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We study the gravity duals of supercurrent solutions in the anti–de Sitter (AdS) black hole background

with general phase structure to describe both the first- and the second-order phase transitions at finite

temperature in strongly interacting systems. We argue that the conductivity and the pair susceptibility can

be possible phenomenological indications to distinguish the order of phase transitions. We extend our

discussion to the AdS soliton configuration. Different from the black hole spacetime, in the probe limit,

the first-order phase transition cannot be brought by introducing the spatial component of the vector

potential of the gauge field in the AdS soliton background.
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The AdS/CFT correspondence [1–3] has been used to
model strongly interacting systems in terms of a gravity
dual. Recently it was found that this correspondence can
provide some insights into superconductivity [4–6]. It was
observed that a gravitational system closely mimics the
behavior of a superconductor. When the temperature of an
AdS black hole drops below the critical value, the bulk
configuration becomes unstable and experiences a second-
order phase transition. The bulk spacetime changes from
the normal state to the superconducting state with scalar
hair condenses on the black hole background. In the
boundary dual conformal field theory (CFT), this corre-
sponds to the formation of a charged condensation. The
gravity models with the properties of holographic super-
conductors have attracted considerable interest for their
potential applications to the condensed matter physics,
see for example Refs. [7–43].

In a general class of gravity duals to superconducting
theories, it was exhibited that there exists a fairly wide
class of phase transitions. It was disclosed that a general-
ized Stückelberg mechanism of symmetry breaking allows
for a description of the first-order phase transition besides
the second-order phase transition [35,38]. Recently, in the
investigation of a DC supercurrent-type solution [44–47],
it was found that the second-order superfluid phase tran-
sition can change to the first order when the velocity of the
superfluid component increases relative to the normal
component. The novel phase diagram brought by the super-
current is interesting. It further enriches the phase structure
observed in the Stückelberg mechanism.

Whether there is an effective phenomenological way to
describe and distinguish various types of phase transitions
is a question in front of us. In this work, we will disclose
the phenomenological signatures on various phase transi-
tions in the holographic model of superfluidity. We will
propose two possible probes to distinguish the order of
phase transition from phenomenology, including the con-
ductivity and the pair susceptibility. We will argue that
these two quantities, which are measurable in condensed

matter physics, can help us understand more of the phase
structure in the holographic model of superfluidity. We will
present our discussions in the backgrounds of the AdS
black hole and AdS soliton.
In order to have a scalar condensate in the boundary

theory, the Lagrangian with a Uð1Þ gauge field and con-
formally coupled to a charged complex scalar field � is
expressed in the form [8]

L¼
Z
d4x

ffiffiffiffiffiffiffi�g
p �

�1

4
F��F���jr�� ieA�j2�m2j�j2

�
:

(1)

To consider the possibility of DC supercurrent, both a time
component At and a spatial component Ax for the vector
potential have been chosen:

A� ¼ AtðrÞdtþ AxðrÞdx: (2)

We are interested in static solutions and assume all the
fields are homogeneous in the field theory direction with
only radial dependence.
We will first concentrate our attention on the four-

dimensional AdS black hole background with the
configuration

ds2 ¼ �fðrÞdt2 þ dr2

fðrÞ þ r2ðdx2 þ dy2Þ; (3)

where fðrÞ ¼ r2

L2 � M
r , and L and M are the AdS radius

and the mass of the black hole. The Hawking temperature

of this black hole is read T ¼ 3M1=3

4�L4=3 . For the convenience

of our discussion, we will set L ¼ 1 and the horizon

rh ¼ ðML2Þð1=3Þ ¼ 1. We will make the coordinate trans-
formation z ¼ 1=r so that the metric becomes

ds2 ¼ �fðzÞdt2 þ dz2

z4fðzÞ þ z�2ðdx2 þ dy2Þ; (4)

where fðzÞ ¼ 1=z2 � z. The horizon now is at z ¼ 1, and
the conformal boundary lies at z ¼ 0.
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Neglecting the backreactions of the matter fields onto
the background, we have equations of motion for fields in
the probe limit

A00
t � 2c 2

fz4
At ¼ 0; A00

x þ
�
2

z
þ f0

f

�
A0
x � 2c 2

z4f
Ax ¼ 0;

c 00 þ f0

f
c 0 þ

�ðeAtÞ2
f2z4

� ðeAxÞ2
fz2

� m2

fz4

�
c ¼ 0; (5)

where the prime denotes the derivative with respect to z.
At the horizon z ¼ 1, the regularity requires At ¼ 0, and

we have the constraints

At¼0; A0
x¼�2c 2

3z2
Ax; c 0 ¼2c

3z
�1

3
zA2

xc
2: (6)

Near the AdS boundary z ! 0, the fields behave as follows:

At ¼ �� �zþOðzÞ; Ax ¼ Sx þ JxzþOðzÞ;
c ¼ z4�c 1 þ z4þc 2 þOðzÞ; (7)

where 4� ¼ 3
2 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 4m2

p
. According to the AdS/CFT

dictionary, the constant coefficients� and � are the chemi-
cal potential and the density of the charge in the dual field
theory. Jx corresponds to the current, and Sx gives the dual
current source. Either c 1 or c 2 is normalizable, which can
be the source with the other as the response for the dual
operator c i �Oiði ¼ 1; 2Þ.Wewill concentrate on c 1 ¼ 0
in our discussion and set e ¼ 1 andm2 ¼ �2 unless other-
wise noted.

In the case with Ax ¼ 0, the second-order phase transi-
tion appears when 1=� reaches the critical value 0.246.
Below this critical value, the condensate starts to form.
With nonzero Ax, in Fig. 1 we have reproduced the result of
the condensation disclosed in Refs. [44,45]. For big enough
1=�, there is no condensation. When this parameter is
small enough, we observe that the condensate does not
drop to zero continuously; this marks the first-order phase
transition from the normal state to the superconducting

state when Sx reaches a critical value. For values above
the special range for 1=�, the condensation continuously
drops to zero, and the phase transition between the normal
state and the superconducting state changes to the second
order. In the left panel of Fig. 1 we show the first-order
phase transition with 1=�� 0:146, and in the right panel
of Fig. 1 we show the second-order phase transition
behavior with 1=�� 0:217. The critical value of 1=� for
the condensate to happen for Ax � 0 is below the value for
the case with Ax ¼ 0.
In the left panel of Fig. 1, we observe that there is a

metastable region typical in the first-order phase transi-
tions. This metastable region also appeared in the
Stückelberg mechanism for the first-order phase transition
[35,38]. In this region, the scalar field has different behav-
ior in the condensation: c 2 at the horizon decreases with
the decrease of Sx=� instead of increasing when Sx=�
becomes smaller as in the normal condensates. In the upper
panel of Fig. 2 we delimit this difference. When we use the
alternative quantization, i.e., by setting c 2 ¼ 0, the differ-
ence also holds in c 1, as shown in the lower panel of Fig. 2.
In the following we will discuss the aspects of the

conductivity and examine the behaviors of conductivity
for the first- and second-order phase transitions. We will
concentrate only on the transverse conductivity here for
simplicity and solve the transverse gauge field perturbation
�Ay ¼ e�iwtAy numerically in the background with the

condensate. The equation of motion for Ay is

A00
y þ

�
2

z
þ f0

f

�
A0
y þ

�
!2

f2z4
� 2c 2

z4f

�
Ay ¼ 0: (8)

This equation can be solved by imposing the ingoing
boundary condition at the horizon for causality. At the

boundary, Ay ¼ Að0Þ
y þ Að1Þ

y zþ � � � . According to the lin-

ear response theory, the conductivity can be defined
in terms of the retarded current-current correlators. The
conductivity can be expressed as
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FIG. 1 (color online). The phase structures in the case of nonzero Ax.
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�yð!Þ ¼ Að1Þ
y

i!Að0Þ
y

: (9)

In Fig. 3, we plot Re½�y� for the operator O2. The solid

lines correspond to the second-order phase transition, while
the dashed lines are for the first-order phase transition.

Similar to that observed in the five-dimensional situation
[48], in our four-dimensional casewe observe that there is a
conductivity gap for the first-order phase transition, while
the gap disappears for the second-order phase transition for
the same Sx=Sxciði ¼ 1; 2Þ bothwithm2 ¼ �2 andm2 ¼ 0.
We can understand the nonzero conductivity gap for the
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FIG. 3 (color online). The transverse conductivity as a function of ! for m2 ¼ �2 (left) and m2 ¼ 0 (right). The dashed lines are for
the first-order transition, and the solid lines are for the second-order transition.
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FIG. 2 (color online). The evolution of the scalar field. The solid lines are for the stable hairy phases, while the dashed lines
correspond to the metastable states. The two upper panels take c 1 ¼ 0, while the lower panels set c 2 ¼ 0.
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first-order phase transition from two aspects. One is from
the perturbation equation [Eq. (8)], in which we see that the
profile of the scalar field imprints on the conductivity.
Different profiles of the field caused by different tempera-
tures and superfluid velocities, as shown in Fig. 2, lead to
different properties in conductivity. The other is from the
boundary side; the nonzero gap for the first-order phasemay
attribute to the release or absorption of latent heat which
accompanies the first-order transition [49]. The existence of
the conductivity gap for the first-order phase transition
means that the condensate has a binding energy; however,
for the second-order phase transition the condensate can
have arbitrarily low binding energy [48].

Furthermore, we observe that the coherence peak for the
first-order phase transition is higher than that for the
second-order phase transition. The difference in the coher-
ence peak is clearer when taking m2 ¼ 0. Since the coher-
ence peak is controlled by the thermal fluctuations of the
condensate [50], this actually shows that for the first-order
phase transition, the fluctuations are stronger. In other
words, the higher coherence peak for the first-order phase
transition indicates that only strong enough thermal fluc-
tuations can induce the first-order transition. Thus the
superfluid velocity and the mass of the scalar field controls
the strength of fluctuations in the system, and the strength
of the coherence peak can provide an effective description
of different orders of phase transitions.

Now we turn to discuss the susceptibility. In
Refs. [24,51], it was found that the susceptibility can be
an effective tool to probe the holographic superconductiv-
ity. In condensed matter physics, the dynamical pair sus-
ceptibility can be measured directly via the second-order
Josephson effect, and it is believed that this quantity can
give a direct view on the origin of the superconductivity
[52]. We expect that the susceptibility can be a clear probe
to identify the order of the phase transition in the holo-
graphic condensation.

In the dictionary of the AdS/CFT correspondence, the
dynamical susceptibility in the boundary field theory can
be calculated from the dynamics of the fluctuations of the
corresponding scalar field in the bulk AdS background in
the gravity side. We can expand the scalar perturbation as
� ¼ c ðzÞe�i!t. The equation of motion for the scalar field
reads

c 00ðzÞ þ f0

f
c 0ðzÞ þ

�ð!þ AtÞ2
f2z4

� ðAxÞ2
fz2

þ 2

fz4

�
c ðzÞ ¼ 0:

(10)

Note that when ! ¼ 0, the equation of motion [Eq. (10)]
goes back to the third equation of Eq. (5). Equation (10)
can be solved by imposing the infalling boundary condition
at the horizon:

c ’ð1�zÞð�i!=4�TÞ½1þc ð1Þð1�zÞþc ð2Þð1�zÞ2þ����:
(11)

Near the AdS boundary, the behavior of c is still
c ¼ zc 1 þ z2c 2 þ � � � . We choose c 1 as the source
and c 2 as the response; then the dynamical pair suscepti-
bility can be obtained as [53,54]

� ¼ GR � c 2

c 1

: (12)

In the condensed matter physics, the imaginary part of
this quantity can be measured via the second-order
Josephson effect and is proportional to the current through
a tunneling junction [52].
The numerical results of the imaginary part of the

dynamical pair susceptibility calculated in our gravity
background as a function of the frequency ! are shown
in Fig. 4. We observe that when the fluid velocity decreases
and approaches the transition point from the normal state to
the superconducting state, the peak of �00 becomes nar-
rower and stronger. Comparing the imaginary part of the
dynamical pair susceptibility exhibited in Fig. 4, we find
that for the first-order phase transition the peaks of �00 are
narrower than those of the second-order phase transition
for the same fluid velocity deviations from the critical
moment. The peaks of �00 grow more violently for the
first-order phase transition, approximating 5 times the
corresponding peaks in the second-order phase transition
for the same fluid velocity deviation from the critical value.
These properties also hold when we look at the real part of
the dynamical pair susceptibility.
In addition, the static pair susceptibility � for! ¼ 0 can

be obtained via the Kramers-Kronig relation:

�j!¼0 ¼ 1

�
P

Z þ1

�1
�00ð!0Þ
!0 d!0: (13)

Itwas argued that the static susceptibility can be an effective
way to reflect the critical behavior near the condensation
[51]. In the gravity side, to study�j!¼0, we can numerically
solve Eq. (10) by setting! ¼ 0. In Fig. 5we plot the inverse
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FIG. 4 (color online). The imaginary part of the dynamical
pair susceptibility. The solid lines are for the second-order phase
transition, taking 1

� ¼ 0:217. The dashed lines are for the first-

order phase transition, taking 1
� ¼ 0:146. The ratios of the fluid
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and 1.02 for the second- and first-order transitions.
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of the static susceptibility with the change of the ratio of the
fluid velocity to its critical value. The circles are for the first-
order phase transitionwith 1=� ¼ 0:146, while the squares
are for the second-order phase transition with 1=� ¼
0:217. It is clear that the slope for the inverse static pair
susceptibility near the first-order phase transition becomes
steeper than that near the second-order phase transition.
This also confirms that the first-order phase transition has
more violent phenomena than the second-order phase
transition.

Thus we find that in studying the holographic supercon-
ductor in the AdS black hole background, both the con-
ductivity and the pair susceptibility can be helpful to
distinguish the order of the phase transition.

In the following, we extend our discussion to the AdS
soliton background. The soliton spacetime is described by

ds2 ¼ dr2

fðrÞ þ r2ð�dt2 þ dx2Þ þ fðrÞd�2; (14)

with fðrÞ ¼ r2 � r3
0

r . There is no horizon but a tip at r0. We

assume the matter fields are described by the Lagrangian in
Eq. (1), where the vector field and the scalar field are in
the form A� ¼ AtðrÞdtþ A�ðrÞd�, � ¼ �ðrÞ [32]. The
investigation of other Ansätze on the field of matter can
also be seen in Refs. [55,56].

In the probe limit, the equations of motion of the matter
fields in the AdS soliton background are described by

c 00 þ
�
f0

f
þ 2

r

�
c 0 þ

�
A2
t

fr2
� A2

�

f2
�m2

f

�
c ¼ 0;

A00
t þ f0

f
A0
t � 2c 2

f
At ¼ 0; A00

� þ 2

r
A0
� � 2c 2

f
A� ¼ 0;

(15)

where the prime denotes the derivative with respect to r.
At the tip r ¼ r0, the fields have asymptotic behavior:

c ¼ Uþ Vðr� r0Þ þWðr� r0Þ2 � � � ;
At ¼ Mþ Nðr� r0Þ þ Pðr� r0Þ2 � � � ;
A� ¼ aðr� r0Þ þ bðr� r0Þ2 � � � :

(16)

While near the AdS boundary, the fields behave similarly
to that in the black hole background,

c ¼ c 1

r
þ c 2

r2
; At ¼ �� �=r; A� ¼ S� � J�=r:

(17)

In order to compare the results with those in the black hole,
in our numerical computation we still set m2 ¼ �2 and
r0 ¼ 1.
In Fig. 6 we plot the condensation of the operator O2 in

the AdS soliton background for different values of 1=�.
Different from what we observed in the AdS black hole
background, the condensates drop to zero continuously at
critical values of the fluid velocity. There is always a
second-order phase transition in the AdS soliton back-
ground when the normal state changes to the superconduct-
ing state. In the AdS black hole case, we know that the
first-order phase transition was brought by introducing the
spatial dependence of the vector potential and the first-
order structure to the superconducting state that appears
at low temperature as the fluid velocity is increased.
However, in the AdS soliton case, the spatial dependence
of the vector potential A� is not countable to accommodate

the first-order phase transition, because it behaves like At

in the AdS black hole case. This can be easily seen by
changing r ¼ 1=z in the third equation of Eq. (15). In the
AdS soliton case, the first-order phase transition cannot
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FIG. 5 (color online). The behaviors of the static pair suscep-
tibility for the first-order phase transition (circles) and the
second-order phase transition (squares) are shown. We set
m2 ¼ � 2 in the computation.
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FIG. 6 (color online). The condensates of the scalar operator O2 with respect to S�=� for chosen values of 1=�.
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exist in the probe limit; it can be brought only when we
take account of the strong backreaction [41] or in the
Stückelberg mechanism [42]. When we increase the values
of 1=� from 1=8 to 1=5 to 1=3, the critical values of S�=�

to start the condensation also increase from 1.241 to 1.279
to 2.641. This is a special characteristic of the AdS soliton.

We can calculate the conductivity �x when we have the
spatial dependence of the vector potential in the AdS
soliton background. Considering the electromagnetic
perturbation �Ax ¼ e�i!tAx in the bulk, we have the
equation of motion for Ax:

A00
x þ f0

f
A0
x þ

�
!2

fr2
� 2c 2

f

�
Ax ¼ 0: (18)

At the tip, Ax behaves as

Ax ¼ aaþ bbðr� r0Þ þ ccðr� r0Þ2 � � � : (19)

While near the boundary,

Ax ¼ Að0Þ
x þ Að1Þ

x

r
þ � � � : (20)

The behavior of the conductivity �xð!Þ ¼ Að1Þ
x

i!Að0Þ
x

is shown

in Fig. 7. The left panel is for the AdS soliton before
condensation, while the right panel is after the condensa-
tion. The behavior of the conductivity in the AdS soliton
background presented here is similar to the result when we
did not consider the spatial dependence of the vector
potential in Ref. [26].

Furthermore, we go on to study the pair susceptibility
in the AdS soliton background. Similarly, taking �¼
c ðrÞe�i!t, the scalar perturbation equation reads

c 00 þ
�
f0

f
þ2

r

�
c 0 þ

�ðAtþ!Þ2
fr2

�A2
�

f2
�m2

f

�
c ¼0: (21)

The asymptotic behavior near the boundary r ! 1 is still

c ¼ c 1

r þ c 2

r2
þ � � � . Beginning with Eq. (21), we can find

that the scalar field behaves as

c ’ ðr� r0ÞjA�j=3½1þUðr� r0Þ þ Vðr� r0Þ2 þ � � ��
(22)

at the soliton tip. It is interesting that in the AdS soliton
case, there is no imaginary part of the dynamical pair
susceptibility; only the real part of pair susceptibility exists
as shown in Fig. 8 for the operatorO2. The vanishing of the
imaginary part of the dynamical pair susceptibility can be
attributed to the fact that both Eqs. (21) and (22) are real.
Different from that in the AdS black hole, in the AdS

soliton case we observe that the real part of the dynamical
pair susceptibility is similar to the description of the BCS
pair instability [57]. With the change of 1=�, we also
observe the move of the curve with the horizontal line up
and down. This is similar to the effect of the temperature in
the description of the BCS pair instability, which is the key
factor to characterize the stability. However, this is just a
phenomenological similarity at first sight; whether there is
further deep connection still needs careful study.
In conclusion, we have studied the gravity duals of super-

current solutions with general phase structure to describe
both the first- and the second-order phase transitions at
finite temperature in strongly interacting systems. We
have argued that the conductivity and the pair susceptibility,
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FIG. 7 (color online). The imaginary part of the conductivity for the AdS soliton.
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FIG. 8 (color online). The real part of the pair susceptibility for
operators O2.
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which are measurable quantities in the condensed matter
physics, can be possible phenomenological indications to
distinguish the order of phase transitions. Besides the AdS
black hole background, we have also extended our discus-
sion to the AdS soliton configuration.We have found that in
the AdS soliton, the first-order phase transition cannot
be brought by the supercurrent. The conductivity behaves
similarly to the case when there is only electric field
At. There is no imaginary part of the dynamical pair

susceptibility, and the real part of the pair susceptibility

behaves similar to that disclosed in the BCS pair instability

[57]. Further understanding on this phenomenological simi-

larity is called for.
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