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We propose a phenomenological model of Dirac neutrino mass operator based on the Friedberg-Lee

neutrino mass model to include CP violation. By considering the most general set of complex coefficients,

and imposing the condition that the mass eigenvalues are real, we find a neutrino mass matrix which is

non-Hermitian, symmetric, and magic. In particular, we find that the requirement of obtaining real mass

eigenvalues by transferring the residual phases to the mass eigenstates self-consistently dictates the

following relationship between the imaginary part of the mass matrix elements B and the parameters of the

Friedberg-Lee model: B ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4 ða� brÞ2sin22�13cos2�12

q
. We obtain inverted neutrino mass hierarchy

m3 ¼ 0. Making a correspondence between our model and the experimental data produces stringent

conditions on the parameters as follows: 35:06� & �12 & 36:27�, �23 ¼ 45�, 7:27� & �13 & 11:09�, and
82:03� & � & 85:37�. We get mildly broken �-� symmetry, which reduces the resultant neutrino mixing

pattern from tri-bimaximal to trimaximal. The CP violation as measured by the Jarlskog parameter is

restricted by 0:027 & J & 0:044.
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I. INTRODUCTION

In 1957 B. Pontecorvo [1] suggested that, similar to the
K-meson system, neutrino weak eigenstates are not mass
eigenstates but are superpositions of its mass eigenstates.
Therefore, as neutrinos propagate they would undergo
oscillations. The full theory of neutrino oscillation was
worked out in several papers [2].

The results of the neutrino oscillation experiments (solar
[3], atmospheric [4], reactor [5], and accelerator [6] neutrino
experiments) have shown that mixing among three gener-
ations in the lepton sector exists, analogous to the quark
mixing, and at least two neutrinos are massive. After the
discovery of neutrino oscillations, there have been many
works for determining the values of the neutrino mass-
squared differences and the mixing angles that relate the
flavor eigenstates to the mass eigenstates. The lepton mixing
matrix in the standard parametrization is given by [7,8]

UPMNS ¼
1 0 0

0 c23 s23

0 �s23 c23

0
BB@

1
CCA

c13 0 s13e
�i�

0 1 0

�s13e
i� 0 c13

0
BB@

1
CCA

�
c12 s12 0

�s12 c12 0

0 0 1

0
BB@

1
CCA

ei� 0 0

0 1 0

0 0 ei�

0
BB@

1
CCA; (1)

where cij � cos�ij and sij � sin�ij (for ij ¼ 12, 13, and

23). The phase � is called the Dirac phase, analogous to the
Cabibbo-Kobayashi-Maskawa phase, and the phases � and�
are called the Majorana phases that are relevant for Majorana
neutrinos. However, we should mention that recently the

advantages of the original symmetrical form of the parame-
trizations of the lepton mixing matrix is discussed in Ref. [8].
The results of the Daya Bay and RENO collaborations have
shown that �13 ¼ 0 is now rejected at a significance level
higher than 8�. Analysis of current experimental data [9]
yields 31:31� & �12 & 37:46�, 38:64� < �23 < 53:13�,
and 7:27� < �13 < 11:09� at the 3� confidence level. Also
a combined analysis of the data coming from T2K, MINOS,
Double Chooz, and Daya Bay experiments shows that the
best-fit value of �13 is sin

2�13 ¼ 0:026ð0:027Þþ0:003
�0:004 for nor-

mal (or inverted) mass hierarchy.
One important aspect of the neutrino mixing phenomena

is that it could, in principle, provide new keys to under-

standing the flavor problem, particularly since it contains

large mixing angles in contrast to the quark sector. Also,

the disparity between the neutrino and the charged lepton

masses is more pronounced than the analogous one in the

quark sector. Therefore, the mass and mixing problem in

the lepton sector is a fundamental problem. Also some

interesting questions to be solved by future experiments

are: What are the masses of neutrinos? How close to 45� is

the 2–3 mixing angle? What are the values of three

CP-violating phases of the Pontecorvo-Maki-Nakagawa-

Sakata matrix (i.e., the Dirac phase � and the Majorana

phases � and �)? The simplest way to introduce massive

neutrinos is to add right-handed chiral neutrino fields to the

standard model and to introduce the neutrino masses in the

same way as the quarks and charged leptons. In this paper,

we mainly focus on the Dirac neutrinos. However, we

should mention that the determination of the nature of

neutrinos is still a controversial subject which could even-

tually be decided by experimental observation, such as

nonzero magnetic dipole moment of neutrinos ruling out

Majorana neutrinos or neutrinoless double beta decay*ss-gousheh@sbu.ac.ir
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ruling out Dirac neutrinos. We believe that at this point in

time the study of both types of neutrinos is justified (see,
for example, Ref. [10]). A Dirac mass term for the neu-

trinos and charged leptons is written as

Lm ¼ � �‘LiMe
ij‘Lj � ��LiMD

ij�Rj þ H:c: (2)

A successful phenomenological neutrino mass model
with flavor symmetry that is suitable for the Dirac neutri-
nos was proposed by Friedberg and Lee (FL) [11]. In this
model the mass eigenstates of three charged leptons are
identified with their flavor eigenstates. Therefore, neutrino
mixing matrix can be simply described by a 3� 3 unitary
matrixU which transforms the neutrino mass eigenstates to
the flavor eigenstates, ð�e; ��; ��Þ. As we shall show in the

pure FL model, one of the neutrino masses is exactly zero,
partially justifying the smallness of neutrino masses.
Moreover when �-� symmetry is assumed, the matrix U
reduces to the experimentally favored UTBM.

The Dirac neutrino mass operator of the FL model can
be written as

MFL¼að ���� ���Þð�����Þþbð ���� ��eÞð����eÞ
þcð ��e� ���Þð�e���Þþm0ð ��e�eþ �����þ �����Þ:

(3)

All the parameters in this model (a, b, c, and m0) are
assumed to be real. For m0 ¼ 0, this Lagrangian has the
following symmetry: �e ! �e þ z, �� ! �� þ z, and

�� ! �� þ z, where z is an element of the Grassmann
algebra. For constant z, this symmetry is called FL sym-
metry [11] in which case the kinetic term is also invariant.
However the other terms of the electroweak Lagrangian do
not have such symmetry. The m0-term breaks this symme-
try explicitly. However, we may add that the FL symmetry
leads to a magic matrix and this property is not spoiled by
the m0-term. The magic property has many manifestations
which we shall discus in details. Also it has been reasoned
that the FL symmetry is the residual symmetry of the
neutrino mass matrix after the SOð3Þ �Uð1Þ flavor sym-
metry breaking [12]. The mass matrix can be displayed by

MFL ¼
bþ cþm0 �b �c

�b aþ bþm0 �a

�c �a aþ cþm0

0
BB@

1
CCA; (4)

where a / ðY�� þ Y��Þ, b/ðYe�þY�eÞ, and c/ðY�eþYe�Þ
and Y�	 denote the Yukawa coupling constant. The

proportionality constant is the expectation value of the
Higgs field. It is apparent that MFL possesses exact �-�
symmetry only when b ¼ c. Setting b ¼ c and using the
Hermiticity of MFL, a straight forward diagonalization pro-
cedure yields UT

TBMMFLUTBM ¼ Diagfm1; m2; m3g, where
m1 ¼ 3bþm0; m2 ¼m0; m3 ¼ 2aþbþm0; (5)

and the experimentally favored tri-bimaximal (TBM) neu-
trino mixing matrix can be reproduced and is given by

UTBM ¼

2ffiffi
6

p 1ffiffi
3

p 0

� 1ffiffi
6

p 1ffiffi
3

p 1ffiffi
2

p

� 1ffiffi
6

p 1ffiffi
3

p � 1ffiffi
2

p

0
BBBB@

1
CCCCA: (6)

Obviously the requirement that all of the mass eigenvalues
are positive puts conditions on the parameters of this
model. In particular m0 must be positive. It is interesting
to note that UTBM was first proposed on theoretical
grounds by Harrison, Perkins, and Scott in 2002 [13].
For a general, exact TBM neutrino mixing, regardless of
the model, the mixing angles are �12 � 35:3�, �23 ¼ 45�,
�13 ¼ 0 and the CP-violating phases can be chosen to be
zero. In general, in order to have CP-violation, the neces-
sary condition is � � 0 and �13 � 0. In this model these
conditions necessarily mandate that �-� symmetry should
be broken. Another interesting question is whether �23 ¼
45� remains correct after the �-� symmetry breaking.
There are four independent CP-even quadratic invari-

ants, which can conveniently be chosen as U�
11U11,

U�
13U13, U�

21U21, and U�
23U23 and three independent

CP-odd quadratic invariants [14],

J ¼=ðU11U
�
12U

�
21U22Þ; I1 ¼=½ðU�

11U12Þ2�;
I2 ¼=½ðU�

11U13Þ2�: (7)

The Jarlskog rephasing invariant J [15] is relevant for CP
violation in lepton number conserving processes like
neutrino oscillations. I1 and I2 are relevant forCP violation
in lepton number violating processes like neutrinoless
double-beta decay. Oscillation experiments cannot distin-
guish between the Dirac and Majorana neutrinos. The
detection of neutrinoless double-beta decay would provide
direct evidence of lepton number nonconservation and
the Majorana nature of neutrinos. Many theoretical and
phenomenological works have discussed massive neutrino
models that break �-� symmetry as a prelude to CP
violation [16].
In this paper we generalize the FL model by introducing

complex parameters which can ultimately be linked to
complex Yukawa coupling constants. We concentrate on
the massive FL Dirac model, imposing the obvious con-
straint that mass eigenvalues be real. Using this model we
obtain CP violation, mild �-� symmetry breaking [17],
and inverted mass hierarchy for neutrinos. Moreover, the
measures of these two symmetry breakings turn out to be
proportional to each other. This paper is organized as
follows. In Sec. II, we introduce our model and show
how the constraint of reality of masses along with the
minimal breaking of �-� symmetry, and the overall self-
consistency of the model produces relationships between
the free parameters of the model. We find that in our model
0< �13 < 24�, 35:24� < �12 < 39:20�, �23 ¼ 45�, and
71:56� < �< 


2 . Notice that we have ruled out the case

� ¼ 

2 as we shall explain. In Sec. III, we show that our

model is, in general, consistent with the experimental data
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and show that implementing all of the constraints coming
from the experimental data severely restricts the parame-
ters of our model, and, in fact, almost pinpoints the relevant
parameters. Section IV is devoted to a summary.

II. MODEL

In this section, we generalize the FL model by adding
complex Yukawa coupling constants in order to obtain CP
violation. This is accomplished by obtaining nonzero val-
ues for sin�13 and �. We first let all of the coefficients in the
MFL matrix Eq. (4) except m0 be complex. However, we
demand the eigenvalues of the mass matrix to be real. We
find that only one particular choice allows for minimal
breaking of �-� symmetry, i.e., (a 2 <; b, c 2 C, and
b ¼ c?). This requirement leads to a non-Hermitian mass
matrix. For simplicity of notation we define the parameters
as follows: <ðbÞ ¼ <ðcÞ ¼ br and =ðbÞ ¼ �=ðcÞ ¼ B.
The parameters indicating the measure of CP violation
and �-� symmetry breaking turn out to be proportional
to B and therefore we expect it to be small.

The neutrino mass matrix M0
� is given by

M0
� ¼

2br þm0 �br �br

�br aþ br þm0 �a

�br �a aþ br þm0

0
BB@

1
CCA

þ iB

0 �1 1

�1 1 0

1 0 �1

0
BB@

1
CCA: (8)

Notice that M0
� and MFL are both magic and symmetric

matrices since they both commute with the magic S matrix
defined by

S ¼
F T T

T F T

T T F

0
BB@

1
CCA: (9)

Therefore one of the eigenstates is ð 1ffiffi
3

p ; 1ffiffi
3

p ; 1ffiffi
3

p Þ, and we

choose it to be �2 in order to be consistent with Eq. (6).
In the special case F ¼ T ¼ 1

3 , S ¼ D where D is called

the democracy operator. It is obvious that the real part of
M0

� has CP and �-� symmetry, separately. The imaginary
part ofM0

� breaks both of these symmetries, while preserv-

ing the product of these two operations. Therefore jM0
�j2 ¼

M0
�M

0y
� is invariant under simultaneous CP and �-�

reflection operations, which is called the mutativity opera-
tion [18]. This reduction of the symmetry, causes the
symmetry of neutrino mixing matrix to reduce from
TBM to trimaximal (TM).
A naive diagonalization of M0

� yields

�m1¼ðaþ2brþm0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�brÞ2�3B2;

q
�m2¼m0;

�m3¼ðaþ2brþm0Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða�brÞ2�3B2

q
: (10)

However, the usual diagonalization procedure is correct
only for Hermitian matrices, where a similarity transfor-
mation by a unitary operator, i.e., M0

diag ¼ UyM0
�U diago-

nalizes the matrix. Therefore, the results indicated in
Eq. (10) are correct only in the limit B ! 0, and the results
in this limit suffice for our analysis to follow. Comparing
our results in this limit with those shown in Eq. (5), we
conclude a < b.
Since M0

� is a non-Hermitian matrix, we need two dis-
tinct unitary matrices U and V to diagonalize it. These

matrices can be easily obtained by diagonalizing M0
�M

0y
�

and M0y
� M0

�, separately. U and V are the conventional
transformation matrices for the left-handed and right-
handed neutrinos, respectively. We do not display the ex-
plicit form of U and V and only mention that V ¼ U�. The
resulting correct diagonal matrix is obtained by M0

diag ¼
UyM0

�V and its elements are as follows:

m0
1 ¼

iBða� brÞ þ 3B2 þ ðaþ 2br þm0Þ2 � ða� br þ iBÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ ðaþ 2br þm0Þ2

p
aþ 2ðbr þ iBÞ þm0

; m0
2 ¼ m0;

m0
3 ¼

iBða� brÞ þ 3B2 þ ðaþ 2br þm0Þ2 þ ða� br þ iBÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3B2 þ ðaþ 2br þm0Þ2

p
aþ 2ðbr þ iBÞ þm0

: (11)

After the diagonalization we find that only m0
1 and m0

3 are
complex. We can extract the phases and transfer them to
the mass eigenstates in the Dirac case [19]. The most
general form of the diagonal mass matrix can be written as

M0
diag ¼ ei�ei	�3ei��8M0real

diag : (12)

In our model � automatically turns out to be zero. We
would dispense with the overall phase even if it was not

zero. Using the fact that m0
2 is real, we obtain 	 ¼ �. This

implies that the argðm0
1Þ ¼ � argðm0

3Þ ¼ 2	. Using these
conditions in Eq. (11) we obtain

B ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2aþ br þm0Þð3br þm0Þ

3

s
: (13)

Note that disregarding the overall phase amounts to the
following: DetðM0

diagÞ is real and DetðUÞ ¼ 1 [19].
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From the requirement of the reality of B we obtain� m0

3 	
br 	 �ð2aþm0Þ. Notice that the lower bound of br is
simply a check on the condition m1 > 0 in Eq. (5). The
requirement that in the limit B ! 0, U and V should both
approach UTBM given in Eq. (6), yields 2br þ aþm0 > 0.
Combining the condition for reality of B with a < b, we
obtain 3aþm0 < 0. From this and the overall symmetry of
the FL model we conclude that b < 0. This conclusion is

consistent with the results of experiments on solar neutrino
oscillation, which indicate that m2 >m1. Notice that the
occurrence of CP violation is possible only in a restricted
region in the a-br plane where B � 0. Figure 1 illustrates the
region of the parameter space where CP violation occurs.
Substituting the expression for B given by Eq. (13) into

the expression we have obtained for U by diagonalizing

M0
�M

0y
� , we obtain

U11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ða� brÞð3aþm0Þ

s ��ð3br þm0Þffiffiffi
6

p � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2aþ br þm0Þð3br þm0Þ

2

s �
;

U12 ¼ U22 ¼ U32 ¼ 1ffiffiffi
3

p ;

U13 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1

ða� brÞð�aþ 4br þm0Þ

s �ð2aþ br þm0Þffiffiffi
6

p þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2aþ br þm0Þð3br þm0Þ

2

s �
;

U21 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ða� brÞð3aþm0Þ

s �
3ðaþ brÞ þ 2m0ffiffiffi

6
p þ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2aþ br þm0Þð3br þm0Þ

2

s �
;

U23 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1

ða� brÞð�aþ 4br þm0Þ

s ��ðaþ 5br þ 2m0Þffiffiffi
6

p � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð2aþ br þm0Þð3br þm0Þ

2

s �
;

U31 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

ða� brÞð3aþm0Þ

s ��ð3aþm0Þffiffiffi
6

p
�
;

U33 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�1

ða� brÞð�aþ 4br þm0Þ

s ��aþ 4br þm0ffiffiffi
6

p
�
: (14)

Notice that our generalized M0
� given in Eq. (8) has re-

tained its magic property, since we have insisted on having
real mass eigenvalues. Therefore the mixing matrices U
and V are necessarily TM, which requires, for example,
j�2i ¼ 1ffiffi

3
p ð�e þ �� þ ��Þ and their first and third columns

add up to zero [20]. However the TBM structure is broken
down to TM since U13 � 0, and therefore the exact �-�

symmetry is broken. As we shall show this symmetry is
only softly broken. We can conclude from the TM nature of
the U matrix that 3ðaþ brÞ þm0 > 0.
Comparing Eq. (14) with Eq. (1), we immediately obtain

all of the mixing angles (�13; �12; �23) and the CP-violating
phase in terms of a, br, and m0 as follows:

sin2�13 ¼ 2aþ br þm0

3ða� brÞ ;

sin2�12 ¼ 1

3cos2�13
¼ a� br

a� 4br �m0

;

sin2�23 ¼ 1

2
;

tan� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð3br þm0Þ
2aþ br þm0

s
:

(15)

In other words, the phase difference between b and c
results in a kind of �-� symmetry breaking with a mani-
festation �13 � 0, while maintaining �23 ¼ 


4 (jU23j ¼
jU33j). From Eq. (1), (13), and (15) we obtain

B ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4
ða� brÞ2sin22�13cos2�12

s
: (16)

0.45 0.40 0.35

0.30

0.25

0.20

0.15

0.10

0.05

FIG. 1 (color online). CP violation is possible only in the
right-angled triangle in our parameter space. The axes are
defined by � � a

m0
and 	 � br

m0
. The dark triangle displays the

allowed region within our model. (The line above the base of the
triangle is given by 2br þ aþm0 ¼ 0.)
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Using Eq. (14) and the transformation UyM0
�V, or by

substituting Eq. (13) in to Eq. (11), it is easy to obtain the
three neutrino masses

M0
diag ¼ ei	�3ei	�8

�2ða� brÞ 0 0

0 m0 0

0 0 0

0
BB@

1
CCA; (17)

where

	 ¼ arctan

�
� 3B

3ðaþ brÞ þ 2m0

�
: (18)

Notice that we get inverse hierarchy for neutrino masses. In
the Dirac case one can choose, without loss of generality,
the phases of the mass eigenstates ( ��i

L;R) so that M0
diag

reduces to M0real
diag as in Eq. (12).

Since M0
� is a symmetric matrix, it could also be used

as a Majorana mass matrix. If we work with Majorana

neutrinos, every element in the mixing matrix will be same
as the Dirac case. The phases can be rewritten as

ei	�3ei	�8 ¼
ei2	 0 0

0 1 0

0 0 e�i2	

0
BB@

1
CCA: (19)

In theMajorana case only the phase factor e�2i	 in Eq. (19)
can be rotated away into the charged lepton sector and the
other phase factor remains. These phases can be transferred
to UPMNS, and comparing Eqs. (1) and (19) one can con-
clude that the � ¼ �� ¼ �	. These phases also contrib-
ute to the CP violation. Therefore, in Majorana case we
obtain three nonzero CP-violating phases � and � ¼ ��,
with inverted hierarchy, and the masses are

ðm0
1ÞM¼�2ða�brÞ; ðm0

2ÞM¼m0; ðm0
3ÞM¼0: (20)

Therefore detM0
� ¼ 0 and M0

� has no inverse. This shows
that the use of our model for Majorana neutrinos cannot be

0.45 0.40 0.35

0.2

0.2

0.4

0.6

0.50 0.49 0.48 0.47 0.46 0.45
0.10

0.05

0.00

0.05

0.10

FIG. 2 (color online). In this figure we show the theoretical region of our model for CP violation along with all available experimental
data. The axes are defined by� � a

m0
and	 � br

m0
. The triangle delimited by the dashed lines is identical with the colored triangle shown in

Fig. 1. The line immediately above the base of the triangle is the line given by 3ðaþ brÞ þ 2m0, and in our model only the part of the
mentioned triangle above this line is allowed. This line is interesting since on this line the following parameters are all constants: J ¼ 0:083,
�13 ¼ 24:09�, � ¼ 71:56�, while the derivative of B in the direction perpendicular to this line is zero. Moving away from this line in the
upward direction,B and �13 decreasemonotonically to zero, while � increases to 


2 when the upper border of the triangle (2aþbrþm0¼0)

is reached. The colored region with negative slope indicates the experimentally allowed region for the sin2�13. The region delimited by
dotted lines indicates the experimentally allowed region for the sin2�12. The colored region bounded by two closely spaced parallel lines
with positive slope are the result of the restriction coming from the experimental values for�m2

31 and�m
2
21. The overlap region of all of the

experimental data is indicated by the darker region and this is completely contained within the region for our model.
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consistent with the type-I seesaw mechanism proposed in
1980 [21].

A rephasing-invariant measure of CP violation in neu-
trino oscillation is the universal parameter J [15] given in
Eq. (7), and it has a form which is independent of the
choice of the Dirac or Majorana neutrinos. Using Eq. (14)
the expression for J simplifies to

J ¼ � B

6ða� brÞ : (21)

From this expression we can conclude that the maximal CP
nonconservation is not just a question of a relative phase
assuming the value � 


2 , the magnitudes of the coupling

constants are also essential. In fact, the maximal CP non-
conservation does not correspond to sin� ¼ 1 [15]. One can
see that the soft breaking of �-� symmetry leads to both
�13 � 0 and J � 0, but it does not affect the favorable result
�23 ¼ 45�, originally resulting from the TBMmixing angles.

III. COMPARISON WITH EXPERIMENTAL DATA

In this section we compare the experimental data with
the results obtained from our model. We do this by map-
ping all of the constraints obtained from the experimental
data onto our parameter space, as shown in Fig. 2. Note that
there is a significant, general overlap between the experi-
mental data and the CP-violating part of our parameter
space [as originally shown in Fig. 1].

However, the most restricting experimental data comes

from the values of sin2�13 and m0
1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�m2

31j
q

and m0
2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�m2
21 � �m2

31j
q

. These restrictions are shown in Fig. 2 by

shaded regions. Therefore, the overlap of all of the experi-
mental data and our model is reduced to a tiny region close
to the top corner of the triangle. In Fig. 3 we have plotted
the values of j�m2

31j against sin2�13 to elucidate this

important overlap region. In Table I we state all of the
relevant experimental results presented at the 3� C.L. [9],
along with the restrictions that they impose on the
parameters of our model. The values stated as the results
of our model (combined with experimental data) in
the last column of the table are obtained from the tiny
region mentioned above which results in the following

restricted values for the parameters of our model, and using
m0

3 ¼ 0:

m0 � ð4:70–5:25Þ10�2 eV; a � �ð2:3–2:6Þ10�2eV;

br � �ð0:1–0:3Þ10�2 eV; B � ð0:34–0:62Þ10�2 eV:

(22)

In Fig. 2 we have a special point, a ¼ br ¼ � m0

3 at

which B ¼ 0. Therefore in our model we cannot have
CP violation at this point, where the neutrino mass matrix
reduces to the following special form:

M0
� ¼ ð3br þm0Þ

1 0 0

0 1 0

0 0 1

0
BB@

1
CCA� br

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA

¼ ð3br þm0Þ1� br ~D: (23)

The first term is identically zero and M0
� reduces to the

democratic matrix �br ~D. M0
� can be diagonalized by the

UTBM matrix defined by Eq. (6), yielding

M0
diag ¼ UT

TBM½ð3br þm0Þ1� br ~D�UTBM

¼
3br þm0 0 0

0 m0 0

0 0 3br þm0

0
BB@

1
CCA: (24)

1.8 2.0 2.2 2.4 2.6
m13

2 10 3 eV2

0.020

0.025

0.030

0.035

Sin2
13

FIG. 3 (color online). In this figure the whole experimentally
allowed region of the sin2�13 � j�m2

31j plane is indicated by the

region bounded by the largest rectangle, which includes the axes.
This whole region corresponds to the two colored regions shown
in Fig. 2. The best experimental fit is shown by the darker shaded
region in the middle. Our model is represented by the lighter
shaded region which overlaps the best experiments fit.

TABLE I. The allowed ranges for all parameter obtained from the experimental data and our model.

Parameter The experimental data The best fit (� 1�) Combining our model with the experimental data

�m2
21 ð7:12–8:20Þ10�5 eV2 7:62� 0:19 m1 � ð4:14–5:00Þ10�2 eV m2 � ð4:70–5:25Þ10�2 eV

�m2
31 �ð2:15–2:68Þ10�3 eV2 �ð2:40þ0:10

�0:07Þ m1 � ð4:14–5:00Þ10�2 eV m3 ¼ 0

sin2�12 0.27–0.37 0:320þ0:015
�0:017 0.33–0.35

sin2�13 0.016–0.037 0:027þ0:003
�0:004 0.016–0.037

sin2�23 0.39–0.64 0:53þ0:05
�0:07 0.5

� 0–2
 0–2
 82.03�–85.37�
J 
 
 
 
 
 
 0.027–0.044
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Note that in this case the only nonzero element is
ðM0

diagÞ22 ¼ m0. This matrix has attracted some attention

and several authors have considered generalizations of this
matrix to break the degeneracy [22]

IV. CONCLUSION

In this paper we have proposed a generalization of
Friedberg-Lee neutrino mass model, in which CP violation
is possible. In our model the coefficients are allowed to be
complex, with the constraint that the mass eigenvalues be
real. We find and display the region in our parameter space
where CP violation is possible. Since the parameters of our
model are related to the Yukawa coupling constants, this
region determines a corresponding CP-violating region in
the space of the Yukawa coupling constants. In this region
the resulting mass matrix turns out to be non-Hermitian,
symmetric, and magic. We find that the symmetry of the
neutrino mixing matrix is reduced from TBM to TM with
the implication that the �-� symmetry is mildly broken.
Comparing the results of our model with experimental data,
we find that the overlap region is very restricted and this
narrows the allowed ranges for the parameters, as shown in

Table I. In particular, we find Jarlskog parameter is restricted
to 0:027 & J & 0:044, which could be tested in future
experiments such as the upcoming long baseline neutrino
oscillation ones. Also 35:06� & �12 & 36:27�, 7:27� &
�13 & 11:09�, �23 ¼ 45�, and 82:03� & � & 85:37�. We
obtain the allowed ranges for the values of three masses
m1 � ð4:14–5:00Þ10�2 eV, m2 � ð4:70–5:25Þ10�2 eV,
and m3 ¼ 0, therefore we have inverted hierarchy.
This generalization could also be used for massive

Majorana neutrinos because the generalized mass matrix is
still symmetric. In Majorana case all of the parameters are
identical to the Dirac case except that there are two extra
CP-violation phases 27:92�	�¼��	45:56�. However,
since detM0

� ¼ 0, the mass matrixM0
� is not invertible. This

shows that the use of ourmodel forMajorana neutrinos cannot
be consistent with the type-I seesaw mechanism.
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