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We use the Villain approximation to show that the Gross-Witten model, in the weak- and strong-

coupling limits, is related to the unitary matrix model that describes UðNÞ Chern-Simons theory on S3.

The weak-coupling limit corresponds to the q ! 1 limit of the Chern-Simons theory while the strong-

coupling regime is related to the q ! 0 limit. In the latter case, there is a logarithmic relationship between

the respective coupling constants. We also show how the Chern-Simons matrix model arises by

considering two-dimensional Yang-Mills theory with the Villain action. This leads to a Uð1ÞN theory

which is the Abelianization of 2d Yang-Mills theory with the heat-kernel lattice action. In addition, we

show that the character expansion of the Villain lattice action gives the q deformation of the heat kernel as

it appears in q-deformed 2d Yang-Mills theory. We also study the relationship between the unitary and

Hermitian Chern-Simons matrix models and the rotation of the integration contour in the corresponding

integrals.
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I. INTRODUCTION

In the 1970s, Wilson introduced and studied lattice
versions of Yang-Mills theory, in which the dynamical
variables are elements of the gauge group, defined on the
links that connect the adjacent lattice points [1]. The choice
of the lattice action in Yang-Mills theory was an important
aspect of the problems considered in the early development
of lattice gauge theory [1–9]. In particular, in the late 1970s
and early 1980s, a number of papers studied this possibil-
ity, leading to the consideration of several alternatives to
the Wilson action [1], like the heat-kernel action [2–4] or
the Manton action [5]. One of the motivations was the need
for a proper understanding of the transition from strong to
weak coupling in lattice gauge theories.

A well-known result in the study of non-Abelian two-
dimensional Yang-Mills theory with the Wilson action is
the third-order phase transition, found by Gross and Witten
[10] and Wadia [11], in a one-plaquette model, described
by a unitary matrix model. This result has turned out to be
of relevance in many current problems in theoretical phys-
ics, like the study of Hagedorn and deconfining transitions
in weakly coupled Yang-Mills theory [12]. The Gross-
Witten model has been also recently discussed in the study
of type 0B and 0A fermionic string theories [13] and in
relation with other solvable models, like the Kontsevich
model [14].

We will first show that the unitary matrix model ofUðNÞ
Chern-Simons theory on S3 [15–17] is intimately related to

the Gross-Witten model when one considers it together
with the Villain approximation of the XY model [18,19].
We introduce the Villain approximation, together with the
two relevant matrix models, in the next section. We will
show that both the weak-coupling and strong-coupling
regimes of the Gross-Witten model can be described, using
the Villain approximation, by analytically continued UðNÞ
Chern-Simons on S3. Recall that the Chern-Simons action
is given by Witten [20]

SCSðAÞ ¼ k

4�

Z
M
TrðA ^ dAþ 2

3
A ^ A ^ AÞ; (1.1)

where A is the connection, a 1-form valued on the
corresponding Lie algebra, and k 2 Z is the level. The
q parameter is defined in terms of the level k by
q ¼ expð2�i=ðkþ NÞÞ.
We will see that the weak-coupling limit corresponds to

the q ! 1 limit of the Chern-Simons theory, whereas the
strong-coupling limit of the Gross-Witten model corre-
sponds to the opposite limit, q ! 0. In the matrix model
formulation, the q parameter is treated as real and written
in terms of a coupling constant gs as q ¼ e�gs [21]. The
above characterization of Chern-Simons theory as being
analytically continued precisely refers to this treatment of
q as a real parameter.
Indeed, actual computations with the matrix model are

carried out with q real, using for example the associated
q-orthogonal polynomials [21], and the identification
gs ¼ 2�i=ðkþ NÞ at the end, allows us to make contact
with the well-known expressions for the Chern-Simons
observables [20]. See for example Ref. [21], where the
simple case of the UðNÞ Chern-Simons partition function
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on S3 is computed with the Stieltjes-Wigert polynomials
with a q parameter, q ¼ e�gs .

The correspondence between the Gross-Witten model
and the Chern-Simons matrix model is of a rather different
nature in the two opposite limits q ! 0 and q ! 1. In
the weak-coupling limit g2YM ! 0, as shown already
in Ref. [22], the coupling constants are related by
g2YM ¼ 2gs, whereas in the strong-coupling limit we will
have that gs ¼ 2 lnðg2YMÞ or, equivalently, q ¼ 1=g4YM, as
we shall see in Sec. II in detail.

We will end Sec. II by exploring some consequences of
these relationships between the models. In particular, in
Sec. II A we show that the Gross-Witten model at weak
coupling is a Gaussian matrix model whose free energy
has an expansion that can be interpreted in terms of
closed strings.

The relationship between the Gross-Witten model and
the Chern-Simons matrix model, based on the application
of the Villain approximation to theWilson action, indicates
that the direct consideration of the Abelian Villain action
in lattice two-dimensional Yang-Mills theory, should de-
scribe Chern-Simons theory. Two-dimensional Yang-Mills
theory was also studied with the Manton action [23,24] and
the heat-kernel action [4]. We shall see that, indeed, the
straightforward generalization of the Abelian Uð1Þ lattice
action, which is just a theta function [7,8,18]

expð�SVð�ÞÞ ¼ X1
l¼�1

e�ð1=g2Þð�þ2�lÞ2 ; (1.2)

to the non-Abelian case, in the setting of UðNÞ two-
dimensional Yang-Mills theory, directly gives UðNÞ
Chern-Simons theory on S3. This straightforward exten-
sion of the Villain lattice action to the non-Abelian case
was explored by Onofri, shortly after the study of the
heat-kernel case [4], in a less well-known work [9]. The
description of pure Chern-Simons theory by such a model
has not hitherto been realized.

It is well known that the Villain model arises in the
Kogut-Susskind Hamiltonian lattice gauge theory [25] in
the Abelian case, which leads to a direct correspondence
with the planar Heisenberg (or XY) model [2,6]. The non-
Abelian case leads to the heat kernel [2,4], and we shall
see that the Chern-Simons matrix model follows from
Abelianization of the heat-kernel propagator in the context
of two-dimensional Yang-Mills theory. This is the content
of Sec. III and, in particular, we show in Sec. III B that this
Abelian projection is equivalent to a q deformation of 2d
Yang-Mills, in consistency with the known relationship
between Chern-Simons theory and a q deformation of 2d
Yang-Mills theory [26]. Recall that Chern-Simons theory
is known to be explained in terms of an Abelian two-
dimensional Yang-Mills theory, as was shown at the level
of the path integral, first in the case of manifolds of the type
S1 � �h, where �h denotes a Riemann surface of genus h
[27] and, more recently, for Seifert fibrations over �h [28],

which contains the S3 case, the one studied in this paper at
the level of the matrix model.
To conclude, we study in the Appendix the precise

relationship between the unitary and the Hermitian ver-
sions of the Chern-Simons matrix model focusing also in
the rotation of the contours of integration.

II. GROSS-WITTEN MODEL AND THE
VILLAIN APPROXIMATION

The approximation devised by Villain in 1975 in the
study of the two-dimensional XY model [18] is based on
the simple observation that the term expð� cos�Þ that
appears in the 2d XY model can be well approximated
for large� by a periodic Gaussian with minima in the same
locations and with the same curvature. That is

expð�cos�Þ�e�
X1

n¼�1
e�ð1=2Þ�ð��2�nÞ2 for�!1: (2.1)

But the lhs term is of course also the weight function of the
matrix model description of the one-plaquette model of
Yang-Mills theory based on the Wilson action (namely, the
Gross-Witten model [10]). The rhs is a theta function and
then the Villain approximation applied to the Gross-Witten
model leads to the relationship with a unitary matrix model
with a theta function as weight function.
Precisely, the unitary matrix model that describes UðNÞ

Chern-Simons theory on S3 [15–17] is given by1

ZUðNÞ
CS ðS3Þ ¼

Z 2�

0

YN
j¼1

d�j
2�

�ðei�j jqÞY
k<l

jei�k � ei�l j2; (2.2)

where the weight function of the matrix model is a Jacobi
third theta function

!ð�Þ ¼ �ðei�j jqÞ ¼ X1
n¼�1

qn
2=2ein�: (2.3)

We show now how this model follows from the Gross-
Witten model [10,11], by using the Villain approximation
[19]. Aspects of the relationship between the two models,
especially in the weak-coupling regime, have already been
studied in Ref. [22], using orthogonal polynomials. The
results of the seminal works [18,19] also allow us to extend
the relationship between the Gross-Witten and the Chern-
Simons models to the strong-coupling regime.
Recall that the Gross-Witten model is a unitary one-

matrix model which arises as the one-plaquette reduction
of the combinatorial quantization of Yang-Mills theory. In
two dimensions the reduction is exact and described by the
partition function [10]

1The unitary matrix model (2.2) also describes Chern-Simons
theory if the weight function is ��1ð�ei�j jqÞ [16]. This possi-
bility has also been noticed in Ref. [17]. The nonuniqueness
description of the Chern-Simons matrix models is described in
Ref. [21]. See the Appendix for its precise relationship with the
Hermitian matrix model.
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ZGW
N ð�Þ :¼

Z
UðNÞ

dU exp

�
�

2
TrðUþUyÞ

�

¼
Z 2�

0

YN
i¼1

d�ie
� cos�i

Y
i<j

sin2
�
�i � �j

2

�
; (2.4)

where dU denotes the bi-invariant Haar measure for inte-
gration over the unitary group UðNÞ. The � parameter is
usually written in terms of the gauge coupling constant as
� ¼ 2=g2YM [10] and hence, the strong coupling limit is
given by � ! 0 and the weak coupling limit by � ! 1.

The planar or XY model is characterized by a coupling
between nearest-neighbor spins which has the same
analytical form as the potential in the Gross-Witten model
[18,19]

V� ¼ ��½1� cosð�� �0Þ�: (2.5)

The coefficients of the Fourier expansion of this potential
are given by

e
~VðsÞ ¼ Isð�Þ; (2.6)

where InðzÞ is the modified Bessel function of order n. The
partition function of the Gross-Witten model can also be
written as the determinant of a Toeplitz matrix with (2.6) as
entries of the matrix [29]

ZNð�Þ ¼ det
1�i;j�N

½Ii�jð2�Þ�: (2.7)

On the other hand, for UðNÞ Chern-Simons theory on S3

the corresponding Toeplitz determinant is [16]2

ZUðNÞ
CS ðS3Þ ¼ det

1�i;j�N
½ai�jðqÞ�; with aj ¼ qj

2=2: (2.8)

In the weak-coupling limit � ! 1, the Fourier
coefficient is

lim
�!1

e
~VðsÞ ¼ e�s2=2� ¼ e�s2g2YM=4: (2.9)

In this limit, the Toeplitz determinant (2.7) has the
Gaussian coefficients (2.9) as entries, and hence it coin-
cides with (2.8). Of course, g2YM ! 0 in (2.9) and this
implies gs ! 0 on the Chern-Simons theory side as well.

The prescription in Ref. [18], namely (2.1), is valid for
both the opposite � ! 0 and � ! 1 limits, using always
periodic Gaussians, but including a renormalization scale
RVð�Þ and a rescaled inverse temperature�V ¼ fð�Þ. This
implies that a correspondence between the Gross-Witten
model and the Chern-Simons matrix model holds for both
the weak-coupling and the strong-coupling regimes of the
model. As seen above with the Toeplitz determinant rep-
resentation of the matrix model, and also in Ref. [22] using
orthogonal polynomials, the weak-coupling limit follows
in a straightforward way. This result, as shown in Ref. [19],

also follows by considering decimation [30]. It is explained
in Ref. [19] that, after a few iterations of the Kadanoff-
Migdal decimation procedure, any interaction function at
reasonably low temperatures generates a new interaction of
the Villain type

e VV ð���0Þ ¼ X1
m¼�1

e��V ð���0�2�mÞ2=2:

In addition, the critical properties of the two models could
be identical by conveniently choosing �V ¼ fð�Þ a func-
tion of� [19]. In particular, a comparison of the interaction
form for weak and strong coupling showed equivalence if

fð�Þ ¼ � for � ! 1
fð�Þ ¼ ½2 lnð2=�Þ��1 for � ! 0:

(2.10)

Notice that to compare with the theta function as it appears
in the matrix model (2.2), we have to take into account that

X1
n¼�1

e��ð�þ2�nÞ2 ¼ 1ffiffiffiffiffiffiffiffiffiffi
4��

p X1
n¼�1

e�n2=ð4�Þein�: (2.11)

The rhs of (2.11) is the series expansion of the theta
function in (2.2). Thus, the decimation of the weight func-
tion of the Gross-Witten model coincides with the Villain
approximation and it leads to the weight function of the
unitary Chern-Simons matrix model (2.2). In the weak-
coupling limit � ! 1, we obtain that gs ¼ 1=� and hence
that gs ¼ g2YM=2. This also follows from (2.9).
The strong-coupling regime � ! 0 is specially interest-

ing. Notice that taking � ¼ 0 (g2YM ¼ 1) directly leads to
the circular ensemble [31]

ZGW
N ð� ¼ 0Þ ¼

Z 2�

0

Y
i<j

sin2
�
�i � �j

2

�YN
i¼1

d�i:

In Ref. [22], the relationship between this model and
Chern-Simons theory was studied. The result (2.10) leads
to a refined understanding of this limit � ! 0. In particu-
lar, the relationship between the coupling constants is now
logarithmic gs ¼ 2 lnð2=�Þ ¼ 2 lnðg2YMÞ and hence, the
coupling constant of the Gross-Witten model is related to
the q parameter of Chern-Simons theory q ¼ 1=g4YM. To
summarize, including the prefactors

e� cos� � e�ffiffiffiffiffiffiffiffiffiffi
2��

p �ðei�j je�1=�Þ; with gs ¼ g2YM=2

for gYM ! 0;

e� cos� � �ðei�j je�1=�VÞ; with gs ¼ 2 logðg2YMÞ
for gYM ! 1: (2.12)

It is also worth mentioning that, already in the original
paper on the XY model [18], an approximation valid for
both limits was also given:

2Such a determinant was already considered in Ref. [9]. See
Sec. III.
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e � cos� � RVð�Þ
X1

m¼�1
e��V ð��2�mÞ2=2; (2.13)

with

RVð�Þ¼ I0ð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2��V

p
e��V=2¼ I1ð�Þ=I0ð�Þ; (2.14)

where I1ð�Þ and I0ð�Þ are, as in (2.6), Bessel functions.
These are the first two Fourier coefficients of the expansion
of the lhs of (2.13). The values for the prefactor RVð�Þ and
the coupling constant �V are then found by imposing the
first two Fourier coefficients of the two expressions
in (2.13) to coincide. The limits � ! 0 and � ! 1 of
(2.14) coincide with the previous results. It was shown in
Ref. [18] that this approximation is rather good, even for
values close to the critical temperature. This approxima-
tion has been studied in further detail in Ref. [32], where it
was found that the convergence is better for the strongly
coupled regime � ! 0. In addition, the result (2.13) can be
extended, with good convergence in both limits, to the case
where the original function is !ð�Þ ¼ � cos�þ � cosð2�Þ
[32]. This suggests that not only the Gross-Witten model,
but more complex multicritical unitary matrix models [33],
can also be expressed in terms of the unitary Chern-Simons
matrix model, only with a more sophisticated expression
for the coupling constant and the prefactor.

A. Gaussian behavior and closed string
interpretation at weak coupling

The relationship between the Gross-Witten model in the
weak-coupling limit and the semiclassical limit of the
Chern-Simons matrix model, indicates that the Gross-
Witten model in this regime should be related to closed
topological strings [34]. The reason is that the semiclassi-
cal limit (k ! 1) of the UðNÞ Chern-Simons on S3 free
energy also coincides with the nonperturbative part of the
total free energy. The Chern-Simons free energy can be
suitably expressed in terms of nonperturbative and pertur-
bative contributions

FCS ¼ logZCS ¼ Fnp þ Fp: (2.15)

The nonperturbative contribution Fnp is the logarithm of

the measure factor in the path integral, which is not
captured by Feynman diagrams, and it gives the exact
Chern-Simons partition function in the semiclassical limit
k ! 1 [[34] Eq. (2.8)]. It has the explicit expression

Fnp ¼ log

�ð2�gsÞN2=2

volðUðNÞÞ
�
: (2.16)

This free energy (2.16), given by a Hermitian Gaussian
matrix model, has an expansion which can be interpreted in
terms of closed topological string theory on the resolved
conifold geometry [34]. See Ref. [34] for equivalent string
theory and gauge theory interpretations.

Due to the correspondence between the Chern-Simons
and the Gross-Witten matrix models, the latter should have
(2.16) as free energy in the weak-coupling limit � ! 1.
Consider the expression for the free energy of the Gross-
Witten model for finite N and gYM ! 0 [35]

FGW’ 2N

g2YM
�N

2
lnð2�Þ�N2

2
ln

�
2

g2YM

�
þ XN�1

j¼1

lnj!þOðg2YMÞ:

This coincides with the free energy of a Hermitian
Gaussian matrix model [31]

ZGð�Þ ¼ e�N
Z 1

�1
e
�PN

j¼1
�x2j =2

Y
j<k

ðxj � xkÞ2: (2.17)

This relationship between the Gross-Witten and the
Gaussian matrix model agrees with Ref. [36]. Notice that
the term e�N actually corresponds to the e� term in the
Villain approximation (2.12) and implies that one has to
consider the Gross-Witten model with the potential (2.5),3

instead of the one in (2.4).

III. THE VILLAIN LATTICE ACTION
AND ABELIAN/q-DEFORMED 2D

YANG-MILLS THEORY

We begin by discussing the heat-kernel action, which
was introduced in lattice gauge theory, at least in part, as an
alternative to the Wilson action that also provided a natural
extension to the non-Abelian case [2–4] of the Villain
approximation of the two-dimensional XY model [18],
which had been crucially used in the study of Uð1Þ lattice
gauge theories [7,8].
The setting is quantum Yang-Mills theory with gauge

group UðNÞ on an oriented closed Riemann surface �h of
genus h and unit area form d� [37]. The action is

SYM ¼ � 1

4gYM

Z
�h

d�TrF2; (3.1)

where gs plays the role of the coupling constant, F is the
field strength of a matrix gauge connection, and Tr is the
trace in the fundamental representation of UðNÞ. A lattice
regularization of the gauge theory relies on a triangulation
of the two-dimensional manifold � with group matrices
situated along the edges [38]. The path integral is then
approximated by the finite-dimensional unitary matrix
integral

ZM ¼
Z Y

edges‘

dU‘

Y
plaquettesP

ZP½UP�; (3.2)

where dU‘ denotes Haar measure on SUðNÞ and the hol-
onomy UP ¼ Q

‘2PU‘ is the ordered product of group
matrices along the links of a given plaquette. The local

3This form of the potential corresponds exactly to the Wilson
lattice action.
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factor ZP½UP� is a suitable gauge invariant lattice weight
that converges in the continuum limit to the Boltzmann
weight for the Yang-Mills action (3.1). This expression for
ZM leads to the matrix models presented in the previous
section after the suitable choice of lattice action.

Let us discuss now the use of the heat kernel for the
lattice weight ZP½UP�. In this case, the lattice action has
many interesting features [4] and is the usual choice in
two-dimensional Yang-Mills theory [37]. It leads to the
well-known group theory expansion of the partition func-
tion [38,39]

ZM ¼ X
�

ðdim�Þ2�2h expð�g2YMC2ð�ÞÞ; (3.3)

where the sum runs through all isomorphism classes � of
irreducible representations of the SUðNÞ gauge group,
dim� is the dimension of the representation �, and C2ð�Þ
is the quadratic Casimir invariant of �. This expression
for the partition function is a particular case of the propa-
gator [4,37]

expð�SHKðUÞÞ ¼
�
Ij exp

�
1

2
g2YM�

�
jU

�
� K

�
U;

g2YM
2

�
;

which can be written as [4]

K

�
U;

g2YM
2

�
¼ X

�

dim���ðUÞ expð�g2YMC2ð�ÞÞ; (3.4)

where the sum runs over all irreducible unitary representa-
tions of the gauge group, ��ðUÞ is the character of such a
representation, dim� ¼ ��ðIÞ its dimension and C2ð�Þ the
Casimir of the representation. Writing (3.4) in terms of the
elements of the Young tableaux that labels the representa-
tion � leads to a discrete matrix model representation [37].

A. q deformation

In recent years, the relationship between two-
dimensional Yang-Mills theory and Chern-Simons theory
on Seifert manifolds has been understood in further detail
in Refs. [26,40,41] (see also Refs. [28,42,43]). Seifert
manifolds Mðh; pÞ are nontrivial circle bundles (of mono-
pole degree p) over two-dimensional surfaces of genus h.
The simplest case, the trivial fibration,Mðh; 0Þ ¼ �h � S1

was studied in detail in Refs. [20,27].
Chern-Simons theory on Seifert manifolds has been the

subject of much interest in the study of topological strings
[44] and has a direct relationship with a q deformation of
the two-dimensional Yang-Mills theory discussed above,
when the manifold is a sphere, �0 ¼ S2. In particular,
the partition function of q-deformed 2d Yang-Mills on
a closed Riemann surface of genus h is given by
Aganagic et al. [26]

Zq
YMð�hÞ ¼

X
�

ðdimqð�ÞÞ2�2hqðp=2ÞC2ð�Þ; (3.5)

where dimqð�Þ is the q deformation of the dimensions of

sln representations, i.e., the quantum dimensions dimqð�Þ
[45], p is a positive integer parameter and, as usual,
C2ð�Þ is the Casimir of the representation �. This is related
to the partition function of Chern-Simons theory on a
circle fibration (with Chern class p) over �h, which is a
Seifert space. In the case �h ¼ S2 and p > 1, the Seifert
manifold is the lens space S3=Zp. If p ¼ 1, then the

connection is with Chern-Simons theory on S3, the case
studied here.

B. Abelianization and q deformation

The propagator (3.4) can be alternatively written in
terms of the elements of UðNÞ, and then one obtains a
unitary matrix model expression. When written in terms of
the invariant angles of the gauge group, it is given by
Menotti and Onofri [4]

expð�SHKð�1; . . .�NÞÞ

¼ N
X1

flg¼�1

Y
i<j

�i � �j þ 2�ðli � ljÞ
2 sin½�i � �j þ 2�ðli � ljÞ�

� exp

�
� 1

g2YM

XN
j¼1

ð�j þ 2�ljÞ2
�
; (3.6)

where N stands for some normalization. This is a rather
complex model, and therefore the heat-kernel case, in
contrast to the two cases studied in the previous section,
is not studied with a unitary matrix model but rather with a
discrete matrix model that follows from (3.3). We show
now that a simplification of (3.6) leads to the Chern-
Simons matrix model. The exponential part in the rhs is
the Abelian Uð1Þ Villain action, which is just a theta
function (2.1)

expð�SVð�ÞÞ ¼
X1

l¼�1
e�ð1=g2YMÞð�þ2�lÞ2 ; (3.7)

and the straightforward generalization to UðNÞ gives a
propagator

�K

�
U;

g2YM
2

�
¼ X1

flg¼�1
exp

�
� 1

g2YM

XN
j¼1

ð�j þ 2�ljÞ2
�

¼ YN
i¼1

expð�SVð�iÞÞ

¼ expð�SVillainð�1; . . .�NÞÞ (3.8)

that defines an action which is just the direct product of the
Abelian Villain action (3.7). The corresponding one-
plaquette model is given by a UðNÞ matrix integral, which
is the unitary integration of the propagator. The partition
function is then given by the matrix model
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ZN ¼
Z 2�

0

YN
i¼1

d�i
2�

X1
n¼�1

e�ð1=g2YMÞð�iþ2�nÞ2Y
k<l

jei�k � ei�l j2;

(3.9)

which, recalling the identity (2.11), is the unitary matrix
model description ofUðNÞChern-Simons theory onS3 (2.2)
discussed so far and previously studied in Refs. [15–17].

Hence, ZN ¼ ZUðNÞ
CS ðS3Þ, by identifying gs ¼ g2YM=2. Thus,

the Abelianization of the heat kernel (3.6), given by the
straightforward extension of the Uð1Þ Abelian Villain ac-
tion to the Uð1ÞN case (3.8), leads to UðNÞ Chern-Simons
theory on S3.

At the level of the matrix model, this straightforward
generalization of the Villain action was already considered
in an interesting paper by Onofri [9], that analyzed this
problem and presented a detailed study of the matrix model
(3.9). It is remarkable that the results in that paper describe
pure Chern-Simons theory on S3, with UðNÞ and SUðNÞ, a
fact that has not been pointed out so far. Some expressions
in Ref. [9] are manifestly Chern-Simons observables, like
the partition function of UðNÞ Chern-Simons theory on S3.

We have seen the Abelianization of the heat kernel,
using its expression in terms of the invariant angles of
the gauge group (3.6). Let us now look at the relationship
between the choice of the Villain lattice action and the q
deformation of the heat-kernel 2d Yang-Mills theory, using
instead the character expansion (3.4).

Notice that the q-deformed 2d Yang-Mills (3.5) is just
given by the usual expression for two-dimensional Yang-
Mills theory based on the heat-kernel action and defined on
a compact manifold of genus h, but with q dimensions
instead of ordinary dimensions, dimð�Þ ! dimqð�Þ. We

will now show that choosing (3.8) with the Villain action
(1.2) as a lattice action is actually equivalent to q-deformed
2d Yang-Mills. Since choosing the Villain action is tanta-
mount to an Abelian projection of the two-dimensional
Yang-Mills theory with the heat-kernel lattice action, this
implies that the Abelianization and the q deformation of
the latter lead to the same theory.

An expression of the type (3.5) is valid for 2d Yang-Mills
on a compact manifold of genus h and it can be constructed
from the central heat kernel, which is also the propagator
on a cylinder [37]

K

�
g2YM
2

; U;U0
�
¼ X

�

��ðUÞ��ðU0Þ expð�g2YMC2ð�ÞÞ;

(3.10)

with holonomies U and U0 on the two disks of the cylinder
and where ��ðUÞ is the character of the irreducible repre-
sentation �, as in (3.4) above. Recall that ��ðU ¼ IÞ ¼
dimð�Þ. Hence, if U ¼ U0 ¼ I, (3.10) is the expression for
the partition function of two-dimensional Yang-Mills
theory on S2. If only U0 ¼ I, then it describes two-
dimensional Yang-Mills on a disk

K

�
g2YM
2

;U;I
�
¼X

�

��ðUÞdim�expð�g2YMC2ð�ÞÞ: (3.11)

This is the heat kernel and it is also the amplitude of a
plaquette that leads, by gluing, to (3.6) [37]. Since (3.11) is
also the fundamental solution of the diffusion equation,
then, as is well known, two-dimensional Yang-Mills theory
based on the heat kernel can be understood as a diffusion
process on the gauge group manifold.
The relationship between the Chern-Simons model con-

structed with the Villain action and the q deformation of
two-dimensional Yang-Mills theory can be readily seen by
considering the character expansion of the UðNÞ Villain
action (3.8) given in Ref. [9]

e�SVillainðUÞ

Z
¼ X

m1�m2�...�mN¼0

�ðm1;...;mNÞðUÞqð1=2Þ
P

N
i¼1

m2
i

�Y
j>i

�
qmi�mjþj�i � 1

qj�i � 1

�
; (3.12)

where the sum is over the integers fmig with i ¼ 1; . . . ; N
and Z is the partition function of the unitary matrix model,
which has the explicit form

Z ¼
�
g2YM
8�

�
N=2 YN�1

k¼1

ð1� qN�kÞk; q ¼ e�ðg2YM=2Þ:

This character expansion of the Villain action suggests that
such an action leads to the usual propagator of two-
dimensional Yang-Mills theory based on the heat kernel
(3.11) but with q dimensions instead of dimensions, since
the last term in (3.12) gives an explicit expression for
quantum dimensions. An elementary manipulation of the
product shows this explicitly:

Y
j>i

�
qmi�mjþj�i � 1

qj�i � 1

�
¼ Y

j>i

qðmj�miÞ=2 ½mi �mj þ j� i�q
½j� i�q

¼ qð1=2Þ
P

N
l¼1

ðN�2lþ1Þmldimqð�Þ;
where � denotes the unitary irreducible representations
of the gauge group, characterized by partitions whose
Young tableaux have columns with fmig boxes. The
explicit expression for the quantum dimensions is given,
as in Ref. [26], by

dim qð�Þ ¼
Y
j>i

½mi �mj þ j� i�q
½j� i�q ;

with

½x�q ¼ qx=2 � q�ðx=2Þ

q1=2 � q�1=2
:

Putting all together, we see that the Casimir term is
manifest and appears exactly as in Ref. [26]

MAURICIO ROMO AND MIGUEL TIERZ PHYSICAL REVIEW D 86, 045027 (2012)

045027-6



C2ð�Þ ¼
XN
i¼1

m2
i þ ðN � 2iþ 1Þmi

¼ XN
i¼1

miðmi � 2iþ 1Þ þ N
XN
i¼1

mi;

and hence we obtain

e�SVillainðUÞ

Z
¼ X

�

��ðUÞqð1=2ÞC2ð�Þdimqð�Þ: (3.13)

Thus, the rhs of (3.12) is the disk amplitude for q-deformed
two-dimensional Yang-Mills theory with p ¼ 1, which, by
the same procedure discussed above, and explained in
detail in Ref. [37], leads to the expression for the partition
function (3.5). This identity is actually a particular case of
the Kostant identity, which gives a character expansion of
theta functions of a lattice [46]. This specific form of the
identity was then rediscovered later on, in Ref. [9], in the
context of the Villain lattice action, and it also appears
much later in Ref. [47], where, working from the rhs of
(3.13) a theta function expression was found, which is, as
we have seen here, the Villain lattice action. In this paper,
we have also shown, by using the equivalent formulation
of the lattice action in terms of the invariant angles (3.6),
that it follows from taking only the Abelian part of the
heat kernel.

The fact that the Abelianization and the q deformation
described here are equivalent is qualitatively consistent
with the fact, explained for example in Ref. [48], that a q
deformation of a Lie group G is not a group and lacks its
symmetry, whereas the maximal torus T of G remains an
ordinary symmetry group after the symmetry breaking
inherent in the transformation of a Lie group into a quan-
tum group.

To conclude, let us mention that inspection of the analo-
gous expression for SUðNÞ in Ref. [9] shows that dimq�

can also be written as the character ��ðTqÞ, where Tq 2
SLðN;CÞ is given by diag½qN�1; qN�3; . . . ; q3�N; q1�N�.
Hence, the propagator is now of the type Kðg22 ; U; TqÞ
instead of (3.11), which suggests that diffusion does not
take place in the whole gauge group. Indeed, the explicit
form of the matrix model indicates diffusion on the maxi-
mal torus Uð1Þ � . . .�Uð1Þ of the gauge group UðNÞ.
This is in agreement with a previous result that related
Chern-Simons theory on S3 with Brownian motion on the
Weyl chamber of the gauge group [49].

IV. CONCLUSIONS AND OUTLOOK

We have seen how the unitary matrix model that
describes UðNÞ Chern-Simons theory on S3 arises from
studying two-dimensional Yang-Mills theory with the
Villain lattice action and we have compared it both with
the Wilson and the heat-kernel lattice action cases.

Regarding the former, we have seen that the Gross-
Witten model is related to the Chern-Simons matrix model
both in the weak-coupling and the strong-coupling re-
gimes. As we have seen in Sec. II A, one of the implica-
tions is that the Gross-Witten model, which describes
two-dimensional Yang-Mills theory on R2, coincides in
the weak-coupling limit with the nonperturbative part of
Chern-Simons theory on S3, and consequently has the
same string theory interpretation [34]. In both cases, the
free energy is given by a Hermitian Gaussian matrix
model. In spite of the apparent simplicity of such a matrix
model, it is actually relevant in the study of subsectors
of N ¼ 4 supersymmetric gauge theory and their rela-
tionship with two-dimensional Yang-Mills theory (see
Ref. [50], for example). It is possible that taking into
account Wilson loops in our discussion would lead to a
relationship with that line of research.
Notice also that the general approximation of the Gross-

Witten weight (2.13) implies that a small modification
of the Gross-Witten model potential leads to the Chern-
Simons matrix model. The interest of this result lies in a
possible connection between the Chern-Simons matrix
model and the unitary matrix models that appear in the
study of phase transitions of weakly coupled gauge theo-
ries [12].
The heat-kernel has a character expansion which is the

basis of the study of 2d Yang-Mills theory. However, it also
can be expressed in the invariant angles of the gauge group
(the unitary group in our case), as pointed out in Ref. [4].
The unitary matrix model that follows from this represen-
tation is not used in the heat-kernel case, due to its com-
plexity. However, we also have seen that an Abelian
projection of the heat-kernel lattice action leads to a
Uð1ÞN lattice action, which is the Villain lattice action.
After unitary integration of the resulting propagator, the
corresponding matrix model is now the UðNÞ Chern-
Simons matrix model for S3. On the other hand, since the
character expansion of the Villain lattice action gives the
q-deformed 2d Yang-Mills propagator (Kostant-Onofri
identity), we see that the Abelianization of (3.6) coincides
with the q deformation of (3.11), given by (3.13). In
addition, it shows how the q propagator directly leads to
the unitary Chern-Simons matrix model, instead of the
(equivalent) Chern-Simons Hermitian matrix model.
Precisely, and to conclude, in the Appendix , the rela-

tionship between the unitary and the Hermitian versions of
the Chern-Simons matrix model is studied in detail, focus-
ing also in the rotation of the contours of integration.
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APPENDIX. UNITARY VS HERMITIAN AND
INTEGRATION CONTOURS IN

MATRIX MODELS

In this paper we have focused on the unitary matrix
model that describes Chern-Simons theory on S3. It was
first considered in Ref. [15] although we have seen that it
was already studied in detail in Ref. [9]. In contrast to the
Hermitian matrix model, no additional work has been done
using the unitary model, with the exception of its recent
appearance in the study of matrix models in Donaldson-
Thomas theory [16,17]. The Hermitian matrix model in the
S3 case reads [51]

ZUðNÞ
CS ðS3Þ ¼

Z 1

�1
e
�PN

j¼1
x2j =ð2gsÞ

�Y
j<k

�
2 sinh

�ðxj � xkÞ
2

�
2 YN
j¼1

dxj
2�

: (A1)

Both models, the unitary (2.2) and the Hermitian (A1), are
solved with orthogonal polynomials that have the same
orthogonality properties, and hence the corresponding
observables of the matrix model, like the partition function
for example, coincide. These polynomials are the Stieltjes-
Wigert polynomials in the Hermitian case [21] and the
Rogers-Szegö polynomials in the case of the unit circle
[22,52]. The connection between these two systems of
orthogonal polynomials allows to explain the relationship
between both matrix models, as was shown in Ref. [52].
However, it is interesting to have a more immediate rela-
tionship between the models. Let us write the model (A1)
in its trigonometric version:

~ZUðNÞ
CS ðS3Þ ¼

Z 1

�1
e
�ð1=2gsÞ

P
N
j¼1

u2j

�Y
j<k

�
2 sin

uj � uk
2

�
2 YN
j¼1

duj
2�

: (A2)

We will now show its relationship with (A1). The first step
is to relate (A2) with the unitary model (2.2), by trans-
forming the Vandermonde determinant

Y
j<k

�
2 sin

uj � uk
2

�
2 ¼ Y

j<k

jeiuj � eiuk j2; (A3)

and the weight function, making the range of integration
compact and using also the identity (2.11)

Z 1

�1

Y
j<k

jeiuj�eiuk j2e�ð1=2gsÞ
P

N
j¼1

u2j
YN
j¼1

duj
2�

¼ gN=2
s

ð2�ÞN=2

Z 2�

0

YN
j¼1

duj
2�

X1
n¼�1

e�ðn2gs=2Þþinuj
Y
j<k

jeiuj�eiuk j2

¼ gN=2
s

ð2�ÞN=2

Z 2�

0

YN
j¼1

duj
2�

�ðqjujÞ
Y
j<k

jeiuj�eiuk j2: (A4)

Hence, we see that the trigonometric matrix model (A2) is
equivalent to the unitary Chern-Simons matrix model (2.2).
It is also related to (A1) by the change of variables x ¼ iu

Z 1

�1
e
�PN

j¼1
x2j =ð2gsÞY

j<k

�
2 sinh

�
�ðxj � xkÞ

2

��
2 YN
j¼1

dxj

¼ ei�NðNþ1Þ=4 Z �i1

i1
e
P

N
j¼1

u2j =ð2gsÞ

�Y
j<k

�
2 sin

�
�ðuj � ukÞ

2

��
2 YN
j¼1

duj: (A5)

However, notice that the integral in the trigonometric
model (A5) is actually over the imaginary line of the
complex plane. Then, to show the equivalence of (A1)
and the unitary model (2.2), the rhs of (A5) has to be equal
to (A2). What we get now is (A2) but with the opposite sign
in the weight and a different integration contour. If we were
able to rotate the contour to the real axis, then the sign in
the exponential of the weight can be corrected just by
complex conjugation of (A5), recalling gs as a purely
imaginary quantity. Hence, one needs to rotate the contour
to the real line and due to the results above mentioned, we
know that this has to be the case.
This rotation of the contour is also directly related to the

fact that the actual derivation of the matrix model for
Seifert manifolds leads to integral expressions with con-
tours on the complex plane [51,53], and it is just assumed
that they can be rotated into the real axis [51], leading then
to expressions such as (A1).
It is then worthwhile to examine the rotation of contours

more carefully. For this, we use certain particular cases of
multivariate hyperbolic hypergeometric integrals, studied
in Ref. [54], that we can easily identify with the Chern-
Simons matrix integrals but with complex integration con-
tours. The integrals in Ref. [54] are written in terms of the
hyperbolic Gamma function. However, due to the follow-
ing property of the hyperbolic Gamma function [54]

1

�hðzj!1; !2Þ�hð�zj!1; !2Þ ¼ �4 sin

�
�z

!1

�
sin

�
�z

!2

�
;

(A6)

it is then immediate to identify such integrals in Ref. [54]
with those given by the matrix model description of Chern-
Simons theory on S3. To see that this is the case, let us first
give some definitions in Ref. [54] and then we quote
Proposition 5.3.19 in Ref. [54].
Definition (hook). A hookW�1;�2

is a contour parame-

trized by W�1;�2
ðsÞ ¼ sei�1 for s 2 ð�1; 0� and

W�1;�2
ðsÞ ¼ sei�2 for s 2 ½0;1Þ. The following quantities

are defined as well: �þ ¼ maxðargð!1Þ; argð!2ÞÞ and
�� ¼ minðargð!1Þ; argð!2ÞÞ and, in terms of �þ and
��, the domain Aþ in the complex plane
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Aþ ¼
�
�þ � �;

�þ þ�� � �

2

�
:

After using (A6), Proposition 5.3.19 reads [54]
Proposition 1: For t 2 Z>0 we have

JN;tð!1; !2Þ � 1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�!1!2
p ÞNN!

Z
C
e
t�i=2!1!2

P
N
j¼1

x2j
Y
j<k

ð�4Þ sin
�
�ðxj � xkÞ

!1

�
sin

�
�ðxj � xkÞ

!2

�Y
j

dxj

¼ e�ði�N2=4Þ2N=2

tN=2
e�ð�iN2ðN�1Þð!2

1
þ!2

2
Þ=6t!1!2Þ

YN
j¼1

�
2 sin

�
2�j

t

��
N�j

(A7)

where the contour of integration C is a hook W�1;�2
with �1; �2 2 Aþ.

This result can be extended to t 2 Z<0 by using a property of invariance under complex conjugation [54]

JN;tð!1; !2Þ ¼ JN;�tð� �!1;� �!2Þ: (A8)

To compare with the expression given by the Chern-Simons matrix model, we take !1 ¼ !2 ¼ i; therefore Aþ ¼
ð� �

2 ; 0Þ. We also perform the change of variables 2�xi ¼ ui and identify t ¼ 2ðkþ NÞ. Then the integral can be written as

Z
C

Y
j<k

4sinh2
�
uj � uk

2

�
e
1=2gs

P
j

u2jY
j

duj
2�

¼ N!e�ði�N2=4Þðkþ NÞ�ðN=2Þe�ðgsN2ðN�1Þ=12Þ YN
j¼1

�
2 sin

�
�j

kþ N

��
N�j

; (A9)

or, equivalently [using (A8)]

Z
C

Y
j<k

4sinh2
�
uj � uk

2

�
e
�ð1=2gsÞ

P
j

u2jY
j

duj
2�

¼ N!ei�N
2=4ðkþ NÞ�N=2egsN

2ðN�1Þ=12 YN
j¼1

�
2 sin

�
�j

kþ N

��
N�j

: (A10)

If we move the contour of integration of (A10) to the real axis, we get the expression for the Chern-Simons partition
function computed in Ref. [21] using the Hermitian matrix model. Notice that in Ref. [53], when restricted to the case S3,
the partition function is then given by a single complex integral over the line R� e�ði�=4Þ, which is exactly (A10) for that
choice of contour.

We can use (A9) and (A10) to establish the relation between the unitary and Hermitian matrix models. If we rotate the
contour of (A9) to the imaginary axis [that means, taking the hookW�ð�=2Þ;�ð�=2ÞðsÞ], we get the unitary matrix model with

q ¼ e�gs , by using the identities previously derived

Z 1

�1

Y
j<k

ð�4Þsin2
�
uj�uk

2

�
e
�ð1=2gsÞ

P
N

j¼1
u2j
Y
j

ð�iÞduj
2�

¼ ei�NðNþ2Þ=2Z 1

�1

Y
j<k

jeiuj �eiuk j2e�ð1=2gsÞ
P

N

j¼1
u2j
Y
j

duj
2�

¼N!e�ði�N2=4ÞðkþNÞ�ðN=2Þe�ðgsN2ðN�1Þ=12ÞYN
j¼1

�
2sin

�
�j

kþN

��
N�j

:

(A11)

By noting that (A10) is precisely (A1), then

Z ¼
Z 2�

0

Y
j

duj
2�

�ðqjujÞ
Y
j<k

jeiuj � eiuk j2 ¼
�
2�

gs

�
N=2

e�i�NðNþ1Þe�ðgsN2ðN�1Þ=6ÞZUðNÞ
CS ðS3Þ ¼ e�i�NðNþ1ÞN!

YN�1

i¼1

ð1� qiÞN�i:

This establishes the precise relation between the unitary and Hermitian Chern-Simons matrix models, derived directly
from contour rotation and is our final result. It is worth mentioning that other integrals considered in Ref. [54]
correspond to the Chern-Simons matrix model on S3 but for other gauge groups. For example, Proposition 5.3.18 in
Ref. [54] reads
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Proposition 2: For t 2 Z>0 we have

~J N;tð!1; !2Þ � 1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�!1!2
p ÞNN!

Z
C

Y
j

eðt�i=!1!2x
2
j Þdxj

Y
j<k

4 sin

�
�ðxj � xkÞ

!1

�
sin

�
�ðxj � xkÞ

!2

�Y
l<r

4 sin

�
�ðxl þ xrÞ

!1

�

� sinð�ðxl þ xrÞ
!2

ÞYN
j¼1

ð�1Þ4 sin
�
�xj
!1

�
sin

�
�xj
!2

�

¼ e�ði3�N=4Þ

tN=2
e�ð�iNðNþ1Þð2Nþ1Þð!2

1
þ!2

2
Þ=6t!1!2Þ

Y
j<k

4 sin

�
�ðjþ kÞ

t

�
sin

�
�ðjþ kÞ

t

�YN
j¼1

2 sin

�
2�j

t

�
(A12)

where the contour of integration C is a hookW�1;�2
with�1,�2 2 Aþ. This gives an evaluation for the partition function

of the Chern-Simons matrix model for S3 and the symplectic gauge group Spð2NÞ.
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