and (25)
and to identify the electromagnetic and weak form factors.

III. CURRENTS AND FORM FACTORS

A. Electromagnetic form factor

Before we are going to extract the electromagnetic form
factor for a pseudoscalar heavy-light meson we notice that

the electromagnetic current ~J�½��ð~k0�; ~k�Þ which we have

derived in Eqs. (13) and (14) still does not transform
appropriately under Lorentz transformations. Since we

are using velocity states, ~k� and ~k0� are momenta defined
in the center of mass of the electron-meson system. As a

consequence ~J�½��ð~k0�; ~k�Þ does not behave as a 4-vector

under a Lorentz transformation �. It rather transforms by
the Wigner rotation RWðv;�Þ. Going, however, back to the
physical meson momenta pð0Þ

�
¼ BcðvÞkð0Þ� gives a current

with the desired transformation properties [25,26]:

~J �
½��ð ~p0

�
; ~p

�
Þ :¼ ½BcðvÞ���~J�½��ð~k0�; ~k�Þ: (26)

~J�½��ð ~p0
�
; ~p

�
Þ transforms as a 4-vector and is a conserved

current, i.e., ðp
�
� p0

�
Þ�~J�½��ð ~p0

�
; ~p

�
Þ ¼ 0 [25,26]. If it

would be a perfect model for the electromagnetic current
of a pseudoscalar heavy-light meson it should be possible
to write it in the form

J�½��ð ~p0
�
; ~p

�
Þ ¼ ðp

�
þ p0

�
Þ�FðQ2Þ (27)

for arbitrary values of p
�
and p0

�
. This, however, does not

hold in our case. The reason is that our derivation of the
current makes use of the Bakamjian-Thomas construction
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which guarantees Poincaré invariance, but is known to
cause problems with cluster separability [3]. As a conse-
quence of wrong cluster properties the hadronic current we
get may also depend on the electron momenta. We find
indeed that ~J�½��ð ~p0

�
; ~p

�
Þ cannot be expressed in terms of

hadronic covariants only, but one needs one additional
(current conserving) covariant, which is the sum of incom-
ing and outgoing electron momenta:

~J�½��ð ~p0
�
; ~p

�
Þ ¼ ðp

�
þ p0

�
Þ�fðQ2; sÞ þ ðp

e
þ p0

e
Þ�gðQ2; sÞ:

(28)

This decomposition is valid in any inertial frame. The
problems with cluster separability do not only modify
the covariant structure of the current; they also affect the
form factors associated with the covariants. As we have
indicated in the notation, these form factors do not only
depend on the squared 4-momentum transfer at the photon-
meson vertex Q2 ¼ �ðp

�
� p0

�
Þ2 but also on Mandelstam

s ¼ ðp
e
þ p

�
Þ2, i.e., the square of the invariant mass of the

electron-meson system.
The necessity of unphysical covariants and correspond-

ing spurious form factors in our approach resembles the
occurrence of analogous contributions within the covariant
light-front formulation of Carbonell et al. [15]. Whereas
our unphysical covariant, the sum of the incoming and
outgoing electron 4-momenta (p

e
þ p0

e
), is caused by

wrong cluster properties inherent in the Bakamjian-
Thomas construction, their unphysical covariant is propor-
tional to a 4-vector !. ! specifies the orientation of the
light front and has to be introduced to render the front-form
approach manifestly covariant.

The size of cluster-separability-violating effects can be
studied numerically. To this end (and also for later pur-
poses) we take a simple harmonic-oscillator wave function

c ð�Þ ¼ 2

�
1
4a

3
2

exp

�
� �2

2a2

�
: (29)

For further comparison we have chosen the oscillator
parameter as well as the constituent-quark masses to be
the same as in Ref. [13], where form factors of heavy light-
mesons were calculated within the front-form approach.
For all heavy-light mesons, which we will consider in the
following, the oscillator parameter is a ¼ 0:55 GeV. The
constituent-quark masses are mu ¼ md ¼ 0:25 GeV,
mc ¼ 1:6 GeV, and mb ¼ 4:8 GeV, respectively. Since
our form factors are only functions of Lorentz invariants
they can be extracted in any inertial frame.1 We choose a

CM frame in which ~v ¼ ~0, i.e., ~pð0Þ
� ¼ ~kð0Þ� , with

~k� ¼ � ~ke ¼
� Q

2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � Q2

4

q
0
BBB@

1
CCCA and ~q ¼

�Q

0

0

0
BB@

1
CCA; (30)

where �� ¼ j ~k�j ¼ j ~k0�j. In this parametrization the modu-
lus of the CM momentum is subject to the constraint that

�2
� � Q2=4, which means that s � m2

� þm2
e þQ2=2þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þQ2=4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
e þQ2=4

p
. The only nonvanishing com-

ponents of ~J�½�� in this frame are ~J0½�� and ~J3½�� from which

we can extract the form factors fðQ2; sÞ and gðQ2; sÞ by
means of Eq. (28) inserting our microscopic expression,
Eqs. (13) and (14), for ~J�½�� on the left-hand side.

The Mandelstam-s dependence of these form factors for
a few values of the momentum transfer Q2 is plotted in
Fig. 2 for Dþ and B� mesons, respectively. What we
observe is that the spurious form factor gðQ2; sÞ goes to
zero for s ! 1 and that the s-dependence of the physical
form factor fðQ2; sÞ vanishes with increasing s. It is there-
fore suggestive to take the s ! 1 limit to get rid of cluster-
separability violating effects and obtain sensible results for
the physical form factors. Taking the s ! 1 limit means
that one extracts the form factor in the infinite momentum
frame of the meson. Not surprisingly, for light-light sys-
tems the resulting analytical expression for the electromag-
netic form factor of a pseudoscalar meson is then seen to be
equivalent with the usual front-form result, obtained from a
one-body current in the qþ ¼ 0 frame [25]. For heavy-
light systems the situation becomes more intricate.
Looking more closely at the form factors for Dþ and B�
(cf., Fig. 2) we observe that the rate of convergence to the
s ! 1 limit decreases with increasing heavy-quark mass.
In order to extract sensible results for the Isgur-Wise
function one thus has to be very careful when taking the
heavy-quark limit (h.q.l.) mQ ! 1.

B. Decay form factors

1. P ! P transition

As in the electromagnetic case a weak pseudoscalar-to-
pseudoscalar transition current with the correct transfor-
mation properties under Lorentz transformations is
obtained from Eq. (24) by applying the canonical boost
BcðvÞ that connects physical momenta with CM momenta:

J�B!Dð ~p0
D
; ~p

B
Þ :¼ ½BcðvÞ���J�B!Dð~k0D; ~kBÞ: (31)

An appropriate covariant decomposition of this 4-vector
current which holds for arbitrary values of ~p

B
and ~p0

D
takes

on the form [29]

J�B!Dð ~p0
D
; ~p

B
Þ ¼

�
ðp

B
þ p0

D
Þ� �m2

B �m2
D

q2
q�
�
F1ðq2Þ

þm2
B �m2

D

q2
q�F0ðq2Þ; (32)

1There is one exception, namely the Breit frame. This frame
corresponds to backward scattering in the electron-meson center-
of-momentum (CM) system. In this frame the two covariants
become proportional and the form factors cannot be uniquely
separated.
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with the timelike 4-momentum transfer q ¼ ðp
B
� p

D
Þ.

Unlike the electromagnetic case wrong cluster properties
of the Bakamjian-Thomas construction do not entail
unphysical properties of the weak decay current
J�B!Dð ~p0

D
; ~p

B
Þ if the microscopic expression, Eq. (24), is

inserted on the right-hand side of Eq. (31). One neither
needs additional unphysical covariants to span the 4-vector
J�B!D, nor do the form factors exhibit a dependence on
Lorentz invariants different from q2.2

The finding that wrong cluster properties of the
Bakamjian-Thomas construction do not have obvious
physical consequences for the weak decay current J�B!D,
whereas they lead to unphysical features of the electro-
magnetic current ~J�½��, has essentially three reasons:

(i) Only the final state of the decay process is affected
by wrong cluster properties, since the initial state is
just the confined quark-antiquark pair with no addi-
tional particle present. In electron scattering off a
bound system the presence of the electron modifies
the bound-state wave function in both the initial and
the final states.

(ii) There is no constraint from current conservation for
the decay current J�B!D such that both 4-vectors,

(p
B
þ p0

D
) and q ¼ ðp

B
� p0

D
Þ, can be used to ex-

press the decay current [cf., Eq. (32)]. As it turns
out, this suffices. The electromagnetic current ~J�½��,
on the other hand, is conserved. It thus cannot have a
component into the direction of the momentum
transfer (p

�
� p0

�
), but is also not just proportional

to (p
�
þ p0

�
) alone. Therefore one is forced to in-

troduce the unphysical covariant (p
e
þ p0

e
).

(iii) Both the electromagnetic and the weak form
factors are functions of j ~qj, the modulus of the

3-momentum transfer between the meson in the
incoming and outgoing state. Since form factors
are frame-independent quantities it should be pos-
sible to express j ~qj in terms of Lorentz-invariant

quantities. In the case of the weak decay j ~qj2 and

q
�
q� are directly related (see below). In the case

of electron scattering one needs in general
Mandelstam s and t ¼ q

�
q� to express j ~qj2. This

is the reason why the weak form factors can be
written as functions of q

�
q� only, whereas the

electromagnetic form factors exhibit an additional
(unphysical) dependence on Mandelstam s.

The observation that J�B!D does not exhibit unphysical
features does not necessarily mean that there are no prob-
lems with wrong cluster properties within our approach in
the decay process. As mentioned above wrong cluster
properties could still affect the wave function of the final
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s GeV20.0

0.2

0.4

0.6

0.8
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f Q2 , s

Q 2 1 GeV2
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0.10
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0.30
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Q 2 0 GeV2
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0.1
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0.2
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g Q2 , s
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Q 2 0.1 GeV2
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FIG. 2 (color online). Mandelstam-s dependence of the physical and spurious Dþ (first row) and B� (second row) electromagnetic
form factors fðQ2; sÞ and gðQ2; sÞ, respectively, for different values of Q2 (0 GeV2 solid, 0:1 GeV2 dashed, 1 GeV2 dotted) calculated
with the oscillator wave function, Eq. (29), and (mass) parameters given in the sequel.

2One could think of two additional unphysical covariants (a
vector and an axial-vector) constructed with the 4-vector
ðke � k ��e

Þ and an additional dependence of the form factors on
ðke þ kDÞ2.
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state. But, unlike the electromagnetic case, there is no
simple way to separate corresponding contributions in the
decay current.3 The emergence of heavy-quark symmetry,
which relates electromagnetic and weak decay form fac-
tors, however, will let us conclude that such wrong cluster
properties become negligible in the h.q.l.

Equation (32) is a general representation for the weak
decay current which holds in any inertial frame. A conve-
nient choice for the extraction of the decay form factors

F0ðq2Þ and F1ðq2Þ is the CM frame ( ~v ¼ ~0) in which

kB ¼

mB

0

0

0

0
BBBBB@

1
CCCCCA and k0D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D þ �2
D

q
�D

0

0

0
BBBBBB@

1
CCCCCCA (33)

with

�2
D ¼ 1

4m2
B

ðm2
B þm2

D � q2Þ2 �m2
D: (34)

The modulus of theDmeson CMmomentum �D ¼ j ~k0Dj
is thus restricted by 0 � �2

D � ðm2
B �m2

DÞ2=ð4m2
BÞ. As in

the electromagnetic case the momentum is transferred in
the x direction. The allowed values of the 4-momentum
transfer squared are

0 � q2 � ðmB �mDÞ2: (35)

The � ¼ 2, 3 components of the weak transition current
J�B!D vanish in this kinematics. As it should be, the non-
zero � ¼ 0, 1 components of J�B!D are solely determined
by the vector part ( / ��) of the Wbc vertex. The axial-
vector part ( / ���5) of the vertex does not contribute to
the B ! D transition. The form factors F0ðq2Þ and F1ðq2Þ
can be determined uniquely by projecting onto the corre-
sponding 4-vectors:

F0ðq2Þ ¼ 1

m2
B �m2

D

q
�
J�B!Dð~k0D; ~kBÞ; (36)

F1ðq2Þ¼� q2

4m2
Bm

2
D

��m2
Bþm2

D�q2

2mBmD

�
2�1

��1

�
�
ðp

B
þp0

D
Þ��m2

B�m2
D

q2
q
�

�
J�B!Dð~k0D; ~kBÞ:

(37)

The constraint F0ð0Þ ¼ F1ð0Þ, that eliminates the spurious
pole at q2 ¼ 0, is automatically satisfied for the form

factors calculated from our transition current, Eq. (24).

2. P ! V transition

The weak pseudoscalar-to-vector transition current with
the correct transformation properties under Lorentz trans-
formations is obtained from Eq. (25) by applying again the
canonical boost BcðvÞ that connects physical momenta
with CM momenta. Linked with this boost is a Wigner
rotation of the vector-meson spin:

J�B!D� ð ~p0
D� ; 	

0
D� ; ~pB

Þ :¼ ½BcðvÞ���J�B!D� ð~k0D� ; �0
D� ; ~kBÞ

�D1�
�0

D�	0
D�
½R�1

W ðk0D�=mD� ; BcðvÞÞ�:
(38)

A common covariant decomposition of this 4-vector cur-
rent has the form [29]

J�B!D� ð ~p0
D� ; 	

0
D� ; ~pB

Þ
¼ 2i
���	

mB þmD�

��ð ~p0

D� ; 	
0
D� Þp0

D��pB	
Vðq2Þ

� ðmB þmD� Þ
��ð ~p0
D� ; 	

0
D� ÞA1ðq2Þ

þ 
�ð ~p0
D� ; 	

0
D� Þ � q

mB þmD�
ðp

B
þ p0

D� Þ�A2ðq2Þ

þ 2mD�

�ð ~p0

D� ; 	
0
D� Þ � q

q2
q�A3ðq2Þ

� 2mD�

�ð ~p0

D� ; 	
0
D� Þ � q

q2
q�A0ðq2Þ; (39)

with 
�ð ~p0
D� ; 	

0
D� Þ being the polarization 4-vector of theD�

meson and A3ðq2Þ the linear combination

A3ðq2Þ ¼ mB þmD�

2mD�
A1ðq2Þ �mB �mD�

2mD�
A2ðq2Þ: (40)

The constraint A3ð0Þ ¼ A0ð0Þ, that holds automatically for
the form factors calculated from our transition current,
Eq. (25), guarantees that there is no pole at q2 ¼ 0. As

for the B ! D transition wrong cluster properties of the
Bakamjian-Thomas construction do not lead to unphysical
features of the J�B!D� decay current. The vector Vðq2Þ and
the axial-vector form factors Aiðq2Þ are determined by the

vector part ( / ��) and the axial-vector part ( / ���5) of
the Wbc vertex, respectively.
Taking the same kinematics as for the B ! D decay

[cf., Eq. (33)] the polarization vectors 
ð ~k0D� ; �0
D� Þ are

given by


ð ~k0D� ;�1Þ ¼ 1ffiffiffi
2

p
�
	 �D�

mD�
;	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

�
�D�

mD�

�
2

s
;�i; 0

�
;


ð ~k0D� ; 0Þ ¼ ð0; 0; 0; 1Þ: (41)

This kinematics leads to 10 nonvanishing current matrix
elements J2ð0Þ, J3ð0Þ, J�ð�1Þ, � ¼ 0, 1, 2, 3. Here we

have introduced the shorthand notation J�ð�0
D� Þ :¼

J�B!D� ð~k0D� ; �0
D� ; ~kBÞ. J�ð1Þ and J�ð�1Þ are related by

3Formally, cluster separability can be restored by means of
packing operators [3]. Practically such packing operators are
hard to construct, in particular for a multichannel mass operator.
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space reflection. We are thus left with six current matrix
elements with only four of them being independent. The
form factors A0 and A2 enter only J0ð1Þ and J1ð1Þ. J2ð0Þ,
J3ð0Þ, J0ð1Þ and J1ð1Þ constitute thus an appropriate set of
current matrix elements from which all the P ! V decay

form factors can be extracted. Instead of solving the linear

equations which relate the form factors to the current

matrix elements J�ð�0
D� Þ we express the form factors again

in terms of appropriate projections:

Vðq2Þ ¼ iðmB þmD� Þ
2m2

Bm
2
D�

��m2
B þm2

D� � q2

2mBmD�

�
2 � 1

��1

�ð~k0D� ; �0

D� ¼ 0Þk0D��kB	
�
��	J�B!D� ð~k0D� ; �0

D� ¼ 0; ~kBÞ; (42)

A0ðq2Þ ¼ 1ffiffiffi
2

p
mBmD�

��m2
B þm2

D� � q2

2mBmD�

�
2 � 1

��1=2
q
�
J�B!D� ð~k0D� ; �0

D� ¼ 1; ~kBÞ; (43)

A1ðq2Þ ¼ 1

mB þmD�

�ð~k0D� ; �0

D� ¼ 0ÞJ�B!D� ð~k0D� ; �0
D� ¼ 0; ~kBÞ: (44)

The expression for A2ðq2Þ is a little bit more complicated:

A2ðq2Þ ¼
q2ðmB þmD� Þ

4m2
Bm

2
D�

��m2
B þm2

D� � q2

2mBmD�

�
2 � 1

��1
� ffiffiffi

2
p
mB

��m2
B þm2

D� � q2

2mBmD�

�
2 � 1

��1=2

�
��
p
B
þ p0

D� Þ �m2
B �m2

D�

q2
q

�
�
J�B!D� ð~k0D� ; �0

D� ¼ 1; ~kBÞ

�
�
1�m2

B �m2
D�

q2

�

�ð~k0D� ; �0

D� ¼ 0ÞJ�B!D� ð~k0D� ; �0
D� ¼ 0; ~kBÞ

�
: (45)

Having derived analytical expressions for the electro-
magnetic and weak currents and form factors we are now
going to study their properties in the h.q.l.

IV. THE HEAVY-QUARK LIMIT

In the h.q.l. the masses of the heavy quarks and, con-
sequently, the masses of the heavy hadrons are sent to
infinity. This leads to additional symmetries which will
be discussed later. With the hadron masses also their
momenta go to infinity. What, however, stays finite is the
product v� � v0

�ð0Þ of the hadron 4-velocities. One is then

interested in the dependence of form factors on the (finite)
velocity product v� � v0

�ð0Þ . Thus it makes more sense to

characterize the state of a heavy hadron by its velocity
rather than by its momentum. To be more precise, the limit
mQ ! 1 has to be taken in such a way that

v � � v0
�ð0Þ ¼

k� � k0
�ð0Þ

m�m�ð0Þ
(46)

stays constant. In this limit both the binding energy and the
light-quark mass become negligible, i.e.,

mQð0Þ ¼ m�ð0Þ and
mq

mQð0Þ
¼ 0 for mQð0Þ ! 1: (47)

Furthermore it is assumed that the meson wave functions
do not depend on the flavor of the heavy quarks when the

masses of the heavy quarks go to infinity. This is our
precise definition of the ‘‘h.q.l.’’

A. Spacelike momentum transfer

Let us start with the h.q.l. of the electromagnetic

pseudoscalar-meson current ~J�½��ð~k0�; ~k�Þ [cf., Eqs. (13) and
(14)]. The first step towards the h.q.l. is to express the
meson momenta and the momenta of the heavy quarks in
terms of velocities. To this aim we note that

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðk� � k0�Þ2

q
¼ 2m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� � v0

� � 1

2

s
¼: 2m�u: (48)

This means, in particular, that not only the heavy-quark
mass, but also the momentum transfer goes to infinity,

when taking the h.q.l. As a consequence ~J��qð~k0�; ~k�Þ, the
part of the current in which the momentum is transferred to
the light antiquark, vanishes. The formal reason is that the
wave-function overlap vanishes (exponentially) when the
light antiquark has to absorb an infinite amount of momen-

tum. It thus remains to investigate the h.q.l. of ~J�Qð~k0�; ~k�Þ,
i.e. the part of the current in which the momentum is
transferred to the heavy quark. Taking the parametrization
of meson momenta that has been defined in Eq. (30) and
going over to velocities we have
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k� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

�

p
�u

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � u2

p

0
BBBBB@

1
CCCCCA ¼ m�v�;

k0� ¼ m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

�

p
u

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � u2

p

0
BBBBB@

1
CCCCCA ¼ m�v

0
�; (49)

where �� ¼ j ~v�j ¼ j ~v0
�j and u is the shorthand notation

introduced in Eq. (48). The modulus of the 4-momentum
transfer squared Q2 ¼ �q�q

� and our new variable

v� � v0
� are then related by

Q2 ¼ 2m2
�ðv� � v0

� � 1Þ; (50)

which means that

v � � v0
� � 1

for elastic electron-meson scattering. Using now that

~kð0Þ� ; ~kð0ÞQ !h:q:l:m� ~v
ð0Þ
� ;

j ~kð0Þ�q j
mQ

;
j~~kð0Þ�q j
mQ

;
j~~kð0ÞQ j
mQ

!h:q:l:0;

and ~vð0Þ
Q �q !

h:q:l:
~vð0Þ
� ; (51)

the Wigner rotations of the heavy-quark spin become the
identity in the h.q.l. and the kinematical factors in the

pseudoscalar meson current ~J�Qð~k0�; ~k�Þ [cf., Eq. (14)] sim-

plify considerably:

J�Qð~k0�; ~k�Þ !
h:q:l:

m�
~J�1ð ~v0

�; ~v�Þ

¼m�

Z d3 ~k0�q
4�

ffiffiffiffiffiffiffiffi
!~k �q

!~k0�q

vuut � X
�Q;�

0
Q
¼�1

2

�u�0
Q
ð ~v0

�Þ��u�Q
ð ~v�Þ

�1

2
D1=2

�Q�
0
Q

�
R�1
W

� ~k �q

m �q

;Bcðv�Þ
�
RW

� ~k0�q
m �q

;Bcðv0
�Þ
���

�c �ðj~~k0�qjÞc ðj~~k �qjÞ: (52)

One can see immediately that the integrand is independent
of the heavy quark mass. The only dependencies showing

up are those on the integration variables ~~k
0
�q and on the

meson velocities ~vð0Þ
� . The term within the curly brackets

comes from the spin of the quarks. For spinless quarks it
would coincide with the pointlike current of the pseudo-
scalar meson ðv� þ v0

�Þ�. Dropping this factor the integral
on the right-hand side of Eq. (52) would already give the
Isgur-Wise function for a scalar meson composed of spin-
less quarks. The general covariant structure of ~J�1ð ~v0

�; ~v�Þ
for spin-1/2 quarks follows from Eq. (28) by expressing the
momenta in terms of velocities:

~J�1ð ~v0
�; ~v�Þ ¼ ðv� þ v0

�Þ� ~fðv� � v0
�; ��Þ

þ me

m�

ðve þ v0
eÞ�~gðv� � v0

�; ��Þ; (53)

where

me

m�
ðve þ v0

eÞ ¼ 2ð��; 0; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
� � u2

q
Þ: (54)

As it turns out and as it is indicated in Eq. (53)
~J�1ð ~v0

�; ~v�Þ still does not have all the desired properties.
Effects of wrong cluster properties, that are inherent in our
approach, do not go away by taking the h.q.l. It is, in
general, not possible to write ~J�1ð ~v0

�; ~v�Þ as a product of
the covariant ðv� þ v0

�Þ� times the Isgur-Wise function
�ðv� � v0

�Þ. One rather needs a second covariant built
from the electron velocities. In addition, the form factors
are not only functions of v� � v0

�, but exhibit also a depen-
dence on the modulus of the meson velocities ��. The latter
dependence corresponds to the Mandelstam-s dependence

[�� ¼ ð
ffiffi
s

p
m�

� m�ffiffi
s

p Þ=2 with s ¼ m2
�ðv� þ me

m�
veÞ2] which we

have already discussed in Sec. III (cf., Fig. 2) for the case
of finite heavy-quark mass and which also occurs
in light-light systems [25,26]. The �� dependence of
~fðv� � v0

�; ��Þ and ~gðv� � v0
�; ��Þ is displayed in Fig. 3

for different values of v� � v0
� with the wave function of

the heavy-light system being the one introduced in Eq. (29).
One observes that both the �� dependence and the spurious
form factor ~gðv� � v0

�; ��Þ vanish rather quickly with
increasing ��. It is therefore suggestive to identify the
Isgur-Wise function �ðv� � v0

�Þ with the �� ! 1 limit of
~fðv� � v0

�; ��Þ. In this limit the unwanted �� dependence
goes away and ~J�1ð ~v0

�; ~v�Þ acquires the expected structure

~J �1ð ~v0
�; ~v�Þ !��!1ðv� þ v0

�Þ��IFðv� � v0
�Þ; (55)

with a simple analytical expression for the Isgur-Wise
function

�IFðv� � v0
�Þ ¼

Z d3 ~k0�q
4�

ffiffiffiffiffiffiffiffi
!~k �q

!~k0�q

vuut SIFc
�ðj~~k0�qjÞc ðj~~k �qjÞ: (56)

Taking the limit �� ! 1 means that the ��M� ! M�

subprocess is considered in the infinite-momentum frame
of the mesonM�.

4 This is the reason why a subscript ‘‘IF’’
is attached to the Isgur-Wise function and the spin-rotation
factor. The relation between !~k �q

and !~k0�q
(and hence

between j~~k �qj and j~~k0�qj) follows from Eq. (19) and is given

by (2u2 ¼ v� � v0
� � 1)

!~k �q
¼ 2~k01�q uþ 2~k03�q u2 þ!~k0�q

ð2u2 þ 1Þ: (57)

4After having performed the h.q.l. the infinite-momentum
frame has to be understood as a frame in which the 3-
components of the incoming and outgoing meson velocities
vð0Þ3
� go to infinity.
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The spin-rotation factor SIF takes on the form

S IF ¼
m �q þ!~k0�q

þ ~k01�q uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm �q þ!~k �q
Þðm �q þ!~k0�q

Þq : (58)

In the infinite-momentum frame the meson moves with
large velocity in the z direction and the momentum is
transferred in a transverse direction. It is a special qþ ¼ 0
frame, in which the plus component of the 4-momentum
transfer vanishes. Such frames are very popular for form-
factor studies in front form [3,11]. Another widely used
frame to analyze the ��M� ! M� subprocess is the Breit
frame in which the energy transfer between the meson in
the initial and the final states vanishes [4,23]. This corre-
sponds to elastic electron-meson backward scattering in
the (overall) CM frame and is characterized by the mini-
mal meson momentum necessary for reaching a particular
momentum transfer Q. In this sense it is just the opposite
situation to the infinite-momentum frame, in which the
meson momentum goes to infinity. In our case the Breit
frame is reached by taking the minimum value for ��, i.e.,
�2
� ¼ u2 ¼ ðv� � v0

� � 1Þ=2 [cf., Eq. (49)]. If this is done,

~J�1ð ~v0
�; ~v�Þ !��!uðv� þ v0

�Þ�
�
~fðv� � v0

�; �� ¼ uÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v� � v0

� � 1

v� � v0
� þ 1

s
~gðv� � v0

�; �� ¼ uÞ
�

¼: ðv� þ v0
�Þ��Bðv� � v0

�Þ (59)

and it is not possible any more to separate the physical

form factor ~f from the unphysical form factor ~g. We
therefore denote the resulting combination that occurs as
a coefficient of the covariant ðv� þ v0

�Þ� by �Bðv� � v0
�Þ,

i.e., the Isgur-Wise function in the Breit frame. The
integral for �Bðv� � v0

�Þ has the same structure as the
one for �IFðv� � v0

�Þ [cf., Eq. (56)], namely

�Bðv� � v0
�Þ ¼

Z d3 ~k0�q
4�

ffiffiffiffiffiffiffiffi
!~k �q

!~k0�q

vuut SBc
�ðj~~k0�qjÞc ðj~~k �qjÞ: (60)

Only the boosts that relate ~k0�q and ~k �q are different. In the

Breit frame !~k �q
and !~k0�q

are connected via

!~k �q
¼ 2~k01�q u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p
þ!~k0�q

ð2u2 þ 1Þ (61)

and the spin-rotation factor SB becomes

S B ¼
m �q þ!~k0�q

þ ~k01�q uffiffiffiffiffiffiffiffiffi
u2þ1

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm �q þ!~k �q
Þðm �q þ!~k0�q

Þq : (62)

The integrands for the Isgur-Wise function in the
infinite-momentum frame and the Breit frame are thus
obviously different. Surprisingly, the numerical integration
gives the same results for �IFðv� � v0

�Þ and �Bðv� � v0
�Þ.

This can be seen in Fig. 3, where the results for �Bðv� � v0
�Þ

are indicated by the black dots. These dots should be
compared with the right end of the corresponding curves.
This suggests that the integrands of �IFðv� � v0

�Þ and
�Bðv� � v0

�Þ are related by a change of integration varia-
bles. And indeed, the expressions for the energies in
Eqs. (57) and (61) are connected via a simple rotation:

~k01�q
~k03�q

0
@

1
A

IF

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ 1

p 1 �u

u 1

 ! ~k01�q
~k03�q

0
@

1
A

B

: (63)

Applying this change of variables to the spin-rotation
factor SIF one ends up with SB plus an additional term

which is an odd function of ~k03�q that vanishes upon integra-

tion. Our result for the Isgur-Wise function is thus inde-
pendent on whether we extract it in the Breit frame or in the
infinite-momentum frame. We therefore will drop the sub-
scripts ‘‘IF’’ and ‘‘B’’. For further purposes we will take
the somewhat simpler analytical Breit-frame expression

FIG. 3 (color online). Physical and spurious electromagnetic form factors, ~fðv� � v0
�; ��Þ and ~gðv� � v0

�; ��Þ, of a heavy-light
pseudoscalar meson in the h.q.l. with the model parameters being the same as in Fig. 2. Their dependence on the modulus of the meson
velocities �� is plotted for different values of v� � v0

� (1 solid, 1.2 dashed, 2 dotted). The black dots in the left figure are the values for
the Isgur-Wise function directly calculated in the Breit frame (�� ¼ u), where ~fðv� � v0

�; ��Þ and ~gðv� � v0
�; ��Þ cannot be separated.
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�ðv � v0Þ ¼
Z d3 ~k0�q

4�

ffiffiffiffiffiffiffiffi
!~k �q

!~k0�q

vuut Sc �ðj~~k0�qjÞc ðj~~k �qjÞ: (64)

with

!~k �q
¼ ~k01�q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv � v0Þ2 � 1

q
þ!~k0�q

ðv � v0Þ (65)

and

S ¼
m �q þ!~k0�q

þ ~k01�q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiðv�v0Þ�1
ðv�v0Þþ1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðm �q þ!~k �q

Þðm �q þ!~k0�q
Þq (66)

as our Isgur-Wise function. Here we have just reexpressed
u in terms of v � v0. As one can check, the Isgur-Wise
function introduced in this way is now only a function of
v � v0 and it is correctly normalized, i.e.,

�ðv � v0 ¼ 1Þ ¼ 1: (67)

Its independence on the heavy-quark massmQ is one of the

consequences of heavy-quark flavor symmetry which is
supposed to hold in the h.q.l. [5–7].

Heavy-quark flavor symmetry reaches even further. The
heavy flavor in the final state can be replaced by another
heavy flavor without affecting the Isgur-Wise function.
The physical processes leading to such flavor-changing
heavy-to-heavy transitions are, e.g., weak decays. Thus
our next aim will be to check whether the h.q.l. of the
weak B ! D transition current, as given in Eq. (24),
provides the same Isgur-Wise function as the electromag-
netic current, Eq. (14).

B. Timelike momentum transfer

Like in the electromagnetic case we rewrite meson and
heavy-quark momenta in terms of velocities. The meson
momenta that specify our decay kinematics [cf., Eq. (33)]
can be directly expressed in terms of vB � v0

Dð�Þ :

kB ¼ mB

1

0

0

0

0
BBBBB@

1
CCCCCA ¼ mBvB;

k0
Dð�Þ ¼ mDð�Þ

vB � v0
Dð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðvB � v0
Dð�Þ Þ2 � 1

q
0

0

0
BBBBBB@

1
CCCCCCA ¼ mDð�ÞvDð�Þ : (68)

For the decay the momentum transferred between the
initial and the final meson is timelike, i.e.,

0 � q2 ¼ ðkB � kDð�Þ Þ2 ¼ m2
B þm2

Dð�Þ

� 2mBmDð�ÞvB � v0
Dð�Þ � ðmB �mDð�Þ Þ2: (69)

From Eqs. (68) and (69) we conclude that

1 � vB � v0
Dð�Þ � 1þ ðmB �mDð�Þ Þ2

2mBmDð�Þ
: (70)

Note that this v � v0 interval is also accessible in elastic
electron-meson scattering for which only v � v0 � 1 must
hold. This makes it possible to directly compare the struc-
ture of heavy-light mesons as measured in elastic scatter-
ing with the structure inferred from the observation of
weak decays, although these processes involve spacelike
and timelike momentum transfers, respectively.
Since the axial-vector contribution of the quark current

vanishes for pseudoscalar-to-pseudoscalar transitions, the
h.q.l. of the B ! D transition current, Eq. (24), is given by

J�B!Dð~k0D; ~kBÞ !
h:q:l: ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmD

p ~J�B!Dð ~v0
D; ~vBÞ

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p Z d3 ~k0�q
4�

ffiffiffiffiffiffiffiffi
!~k �q

!~k0�q

vuut � X
�b;�

0
c¼�1

2

�u�0
c
ð ~v0

DÞ��u�b
ð ~vBÞ

� 1

2
D1=2

�b�
0
c

�
RW

� ~k0�q
m �q

; Bcðv0
DÞ
���

c �ðj~~k0�qjÞc ðj~~k �qjÞ: (71)

Here we have made use of Eq. (51) and the fact that the
Wigner rotation of the c-quark spin becomes the identity.
Exploiting the general properties of the Wigner D func-
tions and

�u��b
ð ~v0

DÞ��u�b
ð ~vBÞ ¼ �ð �u�b

ð ~v0
DÞ��u��b

ð ~vBÞÞ�;

�u�b
ð ~v0

DÞ��u�b
ð ~vBÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

vB � v0
D þ 1

s
ðvB þ v0

DÞ�; (72)

it can be shown that the h.q.l. of the B ! D transition
current finally takes on the form

~J �
B!Dð ~v0

D; ~vBÞ ¼ ðvB þ v0
DÞ��ðvB � v0

DÞ; (73)

with �ðvB � v0
DÞ being the Isgur-Wise function defined in

Eqs. (64)–(66). This proves that heavy-quark flavor sym-
metry is respected by our approach to the electroweak
structure of heavy-light mesons.
Whereas the Isgur-Wise function is just the h.q.l. of

the electromagnetic form factor (expressed as function of
v � v0) its relation to the decay form factors F0 and F1 is a
little bit more complicated. By comparing Eq. (73) with
Eq. (32) it follows that [30]

R

�
1� q2

ðmB þmDÞ2
��1

F0ðq2Þ !h:q:l:�ðvB � v0
DÞ (74)

and that

RF1ðq2Þ !h:q:l:�ðvB � v0
DÞ; (75)

with

R ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p
mB þmD

: (76)
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For finite heavy-quark masses the deviation of the left-
hand sides of Eqs. (74) and (75) from the Isgur-Wise
function �ðvB � v0

DÞ is a measure for the amount of
heavy-quark (flavor) symmetry breaking.

The heavy-quark flavor symmetry is not the only sym-
metry which is recovered in the h.q.l. There is also a heavy-
quark spin symmetry which has its origin in the decoupling
of the heavy-quark spin from the spin of the light degrees
of freedom. Heavy-quark spin symmetry allows us to relate

matrix elements involving vector mesons with correspond-
ing ones for pseudoscalar mesons. A particular example is
the statement that the current matrix elements of the
pseudoscalar-to-vector B ! D� transition are determined
by the same Isgur-Wise function as the current matrix
elements of the pseudoscalar-to-pseudoscalar B ! D tran-
sition [5–7].
The h.q.l. of the B ! D� transition current, Eq. (25),

becomes

J�B!D� ð~k0D� ; �0
D� ; ~kBÞ!h:q:l: ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mBmD

p ~J�B!D� ð ~v0
D� ; �0

D� ; ~vBÞ

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD

p Z d3 ~k0�q
4�

ffiffiffiffiffiffiffiffi
!~k �q

!~k0�q

vuut � X
�b;�

0
c; ~�

0
�q¼�1

2

�u�0
c
ð ~v0

D� Þ��ð1� �5Þu�b
ð ~vBÞ

� ffiffiffi
2

p ð�1Þ12��bC
1�0

D�
1
2�

0
c
1
2 ~�

0
�q

D1=2
~�0
�q��b

�
R�1
W

� ~k0�q
m �q

; B�1
c ðv0

D� Þ
���

c �
D� ðj~~k0�qjÞc Bðj~~k �qjÞ: (77)

It can now be verified that ~J�B!D� ð ~v0
D� ; �0

D� ; ~vBÞ has the desired covariant structure [6]

~J�B!D� ð ~v0
D� ; �0

D� ; ~vBÞ ¼ i
����
�ðmD� ~v0
D� ; �0

D� Þv0
D��vB��ðvB � v0

D� Þ
� ½
�ðmD� ~v0

D� ; �0
D� ÞðvB � v0

D� þ 1Þ � v0�
D�
ðmD� ~v0

D� ; �0
D� Þ � vB��ðvB � v0

D� Þ; (78)

with �ðvB � v0
D� Þ being again the Isgur-Wise function de-

fined in Eqs. (64)–(66). This proves that also heavy-quark
spin symmetry is recovered in the h.q.l. within our
approach.5

By comparing Eq. (78) with Eq. (39) we finally obtain
the relations between the physical B ! D� decay form
factors (in the h.q.l.) and the Isgur-Wise function [30]:

R�
�
1� q2

ðmB þm�
DÞ2

��1
A1ðq2Þ !h:q:l:�ðvB � v0

D� Þ; (79)

R�Vðq2Þ !h:q:l:�ðvB � v0
D� Þ; (80)

and

R�Aiðq2Þ !h:q:l:�ðvB � v0
D� Þ; i ¼ 0; 2; (81)

with

R� ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mBmD�

p
mB þmD�

: (82)

If the left-hand sides of Eqs. (79)–(81) are calculated with
physical heavy-quark masses, their deviation from the
Isgur-Wise function on the right-hand sides and the differ-
ences among one another can be taken as a measure for the
amount of heavy-quark spin symmetry breaking.

V. NUMERICAL STUDIES

At this point we want to emphasize that the aim of this
paper is not to give quantitative predictions for electroweak
heavy-light (transition) form factors based on a sophisti-
cated constituent-quark model. It is rather our intention to
demonstrate that the kind of relativistic coupled-channel
approach that we are using to identify the electroweak
structure of few-body bound states is general enough to
provide also sensible results for heavy-light systems. First
we note that the electromagnetic and weak currents are
solely determined by the bound-state wave function and
the constituent-quark masses [cf., Eqs. (14), (24), and (25)].
For our numerical studies we adopt the simple harmonic-
oscillator wave function already introduced in Eq. (29) and
the oscillator and mass parameters quoted there. In order
to calculate the weak transition form factors from the
currents one also needs the meson masses calculated
from the harmonic-oscillator confinement potential
[cf., Eqs. (36), (37), and (42)–(45)]. We take the physical
masses, since the theoretically calculated spectrum can
always be shifted by adding an appropriate constant to
the confinement potential such that the experimentally
measured pseudoscalar and vector-meson ground-state
masses (which we deal with) are reproduced.
The Isgur-Wise function, as resulting from this simple

harmonic-oscillator model, is plotted in Fig. 4. The effect
of the quark spin onto the Isgur-Wise function can be
estimated by comparing the solid with the dashed line.
The latter corresponds to the coupling of the photon to
spinless quarks and is obtained by setting the spin-rotation
factor S ¼ 1. The comparison shows the importance of the

5With �2
D� ¼ m2

D� ððvB � v0
D� Þ2 � 1Þ we see that


ðmD� ~v0
D� ; �0

D� Þ is independent of mD� [cf., Eq. (41)].

MARÍA GÓMEZ-ROCHA PHYSICAL REVIEW D 86, 053010 (2012)

053010-14



proper relativistic treatment of the spin rotation when
boosting the Q- �q bound-state wave function from the
initial to the final state. Here it should be emphasized
that it does not matter within our approach whether the
Isgur-Wise function is taken as the h.q.l. of the electro-
magnetic B-meson form factor or as the h.q.l. of any of the

B ! Dð�Þ decay form factors, although these processes
involve space- and timelike momentum transfers, respec-
tively. In the foregoing section this is proved analytically,
but it can also be verified numerically (see the right plots in
Figs. 5–7). The authors of Ref. [13], from which we have
taken our model parameters, have derived two different
analytical expressions for the Isgur-Wise function within a
front-form approach by taking the h.q.l. of the B ! D and
B ! D� decay form factors, respectively. These two ex-
pressions are then seen to provide the same numerical
results for the Gaussian wave function which we also
use, but give different results for the flavor-dependent
Wirbel-Stech-Bauer wave function [29]. From this they
conclude that the Wirbel-Stech-Bauer wave function vio-
lates heavy-quark symmetry. Our numerical results, ob-
tained with the Gaussian wave function, agree with those
of Ref. [13] and we are also able to reproduce the value for
the slope of the Isgur-Wise function at the normalization
point v � v0 ¼ 1, namely �2 ¼ ��0ð1Þ ¼ 1:24.

A reasonably simple analytical expression for the Isgur-
Wise function in front form can be found in Ref. [31]. Its
structure bears some resemblance to Eqs. (64)–(66), but we
have not attempted to prove the equivalence. There are,
however, strong hints that such an equivalence holds. In the
case of the pion we were able to show analytically that our
electromagnetic pion form factor for spacelike momentum
transfers is equivalent with the usual front-form expression
that results from theþ component of a one-body current in
a qþ ¼ 0 frame [25].6 We suppose that this equivalence
extends to the case of bound states with unequal-mass
constituents and generalizes at least to those electroweak
M ! M0 transition form factors which are not affected by
zero-mode contributions [32], although we have not tried
to prove it analytically. If this is the case, the h.q.l. of
electroweak heavy-light meson (transition) form factors
in front form and point form should also lead to the same
Isgur-Wise function.

There is still one gap in this reasoning. It refers to form
factors in the spacelike momentum-transfer region,
whereas the authors of Refs. [13,31] derive their Isgur-

Wise function from weak B ! Dð�Þ decay form factors,
i.e., in the timelike momentum-transfer region. It cannot be
taken for granted that the h.q.l. of a one-body current, as it

is used in Refs. [13,31], gives the same result for the Isgur-
Wise function in the space- and timelike momentum-
transfer regions. Going from space- to timelike momentum
transfers means that one has to give up the qþ ¼ 0 condi-
tion and, as a consequence, Z graphs (i.e., nonvalence
contributions) may become important [16]. This is con-

firmed by an analysis of the triangle diagram for B ! Dð�Þ
decays within a simple covariant model [17]. There it
is shown that analytic continuation (q? ! iq?) of the

B ! Dð�Þ transition form factors calculated in a qþ ¼ 0
frame for spacelike momentum transfers to timelike mo-
mentum transfers leads to the same results as a direct

calculation of the B ! Dð�Þ decay form factors in the time-
like region (qþ � 0), provided that Z-graph contributions
are appropriately taken into account. The importance of
Z-graph contributions, however, decreases with increasing
mass of the heavy quark and is generally assumed to vanish
in the h.q.l., since an infinitely heavy quark-antiquark pair
cannot be produced out of the vacuum. Thus it is most
likely that the h.q.l. of a one-body current formulated within
front-form dynamics gives the same result for the Isgur-
Wise function in the space- and timelike momentum-
transfer regions and that this Isgur-Wise function is equiva-
lent with the one obtained within our point-form approach.
For finite quark masses we, however, suppose that our
results for the weak M ! M0 decay form factors differ
from those obtained within the front-form approach.
Heavy-quark symmetry is broken for finite heavy-quark

masses. But within any reasonable theoretical model for
the electroweak structure of heavy-light hadrons the h.q.l.
of the form factors (multiplied with appropriate kinemati-
cal factors) should go over into one universal function, the
Isgur-Wise function. It is, however, also interesting to see
what has to be expected from experimental measurements
of the form factors and to estimate how large heavy-quark-
symmetry breaking effects are for physical masses of the
heavy quarks. First we discuss our model predictions for
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v . v ’0.0
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FIG. 4 (color online). Isgur-Wise function (solid line) calcu-
lated by means of Eqs. (64)–(66) with the model parameters
being the same as in Fig. 2. The dashed line corresponds to spin-
rotation factor S ¼ 1.

6Note that the kinematics which we use to extract electromag-
netic form factors for spacelike momentum transfers—Eq. (30)
with �� ! 1 to get rid of cluster problems—corresponds to a
particular qþ ¼ 0 frame in which the z component of the meson
momentum goes to infinity, i.e., the infinite-momentum frame of
the meson.
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the electromagnetic form factors ofDþ and B� mesons, as
measured in the spacelike momentum-transfer region.
Figure 5 shows these form factors as functions of v � v0
in comparison with the Isgur-Wise function. Plotted is the
full form factor, as it is measured experimentally. This
includes the two contributions in which the photon goes

to the light and the heavy quark, respectively. Only the
latter survives in the h.q.l. In the electromagnetic form
factor these contributions are weighted with the charges
of the corresponding quark. For direct comparison with
the Isgur-Wise function one thus also has to multiply the
Isgur-Wise function with the charge of the heavy quark.
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v . v ’
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FIG. 5 (color online). Electromagnetic form factors of the Dþ (left) and B� (right) mesons calculated in the Breit frame (dotted line)
and infinite-momentum frame (dashed line) in comparison with the Isgur-Wise function (solid line). For direct comparison the Isgur-
Wise function is multiplied by jQQj, i.e., the charge of the heavy quark. Model parameters are the same as in Fig. 2.
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FIG. 6 (color online). Weak B� ! D0 decay form factors [multiplied with appropriate kinematical factors, cf.,
Eqs. (74)–(76)] for physical heavy-quark masses in comparison with the Isgur-Wise function and data from Belle [37] (dots),
CLEO [38] (triangles) and BABAR [39] (crosses) assuming that jVcbj ¼ 0:0409, i.e., the central value given by the Particle Data Group
[40] (left figure). Model parameters are the same as in Fig. 2. In the right figure c- and b-quark masses are multiplied by a factor 6.25
such that mc ¼ 10 GeV and meson masses are taken to be equal to the corresponding quark masses.
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FIG. 7 (color online). Weak B� ! D0� decay form factors [multiplied with appropriate kinematical factors, cf.,
Eqs. (79)–(82)] for physical heavy-quark masses in comparison with the Isgur-Wise function (left figure). Model parameters are
the same as in Fig. 2. In the right figure c- and b-quark masses are multiplied by a factor 6.25 such that mc ¼ 10 GeV and meson
masses are taken to be equal to the corresponding quark masses.
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For v � v0 ! 1 the contribution of the light quark provides
a peak which becomes more pronounced with increasing
mass of the heavy quark. In the case of the B� meson the
heavy-quark contribution starts to dominate at v � v0 * 1:1
(which corresponds to Q2 * 5 GeV2) and the v � v0 de-
pendence of the form factor resembles the one of the Isgur-
Wise function with the absolute magnitude differing by
about 20% in the considered v � v0 range. For the Dþ
meson the dominance of the heavy-quark contribution
sets in at about the same momentum transfer (Q2 *
5 GeV2), corresponding to v � v0 * 1:7 [cf., Eq. (50)].
Due to the smallness of the charm-quark mass, the absolute
magnitude of the form factor at v � v0 
 2 deviates from
the Isgur-Wise function by about 60%.

As we have discussed already in Sec. III A, wrong
cluster properties inherent in the Bakamjian-Thomas con-
struction may lead to an unwanted dependence of the
electromagnetic form factors on Mandelstam s. Note that
such an s dependence does not spoil the Poincaré invari-
ance of our 1-�-exchange amplitude; it rather hints at a
nonlocality of our photon-meson vertex. If one does not
consider the full electron-meson scattering process, but
rather the ��M ! M subprocess, the s dependence may
be reinterpreted as a frame dependence of our description
of this subprocess. The two extreme cases are minimum s
to reach a particular momentum transfer Q2 and s ! 1
(Q2 fixed). The first corresponds to the Breit frame, the
latter to the infinite-momentum frame of the meson, re-
spectively. In both cases the Lorentz structure of the elec-
tromagnetic current of a pseudoscalar meson may be
expressed in terms of the physical covariant ðp

�
þ p0

�
Þ�

alone and no spurious covariant or form factor is needed.
The dashed and dotted lines in Fig. 5 show the electromag-
netic form factors of the Dþ and B� mesons for s ! 1
(infinite-momentum frame) and s ¼ m2

� þm2
e þQ2=2þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

� þQ2=4
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
e þQ2=4

p
(Breit frame), respectively.

The differences are already rather small for theDþ meson,
become even smaller for the B� meson and vanish in the
h.q.l., as we have shown analytically in Sec. IVA.

Semileptonic decays, involving timelike momentum
transfers, are easier to handle. The decay currents that
follow from our coupled-channel approach can be ex-
panded in terms of physical covariants alone and the
form factors depend only on the 4-momentum transfer
squared (cf., Sec. III B). Plotted in Fig. 6 (left) are the
two transition form factors that can be measured in the
weak B� ! D0e� ��e decay. These form factors are multi-
plied with appropriate kinematical factors such that they go
over into the Isgur-Wise function when taking the h.q.l.
One prediction of heavy-quark symmetry is the approxi-
mate equality of RF1 and Rð1� q2=ðmB þmDÞ2ÞF0. For
physical masses of the heavy quarks the differences are
indeed less than 7% of the absolute values of the form
factors and tend to become smaller with increasing v � v0.
Similar to the case of the spacelike form factor of the B�

meson the deviation from the Isgur-Wise function is still
about 15%. In order to demonstrate numerically that RF1

and Rð1� q2=ðmB þmDÞ2ÞF0 converge to the Isgur-Wise
function in the h.q.l., we have made a calculation with b- and
c-quark masses that are 6.25 times larger than the physical
masses (such thatmc ¼ 10 GeV). The result is shown in the
right plot of Fig. 6. For such large masses of the heavy quark
the discrepancy between RF1, Rð1� q2=ðmB þmDÞ2ÞF0

and � shrinks already to less than 10%.
VcbFDðwÞ :¼ VcbRF1ðq2ðwÞÞ, with w :¼ v � v0, is the

quantity which can be directly extracted from the (unpo-

larized) semileptonic decay rate, d�B!De ��=dw /
ðw2 � 1Þ3=2jVcbj2jFDðwÞj2 [7]. More recent experimental
data on VcbFDðwÞ (divided by the actual value of Vcb as
quoted by the Particle Data Group) are also plotted in
Fig. 6. These should be compared with our model predic-
tions for FDðwÞ ¼ RF1ðq2ðwÞÞ, i.e., the dashed line. In
view of the fact that we did not try to optimize our
B- and D-meson wave functions the data are reasonably
well reproduced with a quality that is comparable to other
constituent-quark models [14,18]. Likewise, the branching
ratio BRðB0 ! Dþ‘��‘Þ ¼ 2:3% is also in good agree-
ment with the experimental value BRexpðB0!Dþ‘��‘Þ¼
ð2:18�0:12Þ%.
Two other quantities of interest are FDðw ¼ 1Þ and the

slope �2
D
:¼ �F0

Dðw ¼ 1Þ=FDðw ¼ 1Þ at zero recoil
w ¼ 1. For our simple wave function model we have found
FDð1Þ ¼ 0:93 and �2

D ¼ 0:59. Similar values for FDð1Þ
were found in Refs. [14,18]. The values of �2

D quoted in

these references are, however, about 30% larger. In the
h.q.l. FDðwÞ goes over into the Isgur-Wise function �ðwÞ
and hence the slope �2

D goes over into �2 ¼ ��0ð1Þ.
Comparing both values, i.e., �2

D ¼ 0:59 and �2 ¼ 1:24,
we observe a considerable difference caused by the finite
masses of the heavy quarks. The up-to-date experimental
value for the slope, as quoted by the Heavy Flavor
Averaging Group [33], is �2

D ¼ 1:18� 0:06, close to the
h.q.l. of our model. Combining the results for the electro-
magnetic form factor of the B� meson in the spacelike
region and for the weakB� ! D0 decay form factors in the
timelike region one can say that the breaking of heavy-
quark flavor symmetry due to the finite masses of the heavy
quarks is at most a 15–20% effect.
Similar quantitative conclusions can be drawn for the

breaking of heavy-quark spin symmetry from the com-
parison of the weak B� ! D0� decay form factors among
one another and with the Isgur-Wise function. Heavy-
quark symmetry predicts that R�V, R�A0, R�A2, and
R�ð1� q2=ðmB þmDÞ2ÞA1 should coincide in the h.q.l.
The maximum difference is again about 5% of the abso-
lute value, whereas the maximum deviation from the
Isgur-Wise function is about 20%, such that breaking of
heavy-quark spin symmetry for physical quark masses in
B� ! D0�e� ��e amounts also to about 20%. The right plot
in Fig. 7 shows how heavy-quark spin-symmetry is
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approximately restored if b- and c-quark masses are in-
creased by about one order of magnitude.

At the end of this section we want to stress that our
discussion of heavy-quark-symmetry breaking was re-
stricted to effects that come from the finite mass of the
heavy quarks. We have ignored effects that result from a

(heavy) flavor dependence of the B- and Dð�Þ-meson wave
functions, which would show up in more sophisticated
constituent-quarkmodels for heavy-light mesons, like those
used in Refs. [13,14,18]. Taking, e.g., a different oscillator
parameter for the D meson, i.e., aD ¼ 0:465 GeV as it is
suggested in a front-form analysis of heavy-meson decay
constants [34], and keeping aB ¼ 0:55 GeV unaltered one
would get �2

D ¼ 0:65. This value is about 10% larger than
the one obtained with aB ¼ aD ¼ 0:55 GeV. It remains to
be seen whether a further increase of the slope can be
achieved by means of wave functions different from the
harmonic-oscillator one and/or by taking into account (non-
valence) Z-graph contributions to the decay current. Our
findings on the h.q.l. would be unaltered by Z-graph con-
tributions but, as front-form calculations have revealed
[17], such contributions will become important for finite
masses of the heavy quarks if decay form factors are
extracted in a qþ � 0 frame, like e.g., the rest frame of
the decaying meson.

VI. CONCLUSIONS

In this paper we have extended and generalized previous
work on the electromagnetic structure of spin-0 and spin-1
two-body bound states consisting of equal-mass particles
[25,26,35]. Working within the point form of relativistic
quantum mechanics and using a constituent-quark model
with instantaneous confining force we have derived elec-
troweak current matrix elements and (transition) form
factors for heavy-light mesons in the space- and timelike
momentum-transfer regions. The starting point of this
derivation is a multichannel formulation of the physical
processes in which these form factors are measured, i.e.,
electron-meson scattering and semileptonic weak decays.
This formulation accounts fully for the dynamics of the
exchanged gauge boson (� or W). Poincaré invariance is
guaranteed by adopting the Bakamjian-Thomas construc-
tion with gauge-boson-fermion vertices taken from quan-
tum field theory. Vector and axial-vector currents of the
mesons can then be uniquely identified from the one-
boson-exchange (� or W) amplitudes. These currents
have already the right Lorentz-covariance properties and
the electromagnetic current of any pseudoscalar meson is
conserved. But wrong cluster properties, inherent in the
Bakamjian-Thomas construction [3], give rise to spurious
dependencies of the electromagnetic current on the elec-
tron momenta. For pseudoscalar mesons these unwanted
dependencies are eliminated by taking the invariant mass
of the electron-meson system large enough [25,26,35]. The
resulting electromagnetic form factor of a pseudoscalar

meson is then equivalent to the one obtained in front
form from the þ component of a one-body current in a
qþ ¼ 0 frame. The weak pseudoscalar-to-pseudoscalar
and pseudoscalar-to-vector transition currents are not
plagued by such spurious contributions. They can be ex-
pressed in terms of physical covariants and form factors
with the form factors depending on the (timelike) momen-
tum transfer squared, as it should be. In front form one
observes some frame dependence of the B ! D� decay
form factors if they are extracted from theþ component of
a simple one-body current [13]. This is attributed to a
missing nonvalence (Z-graph) contribution, which makes
the triangle diagram, from which the form factors are
calculated, covariant [13,17]. In the case of the point
form it is, of course, also not excluded that Z graphs may
play a role, but they are not necessary to ensure covariance
of the current, since Lorentz boosts are purely kinematical
and thus do not mix in higher Fock states.
Having derived comparably simple analytical expres-

sions for the electromagnetic form factor of a pseudoscalar

heavy-light meson and the B ! Dð�Þ decay form factors we
discussed the h.q.l. We found that the decay form factors
(multiplied with appropriate kinematical factors) go over
into one universal function, the Isgur-Wise function, as
demanded by heavy-quark symmetry. For the electromag-
netic form factor we observed that the h.q.l. does not
completely remove the spurious dependence on the elec-
tron momentum. One still has a spurious covariant and the
s dependence of the form factors goes over into a depen-
dence on the (common) modulus of the incoming and
outgoing 3-velocities of the heavy meson. This dependence
on the modulus of the meson velocities vanishes by taking
it large enough. In the limit of infinitely large meson
velocities we found a rather simple analytical expression
for the Isgur-Wise function which turned out to be (apart
from a change of integration variables) the same as the
expression which we got from the decay form factors.
Interestingly, we have also gotten the same result for the
Isgur-Wise function for the minimum value of the meson
velocities that is necessary to reach a particular value of
v � v0 (the argument of the Isgur-Wise function). For mini-
mum velocities it is not possible to separate physical and
spurious contributions since the respective covariants be-
come proportional. The dependence of the electromagnetic
pseudoscalar meson form factor on Mandelstam s and the
dependence of the resulting Isgur-Wise function on
the modulus of the meson velocities may be interpreted
as a frame dependence of the ��M ! M subprocess. The
s ! 1 (velocities ! 1) limit corresponds to the infinite-
momentum frame, whereas minimum s (minimum veloc-
ities) corresponds to the Breit frame. Our finding thus
means that it does not matter whether we calculate the
Isgur-Wise function in the infinite-momentum frame or the
Breit frame. In the h.q.l. the results are the same and
agree with the h.q.l. of the decay form factors. Numerical
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agreement was also found with the front-form calculation
of Ref. [13].

As a first application and numerical check of our ap-
proach we have calculated electromagnetic Dþ and B�

form factors, the B ! Dð�Þ decay form factors and the
Isgur-Wise function with a simple (flavor-independent)
Gaussian wave function. For the electromagnetic B�

form factor and for the B ! Dð�Þ decay form factors the
effect of heavy-quark-symmetry breaking due to finite
physical masses of the heavy quarks turned out be
15–20%. For the electromagnetic Dþ form factor it rather
amounted to about 60%.

To conclude, we have presented a relativistic point-form
formalism for the calculation of the electroweak structure
of heavy-light mesons within constituent quark models
with instantaneous confining forces. This formalism pro-
vides the electromagnetic form factor of pseudoscalar

heavy-light systems for spacelike momentum transfers
and weak pseudoscalar-to-pseudoscalar as well as
pseudoscalar-to-vector decay form factors for timelike
momentum transfers. It exhibits the correct heavy-quark-
symmetry properties in the h.q.l. Although we have not
presented results, our approach is immediately applicable
to semileptonic heavy-to-light transitions and it is general
enough to deal with additional dynamical degrees of free-
dom, such that one could, e.g., account for nonvalence
Fock-state contributions in the mesons [36].
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