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We calculate the Coulomb ghost propagator GðjpjÞ and the static Coulomb potential VCðjrjÞ for SUð2Þ
Yang-Mills theory on the lattice. In view of possible scaling violations related to deviations from the

Hamiltonian limit we use anisotropic lattices to improve the temporal resolution. We find that the ghost

propagator is infrared enhanced with an exponent �gh * 0:5 while the Coulomb potential exhibits a string

tension larger than the Wilson string tension, �C ’ 2�. This agrees with the Coulomb ‘‘scaling’’ scenario

derived from the Gribov-Zwanziger confinement mechanism.
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I. INTRODUCTION

Yang-Mills theories in Coulomb gauge have attracted
increasing interest in the last years, both in the continuum
and on the lattice. Nonperturbative analytic predictions
based on the Gribov-Zwanziger confinement mechanism
[1,2] turn out to be concise and elegant in this gauge, and
numerical simulations have confirmed them so far.

In covariant gauges, the Gribov-Zwanziger approach
requires a restriction of the functional integral beyond the
Faddeev-Popov (FP) mechanism [3], which has long been
known to be insufficient to extract a unique field representa-
tive along the gauge orbit and thus cannot be used to define
the partition function beyond perturbation theory [1,4,5]. As a
remedy one adds extra terms to the action which are, in
general, nonlocal and often referred to as the ‘‘horizon func-
tion’’ or ‘‘horizon condition’’. The purpose of these extra
terms is to limit the fields in the functional integral to the
so-called fundamental modular region �, which contains
only ‘‘absolute’’ minima of the gauge fixing functional and
thus eliminates the over-counting of gauge copies from the
same orbit (except for topologically nontrivial copies).

In practice, however, it is almost impossible to limit the
functional integral beyond the so-called first Gribov region
� � �, where the Faddeev-Popov operator is positive defi-
nite. Moreover, any restriction on the integration range
imposed other than through the FP mechanism will break
the Becchi-Rouet-Stora-Tyutin symmetry [6,7]. Whether
such enlarged action including horizon terms exhibits
some other symmetry and what the possible consequences
in covariant gauges are (e.g., in terms of contributions from
nonstandard condensates [8–11]) is still under active debate,
cf., Refs. [12,13] and references therein for recent results.

In contrast to the situation in covariant gauges sketched
above, the physical implications of the Gribov-Zwanziger
approach are quite transparent in ‘‘Coulomb gauge’’. In the
Hamiltonian formulation [14–17], for instance, the Gribov-
Zwanziger idea amounts to a mere projection of the physi-
cal Hilbert space onto the subspace of states satisfying
Gauß’s law [18,19]. Besides being conceptually simpler,
this has at least two advantages:

(i) Unlike the Kugo-Ojima approach [20] in covariant
gauges, where the existence of a globally conserved
Becchi-Rouet-Stora-Tyutin charge QBRSTj�iph ¼ 0

is essential, the Hamiltonian approach in Coulomb
gauge requires no additional assumptions to ensure
Gauß’s law, i.e., a vanishing color charge on physical
states, Qcj�iph ¼ 0.

(ii) The construction of the physical Hilbert space in
Coulomb gauge is much simpler than in the fully
gauge-invariant Hamiltonian approach [21]. In fact,
the consequences of Gauß’s law in Coulomb gauge
can be implemented ‘‘exactly’’ in a functional
integral, which is therefore well suited for further
approximations without the impediment of addi-
tional constraints such as the conservation ofQBRST.

The Horizon condition in Coulomb gauge implies both a
’’static’’ (i.e., equal-time) transverse gluon propagator [1]
which vanishes at zero momentum, and a ghost dressing
function which diverges in the same limit [2]. Physically,
the last statement means that the Yang-Mills vacuum be-
haves as a perfect color dia-electric medium (i.e., a dual
superconductor), because the dielectric function of the
Yang-Mills vacuum agrees with the inverse ghost dressing
function [22]. As a consequence the dual Meissner effect,
which has long been a model for the origin of the confining
force in so-called Abelian gauges, can also be applied to
Coulomb gauge. A natural quantity to study confinement in
Coulomb gauge is the non-Abelian Coulomb potential,
which provides an upper bound for the quark-antiquark
free energy VðrÞ � VCðrÞ, i.e., there is ‘‘no confinement
without Coulomb confinement’’ [23].
For all these reasons Coulomb gauge is best suited for

direct investigations of the QCD wave functional. After
pioneering analytical [24–26] and numerical work [27],
such studies have experienced a broad popularity in the
literature, cf., [28–37]. In particular, the Hamiltonian ap-
proach lends itself to variational formulations [15,17,27],
which allow us to address nonperturbative problems in
Yang-Mills theory in a rather direct and concise way. A
main ingredient in these techniques are static (equal-time)
two-point functions, so that a direct investigation of
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the Gribov-Zwanziger scenario for such correlators is
important.

There have been a number of studies of this subject in the
literature [38–41]. From previous analyses of the gluon
propagator in Coulomb gauge [42–45] it is known that the
difficulties in reaching the Hamiltonian limit on a lattice
with a finite time-resolution can have drastic consequences:
the resulting scaling violations, if untreated, prevent a mul-
tiplicative renormalization of the gluon propagator and
also affect the correct analysis in the deep infrared. We
therefore compute the Green functions on ’’anisotropic’’
lattices with a high temporal resolution and study the effects
of approaching the Hamiltonian limit. We also employ a
high quality of gauge fixing, particularly important for the
ghost propagator.

The paper is organized as follows: in the next section, we
discuss the exact definition of the relevant correlators, both
in the continuum and on the lattice. Wewill also display the
expectations on the conformal behaviour of the correlators
in the deep-infrared, as raised by variational and functional
methods. Section III contains a description of our numeri-
cal setup, as well as a detailed discussion of our results for
both the two-point functions and the Coulomb potential.
We also compare to continuum methods and give argu-
ments to explain possible deviations. Finally, we conclude
in Sec. IV with a brief summary and outlook.

II. CORRELATORS IN COULOMB GAUGE

A. Correlators in the continuum

At fixed time t, the Coulomb gauge condition r �A ¼ 0
is complete (up to possible singularities and Gribov ambi-
guities, see Ref. [46]), i.e., any residual gauge symmetry is
space-independent and thus acts as a global gauge at fixed
time t. In this situation, we are interested in the static
(i.e., equal-time) propagators,

DðpÞ ¼ �ab�ij

2NA

hAa
i ðp; tÞAb

j ð�p; tÞi

¼ �ab�ij

2NA

Z dp0

2�
hAa

i ðpÞAb
j ð�pÞi; (1)

GðpÞ¼dðpÞ
jpj2 ¼

�ab

NA

h �caðpÞcbð�pÞi¼ trhð�D �rÞ�1i; (2)

D0ðpÞ ¼ �ab

NA

hAa
0ðp; tÞAb

0ð�p; tÞi�; (3)

� VCðpÞ � g2 trhð�D � rÞ�1ð�r2Þð�D � rÞ�1i; (4)

where in the last equation contributions from noncontact
terms have been dropped [47]. NA is the dimension of the
adjoint color representation and tr is the normalized color
trace; we use the color group G ¼ SUð2Þ with NA ¼ 3
throughout this paper. Moreover, the covariant derivative in

the adjoint representation reads Dab � r�ab þ g�abcAc,
and ð�D � rÞ is the FP operator in Coulomb gauge.
Within the Hamiltonian variational approach one finds

two sets of solutions for the gap equations, called
‘‘critical’’ [17,48] and ‘‘subcritical’’ [49]. Here we will
be mainly interested in the critical solution, which is also
believed to be the physically relevant one. In this case one
finds a Coulomb potential Eq. (4) which rises linearly as a
function of the distance [48]. Furthermore, the gluon and
ghost propagators in Eqs. (1) and (2) exhibit a conformal
scaling in the deep infrared, i.e., they behave as a power of
momentum jpj � 1,

DðpÞ � 1

jpj�gl
; dðpÞ � 1

jpj�gh
: (5)

Similarly, asymptotic freedom indicates that the large
momentum behavior of the propagators essentially follows
from the bare action, modified by logarithmic corrections
with appropriate anomalous dimensions,

DðpÞ � 1

jpjlog�gl jpj
m

; dðpÞ � 1

log�gh jpj
m

: (6)

In both regimes, the relevant exponents are further con-
strained by the assumption that the (static) ghost-gluon
vertex is essentially trivial. i.e., proportional to the bare
vertex, for any kinematical configuration. This leads
directly to the so-called ‘‘sum rules’’ [49]

�gl þ 2�gh ¼ 1 �gl þ 2�gh ¼ 1: (7)

The two solutions of the variational approach are derived
under the same assumption, with the specific values for the
exponents [17,48–50]:

�c
gl ¼ �1 �c

gh ¼ 1; (8)

�s
gl ’ �0:6 �s

gh ’ 0:8; (9)

�gl ¼ 0 �gh ¼ 1

2
: (10)

Notice that Eq. (5) implies, in general, an infrared mass
generation for both gluon and ghost, unless �gl ¼ 1 and

�gh ¼ 0, their tree-level values. Such an infrared behavior

agrees with the original analysis of Gribov [1] and, in par-
ticular, implies an infrared vanishing static gluon propagator
DðpÞ ! 0 and an infrared divergent ghost form factor
dðpÞ ! 1, as jpj ! 0. Physically, these findings translate
into a diverging gluon self-energy !ðpÞ �DðpÞ�1, and a
vanishing dielectric function of the Yang-Mills vacuum,
�ðpÞ � dðpÞ�1, which in turn implies dual superconductivity
[22]. In Ref. [51] the ghost and gluon propagator were also
calculated from the renormalization group flow equations,
assuming a bare ghost-gluon vertex and UV propagators with
vanishing anomalous dimensions (�gl ¼ �gh ¼ 0); the cor-

responding IR exponents �gl ’ �0:28 and �gh ’ 0:64 turn

out to be somewhat smaller than in Eq. (10).
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The large momentum behavior cited above for both
propagators shows interesting nonperturbative effects as
well. Despite asymptotic freedom (and in contrast to
Landau gauge), the predictions Eq. (10) for the anomalous
dimensions cannot be directly compared to perturbation
theory [52,53], since no obvious rainbow-ladder-like
resummation technique is available in Coulomb gauge. In
fact, it is not even clear whether static propagators can be
accessed in standard perturbation theory in the first place:
the Slavnov-Taylor identities imply a highly nontrivial
energy (i.e., p0) dependence in the Green’s functions
[54], which could spoil the naive static limit and thus
require a nonperturbative treatment anyhow [55–57].
Alternatively, a perturbative approach based on the func-
tional renormalization group has been attempted in
Refs. [58,59]; their prediction �gl ¼ 3=11 and �gh¼4=11

differs, however, quite substantially from the nonperturba-
tive results in Eq. (10).

B. Correlators on the lattice

A comparison between continuum and lattice Coulomb
propagators was pioneered in Ref. [60]; later studies with
different techniques gave, however, contradicting results
[38–41]. The difficulty lies in the fact that most continuum
results for static quantities are naturally obtained in the
gauge A0 ¼ 0, which cannot be attained directly in lattice
calculations because of the compactified time direction.
Furthermore, any finite lattice has a finite time resolution
and the associated discretization artifacts preclude the
Hamiltonian limit and give rise to severe renormalization
problems. A way to circumvent these issues was first
proposed in Refs. [42–44]. There it was shown that the
static gluon propagator of Eq. (1) agrees, after dealing with
compactification and renormalization artifacts, with the
exponents in Eq. (10). More precisely, the static gluon
propagator in D ¼ 3þ 1 was shown to be surprisingly
well described, over the whole momentum range, by
Gribov’s original proposal [1]:

DðpÞ ¼ jpj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpj4 þM4
p : (11)

As argued in Refs. [42,43], the problem in the ‘‘naive’’
extraction ofDðpÞ from the lattice data lies in the standard,
isotropic discretization of Yang-Mills theories. The use of
anisotropic lattices, which approach the Hamiltonian limit
[61] for large anisotropy � ¼ as=at (see Sec. III A), was
therefore proposed as a general tool in Coulomb gauge
investigations. Further independent studies in Refs. [62,63]
have confirmed the presence of such effects and the
improvement of lattice results for � > 1 for the gluon
correlators. Incidentally, the authors there were still not
able to extract a coulomb string tension from the analysis
of the temporal propagator, Eq. (3); the supposed equiva-
lence between Eq. (3) and (4) [2,23] remains therefore an
open issue.

In this paper we will continue and complete the lattice
analysis of Green’s functions in Coulomb gauge for pure
SUð2Þ Yang-Mills theory at T ¼ 0, which was started in
Refs. [42,44]. We will concentrate on the ghost form factor
dðpÞ and the Coulomb potential VCðpÞ, and study, in
particular, the anisotropy effects and the validity of the
confinement scenario sketched above. A study of the
Coulomb gauge quark propagator with light dynamical
fermions has been published elsewhere [45].

III. RESULTS

A. Numerical setup

Pure Yang-Mills theory, as any continuum field theory,
can be formulated in the Hamiltonian picture [64], where
space and time are treated separately. Upon discretization,
simple RG-group arguments [65] indicate that for any
given isotropic lattice version of the field theory in question
a corresponding anisotropic counterpart lying in the same
universality class exists [66]. The latter describes the same
physics, albeit with two different lattice spacings as and at
for the space and time directions. For Yang-Mills actions in
D ¼ dþ 1 dimensions built in terms of the character � of
m� n Wilson loops P	
ðx;m; nÞ,

Sð�;m; nÞ ¼ ��
X
x

Xdþ1

	>
¼1

�
1� 1

dimð�Þ�½P	
ðx;m; nÞ	
�
;

(12)

the anisotropic counterpart will read (see Ref. [61] and
references therein)

S0ð�;m; nÞ ¼ X
x

�
�

�
s

Xd
i>j¼1

�
1� 1

dimð�Þ�½Pijðx;m; nÞ	
�

þ �
�
t

Xd
i¼1

�
1� 1

dimð�Þ�½Pi;dþ1ðx;m; nÞ	
��
:

(13)

For each choice of��
s � ��

t the two lattice spacingsas andat
have to be determined nonperturbatively. The couplings are
usually parametrized as ��

s ¼ �� � � and ��
t ¼ �� � ��1,

where�� is a common coupling factor, while� is the ‘‘bare’’
anisotropy; it is related to the true (renormalized) anisotropy
� ¼ as=at through the renormalization constant �, i.e., we
have� ¼ � � �. The nonperturbativevalue of� can be shown
to slowly approach, in theweak coupling limit, its perturbative
expression [61,67]. In much the same fashion, the transition
from an isotropic action such as Eq. (12) to its anisotropic
counterpart Eq. (13) can begeneralized to lattice actions of the
form S ¼ P

�;mnc�;mnSð�;m; nÞ. Such anisotropic models

are very useful in lattice applications, see e.g., Refs. [61,68]
and references therein.
Turning to our specific case, we will concentrate on the

standard Wilson one-plaquette action in 3þ 1 dimensions,
which for SUðNcÞ pure gauge theory reads
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SW ¼ X
x

�
X4

	>
¼1

�
1� 1

Nc

Re½TrðP	
ðxÞÞ	
�
; (14)

while its anisotropic version is given by

S0W ¼ X
x

�
�s

X3
i>j¼1

�
1� 1

Nc

Re½TrðPijðxÞÞ	
�

þ �t

X3
i¼1

�
1� 1

Nc

Re½TrðPi4ðxÞÞ	
��

¼ �
X
x

�
�

X3
i>j¼1

�
1� 1

Nc

Re½TrðPijðxÞÞ	
�

þ 1

�

X3
i¼1

�
1� 1

Nc

Re½TrðPi4ðxÞÞ	
��
: (15)

The values for at and as ¼ at� for various choices of
� and � have been extensively studied in the case
G ¼ SUð3Þ, see e.g., Refs. [63,69]. For SUð2Þ we are
only aware of one study from the literature [70]. In both
cases nonperturbative effects turn out to be quite large, so
that the analytic one-loop calculations for �, which are in
principle available for any Nc, � and � [61], cannot be
trusted for practical applications [67,69].

Since we will concentrate on the case of two colors,
Nc ¼ 2, we have decided to re-determine the relevant
parameters independently by imposing rotational invari-
ance for the static potential extracted from space- and
timelike Wilson loops [67,69]. Our best estimates for
� and as are given in Tables I and II for a selection of
values for � and �. These results have been obtained on
L3 � ð�LÞ lattices of spacial extension up to L ¼ 32 and
anisotropies up to � ¼ 4; we have sampled Oð1000Þ con-
figurations using a heath-bath algorithm combined with
overrelaxation, which for SUð2Þ can be easily extended
to the anisotropic case. The same algorithm was also used
to generate the configurations on which the measurement

of Green’s functions described in the next section have
been performed.
The results for � are mostly compatible within errors

with those of Ref. [70], while we find some discrepancies
in the scale as. We have checked that our predictions for
as ¼ at in the isotropic case � ¼ 1 agree with others in the
literature (cf., e.g., Ref. [71]), while the results of Ref. [70]
are always higher than ours at the lower end of the scaling
window � & 2:3. Such discrepancies could be due to
different systematics inherent to the method used; higher
precision might be needed to settle the issue.
It should be noticed that the scale as raises with � at a

fixed coupling �, up to � * 3 where a plateau is reached.
In order to simulate at the same physical point for observ-
ables involving spatial links only (like the static correlators
we are interested in), one thus needs to tune � to � as the
latter increases.

B. Coulomb gauge and the lattice Hamiltonian limit

In Refs. [42,43], it was shown how to quantify and treat
the explicit at dependence appearing in static observables
after integrating their nonstatic counterparts w.r.t the
energy p0. However, there are still more subtle effects of
the finite time resolution in lattice simulations. In Ref. [68]
it was shown that the lattice Yang-Mills spectrum suffers
from discretization effects of order Oða2t Þ up to Oða4t Þ,
depending on the quantum numbers at hand. Such effects
are purely dynamical and linked to the rate at which the
theory on an anisotropic lattice reaches the physical
Hamiltonian limit � ! 1 in which the eigenstates and
the spectrum are well defined. Lattices with � ¼ 5 were
eventually used in Ref. [68] to extract the masses of the
physical states.
The goal of our investigation is to compare Coulomb

gauge lattice resultswith continuumHamiltoniancalculations.
Discretization effects at least of the same order as for the
glueballs, if not larger, should therefore not come as a

TABLE II. Spatial lattice spacing as for the choices of � as in Table I. Data are in GeV�1, assuming a Wilson string tension of
� ¼ ð440 MeVÞ2. The first line gives our best estimate for the isotropic scale, cf., e.g., Ref. [71].

� 2.15 2.2 2.3 2.4 2.5 2.6 2.7

� ¼ 1 1.196(6) 1.061(6) 0.821(6) 0.616(6) 0.441(5) 0.290(5) 0.231(5)

� ¼ 2 1.355(7) 1.206(6) 0.940(6) 0.711(6) 0.511(5) 0.338(5) 0.268(5)

� ¼ 3 1.391(7) 1.239(7) 0.968(6) 0.732(6) 0.526(5) 0.345(5) 0.270(5)

� ¼ 4 1.406(8) 1.254(7) 0.979(6) 0.739(6) 0.530(5) 0.346(5) 0.271(5)

TABLE I. Bare anisotropy � vs true anisotropy �, for various couplings � in SUð2Þ.
� 2.15 2.2 2.3 2.4 2.5 2.6 2.7

� ¼ 2 1.654(3) 1.672(3) 1.712(3) 1.754(4) 1.796(5) 1.835(6) 1.870(9)

� ¼ 3 2.375(3) 2.407(3) 2.474(4) 2.545(4) 2.608(5) 2.663(7) 2.710(9)

� ¼ 4 3.106(4) 3.151(4) 3.243(5) 3.331(5) 3.406(6) 3.466(7) 3.511(9)
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surprise. Let us illustrate this effect using the Coulomb
gauge functional as an example.

To fix Coulomb gauge on each MC generated configu-
ration we adapt the algorithm of Refs. [72,73] as described
in Refs. [42–44], i.e., we first fix one of the Nd

c ¼ 23 ¼ 8
center flip sectors and then maximize, via a simulated
annealing plus ensuing overrelaxation, separately at each
time slice t the gauge functional

FðtÞ ¼ 1

3NcL
3

X
x;i

TrUg
i ðx; tÞ;

Ug
i ðx; tÞ ¼ gðx; tÞUiðx; tÞgyðxþ î; tÞ;

(16)

with respect to local gauge transformations gðx; tÞ 2 SUð2Þ.
To further improve the gauge fixing quality, we start the
gauge fixing engine with nc random gauge copies of the
initial time slice (with usually 5 � nc � 10), and select
the gauge-fixed copy with the highest value of FðtÞ. We
then combine these best gauge-fixed time slices into a best
gauge-fixed configuration for the flip sector chosen. Finally,
we proceed to the next sector and repeat the procedure,
selecting in the end the sector which gave the highest global
functional F ¼ P

tFðtÞ. Every time slice in the final gauge-
fixed copy for each configuration has therefore been selected
among at least nc � Nd

c ¼ 40 . . . 80 gauge fixing runs with
random starting points from all topological sectors. On top of
this elaborated procedure to fix the spatial gauge freedom
in each time slice separately, we fix the residual temporal
gauge symmetry gðtÞ via the integrated Polyakov gauge, as
described in Refs. [42–44].

As we have seen in the previous section, a constant
spatial cutoff as for increasing anisotropy � can be
obtained by tuning � to �; at ¼ ��1as will then decrease
linearly with ��1. Naively one would then expect all

observables which only depend on the spatial links to be
independent of �. For instance, the Coulomb gauge func-
tional Eq. (16) should, in principle, be a function of as only,
at least if our algorithm is good enough to approach the
absolute minimum reliably, and if finite volume effects can
be ignored [74]. This is not the case, as can be seen from
Fig. 1: the left chart displays the best value of the gauge
functional F from our algorithm as a function of the
anisotropy �, for three fixed values of the lattice spacing
as ¼ 1:060ð6Þ, 0.556(5) and 0:350ð5Þ GeV�1. As the
Hamiltonian limit is approached by increasing �, the func-
tional F decreases, i.e., the configurations at fixed time
slice become ‘‘rougher’’ although as is kept constant; as
can be seen from the figure, the corrections with � are
several orders of magnitude higher than the Gribov noise.
The leading order in the corrections to F� are well de-

scribed by a power law in ��1 / at. Our best estimates for
the asymptotic values F1 together with the coefficient
of the leading order corrections are given in Table III, while
the right chart of Fig. 1 shows F� � F1 versus the leading

correction in at. For the stronger couplings, this leading
correction is Oða4t Þ, while for weaker couplings we find it
to scale as Oða2t Þ.

0.5 1 1.5 2 2.5 3 3.5 4 4.5
0.83

0.84

0.85

0.86

0.87

0.88
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0.91
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F
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a s
)

a
s
 = 1.060(6) GeV−1

a
s
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a
s
 = 0350(5) GeV−1

10
−1
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−3

10
−2

a
t

F
ξ(a

s) 
−

 F
∞
(a

s)

a
s
 = 1.060(6) GeV−1

a
s
 = 0.556(5) GeV−1

a
s
 = 0.350(5) GeV−1

FIG. 1 (color online). (a): dependence of the gauge fixing functional F�ðasÞ on the anisotropy � at fixed spatial cutoff as.
(b): Deviation of the gauge fixing functional from the Hamiltonian limit, F�ðasÞ � F1ðasÞ, as a function of the temporal lattice

spacing at, together with its leading power corrections.

TABLE III. Asymptotic extrapolation of F� together with
the coefficient of the leading power correction of oder
Oða4t Þ (as ¼ 1:060ð6Þ GeV�1) and Oða2t Þ (as ¼ 0:556ð5Þ and
0:350ð5Þ GeV�1).

F1 c2 c4

as ¼ 1:060ð6Þ GeV�1 0.8333(2) � � � 0.152(1)

as ¼ 0:556ð5Þ GeV�1 0.8620(2) 0.058(1) � � �
as ¼ 0:350ð5Þ GeV�1 0.8737(2) 0.055(1) � � �
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This sensitivity to � (or at) does not only occur in the
gauge fixing functional. In Refs. [43,62,63] a strong de-
pendence on the anisotropy was also seen for the temporal
gluon propagator Eq. (3), although this was numerically
shown to be energy (i.e., U0) independent [42]. Also,
preliminary results indicate that the Gribov mass M in
Eq. (11) slightly increases with �, saturating to a valueM ’
1:2ð2Þ for � ¼ 3–4. In Sec. III C and III D we will see that
the ghost propagator Eq. (2) and the Coulomb potential
Eq. (4), which are by definition independent of the timelike
links, both turn out to be sensitive to the anisotropy.

From Fig. 1 one can infer that lattices with � * 6 would
be needed to minimize the at corrections in F, i.e., to reach
the plateau at F1. Since we also need a large spatial
extension L ’ 50 to explore the deep infrared momentum
region, the combination of these two requirements would
force us to simulate on lattices of temporal extension
Nt ’ 300, beyond the computational power at our disposal.
Moreover, not all observables need to be as sensitive to � as
the gauge functional. We will therefore restrict our inves-
tigation to � ¼ 1 . . . 4 and attempt to extrapolate to larger �
wherever necessary. Of course, a direct confirmation of our
results on large lattices with high anisotropies would be
highly desirable.

C. Ghost form factor

The ghost form factor in Coulomb gauge, Eq. (2), has
been discussed in Refs. [38,41,75,76]; neither its ultravio-
let nor its infrared behavior could be determined conclu-
sively. In the UV, the primary goal is to check the sum rule
for the anomalous dimensions in Eq. (7). In the IR, the
main question is whether the ghost propagator is compat-
ible with an infrared finite behaviour, as is the case in
Landau gauge [77]. If this were true, it would of course
spoil the Gribov-Zwanziger mechanism and the dual
superconductor argument of Ref. [22].

We calculate dðpÞ by inverting the Coulomb gauge FP
operator through a conjugate gradient algorithm on lattices
of spatial sizes up to 543 and anisotropies up to � ¼ 4.
Although for most configurations the algorithm works
quite well, there are some ‘‘exceptional’’ cases where
very small eigenvalues of the FP operator make the inver-
sion ill-conditioned, signaled by very bad convergence. On
the other hand, we expect exactly these configurations to
contribute substantially to the infrared divergence of the
ghost form factor, since they lie close to the Gribov hori-
zon. Our current procedure is to exclude such configura-
tions from the Monte-Carlo ensemble; this obviously
creates a bias in the data which potentially suppresses the
ghost propagator at very low momenta.

Whether or not these near-horizon configurations have a
measurable effect on the ghost propagator also depends
on the frequency with which they appear within a MC
sequence; contrary to Landau gauge [72], this seems to
be relatively stable upon improvement of the gauge fixing.

In our studieswe have observed an ill-definedFP operator in
about one of every 300 configurations, with very large
uncertainties (i.e., there were also MC runs with over
1000 configurations that did not show a single near-horizon
configuration). Preliminary studies of individual singular
configurations with improved pre-conditioners and nu-
merics indicate that their contribution to the ghost form
factor can be enhanced by up to a factor 40 as compared to
the ensemble average, again with large uncertainties due to
the bad condition number. Clearly, this is a zero measure
times infinite contribution problem that can only be
decided by much improved statistics combined with better
inversion algorithms. In this study we have not been able to
resolve this issue quantitatively; the exponent which we
will extract in the following must therefore be considered
as a ‘‘lower bound’’for the correct infrared behaviour.
Results for dðpÞ at � ¼ 1 are shown in Fig. 2(a), while in

Fig. 2(b) we give the coefficients Zð�Þ needed to multi-
plicatively renormalize the data at different coupling, ar-
bitrarily scaled such to let dðpÞ ’ 1 at large momentum.
Although at first glance the data agree qualitatively with
the above expectations, on a closer look two problems
appear. First, small scaling violations can be measured
within errors in the ultraviolet region; a fit to a logarithmic
behavior is thus afflicted with large errors. Second, the
infrared region shows two different behaviors for an inter-
mediate momentum range 0:5 GeV & jpj & 1:2 GeV and
a low momentum range 0:2 GeV & jpj & 0:5 GeV. In the
first regime the data are compatible with a power-law
behavior

dðjpjÞ / jpj��; (17)

with � ’ 0:5, while in the low-momentum region the
effective � decreases, approaching a value � & 0:4. By
going to higher anisotropies this behavior softens and the
data become more and more compatible with a stable
power-law. To illustrate this effect, in Fig. 3(a) we high-
light the infrared behavior showing jpj�mdðpÞ for different
anisotropies, where �m ¼ 0:373ð6Þ is the effective expo-
nent we have measured for L ¼ 54, � ¼ 1 in the lowest
momentum region. The data for � ¼ 1 go to a constant
while for higher anisotropies a power-law still describes
the data well. In Fig. 3(b) we show the IR exponents �
obtained from three different fitting methods for each set of
data at fixed anisotropy �, i.e., temporal cutoff at: the lower
curve corresponds to a pure jpj�� behavior cutting the data
at jpj & 1:5 GeV; the middle one adds a linear subleading
correction and leaves the same cut; the higher one com-
bines the linear correction to the power law with a cut at
jpj & 1 GeV. Fitting all these values of � to a constant �gh,

constrained to be the same for all three methods used, plus
power law corrections in at we find

�gh ¼ 0:55ð1Þ; (18)
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with leading correction of order OðatÞ and a
�2=d:o:f: ’ 0:3.

Because of the cut on exceptional configurations dis-
cussed above we have of course introduced a bias in our
data. Therefore the value in Eq. (18) can only be consid-
ered as a lower bound on the actual value of �gh. Still, as far

as we know, this is the first time that an IR enhanced ghost
form factor can be reliably proven to exist on the lattice,
making the Gribov-Zwanziger confinement scenario ‘‘in

Coulomb gauge’’ fully consistent. Indeed, while in
Ref. [44] it was shown that the Gribov gluon propagator
Eq. (11) is IR equivalent to the massive Landau gauge
solution, in the latter case lattice simulations always give
an IR finite, i.e., tree-leve, l like ghost form factor. How this
can be made to agree with the Gribov-Zwanziger mecha-
nism is still a debated issue.
In general, although any divergence (�gh > 0) of the

ghost form factor would be sufficient to support the
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Gribov-Zwanziger mechanism, the exact value of the in-
frared exponent �gh matters for the sum rule Eq. (7), which

is violated by our findings combined with the results for
gluon propagator in Refs. [42–44]. There are several pos-
sible resolutions to this issue: first, our data for the ghost
propagator only covers the range down to jpj ’ 200 MeV
with sufficient statistics and precision. Further changes in
�gh at a much smaller scale IR � �QCD cannot be ruled

out, although we currently do not see the onset of such
deviations, while the appearance of an additional small
scale in pure YM theory would raise a different kind of
interpretation problem. Moreover, as we have explained
above, our data for �gh is only a lower bound since we have

neglected singular configurations from near the Gribov
horizon. Whether or not these configurations contribute
substantially to the ghost propagator and its exponent �gh

cannot be predicted with our current computational resour-
ces. Most likely, it would also require algorithmic changes
in the inversion method for ill-conditioned FP operators,
and maybe even a change in the fundamental MC generator
to better sample the near-horizon region in field space.

Besides these caveats at our numerical data, the origin of
the sum rule Eq. (7) itself leaves room for discussion. In
essence, it is based on the assumption that (i) the gluon and
ghost propagators have conformal (powerlike) behavior in
the infrared and (ii) the ghost-gluon vertex receives no
radiative corrections (other than an overall multiplicative
renormalization) at low momenta, i.e., it is essentially
‘‘bare.’’ Both results are borrowed from Landau gauge,
where Taylor’s theorem gives a firm explanation why the
ghost-gluon vertex is trivial as p ! 0. The ensuing sum
rule for gluon and ghost propagator are then simple con-
sequences, at least as long as massive solutions in the
infrared can be ruled out, for which the ghost and gluon
behaviour would ‘‘decouple.’’ All these assumptions are
well confirmed by lattice simulations in Landau gauge.

For Coulomb gauge, however, the situation may be more
involved. A careful analysis of the Slavnov-Taylor identi-
ties in Coulomb gauge exhibit a complicated interplay
between transversal (spatial) and longitudinal (temporal)
degrees of freedom, see Eq. (4.12) in Ref. [54]. Integrating
over all energies p0 to reach the equal-time limit could
therefore induce nontrivial structure in the ’’static’’ Green
functions, even though the proof of Taylor’s theorem car-
ries over to Coulomb gauge in the limit jpj ! 0 at any
fixed p0. Unfortunately, no analytical calculations of the
‘‘static’’ vertex at low momenta based on the Slavnov-
Taylor identities has so far been possible, and the corre-
sponding calculation on the lattice have not been carried
out. In Ref. [78], within the Hamiltonian approach, the
Dyson-Schwinger equation for the ghost-gluon vertex
was solved at the one-loop level and little dressing was
found. Furthermore, Landau gauge calculations in three
(euclidian) dimensions also exhibit little dressing of the
ghost-gluon vertex; it is however unclear if these results

simply carry over to the four-dimensional static quantities
in Coulomb gauge.
Let us now consider the ultraviolet behavior, where

exceptional configurations play no role and the situation
is much clearer. As mentioned above, slight scaling viola-
tions can be measured in the data for � ¼ 1. These dimin-
ish as � is increased and the anomalous dimension of the
ghost field can be determined in the Hamiltonian limit.
In Fig. 4 we compare dðpÞ for the lowest and highest
anisotropies �. For the latter we show our best fit to the
expected asymptotic behavior with � given by the sum-rule
in Eq. (10); the ultraviolet mass scale from the fit is
m ¼ 0:21ð1Þ GeV, cf., Eq. (6).

D. Coulomb potential

The Coulomb potential, Eq. (4), has been intensively
investigated in the literature [62,79–84]. While there is
general agreement that its infrared behavior is determined
by a Coulomb string tension larger than the Wilson string
tension [23], the value quoted for the ratio �C=� varies
among the above works.
We have calculated the Coulomb potential Eq. (4) for

lattices of spatial extension up to 403 and anisotropies up to
� ¼ 4. Exceptional configurations did not play a major role
in this case; this may be either due to the smaller volumes
and lower statistics employed, since the computation of
Eq. (4) is much more expensive than Eq. (2), or to the better
pre-conditioning due to the Laplace inversion, or both. In
Fig. 5 we show the infrared behavior of jpj4VCðpÞ=ð8��Þ
for different values of �; the reason for the normalization
will be clear in the following. As in the case of the ghost
form factor, we observe a change in the data in the
Hamiltonian limit. The corrections due to the finite tem-
poral resolution seem to saturate at our highest values of �,
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FIG. 4 (color online). UV behavior of d�1ðpÞ for different
anisotropies � compared with Eq. (6).
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although error bars are still quite large. Also, the bending
down of the data at ’ 0:5–1 GeV, observed in all above
quoted analyses for � ¼ 1, becomes milder, although it
does not disappear. Its presence should indeed not come as
a surprise: at least for the physical potential VðrÞ, which we
know to be given by [85]

VðrÞ ¼ �rþ	� �

12r
þO

�
1

r2

�
; (19)

we expect, after introducing a suitable IR cutoff  and
taking  ! 0 [86]:

jpj4VðpÞ ¼ 8��þ �2

3
jpj2 þOðjpj3Þ; (20)

since the contribution from 	 in Eq. (19), which gives a
term / jpj in Eq. (20), will vanish with . Thus jpj4VðpÞ
must have a minimum as jpj ! 0; since its asymptotic UV
behaviour is also, up to logarithmic correction, / jpj2,
we only have two possibilities: either jpj4VðpÞ is a mono-
tonic function of jpj or, if it has some local minimum
for some jpjm > 0, then it must have a maximum in
0< jpjM < jpjm.

If VC asymptotically behaves like �Cr the data in Fig. 5
must approach a constant as jpj ! 0, giving direct access
to the Coulomb string tension. It is natural to parametrize
them as in Eq. (20):

jpj4VCðpÞ
8��

¼ �C

�
þ �jpj þ �jpj2 þOðjpj3Þ; (21)

where we would expect � > 0 and � ! 0 in the thermo-
dynamic limit. Fitting the data to Eq. (21) and introducing
different cuts at different momenta we obtain for the
Coulomb string tension

�C ¼ 2:2ð2Þ�: (22)

Notice that, even though we don’t have much data in
the IR region, if we optimistically constrain � � 0 we
obtain a higher value for the Coulomb string tension,
�C ¼ 2:5ð1Þ�. Better statistics and data from larger latti-
ces and/or anisotropies in the low momentum region would
of course be welcome to improve the result.

IV. CONCLUSIONS

We have shown that a sufficient approach to the
Hamiltonian limit, which on the lattice translates into
anisotropic lattices with a high temporal resolution, is
crucial for a successful investigation of the ghost form
factor and the Coulomb potential. The effect of the anisot-
ropy on static correlators lies in the different dynamics for
fixed spatial lattice spacing as as at decreases, as we have
shown in Sec. III B. This explains the dependence on �
found also for explicitly energy independent observables
that can be evaluated in a single time slice.
In Sec. III C we have shown that the infrared exponent of

the ghost form factor saturates at �gh 
 0:55ð1Þ when

taking the Hamiltonian limit. Although our estimate may
only be a lower bound due to the contribution of near-
horizon configurations, the infrared divergence of the ghost
form factor confirms the Gribov-Zwanziger [1,2] confine-
ment mechanism and the vanishing of the dielectric
function for the Yang-Mills vacuum [22]. We have also
confirmed quantitatively the sum rule for the anomalous
dimensions of the static gluon and ghost fields in Coulomb
gauge. The similar sum rule prediction in the infrared
would require �gh ¼ 1 in order to be compatible with the

Gribov formula confirmed in Ref. [44]. This is clearly
violated by our best fit �gh 
 0:55ð1Þ. We have discussed

possible arguments to resolve this discrepancy, by criti-
cally analyzing both our data and the origin of the sum rule
itself. A conclusive settlement of this issue must be left to a
future investigation. Finally, in Sec. III D we have shown
that the Coulomb potential is linearly rising in position
space, and the corresponding Coulomb string tension set-
tles nicely in the Hamiltonian limit � ! 1, where we
extract a value of �C ’ 2:2�.
As indicated above, future investigations in this direc-

tion should concentrate on the ghost form factor and
Coulomb potential on much larger spatial lattices to probe
lower momenta, with improved statistics and better
numerics to tackle the rare near-horizon configurations.
This may help to settle the remaining question of the
infrared sum rule for the exponents in the power-law of
the low order Green functions.
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