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We use gauge/gravity duality to explore strongly coupled superconductors with dynamical exponent

z ¼ 2. In the probe limit we numerically establish background solutions for the matter fields and plot the

condensate versus the dimensionless temperature. We then investigate electromagnetic perturbations in

order to compute the ac conductivity and also calculate the spectral function. Our results for the condensate

and conductivity are qualitatively similar to those of the anti-de Sitter (AdS) superconductor. However, we

find that (for both the s-wave and p-wave) the condensate does not approach a constant at very low

temperature and the conductivity goes to 1 from below but never exceeds it in the high frequency limit, in

contrast to the AdS black hole. We do not see a peak at nonzero frequency in the imaginary part of the ac

conductivity along the x direction for the p-wave case. These features are due to the nontrivial dynamical

exponent. To be specific, the black hole geometry considered in this work is anisotropic between space and

time, very different from the Schwarzschild-AdS black hole, which results in different asymptotic behaviors

of temporal and spatial components of gauge fields than those in the Schwarzschild-AdS black hole.
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I. INTRODUCTION

The application of gauge/gravity duality [1] to the in-
vestigations of strongly coupled systems has gained broad
interest ranging from QCD phenomena at low energy to
strongly correlated condensed matter physics; see, e.g.,
Ref. [2] for some recent reviews. Holographic supercon-
ductors have been constructed in Refs. [3,4] by putting the
Abelian-Higgs model or SU(2) gauge field into the anti-
de Sitter (AdS) black hole spacetime. When the Hawking
temperature is decreased to a critical value, the black hole
becomes unstable against small perturbations and develops
hair by condensing some field to stabilize the system. This
can be considered as the holographic realization of the
superconducting phase transition. This kind of construc-
tion for holographic superconductors takes the (asymptoti-
cally) AdS black hole spacetime as the starting point.
According to the AdS/CFT correspondence, the AdS black
hole geometry corresponds to a relativistic conformal field
theory (CFT) at finite temperature. However, many con-
densed matter systems do not have relativistic symmetry
and it is therefore very natural and interesting to generalize
these holographic superconducting models to nonrelativis-
tic situations.

On the other hand, inspired by the dynamical exponent in
condensed matter physics near the critical point, many
papers have appeared on the construction of black hole
geometries with anisotropic scaling, such as the Lifshitz
black hole. The dual geometry of Lifshitz fixed points was
first proposed in Ref. [5] and then generalized to finite
temperature in Ref. [6]. In short, we now have a geometrical

realization of a strongly coupled anisotropic field theory at
finite temperature. It is expected that nonrelativistic AdS/
CFT will help us to understand some puzzles in unconven-
tional condensed matter physics.1

In Ref. [8] a variety of strange metallic behaviors have
been realized by using gravity duals of the Lifshitz fixed
points and some string theoretical realizations of this ge-
ometry have been proposed in that paper.2 More recently,
holographic fermions have been studied in Ref. [10] to
produce a non-Fermi liquid behavior. With these studies in
mind, we now generalize holographic superconductors
under the relativistic AdS/CFT framework to the Lifshitz
black hole geometry in order to explore the effects of the
dynamical exponent and also in the hope to distinguish
some universal properties of holographic superconductors.
In fact, holographic s-wave superconductors with a Lifshitz
fixed point have been constructed in Refs. [11,12] and in
Hořava-Lifshitz gravity in Ref. [13]. However, the work of
Brynjolfsson et al. [12] produced only the condensate and
the results of Sin et al. [11] seemed surprising, especially
the very small real part of the ac conductivity. We therefore
more carefully study these systems here in order to clarify
some confusions which appeared in Ref. [11] and also
reveal some properties of p-wave superconductors with
Lifshitz scaling.
Although there is a dynamical exponent, which makes

the Lifshitz geometry behave quite differently from
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1Actually, there are many works that use these kinds of non-
relativistic metrics to reveal some strange features of a con-
densed matter system; see Ref. [7] for an incomplete list.

2Another string theory realization of Lifshitz-like fixed points
was investigated in Ref. [9].
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asymptotically AdS spacetime, we find that qualitative
behaviors of holographic superconductors with Lifshitz
scaling (for both s-wave and p-wave) are basically the
same as those of the AdS black hole case. The condensate
has mean-field behavior near the critical temperature. A
gap does appear when decreasing the temperature, which
manifests once looking at the real part of the ac conductiv-
ity. There is also a delta peak near zero frequency for the
conductivity, which is a signal of DC superconductivity.
The real part of the conductivity approaches one in the high
frequency limit where the imaginary part goes to zero.
These common characteristics of holographic superconduc-
tors appear to be robust phenomena and can be taken as
universal properties of gauge/gravity duality when applied
to the study of strongly coupled condensed matter systems.

We also find some other interesting features in our
work. The first is that all the condensates do not approach
some constant in the zero temperature limit compared to
the Bardeen-Cooper-Schrieffer (BCS) superconductor and
the AdS black hole holographic superconductors. The real
part of the conductivity never exceeds one and the imagi-
nary part of the conductivity just approaches zero from
above but never goes below zero in the high frequency
limit. What is more striking is that there is no pole at
nonzero frequency for the imaginary part of the ac con-
ductivity�xxð!Þ in the p-wave case. We therefore attribute
these nontrivial features to the effect of the Lifshitz scaling.
More specifically, the black hole geometry considered in
this work is anisotropic between space and time, very
different from the AdS black hole, which results in differ-
ent asymptotic behaviors of temporal and spatial compo-
nents of gauge fields than previous conclusions in an AdS
black hole.

Our paper is organized as follows. In Sec. II we briefly
review basic aspects of asymptotic Lifshitz black holes for
further studies. Section III is concerned with the construc-
tion of s-wave superconductors in the Lifshitz black hole
geometry. With the numerical solutions one can plot the
condensate as well as the free energy difference between
the normal and superconducting phases versus the dimen-
sionless temperature. We find that the free energy differ-
ence is always greater than zero when below the critical
temperature Tc, which proves that the superconducting
phase is at least thermodynamically stable. Then we
move on to investigate the electromagnetic fluctuations of
the system and numerically calculate the ac conductivity
using linear response theory. The spectral functions for the
electromagnetic perturbations are calculated as well. In
Sec. IV the corresponding results for the p-wave supercon-
ductor are presented. A short summary is given in Sec. V.

II. HOLOGRAPHIC SETUP: THE GRAVITY DUAL
OF THE LIFSHITZ FIXED POINT

In this section, we concisely provide some backgrounds
for the gravity dual of the Lifshitz fixed point. As mentioned

in Sec. I, there exist field theories with anisotropic scaling
symmetry between the temporal and spatial coordinates.
This is found for example in some condensed matter sys-
tems near the critical point,

t ! �zt; xi ! �xi; (1)

where z is called the dynamical exponent. One geometrical
realization of this scaling symmetry comes from the gener-
alized gauge/gravity duality: we can map this scaling sym-
metry in the field theoretical side to some geometrical
symmetry in the gravity side. Then it is straightforward to
write down the metric with this type of scaling symmetry,

ds2 ¼ L2

�
�r2zdt2 þ r2

Xd
i¼1

dx2i þ
dr2

r2

�
; (2)

where 0< r <1 and L is the radius of curvature of the
geometry. This geometry was first proposed in Ref. [5]
where the action sourcing this geometry was also given.
The scale transformation takes the following form:

t ! �zt; xi ! �xi; r ! r

�
: (3)

When z ¼ 1, the above geometry reduces to the usual
AdSdþ2 spacetime and the symmetry group is enlarged to
SOðdþ 1; 2Þ.
According to the gauge/gravity duality, to put the dual

field theory at finite temperature one can study the metric
with a black hole and the Hawking temperature of the
black hole is identified as the temperature of the dual field
theory. It is therefore of great interest to construct a finite
temperature version of the above geometry, i.e., the so-
called Lifshitz black hole. However, it is difficult to obtain
analytic black hole solutions in Lifshitz spacetimes. There
are some attempts to construct Lifshitz black holes3 and we
here follow the work of Bertoldi et al. [6]. It was found that
action of the form

S ¼ 1

16�Gdþ2

Z
ddþ2x

ffiffiffiffiffiffiffi�g
p

�
�
R� 2�� 1

2
@��@��� 1

4
e��F ��F ��

�
; (4)

where � is the cosmological constant, � is a massless
scalar and F�� is an Abelian gauge field strength. This

admits the following black hole geometry:

ds2 ¼ L2

�
�r2zfðrÞdt2 þ r2

Xd
i¼1

dx2i þ
dr2

r2fðrÞ
�
; (5)

fðrÞ ¼ 1� rzþd
0

rzþd
; � ¼ �ðzþ d� 1Þðzþ dÞ

2L2
: (6)

To support the above black hole geometry, one also needs
to give the backgrounds for � and F rt,

3See Refs. [14,15] for an incomplete list of the constructions
of black hole geometries with anisotropic scaling symmetry.
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e�� ¼ r�2d; �2 ¼ 2d

z� 1
; F rt ¼ q0r

zþd�1;

q20 ¼ 2L2ðz� 1Þðzþ dÞ: (7)

Evidently, choosing the dynamical exponent z to be 1
reduces the Lifshitz black hole to the Schwarzschild-AdS
black hole in dþ 2 dimensions. The Hawking temperature
and the entropy of the black hole are

T ¼ zþ d

4�
rz0; Sen ¼ LdVd

4Gdþ2

rd0 ; (8)

where Vd denotes the volume of the d-dimensional space.
We do a coordinate transformation u ¼ r0=r to map the

holographic direction r into a finite interval [0, 1] as we
find that it is more convenient to use this coordinate system
when carrying out numerical calculations. We will focus
on a four-dimensional bulk theory and choose the dynami-
cal exponent z ¼ 2. With these choices, the bulk geometry
is reduced to

ds2 ¼ L2

�
� r2z0
u2z

fðuÞdt2 þ r20
u2

ðdx2 þ dy2Þ þ du2

u2fðuÞ
�
;

fðuÞ ¼ 1� uzþ2: (9)

In this new coordinate system, the horizon is located at
u ¼ 1 and u ¼ 0 denotes the conformal boundary where
the dual field theory lives.

III. HOLOGRAPHIC S-WAVE
SUPERCONDUCTORS WITH

LIFSHITZ SCALING

This section and the next are the central parts of our
work. In this section we focus on aspects of s-wave super-
conductor. In Sec. III Awe list the equations of motion for
the background fields and solve them by a shooting
method. Section III B is devoted to the studies of the
electromagnetic perturbations of the system.

A. Solution for the background fields

In Ref. [16], it was shown that a charged AdS black hole
supports charged scalar hair if the charge is large enough.
Later this idea was generalized to the neutral AdS black
hole in Ref. [3], which is the first model of an s-wave
holographic superconductor. More specifically, it is con-
structed from the Abelian-Higgs model in the AdS black
hole background. The action for this system is

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Rþ 6

L2
� 1

4
F��F

��

� j@��� iqA��j2 � Vðj�jÞ
�
; (10)

where we choose Vðj�jÞ ¼ m2j�j2 for simplicity. This is
the minimal Lagrangian of the gravitational dual which holo-
graphically describes a superconducting phase transition. As

mentioned before, we work in the probe limit, i.e., the
black hole geometry is fixed and feels no effect of the
matter fields. Above the critical temperature, the black hole
background is stable and the scalar field � can be set to
zero. This corresponds to the normal phase. When the
temperature is decreased to the critical value, the black
hole background becomes unstable against small perturba-
tions and the scalar field wants to condense in order to
stabilize the system. Once this happens, the black hole
develops hair and the system goes through a superconduct-
ing phase transition. The scalar field � holographically
models the order parameter of a conventional supercon-
ductor and gets a nontrivial profile only in the supercon-
ducting phase. As the AdS/CFT correspondence maps a
strongly coupled field theory to a weakly coupled gravity
system, the holographic method is expected to give a
description of strongly coupled superconductors in contrast
to the conventional BCS theory. However, it is still far from
being clear as to the pairing mechanism in holographic
superconductors. Due to the conformal characteristic of the
AdS space, the chemical potential is usually introduced to
explicitly break the conformal invariance and to make the
temperature scale meaningful. This is achieved by turning
on the time component of the U(1) gauge field.
Having fixed the black hole geometry, the equations of

motion for A� and � can be easily extracted from the

Euler-Lagrange equations and are listed here for further
studies in later subsections,

1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
F��Þ ¼ iq½��ð@��� iqA��Þ

��ð@��� þ iqA���Þ�; (11)

@�½ ffiffiffiffiffiffiffi�g
p ð@��� iqA��Þ�
¼ ffiffiffiffiffiffiffi�g
p ½V 0ðj�jÞ �

2j�jþ iqA�ð@��� iqA��Þ�: (12)

From the radial component of Eq. (11) one can show that
the scalar field can be taken as real. Therefore, the ansatz
for the backgrounds of the gauge and scalar fields are

A ¼ �ðuÞdt; � ¼ c ðuÞ: (13)

Recalling the Lifshitz black hole background given in
Eq. (9), we obtain the following equations of motion:

�00 þ z� 1

u
�0 � 2c 2

u2fðuÞ� ¼ 0; (14)

c 00 þ
�
f0ðuÞ
fðuÞ �

zþ 1

u

�
c 0 þ u2z�2�2

f2ðuÞ c � m2L2

u2fðuÞ c ¼ 0;

(15)

where we have for simplicity chosen the scalar potential
Vð�Þ as m2�2, giving mass to �, and set the charge
q2L2 ¼ 1. The prime in these equations denotes a derivative
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with respect to u and this notation will be used in the
following.

Before continuing, some remarks are in order. Actually,
in Eqs. (14) and (15), we have rescaled the fields � and c
for convenience. When the dynamical exponent z is non-
trivial, the rescaling is different between c and �,

� ! zþ 2

4�T
�; c !

�
zþ 2

4�T

�
1=z

c : (16)

The superconducting phase transition is a spontaneous
breaking of the electromagnetic symmetry, which should
be reflected in the holographic description in some sense.
Strictly speaking, the gauge symmetry in the bulk corre-
sponds to a global symmetry on the boundary field theory
according to gauge/gravity duality and therefore we have
no electromagnetic symmetry on the boundary. Then the
holographic superconductor model should at most be
thought of as holographic superfluidity. However, as dis-
cussed in Ref. [3] this model can produce many features of
superconductors and we can ignore this subtlety.

We now have a look at the asymptotic behaviors of the
background fields � and c . Near the horizon, one must
have �ð1Þ ¼ 0 for its norm to be finite and the scalar field
should also be finite there. Near the conformal boundary,
we have the following asymptotic behavior from the
Frobenius analysis of Eqs. (14) and (15) near the singu-
larity u ¼ 0:

�ðu ! 0Þ ��þ �u2�z ðz � 2Þ or

�ðu ! 0Þ � �þ� logu ðz ¼ 2Þ;
(17)

and

c ðu ! 0Þ � c ð�þÞu�þ þ c ð��Þu�� ; (18)

where the scaling dimension �� of the scalar operator O

dual to the bulk scalar c is given by �� ¼
zþ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ2Þ2þ4m2

p
2 . It is explicit that the Breitenlohner-

Freedman bound for the scalar mass in the Lifshitz

background is now changed to m2 � � ðzþ2Þ2
4 for

four-dimensional bulk. To obtain explicit behavior for
these two fields near the conformal boundary, we need to
specify the mass squared of the scalar field and the dy-
namical exponent. We here choose z ¼ 2 and m2 ¼ 0, �3
(which are both above the Breitenlohner-Freedman
bound).

For the exponent z ¼ 2, the boundary behavior of the
�ðuÞ field has a logarithmic term due to degenerate indices
of Eq. (14) near the conformal boundary u ¼ 0. Now the
physical result is also changed; we should identify the
constant term � as the charge density, as it is a normal-
izable mode with respect to the logarithmic term, and
the non-normalizable logarithmic term �� log½u� as the
chemical potential. Fortunately, this happens only for the
time component of the gauge field and the final result for

the conductivity does not change too much. We will come
to see this when studying the ac conductivity along the x
direction for the p-wave case.
From the boundary behavior of the scalar field c , we

can directly read off the expectation value of the dual
operator O. When m2 ¼ 0, the indices � ¼ 0 and 4,

c ðu ! 0Þ � c ð0Þ þ c ð4Þu4: (19)

To make the superconducting phase transition a spontane-
ous breaking of symmetry, we should impose that

c ð0Þ ¼ 0 and hO4i � c ð4Þ: (20)

Therefore, there is only one theory for this choice of the
scalar mass squared.
While for m2 ¼ �3 the indices � ¼ 1 or 3,

c ðu ! 0Þ � c ð1Þuþ c ð3Þu3: (21)

Evidently, the two modes in the above equation are both
normalizable according to Klebanov and Witten [17], and
in order to make the theory stable, we should either impose

c ð1Þ ¼ 0 and hO3i � c ð3Þ (22)

or

c ð3Þ ¼ 0 and hO1i � c ð1Þ: (23)

We now have two theories for m2 ¼ �3 corresponding to
dimension 1 or dimension 3 order parameters, respectively.
In the following analysis, we will concentrate on the
dimension 3 case because we find that the ground state of
the dimension 1 theory is numerically unstable.
With the boundary conditions mentioned above, we can

now use a numerical shooting method to solve the coupled
nonlinear Eqs. (14) and (15). The condensates correspond-
ing to operators O3 and O4 are plotted in Fig. 1.

0.0 0.2 0.4 0.6 0.8 1.0
0

10
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30
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50

T

Tc

FIG. 1 (color online). The condensates of the s-wave super-
conductor for the dimensionless three-dimensional operator O3

(blue):
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihO3i=Tc

3
p

and four-dimensional operator O4 (red):ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihO4i=Tc
4
p

.
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From this figure, we see that the condensates go to zero
at the critical temperature Tc. However, they do not ap-
proach some fixed constants as the temperature T ! 0,
which is different from both the conventional BCS theory
of weakly coupled superconductors and AdS black hole
holographic superconductors. We may attribute this effect
to the nontrivial dynamical exponent z � 1. We also find

that the expectation values for the operators
ffiffiffiffiffiffiffiffiffiffihO3i3

p
andffiffiffiffiffiffiffiffiffiffihO4i4

p
are much larger than the BCS predictions at zero

temperature. This is consistent with the results of AdS
black hole holographic superconductors. Perhaps this is
due to the fact that the strongly interacting nature of the
holographic superconductor contrasts the BCS theory.

In the mean field theory for the superconductor, the
order parameters have a square root behavior near the
critical temperature Tc,

hOi � ðTc � TÞ1=2: (24)

By fitting these curves, we find the mean-field behavior
also holds in our results. Specifically, for the dimension 3
theory:

hO3i� ð18:9117TcÞ3ð1�T=TcÞ1=2 whenT!Tc; (25)

where the critical temperature Tc � 0:0351935�. For the
dimension 4 theory:

hO4i � ð35:5940TcÞ4ð1� T=TcÞ1=2 as T ! Tc; (26)

with the critical temperature Tc � 0:0229931�.
The relation between the chemical potential and charge

density is plotted in Fig. 2. We see that the profile has a
small deviation from the linear behavior in the supercon-
ducting phase. There is one critical value for the chemical
potential where the charge density becomes nonzero. This
is actually the critical point where the superconducting
phase transition occurs.

At the end of this subsection, we plot the free energy
for the two theories, which can be taken as one piece
of evidence that the superconducting phase transition
does happen when the temperature is decreased to the
critical one. With the equations of motion for the back-
grounds � and c , we can reduce the action (10) to some
simpler expression by integrating by parts. Then, the free
energy difference between the normal and superconducting
phases is

��N�SC ¼ V2

2g24
rzþ2
0

Z 1

0
du

uz�1

fðuÞ ð�ðuÞc ðuÞÞ2

	 V2

2g24
rzþ2
0 �F: (27)

Figure 3 is for the plot of the free energy difference.
Clearly, the superconducting phase is thermally stable
when T < Tc.

B. Fluctuation analysis: ac conductivity
and the spectral function

To calculate the ac conductivity of this system, we need
to study the electromagnetic perturbation of the above
background (here, we do not consider fluctuation of the
scalar field). For the s-wave superconductor, the conduc-
tivity is isotropic and it is therefore equivalent to study any
spatial component of the gauge field.We here choose radial
gauge for the electromagnetic fluctuation, i.e., au ¼ 0. For
the purpose of the ac conductivity, we take the following
ansatz for the electromagnetic perturbation axðt; ~x; uÞ:

axðt; ~x; uÞ ¼ e�i!taxðuÞ; (28)

where we have taken spatial momentum to zero. Then, the
equation of motion for axðuÞ is

0 10 20 30 40 50 60 70
0

10

20

30

40

FIG. 2 (color online). The profile of the charge density as a
function of the chemical potential in the superconducting phase
for the s-wave superconductors. The blue line represents the
dimension 3 theory and the red line represents for the dimension
4 theory.
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FIG. 3 (color online). The dimensionless free energy differ-
ence between the normal and the superconducting phases of the
s-wave superconductor for O3 (blue line) and O4 (red line)
theories, respectively.
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a00x þ
�
f0ðuÞ
fðuÞ �

z� 1

u

�
a0x þ

�
~!2u2z�2

fðuÞ2 � 2c 2

u2fðuÞ2
�
ax ¼ 0;

(29)

where the dimensionless frequency ~! is defined as ~! ¼
ðzþ 2Þ!=4�T. According to the linear response theory,
the conductivity is given by the Kubo formula,

�ð!Þ ¼ Gð!; ~k ¼ 0Þ
i!

; (30)

where the retarded Green’s function Gð!; ~k ¼ 0Þ for the
operator dual to gauge field can be computed according to
the prescription given in Ref. [18].

Near the horizon, we should take the ingoing wave
boundary condition for the electromagnetic field fluctua-
tion in order to calculate the retarded Green’s function,

axðuÞ ¼ ð1� uÞ�i ~!=4½1þ a1xð1� uÞ þ a2xð1� uÞ2
þ a3xð1� uÞ3 þ 
 
 
�; (31)

where we have set the scale of ax to be one by making use
of the linearity of the fluctuation equation. The coefficients
in the above expansion can be uniquely determined once
the background c and the frequency ~! are specified.

Near the conformal boundary u ¼ 0, the general solu-
tion to the fluctuation is of the form

axðuÞ ¼ A0
x þ A1

xu
2 þ 
 
 
 : (32)

The conductivity can be expressed as

�ð!Þ ¼ 1

i!

A1
x

A0
x

(33)

by using the Kubo formula (30). By the way, we also give
the definition of the spectral function R plotted later,

R ¼ �2 ImGð!; ~k ¼ 0Þ ¼ �2
A1
x

A0
x

: (34)

Generically, the equation of motion for the electromag-
netic fluctuation (29) cannot be solved analytically due to
the presence of the scalar field. The philosophy of the
numerical method is that we can use the power series
solution as in Eq. (31) and do numerical integration from
the horizon to the conformal boundary. Then we can ex-
tract the coefficients A0

x and A1
x and therefore get the

conductivity. Our numerical results for the ac conductivity
are plotted in Figs. 4 and 5. From the plots, we find that the
real part of the conductivity approaches one in the high
frequency limit, which is equal to the results of the normal
phase. This is explicit when taking a look at Eq. (29): the
effect of the condensed field c can be neglected at large ~!.
Compared to the result for the conductivity in Ref. [2], our
result is of order 1 although these profiles are qualitatively
similar. We found that the results for dimension 3 and
dimension 4 theory are qualitatively the same. We also
see that a gap forms as the temperature is lowered and
the gap gets increasingly deeper until the conductivity is
exponentially small, which is the same as the AdS super-
conductor [3].
In the imaginary part of the conductivity, there is a pole

at zero frequency. This can be explained from the Kramers-
Krönig relation

Im ½�ð!Þ� ¼ �P
Z 1

�1
d!0

�

Re½�ð!0Þ�
!0 �!

; (35)

where P denotes the principal value of the integration.
From this formula, we can see that the real part of the
conductivity contains a delta function, Re½�ð!Þ� ¼
��ð!Þ, only when the imaginary part has a pole,
Im½�ð!Þ� ¼ 1=!. Actually, there is a peak at zero
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FIG. 4 (color online). The real (imaginary) part of the ac conductivity of the s-wave superconductor for the dimension 3 theory at
T=Tc ¼ 1:0, 0.798694, 0.269798, 0.0864351 from top to bottom (bottom to top).
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frequency for the imaginary part of the conductivity as can
be seen in the right plots of Figs. 4 and 5.4

In Fig. 6 we plot the results for the spectral function
corresponding to the gauge field fluctuation ax. The two
figures are consistent with the real part of the conductivity:
a gap will appear when the condensate is nonzero (equiv-
alently, when the temperature is low enough) and the
spectral functions have a linear behavior with respect to

the frequency at large !=T (which corresponds to large
!=T behavior of the conductivity).

IV. HOLOGRAPHIC P-WAVE
SUPERCONDUCTORS WITH

LIFSHITZ SCALING

In this section we present the results of the p-wave
superconductor in the Lifshitz black hole background. The
structure of this section is the same as the previous one.

A. Solution for the background fields

As we have seen in the last section, the s-wave holo-
graphic superconductor is very simple and also elegant in
describing some important features of superconductors.
However, the Abelian-Higgs model for the s-wave super-
conductor appears to be less universal: we have to specify a
potential for the scalar. On the other hand, the p-wave
superconductor has already been observed in some experi-
ments of condensed matter physics. It is natural as well
as interesting to extend the construction of holographic
s-wave superconductors to the p-wave situation. This has
been achieved in Ref. [4] by introducing the SU(2) gauge
field into the AdS4 black hole background.

5 In this p-wave
model the chemical potential and the order parameter have
been unified into one field, the non-Abelian gauge field,
and the action is uniquely determined by gauge invariance.
In this sense, the p-wave holographic superconductor is
more universal than the Maxwell-Scalar system for the
s-wave superconductor. The action is simply of the form

S ¼ 1

2	2

Z
d4x

ffiffiffiffiffiffiffi�g
p �

Rþ 6

L2
� 1

4
Fa
��F

a��

�
; (36)
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FIG. 6 (color online). The spectral functions of the s-wave
superconductor for the dimension 3 theory (blue lines) at
T=Tc ¼ 1:0, 0.798694, 0.269798, 0.0864351 and the dimension
4 theory (red lines) at T=Tc ¼ 1:0, 0.565265, 0.298191,
0.0879648 from top to bottom.
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FIG. 5 (color online). The real (imaginary) part of the ac conductivity of the s-wave superconductor for the dimension 4 theory at
T=Tc ¼ 1:0, 0.565265, 0.298191, 0.0879648 from top to bottom (bottom to top).

4In fact, we can explicitly plot the delta peak in the real part of
the conductivity. However, when carrying out the numerical
calculations, it is a little hard because we find that this peak
will appear at about !� 10�20 and the numerical computations
are not stable there.

5Another approach to p-wave superconductor where the
boundary field theory is known is based on D-brane probe in
black brane geometry [19].
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where the SUð2Þ gauge field strength is defined as Fa
�� ¼

@�A
a
� � @�A

a
� þ 
abcAb

�A
c
�. The Yang-Mills equation for

the gauge field is

@�ð ffiffiffiffiffiffiffi�g
p

Fa��Þ þ ffiffiffiffiffiffiffi�g
p


abcAb
�F

c�� ¼ 0: (37)

The gauge field ansatz is taken as

A ¼ �ðuÞ�3dtþ c ðuÞ�1dx; (38)

where �a is the generator of the SUð2Þ gauge group.
Plugging this ansatz into the Yang-Mills equation (37)
results in

�00 þ z� 1

u
�0 � c 2

fðuÞ� ¼ 0; (39)

and

c 00 þ
�
f0ðuÞ
fðuÞ þ

1� z

u

�
c 0 þ u2z�2�2

fðuÞ2 c ¼ 0: (40)

As in the s-wave model, boundary behavior of the
background fields �ðuÞ and c ðuÞ is listed as below having
chosen z ¼ 2,

�ðu ! 0Þ � �þ� logu; (41)

c ðu ! 0Þ � c ð0Þ þ c ð2Þu2: (42)

The logarithmic term appears again for the � field, which
suggests that we should identify the constant term � as the

charge density. We also impose c ð0Þ to be zero in our
numerical calculations to insure that the superconducting
phase transition is a spontaneous breaking of the symme-

try. Then the value of c ð2Þ is proportional to the expecta-

tion value of the p-wave order parameter, i.e., hO2i � c ð2Þ.
Our numerical results are plotted in the following figures.

The free energy difference between the normal and
superconducting phases is plotted in Fig. 7. As in the
s-wave model, the superconducting phase is stable
compared to the normal phase when T < Tc. The charge
density as a function of the chemical potential can be found
in Fig. 8. Explicitly, these plots are very similar to the
s-wave case.
The condensate of the p-wave order parameter hO2i is

plotted in Fig. 9. It is clear to see from this plot that the
condensate does not approach some fixed value when
T ! 0, which is the same as the results of the s-wave
model mentioned in the last section. Once again, this value
is much larger than that of the AdS superconductor. By
fitting the curve near the phase transition, we find a mean-
field behavior for the condensate,

hO2i � ð17:8217TcÞ2ð1� T=TcÞ1=2 when T ! Tc; (43)

where the critical temperature is Tc � 0:0367064�.
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FIG. 7 (color online). The free energy difference between the
normal and the superconducting phases for the p-wave.
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FIG. 8 (color online). Density as a function of � for the
p-wave superconductor.
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FIG. 9 (color online). The condensate hO2i of the p-wave
superconductor.
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B. Fluctuation analysis: ac conductivities
and spectral functions

Owing to the appearance of the background for the
gauge field, say A3

0, the SU(2) gauge symmetry is

explicitly broken to the Uð1Þ3 generated by the rotation
in the colored 12 plane. This residual symmetry is
identified as the electromagnetic symmetry. For the
conductivity, we need to perturb the system and inves-
tigate its linear response. The conductivity of the p-wave
superconductor is anisotropic, which makes the fluctua-
tion analysis more complicated than the s-wave case. We
here focus on the decoupled mode a3yðt; uÞ, decoupled

sector fa1xðt; uÞ; a2t ðt; uÞ; a3xðt; uÞg and leave the full fluc-
tuation analysis including spatial momentum for future
investigations.

For the fluctuation mode a3yðt; uÞ � e�i!ta3yðuÞ, which

is decoupled from other modes, we have the following
equation:

a3
00

y þ
�
fðuÞ0
fðuÞ �

z� 1

u

�
a3

0
y þ

�
u2z�2 ~!2

fðuÞ2 � c 2

fðuÞ
�
a3y ¼ 0:

(44)

This mode looks like the electromagnetic fluctuation in
the scalar system for the s-wave model and the procedure
for numerical computation of the conductivity along the y
direction is of course in parallel with the s-wave situation.
We here only present the final results for the conductivity
in Fig. 10.

We then move on to the conductivity along the x direc-
tion. For this purpose, one should analyze the fluctua-
tions fa1t ðt;uÞ;a2t ðt;uÞ;a3xðt;uÞg�e�i!tfa1t ðuÞ;a2t ðuÞ;a3xðuÞg,
which is also decoupled from other modes but is self-
coupled. There are three coupled equations of second
order,

a1
00
t þ z� 1

u
a1

0
t þ �c

fðuÞ a
3
x ¼ 0;

a2
00
t þ z� 1

u
a2

0
t � c

fðuÞ ði ~!a3x þ c a2t Þ ¼ 0;

a3
00
x þ

�
fðuÞ0
fðuÞ þ

1� z

u

�
a3

0
x

� u2z�2

fðuÞ2 ð� ~!2a3x þ�c a1t þ i ~!c a2t Þ ¼ 0; (45)

and two constraints of first order,6

i ~!a1
0

t þ�a2
0
t ��0a2t ¼0;

� i ~!a2
0
t þ�a1

0
t ��0a1t þ fðuÞ

u2z�2
ðc a3

0
x �a3x�

0Þ¼0: (46)

Near the horizon u ¼ 1, we choose the ingoing wave
boundary condition for different modes and also impose
that the time components vanish at the horizon,

a3x ¼ ð1� uÞ�i ~!=4½1þ a3ð1Þx ð1� uÞ þ a3ð2Þx ð1� uÞ2
þ a3ð3Þx ð1� uÞ3 þ 
 
 
�;

a1t ¼ ð1� uÞ�i ~!=4½a1ð1Þt ð1� uÞ þ a1ð2Þt ð1� uÞ2
þ a1ð3Þt ð1� uÞ3 þ 
 
 
�;

a2t ¼ ð1� uÞ�i ~!=4½a2ð1Þt ð1� uÞ þ a2ð2Þt ð1� uÞ2
þ a2ð3Þt ð1� uÞ3 þ 
 
 
�; (47)

where we have used the linearity of Eqs. (45) to set the
scale of a3x at the horizon to 1. The coefficients in the above
expansions can be fully determined by plugging the
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FIG. 10 (color online). The real (imaginary) part of the ac conductivity along the y direction of the p-wave superconductor at
different temperature T=Tc ¼ 1:0, 0.588587, 0.171829, 0.079889 from top to bottom (bottom to top).

6These constraints come form the radial gauge we have chosen
for the gauge field fluctuation, i.e., aau ¼ 0 when deriving the
equations of motion.
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expansion into Eqs. (45) and counting powers of (1� u).
Then, Eq. (47) can provide initial conditions for these
second order differential equations (45). In fact, we use
these power solutions to do numerical integration from the
horizon to the conformal boundary as mentioned in the last
section.

At the conformal boundary, the general solutions to
Eq. (45) are of the form

a1t ¼ A1ð0Þ
t þ A1ð1Þ

t loguþ 
 
 
 ;
a2t ¼ A2ð0Þ

t þ A2ð1Þ
t loguþ 
 
 
 ;

a3x ¼ A3ð0Þ
x þ A3ð1Þ

x u2 þ 
 
 
 :
(48)

We can also expand the constraint equations near the
conformal boundary, but it is of no use for later
calculations.

As argued in Ref. [4], for the conductivity to be a gauge
invariant quantity, we need to construct a new mode from
a1t , a2t , a3x which should be invariant under the gauge
transformation that respects our gauge choice. We here
do not go into the details of the construction of this field
but write down the mode directly,

~a 3
x 	 a3x þ c

i ~!a2t þ�a1t
�2 � ~!2

: (49)

Plugging the boundary behavior as in Eq. (48) into the
newly defined mode and expanding it near the conformal
boundary,

~a 3
x ¼ ~A3ð0Þ

x þ ~A3ð1Þ
x u2 þ 
 
 
 ; (50)

with

~A 3ð0Þ
x ¼ A3ð0Þ

x ; ~A3ð1Þ
x ¼ A1ð0Þ

t

�
c ð2Þ þ A3ð1Þ

x : (51)

Then, the conductivity along the x direction is straightfor-
wardly defined as

�xxð!Þ ¼ 1

i!

~A3ð1Þ
x

~A3ð0Þ
x

: (52)

Notice that the above formula is very different from
Eq. (4.19) of Ref. [4] due to the appearance of the loga-
rithmic terms in the time component of the SU(2) gauge
field (for both the background and the fluctuations). The
definition for the spectral function is similar to the s-wave
case and we list them in what follows for completeness:

R ¼ �2
~A3ð1Þ
x

~A3ð0Þ
x

(53)

along the x direction and

R ¼ �2
A3ð1Þ
y

A3ð0Þ
y

(54)

along the y direction.
In Fig. 11 we plot numerical results for the conductivity

along the x direction. We can see that the results are very
similar to those of the y direction stated in Fig. 10.
Explicitly, there is a DC infinity in the conductivity along
the x direction. What is strikingly different from the AdS4
p-wave superconductor is that there is no pole for the
imaginary part of the conductivity at nonzero frequency.
Mathematically, this is due to the logarithmic term appear-
ing in the boundary behavior for the time component
fluctuations of the gauge field. We will take this as the
effect of the nontrivial dynamical exponent z � 1. The real
(imaginary) part of the conductivity approaches 1 (0) more
slowly than the y direction case, which is consistent with
the spectral function profiles plotted in Fig. 12. This can be
explained by the anisotropic characteristic of the p-wave
superconductor.
The qualitative behavior is similar to the corresponding

s-wave case: at high frequency the real part of the conduc-
tivity approaches 1 while the imaginary part goes to 0;
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FIG. 11 (color online). The real (imaginary) part of the ac conductivity along x direction of the p-wave superconductor at
T=Tc ¼ 1:0, 0.588587, 0.171829, 0.079889, 0. 0691493 from top to bottom (bottom to top).
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a peak also appears at zero frequency, indicating a DC
superconductivity; and the gap forms as the temperature
decreases and it gets increasingly deep until the conductivity
is exponentially small. The appearance of the delta peak at
zero frequency can also be well understood by the Kramers-
Krönig relation (35). Although the conductivity �yyð!Þ
behaves qualitatively similar to �xxð!Þ, the anisotropic
characteristic of the p-wave superconductor can also be
seen from the two conductivities: the real part of the
�xxð!Þ grows much slowly than that of �yyð!Þ. These
features are common with the AdS superconductors. One
main difference is that there is no pole at nonzero frequency
for the imaginary part of �xxð!Þ as mentioned before.
Another main difference from the AdS black hole supercon-
ductor is that the imaginary part of the conductivity never
goes below zero and approaches zero quite slowly.

V. SUMMARY

In this work we explored properties of holographic super-
conductorswithnontrivial dynamical exponents byputting the
Abelian-Higgsmodel (s-wave) or SU(2) gaugefield (p-wave)
into the Lifshitz black hole geometry constructed in Ref. [6].
We found that the order parameters hOi all have mean-field

behavior ðT � TcÞ1=2 near the critical temperature Tc, which
is qualitatively consistent with the AdS superconductors as
well as BCS theory. One difference between our results and

previous investigations on condensates is that the condensates
do not approach some fixed values in the zero temperature
limit.7 We then plot the free energy difference between the
normal and superconducting phases, which can be taken as
evidence of the occurrence of the superconducting phase
transition.We also numerically compute the ac conductivities
and they nearly behave in the sameway: a peak appears at zero
frequency, indicating a DC superconductivity; and the gap
forms as the temperature decreases and it gets increasingly
deep until the real part of the conductivity gets exponentially
small. The anisotropic characteristic of the p-wave supercon-
ductor can be seen from the difference between �xxð!Þ and
�yyð!Þ: when increasing the frequency!, the rates of the real

parts of ac conductivities,�xx and�yy, increase.Butwedonot

see a pole at nonzero frequency for the imaginary part of
�xxð!Þ, which does exist in the p-wave superconductor
when using the AdS4 black hole geometry. Another feature
is that all the real parts of the conductivities approach 1 (but
never exceed this value) in contrast to those of the AdS case.
With respect to this, the imaginary parts of the conductivities
approach zero in the high frequency limit but never go below
zero. We attribute these differences from the AdS case to
the effect of the nontrivial dynamical exponent. More specifi-
cally, the black hole geometry considered in this work is
anisotropic between space and time, very different from the
Schwarzschild-AdS black hole, which results in different
asymptotic behaviors of temporal and spatial components of
gauge fields than previously concluded in the Schwarzschild-
AdS black hole. These common features also imply that
general gauge/gravity duality is a useful and powerful tool
in producing some universal properties of strongly coupled
system in condensed matter physics.
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