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We analyze if and to what extent the high energy behavior of five-dimensional (5D) gauge theories can

be improved by adding certain higher dimensional operators of ‘‘Lifshitz’’ type, without breaking the

ordinary four-dimensional Lorentz symmetries. We show that the UV behavior of the transverse gauge

field polarizations can be improved by the Lifshitz operators, while the longitudinal polarizations get

strongly coupled at energies lower than the ones in ordinary 5D theories, spoiling the usefulness of the

construction in non-Abelian gauge theories. We conclude that the improved behavior as effective theories

of the ordinary 5D models is not only related to locality and 5D gauge symmetries, but is a special

property of the standard theories defined by the lowest dimensional operators.
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I. INTRODUCTION

Field theories in more than four space-time dimensions
have received a lot of attention in recent years. They have
given us a new perspective on various aspects of high
energy physics and cosmology. For instance, a fundamen-
tal TeV-sized quantum gravity scale might arise from extra
dimensions [1] or a TeV scale can naturally emerge from a
redshift effect in a warped extra dimension [2]. Combined
with the AdS/CFT idea [3], five-dimensional (5D) theories
also give us a new handle to approach strongly coupled
quantum field theories (QFT) [4].

Field theories in extra dimensions are nonrenormaliz-
able and, as such, they should be seen as effective theories
valid up to a maximum energy �, above which they break
down. Estimates based on (not too much) naı̈ve dimen-
sional analysis (NDA) and unitarity bounds both give,
for a simple 5D gauge theory on a flat segment of length
L ¼ �R,

�� 16�

g2R
; (1.1)

where g is the four-dimensional (4D) gauge coupling.
Based purely on four-dimensional considerations, a 5D
gauge theory can be seen as an infinite number of gauge
symmetries, nonlinearly realized by the pseudo Nambu-
Goldstone bosons (pNGB’s) coming from the gauge field

components AðnÞ
y along the extra dimension y, with mn ¼

n=R. According to this picture, one would naively expect

�Naive � 4�f; (1.2)

where f ¼ m1=g is the decay constant of the lightest
pNGB. We see that � ¼ 4=g�Naive, and for a sufficiently
weak coupling g, the 5D theory remains weakly coupled up
to energies parametrically higher than those expected from
a generic 4D effective theory [5]. This is also seen in the
4D deconstructed versions of 5D theories [6,7], where the
delay in the unitarity breakdown in scattering amplitudes

with respect to the naive estimate arises from nontrivial
cancellations among different contributions [8].
Aim of this work is to show to what extent the improved

high energy behavior of 5D theories holds and whether it is
even possible to improve the situation by modifying the
theory by adding higher dimensional operators. We tech-
nically address these questions by analyzing a specific
class of nonstandard 5D theories with anisotropic scaling
symmetry (also called, with some abuse of language,
Lifshitz field theories, see [9] for a review and references).
The reason to consider these theories is twofold. First, a
symmetry principle allows to restrict the class of higher
dimensional operators to consider in studying generaliza-
tions of ordinary 5D theories. Second, Lifshitz field theo-
ries are known to possibly have an improved UV behavior
with respect to ordinary theories, exploiting the improved
UV behavior of the particle propagators. In fact, simple
UV completions of 5D theories based on Lifshitz field
theories have been shown to be possible [10]. The price
to be paid is however high. In these theories the 4D Lorentz
invariance is broken at high energies and is generally
recovered in the IR only at the price of extreme fine-
tunings [11,12]. For these reasons, we consider here 4D
Lorentz-invariant theories, where the anisotropy involves
the extra dimension only.1 We focus on pure non-Abelian
gauge theories compactified on a plain S1=Z2 orbifold, the
addition of matter field being straightforward.
We separately study the UV behavior of the transverse

and longitudinal gauge field polarizations. In the former
case we estimate the cutoff by a one-loop computation of
the gauge coupling corrections induced by the Kaluza-
Klein (KK) modes to the zero mode gauge fields. After
showing in some detail the form of this correction in the
ordinary 5D case, leading to the cutoff estimate (3.8), we

1Five-dimensional Lifshitz theories where the anisotropy of
the scaling symmetry shows up only in the extra dimension has
been considered in [13,14] for a ��4 theory and a model of
Gauge-Higgs unification, respectively.
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show how the Lifshitz operators lead to a parametrically
higher cutoff, Eq. (3.20). The UV behavior of longitudinal
gauge bosons, on the other hand, is analyzed by looking

at their elastic scattering amplitudes, AðWðnÞ
L WðnÞ

L !
WðnÞ

L WðnÞ
L Þ, where n is the KK mode of the longitudinal

gauge field in the scattering process. Building on previous
results [15], we see that, contrary to the ordinary 5D

theories, the OðE2Þ term in AðWðnÞ
L WðnÞ

L ! WðnÞ
L WðnÞ

L Þ (E
being the center of mass energy), no longer cancels. This
leads to the breakdown of unitarity at energies lower that
those obtained in ordinary theories, with an associated
cutoff given by Eq. (4.6), spoiling the usefulness of the
Lifshitz construction for non-Abelian gauge theories. In
other words, we get that � can be parametrically higher
than the estimate (1.1) in Abelian gauge theories, while in
non-Abelian theories the addition of the Lifshitz operators
at a sufficiently low scale would result in a decrease
of � to �Naive.

We conclude that the improved behavior as effective
theories of 5D theories is not only related to locality and
5D gauge symmetries, but is a special property of the
standard theories defined by the lowest dimensional opera-
tor F2

MN . We also deconstruct the simplest version of our

Lifshitz 5D theory. We show that, as expected, the higher
dimensional Lifshitz operators are reproduced in the 4D
deconstructed model by next-nearest-neighbor terms in
field space. The precocious breakdown of unitarity induced
by the Lifshitz terms is particularly clear from this per-
spective using the equivalence theorem [16].2

The structure of the paper is as follows. In Sec. II we
introduce the class of theories we consider. In Sec. III we
estimate the cutoff � of these theories by a one-loop
vacuum polarization computation. In Sec. IV we estimate
again the cutoff �, but this time by considering the break-
down of unitarity in scattering amplitudes of longitudinal
gauge bosons. In Sec. V we deconstruct a simple 5D
Lifshitz theory and show the form of the terms correspond-
ing to the higher dimensional Lifshitz operators. In Sec. VI
we conclude. We report in the Appendix some details of
the one-loop vacuum polarization amplitude.

II. GENERAL SETUP

Lifshitz theories are typically taken to be invariant under
anisotropic scale transformations under which the time
coordinate scales differently from the spatial coordinates.
In this way higher derivative terms in the spatial derivatives
and quadratic in the fields can be introduced without
violation of unitarity. The improved UV behavior of the

propagator turns otherwise nonrenormalizable theories in
renormalizable ones.
Along the lines of [13], we consider here Lifshitz models

where time and the ordinary spatial directions scale in the
same way, so that this symmetry can be made compatible
with the 4D Lorentz symmetry, while the extra dimension
scales differently. We focus on pure 5D non-Abelian
SUðmÞ gauge theories (the addition of matter being
straightforward) compactified on an S1=Z2 orbifold of
length L ¼ �R parametrized by the coordinate y, where
the terms odd under the parity symmetry y ! �y are
forbidden and no localized boundary terms are inserted.
In this case, the higher derivative Lifshitz terms introduced
below do not lead to uncancelled boundary terms in the
action variation and the eigenfunctions of a KK field mode
n is the usual cosny=R or sinny=R, depending on the parity
symmetry of the field.3 For simplicity, we take in the
following Neumann (Dirichlet) boundary conditions for
the gauge fields A� (Ay). We assume an anisotropic scale

invariance of the form

x�¼�x0�; y¼�ð1=ZÞy0; �ðx�;yÞ¼�ðZ�dÞ=2�0ðx�0;y0Þ;
(2.1)

where � ¼ 0; . . . ; 3 parametrizes the ordinary 3þ 1
space-time directions, � denotes a generic field and Z is
a positive integer. According to Eq. (2.1), we can assign to
the coordinates and to the fields a ‘‘weighted’’ scaling
dimension:

½x��w¼�1; ½y�w¼�1

Z
; ½��w¼d�Z

2
: (2.2)

Power-counting renormalizability arguments apply, pro-
vided one substitutes the standard scaling dimensions of
the operators by their ‘‘weighted scaling dimensions’’ [18],
i.e., by the dimensions implied by the assignment (2.2).
The weighted dimensions of the gluons A� are fixed

by looking at their ordinary 4D kinetic term components.
One gets

½A��w ¼ 1þ 1

2Z
: (2.3)

Gauge invariance fixes the weighted dimensions of the
5D gauge coupling g5 and of the gluon components Ay:

½g5�w¼½@��w�½A��w¼½@y�w�½Ay�w ���!½g5�w¼� 1

2Z
;

½Ay�w¼ 3

2Z
: (2.4)

For any finite Z the theory remains nonrenormalizable,
but with a coupling that is less and less irrelevant as Z

2The importance of locality in field space in deconstructed
theories has recently been analyzed in [17], where it has been
shown that nonlocal terms always lead to a smaller cutoff �.
Contrary to the Lifshitz terms considered here, the nonlocal
terms in [17] remain nonlocal in the 5D limit.

3We have not systematically studied the effects of the Lifshitz
terms for more general interval compactifications. We expect
that new consistency constrains should be imposed in this case
and more drastic modifications to the spectrum of the theory
might arise.
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increases. Notice that the scaling dimensions of A� and Ay

are different, with the latter being smaller than one
for Z > 1. This difference will play a crucial role in what
follows.

The most general Lagrangian involving weighted
marginal and relevant operators only (i.e., operators O
with ½O�w � 4þ 1=Z) is

L ¼ � 1

2
TrF2

�� þ
XZ�1

i¼0

ai
�2i

L

TrDi
yF�yD

i
yF�y; (2.5)

where the SUðmÞ generators Ta in the fundamental repre-
sentation are normalized as TrTaTb ¼ �ab=2 and�L is the
energy scale above which the theory effectively behaves as
a Lifshitz theory.4 By properly rescaling the internal di-
mension and the scale �L, without loss of generality, we
can set a0 ¼ aZ�1 ¼ 1. We do not consider here the prob-
lem of understanding where the anisotropic symmetry (2.1)
comes from but simply assume its presence in the effective
theory.

The quadratic mixing terms between A� and Ay coming

from the second term in Eq. (2.5) can be canceled by
choosing a generalized R� gauge-fixing term of the form

L g:f: ¼ 1

�
Tr

�
@�A� þ �

XZ�1

i¼0

ai
�2i

L

ð�1Þi@2iþ1
y Ay

�
2
: (2.6)

The ghost Lagrangian associated to the gauge-fixing (2.6)
can easily be derived, though it is not explicitly needed in
our analysis. The spectrum of states of the Lagrangian (2.5)
is the standard infinite tower of KK modes labelled by an
integer n, with the usual wave functions of the form

A�ðx; yÞ ¼
X1
n¼0

AðnÞ
� ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

2�n;0�R

s
cosðny=RÞ;

Ayðx; yÞ ¼
X1
n¼1

AðnÞ
y ðxÞ

ffiffiffiffiffiffiffi
2

�R

s
sinðny=RÞ:

(2.7)

At the quadratic level, the only effect of the higher
derivative Lifshitz terms is to modify the masses of the
KK modes:

M2
n ¼ n2

R2

XZ�1

i¼0

ai
n2i

ð�LRÞ2i
: (2.8)

The schematic behavior of the theory is the following. For
energies E< 1=R, it is effectively an ordinary Lorentz-
invariant 4D gauge theory. For 1=R < E<�L, the theory
behaves as an ordinary 5D gauge theory and for E>�L

it behaves as a Lifshitz theory where operators are effec-
tively classified by their weighted dimensions. If we take

�L � 1=R, the theory is never in the ‘‘ordinary’’ 5D
regime. We will study in the next two sections the impact
of the higher derivative Lifshitz operators on the cutoff of
the theory, estimated by using gauge coupling corrections
and by unitarity bounds on scattering amplitudes.

III. ESTIMATE OF THE CUTOFF THROUGH
GAUGE COUPLING CORRECTIONS

According to NDA, the coefficients of the local opera-
tors in a nonrenormalizable Lagrangian should be of the
same order of the ones induced by radiative corrections at
the scale �, where � is the energy above which the
effective theory breaks down. One can also invert the logic
and apply NDA to particularly simple operators to estimate
the value of � itself. The obvious choice of operator in a
5D gauge theory is the kinetic term F2

��. The cutoff � can

then be defined as the scale where the one-loop vacuum

polarization correction to the zero mode gauge fields Að0Þ
�

becomes of order one. A naive estimate that just takes into
account the phase space of the loop integration and the
number of colors would give

�5D
Naive ’

24�3

mg25
¼ 24�2

mg24R
; (3.1)

where 24�3 is the 5D loop factor, g4 ¼ g5=
ffiffiffiffiffiffiffi
�R

p
is the 4D

gauge coupling and m is the quadratic Casimir operator,
C2ðGÞ ¼ m, for SUðmÞ. A more detailed computation such
as the one below (see the Appendix for further details)
shows that this estimate is in fact too naive and optimistic,
and a more reliable one is obtained by using the 4D loop
factor 16�2 in Eq. (3.1). In light of these possible discrep-
ancies, in what follows we estimate the cutoff for the
Lifshitz field theories by computing in detail the one-

loop vacuum polarization for Að0Þ
� .

Before considering the Lifshitz case, it is useful to
review the ordinary 5D Lorentz-invariant computation.
The 5D Lorentz-invariant model is obtained by taking
Z ¼ 1 in Eq. (2.5). A useful, though not necessary, way
to compute the gauge+ghost contribution to the one-loop
gauge coupling correction is to make use of a mass-
dependent � function in 4D.5 The whole contribution
(ghosts included) of the KK resonances of mass Mn to
the � function of the 4D gauge coupling is (see
Appendix D of [19])

�ðg4; ERÞ ¼ g34
16�2

�gðERÞ; (3.2)

with

4It should be clear that, being the theory nonrenormalizable,
the irrelevant operators we have not written in Eq. (2.5) cannot
be kept to zero at any scale. When quantum corrections are
included, they will be generated.

5Notice that we use in the following � functions and RG flows
only as a useful technical tool to get the one-loop correction to
the gauge coupling in 5D. We are not resumming logs.
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�gðERÞ¼m

�X1
n¼1

Z 1

0
dx

xð1�xÞð6x2�9x�1ÞE2

M2
nþE2xð1�xÞ �11

3

�

¼m

� X1
n¼�1

Z 1

0
dx

1

2

xð1�xÞð6x2�9x�1ÞE2

M2
nþE2xð1�xÞ �23

12

�
;

(3.3)

where E is the sliding renormalization group RG
(Euclidean) energy scale and M2

n ¼ n2=R2 is the mass of
the KK mode n. We show in the Appendix some details on
how to obtain Eq. (3.3), since we are not aware of any
derivation in the literature. The factor�11=3 in Eq. (3.3) is
the zero mode contribution. When Mn ! 0, the integral
over x is trivial and gives �7=2, which reproduces the
contribution of a massless gauge field plus its scalar (lon-
gitudinal) component: �7=2 ¼ �11=3þ 1=6. The one-
loop gauge contribution can be written as

g�2
4 ðEÞ ¼ g�2

4 ðE0Þ � 1

8�2

Z E

E0

d�

�
�gð�RÞ: (3.4)

Performing the sum over the KK modes n, we get

�gðERÞ ¼ m

�Z 1

0
dx

6x2 � 9x� 1

2
�ER

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

p
� cothð�ER ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1� xÞp Þ � 23

12

�
; (3.5)

and, using Eq. (3.4), the following RG behavior for g�2
4 is

obtained:

g�2
4 ðEÞ¼g�2

4 ðE0Þ� m

8�2

0
@Z 1

0
dx

6x2�9x�1

2

� log

0
@ sinhð�ER ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð1�xÞp Þ
sinhð�E0R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1�xÞp Þ

1
A�23

12
log

E

E0

1
A:
(3.6)

For R ! 0, Eq. (3.6) reproduces the usual one-loop loga-
rithmic gauge contribution. We are here interested in using
Eq. (3.5) to estimate the cutoff of the theory. The latter
is defined as the energy � where the one-loop factor
is comparable to the ‘‘tree-level’’ term g�2ðE0Þ. For
E � 1=R, E0, we get

g�2
4 ðEÞ ’ g�2

4 ðE0Þ þ 29m

1024
ER; (3.7)

from which one obtains

�ð1Þ ’ 1024

29g20m

1

R
: (3.8)

In Eq. (3.8), g0 � g4ðE0Þ and we have introduced a super-
script (1) to � to specify that this is the value of the cutoff
for the ordinary theory with Z ¼ 1. In comparing the naive
estimate (3.1) with the more refined (3.8) we notice that the
former is too optimistic by almost one order of magnitude.

If we insist in using naive estimates based on loop factors
only, we see that a more reliable estimate is obtained by
replacing the 5D loop factor 24�3 with the 4D loop factor
16�2 in Eq. (3.1).
Let us now consider the Lifshitz theory. Interestingly

enough, the expression (3.3) for the � function still holds,
provided we use the modified mass terms (2.8) for the KK
gluon mode n. This is best seen in unitary gauge, � ! 1,
in which Ay ¼ 0 and the Lifshitz interactions boil down to

higher derivative quadratic terms for the KK gluons. For
simplicity, we keep the marginal operators only, setting all
couplings ai to zero, except aZ�1 ¼ 1. For further sim-
plicity, let us first take Z ¼ 2. Summing Eq. (3.3) over the
KK modes n gives

X1
n¼�1

1

n4þa22
¼ 1

a22
Reð� ffiffiffiffiffi

a2
p

ei�=4 cotð� ffiffiffiffiffi
a2

p
ei�=4ÞÞ; (3.9)

where a2 is the value for Z ¼ 2 of the variable aZ defined
for future use as

a2Z ¼ a2ZðEÞ � xð1� xÞð�LRÞ2Z E2

�2
L

: (3.10)

It is straightforward to check that

Reð� ffiffiffiffiffi
a2

p
ei�=4 cotð� ffiffiffiffiffi

a2
p

ei�=4ÞÞ

¼ �
ffiffiffiffiffi
a2

pffiffiffi
2

p sinhð ffiffiffiffiffiffiffiffi
2a2

p
�Þ þ sinð ffiffiffiffiffiffiffiffi

2a2
p

�Þ
coshð ffiffiffiffiffiffiffiffi

2a2
p

�Þ � cosð ffiffiffiffiffiffiffiffi
2a2

p
�Þ

¼ E
d

dE
logðcoshð ffiffiffiffiffiffiffiffi

2a2
p

�Þ � cosð ffiffiffiffiffiffiffiffi
2a2

p
�ÞÞ: (3.11)

Using the above relations, we get

g�2
4 ðEÞ

¼g�2
0 � m

8�2

0
@Z 1

0
dx

6x2�9x�1

2

� log

0
@ coshð ffiffiffiffiffiffiffiffi

2a2
p

�Þ�cosð ffiffiffiffiffiffiffiffi
2a2

p
�Þ

coshð ffiffiffiffiffiffiffiffiffiffi
2a2;0

p
�Þ�cosð ffiffiffiffiffiffiffiffiffiffi

2a2;0
p

�Þ

1
A�23

12
log

E

E0

1
A;

(3.12)

where a2;0 ¼ a2ðE0Þ. For E � �L, 1=R, E0, such that

a2 � 1, we have

g�2
4 ðEÞ ’ g�2

0 þ 	2ð�LRÞm
ffiffiffiffiffiffiffi
E

�L

s
; (3.13)

where

	2 ¼ 1

16�2

25
ffiffiffiffiffiffiffi
2�

p
�ð1=4Þ2
84

’ 1

16
(3.14)

is a numerical factor. The transverse gauge fields Að0Þ
� enter

in a strongly coupled regime for
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�ð2Þ ’ �L

�
1

g20m	2ð�LRÞ
�
2
: (3.15)

We can also analyze the asymptotic region E � 1=R,
�L; E0 for an arbitrary, but finite, Z. We have

X1
n¼�1

1

n2Zþa2Z

¼ 1

Za2
XZ�1

l¼0

Reð�a1=ZZ eði�ð2lþ1Þ=2ZÞcotð�a1=ZZ eði�ð2lþ1Þ=2ZÞÞÞ:

(3.16)

For large energies (i.e., large aZ), we also have

XZ�1

l¼0

Reð�a1=ZZ eði�ð2lþ1Þ=2ZÞ cotð�a1=ZZ eði�ð2lþ1Þ=2ZÞÞÞ

¼ �a1=ZZ

sin�=ð2ZÞ ð1þOðe�ca1=ZZ ÞÞ; (3.17)

where c is a positive numerical factor of Oð1Þ. Using the
above relations, we get

g�2ðEÞ ’ g�2
0 þm	Zð�LRÞ

�
E

�L

�
1=Z

; (3.18)

where

	Z ¼ 1

16�2

ð21Zþ 8Þ�3=2�ð 12ZÞ
8�224þ1=ZZ2 sinð�2ZÞ�ð12 ð5þ 1

ZÞÞ
: (3.19)

For generic Z, the would-be cutoff of the theory is esti-
mated to be

�ðZÞ ’ �L

�
1

g20m	Zð�LRÞ
�
Z
: (3.20)

For Z ¼ 1, 2, Eq. (3.20) reproduces the previous estimates

(3.8) and (3.15). The first numerical values of �ðZÞ are

�ð1Þ ’ 35

g20m

1

R
; �ð2Þ ’ 260

ðg20mÞ2
�L

ð�LRÞ2
;

�ð3Þ ’ 940

ðg20mÞ3
�L

ð�LRÞ3
; . . . :

(3.21)

The would-be cutoff of the theory is parametrically high
for a sufficiently small ’t Hooft coupling g20m, provided

that �L � 1=R.6

Sometimes it is useful to consider how many KK modes

NðZÞ
Max have a mass below the cutoff of the theory. From an

effective field theory point of view, these correspond to the
states that we are justified to keep in the theory.7

Interestingly enough, NðZÞ
Max does not increase in the

Lifshitz theory, because the spacing between the KK
modes is enlarged for Z > 1 and compensates for the

higher cutoff �ðZÞ. Using Eqs. (2.8) and (3.20) we have

NðZÞ
Max ’

1

g20mkZ
; (3.22)

and since kZ slightly decreases for increasing values of Z,
the actual number of KK states below the cutoff actually
decreases with respect to the ordinary Z ¼ 1 theory.
When the weighted relevant operators are considered,

ai � 0, the sums over the KK modes become rather cum-
bersome and complicated, but a qualitative physical de-
scription can easily be given. The gauge coupling evolution
is essentially dictated by the value of �LR. For �LR� 1,
all the terms appearing in Eq. (2.8) are of the same order of
magnitude and the marginal coupling aZ�1 quickly domi-
nates for n > 1. In this case, the approximation above is
justified and the would-be cutoff of the theory is given by
Eq. (3.20). For �LR � 1, up to KK modes of order
n��LR, the dominant coupling is the ordinary a0 term,
giving rise to the usual coupling behavior (3.7). The theory
enters in the Lifshitz regime only for E>�L. It is then
obvious that the Lifshitz operators are significant only in

the energy range 1=R <�L <�ð1Þ.
Similar results also apply in the presence of fermions.

The anisotropic scaling (2.1) would demand the presence
of higher (covariant) derivative interactions along the in-
ternal dimension, that in unitary gauge boil down to a
modified KK mass formula for the fermion KK modes,
similar to Eq. (2.8). The explicit contribution of a fermion
to � is reported in Eq. (A14). The analysis is essentially
identical to the one we did for the gauge case. In particular,

the gauge coupling correction still scales as ð�LRÞ�
ðE=�LÞ1=Z, as in Eq. (3.18). The results shown here apply
then for Abelian theories as well, where at one-loop level
the matter contribution is the only one.

IV. CUTOFF FROM UNITARITY BOUNDS IN
SCATTERING AMPLITUDES

In the last section we have shown that the cutoff of
Lifshitz field theories, as obtained by a detailed computa-
tion of the vacuum polarization correction of the transverse

polarizations of the zero mode field Að0Þ
� , can be parametri-

cally higher than the one in ordinary theories. We show
here that the estimate (3.20) does not apply in non-Abelian
gauge theories, since the scattering amplitudes of longitu-
dinal components of the gauge fields break unitarity well
before the energy (3.20) is reached and even before the
ordinary 4D value (3.8). This result could also be obtained
by analyzing the gauge coupling corrections to the longi-

tudinal components of AðnÞ
� , but this computation is rather

cumbersome, while we will see how it is straightforward,

6Notice that Eq. (3.20) does not hold for parametrically large
Z—in which case it would predict that �ðZÞ ! 0 for Z ! 1
(kZ / Z for large Z)—because the limit of taking large energies
does not commute with the large Z limit.

7Naive truncations of this kind should be considered with care,
because they can lead to a breakdown of the 5D nonlinearly
realized gauge symmetries.
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building on previous works, to get the bounds coming from
scattering amplitudes.

Let us briefly review the behavior of the scattering
amplitudes of longitudinal KK gauge bosons in 5D theo-
ries, focusing for simplicity to elastic processes [5,15].
This amplitude could grow as fast as E4, where E is the
center of mass energy of the incoming fields. In [15] it has
been shown that the OðE4Þ and OðE2Þ terms in the ampli-
tude of longitudinal 5D gauge boson scattering vanish,
whenever the following relations hold:

g2nnnn ¼
X
k

g2nnk; 4g2nnnnM
2
n ¼ 3

X
k

g2nnkM
2
k; (4.1)

where k and n are KK levels, gnnnn is the quartic gauge
coupling of KK gauge fields at level n, gnnk is the trilinear
coupling of two KK n and one KK k gauge fields, andM2

n is
the mass of the KK n gauge field. In ordinary 5D theories,
Eq. (4.1) are satisfied and the amplitude does not grow with
the energy, as already claimed in [5,8]. Unitary violation is
detected from the OðE0Þ terms in the amplitude and arises
from the multiplicity of states in a coupled channel analy-
sis [5]. For a SUðmÞ theory compactified on a segment, the
maximum number of KK states NMax that can enter in a
scattering process without leading to a violation of unitar-
ity is given by [5]

NMax ’ 8�

m

1

g20
; (4.2)

leading to a cutoff estimate

��MNMax
’ 8�

g20mR
; (4.3)

roughly in agreement with Eq. (3.8).
As we already mentioned, in the unitary gauge Ay ¼ 0,

no new interactions arise from the higher derivative
Lifshitz terms, and the couplings gnnnn and gnnk are the
same as in the ordinary 5D theories. The first constraint in
Eq. (4.1) is then automatically satisfied. The only effect of
the Lifshitz interactions is to modify the gauge boson KK
masses as given in Eq. (2.8). It is straightforward to check
that, due to the modification in the mass formula, the
second relation in Eq. (4.1) is no longer satisfied in the
Lifshitz case. For illustration, let us consider Z ¼ 2. For
plain S1=Z2 compactifications, the sum over k in Eq. (4.1)
reduces to two terms, k ¼ 0 and k ¼ 2n, which are the
only two states that can be exchanged in the scattering
process, due to the conservation of the 5D momentum,
mod Z2. A simple computation gives

4gnnnnM
2
n � 3gnn0M

2
0 � 3gnn2nM

2
2n

¼ � 18

�
g20�

2
L

n4

ð�LRÞ4
: (4.4)

Neglecting the OðE0Þ terms, the WðnÞ
L WðnÞ

L ! WðnÞ
L WðnÞ

L

scattering goes like

A ðWðnÞ
L WðnÞ

L ! WðnÞ
L WðnÞ

L ÞE2 � g20

ð1þ n2

ð�LRÞ2Þ2
E2

�2
L

: (4.5)

While the transverse components of the gauge fields
remain weakly coupled for energies above the ordinary
bound (4.3), the longitudinal components show a break-
down of unitarity at energies below Eq. (4.3). We get, from
Eq. (4.3),8

�� 4��L

g0
: (4.6)

When �L ’ 1=R, Eq. (4.6) is the energy one would expect
from 4D considerations for a pNGB with mass M1 ’ 1=R
and ‘‘pion’’ decay constant f ¼ M1=g0, which would give
� ’ 4�f, equal to the naive estimate (1.2). As expected,
the ordinary 5D result (4.3) is recovered for �L ! 1, in
which case one has to look at the OðE0Þ terms.
A similar result is obtained, by the equivalence theorem,

by studying the scattering of the pNGB’s in a different
gauge, such as Landau or Feynman gauge. In these gauges,
the higher derivative Lifshitz terms give rise to derivative
quartic interactions among the pNGB’s that reproduce the
behavior (4.5). We will briefly come back to this point in
the next section, when the 4D deconstructed version of the
theory is considered.

V. DECONSTRUCTED 4D MODEL

It is interesting to analyze the deconstructed version of
our setup. Let us briefly recall the deconstruction of an
ordinary 5D SUðmÞ pure gauge theory on an interval [6,7].
The Lagrangian of a linear moose with N sites and N � 1
link variables Ui is given by

L ¼ � 1

2

XN
i¼1

TrF2
��;i þ f2

XN�1

i¼1

TrjD�Uij2; (5.1)

where the Ui’s transform as Ui ! giþ1Uig
y
i under gauge

transformations and have only ‘‘nearest-neighbor’’ inter-
actions with the gauge fields A�;iþ1 and A�;i. The covariant

derivative is

D�Ui ¼ @�Ui � igA�;iþ1Ui þ igUiA�;i: (5.2)

For simplicity we have taken in Eqs. (5.1) and (5.2) a
universal decay constant f and a universal coupling con-
stant g. The gauge group SUðmÞN is nonlinearly realized,
because the link fields are ‘‘
-model’’ fields that can be
written as

UiðxÞ ¼ eði�iðxÞÞ=f; (5.3)

in terms of would-be Goldstone bosons �iðxÞ ¼ �a
i T

a. In
the unitary gauge hUii ¼ 1, the Lagrangian (5.1) contains
an N � N mass matrix for the gauge fields of the form

8As before, the actual cutoff should be computed by consid-
ering inelastic channels as well, and can be smaller than the
estimate (4.6).
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M2 ¼ g2f2

1 �1 0 . . . 0 0

�1 2 �1 . . . 0 0

..

. ..
. ..

. . .
. ..

. ..
.

0 0 0 . . . 2 �1

0 0 0 . . . �1 1

0
BBBBBBBBB@

1
CCCCCCCCCA
; (5.4)

which has eigenvalues

M2
n ¼ 4g2f2sin2

�n

2N
; n ¼ 0; . . . ; N � 1: (5.5)

We can define

L ¼ Na; a ¼ 1

gf
; p5 ¼ �n

L
; (5.6)

so that a can be interpreted as the lattice spacing of the
interval and L its length. The 5D gauge coupling g5 is
given by g25 ¼ ag2. For n � N, we have

M2
n ¼ 4

a2
sin2

p5a

2
’ p2

5 ¼
n2

R2
; (5.7)

where R ¼ L=� is the radius of the 5D covering circle of
S1=Z2. In the unitary gauge, �1 ¼ �2 ¼ . . . ¼ �N�1 ¼ 0
and SUðmÞN is spontaneously broken to the diagonal sub-
group SUðmÞ. In the canonical basis, the gauge coupling g4
of the unbroken gauge fields is g24 ¼ g2=N ¼ g25=L, in
agreement with what expected from a 5D theory.

Let us generalize the deconstruction above and include
the higher derivative operators appearing in Eq. (2.5). For
simplicity, we consider only the Z ¼ 2 case. The higher
derivative terms in the extra dimension suggest that in the
deconstructed theory ‘‘next-nearest-neighbor’’ interactions
should be present. The deconstructed Lagrangian can be
written as

L ¼ � 1

2

XN
i¼1

TrF2
��;i þ f2

XN�1

i¼1

TrjD�Uij2

þ ~f2
XN
i¼1

TrjD�Ui �D�Uiþ1j2; (5.8)

where UNþ1 ¼ U1 and UN ¼ 0 in the last term, and ~f is
the ‘‘Lifshitz’’ pion decay constant. As we will shortly see,
the last term in Eq. (5.8) corresponds to the TrðDyF�yÞ2
term in Eq. (2.5). In the unitary gauge hUii ¼ 1, all �i’s
vanish and SUðmÞN is spontaneously broken to the diago-
nal subgroup SUðmÞ, like in the ordinary case reviewed
above. The quadratic terms for the gauge fields coming
from the last term in Eq. (5.8) give rise to the following
N � N mass matrix:

~M2¼g2 ~f2

2 �3 1 0 ... 0 0 0

�3 6 �4 1 ... 0 0 0

1 �4 6 �4 ... 0 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 0 ... 6 �4 1

0 0 0 0 ... �4 6 �3

0 0 0 0 ... 1 �3 2

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA
: (5.9)

The total mass matrix for the gauge fields is given by

M2
Tot ¼ M2 þ ~M2; (5.10)

with M2 as in (5.4). By explicit computation, we find that
the mass matrix (5.9) has eigenvalues

~M 2
n ¼ 16g2 ~f2sin4

�n

2N
; n ¼ 0; . . . ; N � 1: (5.11)

Interestingly enough, the matrices (5.4) and (5.9) are si-
multaneously diagonalizable and hence the total mass
eigenvalues are simply given by the sum of Eqs. (5.7) and
(5.11):

M2
Tot;n¼4g2f2sin2

�n

2N
þ16g2 ~f2sin4

�n

2N
; n¼0; . . . ;N�1:

(5.12)

The Lifshitz scale �L is defined as

a2�L ¼ 1

g~f
: (5.13)

For n � N, we have

M2
n ¼ 4

a2
sin2

p5a

2
þ 16

�2
La

4
sin4

p5a

2
’ p2

5 þ
p4
5

�2
L

¼ n2

R2

�
1þ n2

ð�LRÞ2
�
; (5.14)

which reproduces Eq. (2.8) for Z ¼ 2.
The leading behavior of the amplitude (4.5) can be

reproduced in the deconstructed model. It is actually easier,
by using the equivalence theorem, to look at the�� ! ��
scattering. In the ordinary linear moose (5.1), the OðE2Þ
term schematically reads

A ð�� ! ��ÞE2 / E2

f2
¼ g2

�
EL

N

�
2
; (5.15)

where we have used Eq. (5.6) in the second equality. For
simplicity we have omitted in Eq. (5.15) gauge and site
indices and have written only the structure of the ampli-
tude. In the limit N ! 1, the OðE2Þ term in the amplitude
vanishes, in agreement with the 5D expectation. In the
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linear ‘‘Lifshitz’’ moose (5.8), additional derivative quartic
couplings arise and we get an extra term �A contributing
to the amplitude:9

�Að�� ! ��ÞE2 / E2 ~f2

f4
¼ g2

�
E

�L

�
2
; (5.16)

where in the last equality we have used Eqs. (5.6) and
(5.13). The factors of N now cancel and theOðE2Þ term no
longer vanishes in the 5D limit. Instead, using Eq. (5.16),
we get a cutoff �� 4��L=g, in agremeent with Eq. (4.6).

One might ask if the Lifshitz terms, even if not intro-
duced at tree-level, are radiatively generated. The answer
is clearly negative in the 5D limit, because of SOð5Þ
symmetry. A similar conclusion is reached in the 4D
deconstructed model by using spurions [7]. When the
gauge coupling g is switched off, the Lagrangian (5.1)

has an SUðmÞ2N�2 global symmetry under which Ui !
Liþ1UiR

y
i , where Li and Ri are independent SUðmÞ matri-

ces ði ¼ 1; . . . ; N � 1Þ. This global symmetry is explicitly
broken by the gauge fields Ai, but it can formally be
restored by introducing spurion fields qi. The gauge fields

and the spurions transform as Ai ! Liþ1AiL
y
iþ1 and

qi ! RiqiL
y
iþ1, respectively. By writing the covariant de-

rivative (5.2) as

D�Ui ¼ @�Ui � igA�;iþ1Ui þ igUiqiA�;iq
y
i ; (5.17)

the SUðmÞ2N�2 global symmetry is formally restored.
The original model is eventually recovered by setting
qi ¼ 1. It is not difficult to see that no SUðmÞ2N�2 invariant
operators can be constructed by using the spurions,

leading to TrðDUy
iþ1DUiÞ when qi ¼ 1. We conclude

that the Lifshitz operators are not generated by quantum
corrections.

Although we have not explicitly worked out the decon-
structed version of Eq. (2.5) for general Z, we expect that
the introduction of ‘‘next-next-. . .-nearest-neighbor’’ inter-
actions should reproduce the corresponding 5D higher-
derivative terms for any Z. No new results are expected
to arise by considering higher values of Z.

VI. CONCLUSIONS

We have studied the cutoff estimate in 5D field theories,
where certain higher derivative (Lifshitz) operators are
added to the action. By a detail one-loop vacuum polariza-
tion computation, we have argued that the transverse polar-
izations of the gauge fields have a softer UV behavior with
respect to the ones in ordinary 5D theories. On the other

hand, the same higher derivative terms negatively affect the
longitudinal polarizations of the gauge fields. Because of
these operators, the OðE2Þ terms in the scattering ampli-
tude of longitudinal gauge bosons no longer vanish, in
contrast to the usual 5D case, and lead to an earlier break-
down of unitarity with respect to the standard 5D situation.
Of course, this problem does not occur for Abelian gauge
theories, in which the Lifshitz operators do improve the
UV behavior of the theory. We have then considered (for
the special case Z ¼ 2) the deconstructed version of the 5D
Lifshitz models and shown how similar conclusions are
reached from this perspective. As expected, the Lifshitz
terms correspond to next-nearest-neighbor interactions in
field space.
Our analysis explicitly shows that the relatively good

UV behavior of standard 5D theories, for which �>
�Naive, as defined in Eqs. (1.1) and (1.2), do not only
come from 5D locality and 5D gauge symmetries, both
preserved in our Lifshitz construction, but are peculiar of
the standard 5D action. The 4D deconstructed models are
useful in this respect, since they show how the Lifshitz
terms break the global symmetries responsible for the good
UV behavior of ordinary 5D theories. From the Lifshitz
field theory point of view, our results explicitly show that
care has to be used in determining the UV behavior
(e.g., renormalizability) of Lifshitz theories based only
on the effective UV dimension of the couplings. It is
crucial to also pay attention to the effective dimensions
of the fields, even when they can be gauged away (like the
fields Ay in our case), since they can lead to a precocious

strong coupling behavior.
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APPENDIX: DERIVATION OF THE
5D � FUNCTION

The � function (3.3) is conveniently computed using
background field methods and a background field gauge-
fixing. We write the gauge field as Atot ¼ �Aþ A, where �A
is the classical background value and A is the quantum
fluctuation. The 5D Lagrangian reads, including gauge-
fixing and ghosts,

LBFG¼�1

4
Ftot;2
MN;a�

1

2�
ð �DMA

M
a Þ2

þð �DM!aÞð �DM!a�gfabc!bA
c
MÞ�

1

4
�Z �F2

��;a;

(A1)

with a, b, c color indices, M, N 5D indices and

�DMAN;a ¼ @MAN;a þ gfabc �AM;bAN;c (A2)

9The Lifshitz term in Eq. (5.8) also contains additional con-
tributions to the kinetic terms of the pions, that have thus to be
canonically normalized. The net effect of this normalization is
the term in the denominator appearing in Eq. (4.5). For sim-
plicity, we neglect these corrections that do not play an important
role for our purposes.
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the covariant derivative with respect to the background
field only. In Eq. (A1), we have explicitly included the
counterterm �Z for the 4D background field strength
�F��ðxÞ, omitting all the others that do not play any role

in the computation. We choose in the following � ¼ 1 so
that all quadratic gauge mixing terms vanish. As well
known, the gauge symmetries of the classical background
allow to compute the � function directly from the two-
point function h �A�ð�pÞ �A�ðpÞi. The effective one-loop

Lagrangian for the zero mode background �A�ðxÞ reads

L eff ¼ � 1

4
Z �F2

�� þ . . . : (A3)

We choose a standard momentum subtraction renormaliza-
tion scheme, by demanding that

Zðp2 ¼ �E2Þ ¼ 1: (A4)

The mass-dependent � function is given by

�ðg4; ERÞ ¼ g4
d logZ

d logE
: (A5)

After a lengthy computation, we get the following
results for the relevant Feynman graphs, in dimensional
regularization:10

10Notice that dimensional regularization is typically used in association with a mass-independent renormalization scheme, such as
MS or MS, in which �, coming from g ! g��=2, is the RG scale. In our (unconventional) use of dimensional regularization with a
mass-dependent scheme, � becomes irrelevant and the RG scale is identified with the subtraction scale E.
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In the above graphs Mn ¼ n=R is the mass of the KK mode running into the loop, the single wiggly lines represent the
gluon fluctuations A� and Ay, dashed lines represent the ghost fields and the double wiggly lines represent the background
field �A�. Notice the presence of a quartic interaction among ghost and gauge fields in this gauge, leading to the graph (f).
Summing all the contributions, we get

ðaÞ þ ðbÞ þ ðcÞ þ ðdÞ þ ðeÞ þ ðfÞ ¼ iC2ðGÞ g24
16�2

ð���p2 � p�p�Þ
Z 1

0
dxðð�2� 6xþ 4x2Þ � log

��p2xð1� xÞ
�2

�

þ X1
n¼1

ð6x2 � 9x� 1Þ log
�
M2

n � p2xð1� xÞ
�2

�
þ CÞ þOð�Þ; (A12)

where C is an irrelevant divergent constant. The finite wave function correction Z is determined by the renormalization
condition (A4), that fixes the counter-term �Z. Using Eq. (A5), we can finally get Eqs. (3.2) and (3.3).

For completeness, we also report the contribution from a massless 5D fermion in a representation r of SUðmÞ:

that gives rise to the following contribution to the � function:

�ðg4; ERÞ ¼ g34
4�2

X1
n¼�1

TðrÞ
Z 1

0
dx

x2ð1� xÞ2E2

M2
n þ E2xð1� xÞ : (A14)
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