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this paper, we study the effect of � deformation of the space-time on the response function of a

uniformly accelerating detector coupled to a scalar field. Starting with �-deformed Klein-Gordon theory,

which is invariant under a �-Poincaré algebra and written in commutative space-time, we derive

�-deformed Wightman functions, valid up to second order in the deformation parameter a. Using this,

we show that the first nonvanishing correction to the Unruh thermal distribution is only in the second order

in a. We also discuss various other possible sources of a-dependent corrections to this thermal

distribution.
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I. INTRODUCTION

Different approaches to quantum theory of gravity sug-
gest that the notion of space-time is modified at the micro-
scopic level and the space-time coordinates get quantized.
This leads to the modification of the notions of symmetry
of the space-time. The symmetry algebra of certain quan-
tum gravity models is known to be the �-Poincaré algebra
and the corresponding space-time is the �-Minkowski
space-time. Various aspects of � space-time, as well as
the construction and study of field theory models on this
space-time, are being vigorously investigated in recent
times [1–10]. �-Poincaré algebra and � space-time are
also known to be related to the doubly special relativity
[3], a modified relativity principle which naturally incor-
porates a fundamental length scale, required by many
approaches to quantum gravity.

In the last couple of years, various authors have studied
possible low energy effects of � deformation of the space-
time [11–13]. Recently, the Unruh effect [14–16] in the
noncommutative space-time has been investigated using
different approaches [17,18]. It is well known that in the
commutative space-time, a system of an uniformly accel-
erating detector interacting with a massless scalar field in
its vacuum is equivalent to an unaccelerated detector which
is in the thermal bath of temperature T ¼ ð2�kBÞ�1�;
where � is the acceleration of the uniformly accelerating
detector [14–16]. The modification of this Unruh effect in
the �-Minkowski space-timewas studied [17]. In Ref. [17],
the authors started with the Klein-Gordon equation in the �
space-time and by making a specific choice for the cou-
pling of the detector with the scalar field, analyzed the
changes in the Unruh effect. This detector-field interaction
term is defined in the � space-time. This necessitated
modification of this interaction (compared to the commu-
tative case) so as to guarantee its Hermiticity. It was shown

that there are a ¼ 1
� -dependent contributions to the tran-

sition rate due to the modifications in Gþðx� x0Þ �
G�ðx0 � xÞ where G� are the Wightman functions
of the scalar theory. In the commutative space-time, the
Lorentz invariance implies Gþðx� x0Þ �G�ðx0 � xÞ ¼ 0;
whereas in � space-time, this is nonvanishing and leads to
a dependent correction to the Unruh effect [17]. As the
authors pointed out in Ref. [17], this first order (in a)
correction is due to the form of the interaction chosen
between the detector and the scalar field.
In this paper, we employ an approach in which we start

with the �-deformed Klein-Gordon theory which is written
in the commutative space-time itself (instead of the non-
commutative space-time, as considered in Ref. [17]). This
scalar theory is invariant under �-Poincaré algebra [7].
Now that we are dealing with the theory constructed in
the commutative space-time, we can use the standard tools
of field theory developed for the commutative space-time
to analyze this �-deformed scalar theory. The usual inter-
action Lagrangian describing the coupling of the detector
to the scalar field, does not get affected by the requirement
of Hermiticity. Since this model is constructed in the
commutative space-time, we can unambiguously define
the trajectory of the uniformly accelerated detector needed
for the study of the Unruh effect.
In the next section, we summarize the essentials of the

�-Poincaré algebra whose generators involve only opera-
tors defined in the commutative space-time. We also
present the �-deformed Klein-Gordon equation which is
invariant under the action of �-Poincaré algebra. This
scalar theory is written in commutative space-time. In
Sec. III, we present the calculation of the propagator of
this deformed scalar theory. Using this in Sec. IV, we
calculate the transition rate of the uniformly accelerating
detector as the field gets excited. This shows explicitly the
a2 dependent modification of the Unruh effect due to the �
deformation of the space-time. In Sec. V, we discuss vari-
ous a2 dependent corrections to the Unruh effect obtained.
We also point out possible sources of further a dependent
corrections. Our concluding remarks are given in Sec. VI.
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II. �-DEFORMED KLEIN-GORDON THEORY

The coordinates of the �-Minkowski space-time satisfy
a Lie algebra-type commutation relation given by

½x̂i; x̂j� ¼ 0; ½x̂0; x̂i� ¼ iax̂i;

�
a ¼ 1

�

�
; (1)

where the deformation parameter a has the dimension of
length. It is well known that the symmetry of this space-
time is the �-Poincaré algebra. The defining relations of
this algebra explicitly involve the deformation parameter
and in the limit a ! 0, reduces to the Poincaré algebra.
Alternatively, one can consider a different realization of
the �-Poincaré algebra [6,7] as the symmetry algebra of the
above space-time, which we briefly summarize in this
section. In this approach taken in Ref. [7], though the
defining relations of the algebra are the same as those of
the usual Poincaré algebra, the explicit form of the gen-
erators are modified and these modifications depend
on the deformation parameter. In order to construct this
�-Poincaré algebra, one first demands that the coordinates
of the � space-time can be expressed in terms of the
commutative coordinates and their derivatives as

x̂ � ¼ x����ð@Þ: (2)

This realization defines a unique mapping between the
functions of noncommutative space-time to the functions
on commutative space-time. Imposing further require-
ments

½@i; x̂j� ¼ �ij’ðAÞ; (3)

½@i; x̂0� ¼ ia@i�ðAÞ; (4)

½@0; x̂i� ¼ 0; ½@0; x0� ¼ �00; (5)

where A ¼ �ia@0, we obtain

x̂ i ¼ xi’ðAÞ; (6)

x̂ 0 ¼ x0c ðAÞ þ iaxi@i�ðAÞ: (7)

Using Eqs. (6) and (7) in Eq. (1), we obtain

’0

’
c ¼ �ðAÞ � 1; (8)

where ’0¼d’
dA satisfying the boundary conditions ’ð0Þ¼1,

c ð0Þ ¼ 1, �ð0Þ ¼ ’0ð0Þ þ 1, and is finite, and ’, c , � are
positive functions.

Further demanding that the commutators of the Lorentz
generators with the coordinates of �-deformed space-time
must be linear in x̂� and the generators themselves, and

that these commutators should have smooth commutative
limit, lead to just two classes of possible realizations. They
are parametrized by c ¼ 1 and c ¼ 1þ 2A. We consider
only the former realization here.

The symmetry of the underlying � space-time is known
to be the �-Poincaré algebra [19], which is a Hopf algebra.
It was shown in Ref. [6] that one can have an alternate
realization for the symmetry algebra corresponding to the
� space-time. The generators of this algebra obey [6]

½M��;D	� ¼ ��	D� � ��	D�; ½D�;D�� ¼ 0; (9)

½M��;M	
�¼��
M�	þ��	M�
���
M�	���	M�
:

(10)

In the above, we use ��� ¼ diagð�1; 1; 1; 1Þ. Note here

that the (Dirac) derivatives D� above transform as vectors

(unlike the usual derivative operators in the �-Minkowski
space-time). But here the realization of the generators do
have a dependent terms. The explicit form of the Dirac
derivatives and h are

Di ¼ @i
e�A

’
; D0 ¼ @0

sinhA

A
þ iar2

�
e�A

2’2

�
; (11)

h ¼ r2 e
�A

’2
þ 2@20

ð1� coshAÞ
A2

; (12)

where r2 ¼ @i@i and A ¼ �ia@0. Note that @i and @0 are
the derivatives corresponding to the commutative space-
time coordinates. The above algebra is also a Hopf algebra,
like the �-Poincaré algebra [6,7].
The Casimir of this algebra D�D

� can be expressed as

D�D� ¼ h

�
1� a2

4
h

�
; (13)

where the h operator satisfies

½M��;h� ¼ 0; ½h; x̂�� ¼ 2D�: (14)

It is clear that the Casimir D�D
� reduces to the usual

relativistic dispersion relation in limit a ! 0. ’ appearing
in the above equations characterizes arbitrary realizations
of the � space-time coordinates in terms of the commuta-
tive coordinates and their derivatives [6].
Using the Casimir operator on the � space-time, the

generalized Klein-Gordon equation invariant under the
�-Poincaré algebra defined in Eqs. (9) and (10) is written
as [6,7]

h

�
1� a2

4
h

�
�ðxÞ �m2�ðxÞ ¼ 0: (15)

It is clear from the above that the scalar field and the
operators appearing in the �-deformed Klein-Gordon
equation are defined in the commutative space-time itself.
The fact that the generators of the �-Poincaré algebra and
the Casimir are expressed in terms of the commutative
coordinates and their derivatives is crucial for this. This
allows us to use the conventional field theory techniques to
study the �-deformed Klein-Gordon theory.
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The deformed dispersion relation resulting from
Eq. (15) is

4

a2
sinh2

�
ap0

2

�
� p2

i

e�ap0

’2ðap0Þ
� a2

4

�
4

a2
sinh2

�
ap0

2

�
� p2

i

e�ap0

’2ðap0Þ
�
2 ¼ m2; (16)

where p0 ¼ i@0 and pi ¼ �i@i.
Since the Casimir and the h operator have the same

a ! 0 limit, the requirement of the correct Klein-Gordon
equation in the commutative limit does not rule out other
possible generalizations [6,7] like

ðh�m2Þ�ðxÞ ¼ 0: (17)

Thus, by reexpressing the noncommutative coordinates
in terms of commutative coordinates and their derivatives,
the �-deformed Klein-Gordon theory in Eqs. (15) and (17)
is now completely expressed in terms of the commutative
field, and all operators appearing in the above �-deformed
Klein-Gordon equation are also defined in the commuta-
tive space-time. This allows us to use the well-established
calculational methods of field theories defined in the
commutative space-time. This should be contrasted with
Ref. [17] where the starting Klein-Gordon equation is
defined on the noncommutative space-time itself.

III. �-DEFORMED SCALAR PROPAGATOR

The Green function corresponding to the massless
�-deformed Klein-Gordon operator in Eq. (15) is

Gðx�x0Þ

¼
Z d4p

ð2�Þ4
e�ip0ðt�t0Þþi ~p�ð ~x� ~x0Þ

ð 4
a2
sinh2ðap0

2 Þ� ~p2Þ½1�a2

4 ð 4a2 sinh2ðap0

2 Þ� ~p2Þ� ;

(18)

where we have chosen’ðap0Þ ¼ e�ap0=2. With this choice,
the dispersion relation in Eq. (16) is the same as that of the
�-Poincaré algebra in the bicrossproduct basis [19]. In
deriving the above propagator, we have assumed that the
field operators satisfy the standard commutation relations.

The poles of the propagator are

p0 ¼ � 2

a
sinh�1

�
ap

2

�
þ 4�in

a
; n 2 Z; (19)

p0 ¼�2

a
sinh�1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2p2

4

s �
þ 4�in

a
; n2Z; (20)

and they are first order poles. Notice that the periodicity of
the Klein-Gordon equation in Eq. (16) leads to the last
terms in the above equations. This leads to infinitely many
poles. It is easy to see that in the limit a ! 0, we should
first set n ¼ 0 to get the usual Klein-Gordon propagator in
the commutative limit. Also, it is interesting to note that

the poles in Eq. (19) are the same for the propagator
corresponding to the scalar theory described by Eq. (17).
But the poles in Eq. (20) are not shared by the propagator
corresponding to the Klein-Gordon equation given in
Eq. (17).
The positive Wightman function Gþðx� x0Þ gets the

contributions when n ¼ 0, (with positive sign) and when
n < 0 [with � sign in Eqs. (19) and (20)]. The negative
Wightman function G�ðx� x0Þ gets the contributions
when n ¼ 0 (with negative sign) and when n > 0 [with
� sign in Eqs. (19) and (20)].
By direct calculations, it is easy to see that the contri-

butions to the p0 integral from the poles in Eq. (19) with
n < 0 for Gþðx� x0Þ and n > 0 for G�ðx� x0Þ cancel
among themselves and the only contribution is from the
pole at p0 ¼ � 2

a sinh
�1ðap2 Þ. Thus, the new infinitely many

poles generated due to the periodicity of the �-deformed
propagator do not contribute to the Wightman functions.
Therefore, the effect of � deformation comes in only
through the modification of the pole with n ¼ 0 in
Eq. (19) and we get

Gþðx� x0Þ ¼ 1

2ð2�Þ2
Z 1

0
dp

e�ð2i=aÞsinh�1ðap2 Þðt�t0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ a2p2

4 Þ
q

jx� x0j
� ðe�ipjx�x0j � eipjx�x0jÞ: (21)

All calculations up to now are exact, as we have kept terms
to all orders in the deformation parameter a. From now on
we keep only terms up to second order in a. Thus, from

here onwards we approximate 2i
a sinh

�1ðap2 Þ ¼ ip� ia2p2

24

and ð1þ a2p2

4 Þ�1=2 ¼ 1� a2p2

8 . With this we find

Gþðx� x0Þ ¼ 1

ð2�Þ2
1

jx� x0j2 � ðt� t0Þ2

� a2

4ð2�Þ2
jx� x0j2 þ 3ðt� t0Þ2
½jx� x0j2 � ðt� t0Þ2�3

� a2

ð2�Þ2
½jx� x0j2 þ ðt� t0Þ2�ðt� t0Þ2

½jx� x0j2 � ðt� t0Þ2�4 :

(22)

It is of interest to note that the contributions to Gþðx� x0Þ
from the poles in Eq. (20) vanish (up to second order in a),
and thus the propagators corresponding to the �-deformed
Klein-Gordon equations in Eqs. (15) and (17) are identical
(up to second order in a).
Note that in the limit a ! 0, the above Green function

reduces to the correct commutative limit [15]. The calcu-
lation of the negative Wightman function G�ðx� x0Þ also
proceeds in the same fashion and it is easy to see that
G�ðx� x0Þ ¼ Gþðx� x0Þ. From Eq. (22), it is clear that
up to second order in a, Gþðx� x0Þ ¼ G�ð�ðx� x0ÞÞ. If
we include higher order terms in a this may not be true, as
the exact Green function should exhibit the loss of
Lorentz invariance due to the � deformation. This feature
is different from the results of Ref. [17]. These conclusions
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regarding G�ðx� x0Þ would also be the same for the
theory described by Eq. (17).

IV. DETECTOR RESPONSE FUNCTION

To analyze how the vacuum of the above theory will be
seen by an accelerating observer, we consider a uniformly
accelerating detector whose space-time coordinates are
given by x�ð�Þ, where � is the proper time of the detector.
We consider that the interaction of the detector with the
scalar field up to first order in the deformation parameter a,
is described by the conventional Hermitian interaction
Lagrangian Lint ¼ mð�Þ�ðx�ð�ÞÞ [14,15]. Notice here
that we do not have to modify the interaction to keep the
Hermiticity as was done in Ref. [17]. This is possible here
due to that fact that the �-deformed scalar theory is ex-
pressed in terms of commutative operators and fields. From
Eq. (15), note that the first nonvanishing a dependent
modification to �-deformed Klein-Gordon theory is in
the second order in a [this is also true for the theory
described by Eq. (17)]. This justifies the assumption that
the interaction Lagrangian does not receive any modifica-
tion up to first order in a.

As in the commutative space-time, we consider that the
field �ðxÞ is in the Minkowski vacuum j0iM and the
detector is in its ground state of energy E0. When the field
makes a transition to an excited state, the uniformly
accelerating detector also gets excited to a state of
energy E> E0. One calculates the amplitude of this
transition using first order perturbation theory. Here, one

also assumes that the time evolution of the uniformly
accelerating detector is given by

mð�Þ ¼ eiH0�mð0Þe�iH0�; (23)

where H0 is the Hamiltonian describing the detector and
H0jEi ¼ EjEi. Thus, the transition probability of the de-
tector from the state with energy E0 to get excited to that of
energy E is given by

jMfij2 ¼
X
E

jhEjmð0ÞjE0ij2F ðE� E0Þd�; (24)

where the response function is

F ðEÞ ¼
Z �0

�1
d�

Z �0

�1
d�0e�iEð���0ÞGþðxð�Þ; xð�0ÞÞ: (25)

Since the �-deformed Wightman functions up to second
order in a satisfy Gþðx� x0Þ ¼ G�ð�ðx� x0ÞÞ, only Gþ
appears in the definition of the response function. This
should be contrasted with the result of Ref. [17]. From
Eq. (24), we calculate the rate of transition probability

T ð�0; EÞ ¼
X
E

jhEjmð0ÞjE0ij2 dFd�0 : (26)

To evaluate the transition probability of a uniformly
accelerating detector, we express the propagator in terms
of the coordinates of the uniformly accelerating detector,
i.e., t ¼ ��1 sinh�� and x ¼ ��1 cosh��, y ¼ 0 ¼ z.
Using these in the expression of Gþ and Eq. (24) after
lengthy but straightforward calculations (along the lines of
Ref. [17]) we find

T ð�0; �E; aÞ ¼
X
E

jhEjmð0ÞjE0ij2
�
1

2�

�E

e2�
�E=� � 1

þ a2

16�

�E

e2�
�E=� � 1

½2 cosh2��0 þ 4cosh22��0 þ 4sinh2ð2��0Þ�

� a2 �E

8�

1

e2�
�E=� � 1

�
1

6
ð2 cosh2��0 þ 1Þð �E2 þ �2Þ � �2 cosh2��0

�

� a2

24��2
�Eð �E2 þ �2Þ cosh2��0ð1þ cosh2��0Þ

e2�
�E=� � 1

þ a2�

4�2
sinh2��0Aþ � sinh2��0Cosh2��0B

þ a2

8�2�
sinh2��0ð1þ 2 cosh2��0ÞA

�
; (27)

where �E ¼ E� E0 and

A ¼
Z 1

0

dk

k

� j �E� kj2
eð2�j �E�kjÞ=� � 1

� j �Eþ kj2
eð2�j �EþkjÞ=� � 1

�
;

(28)

B ¼
Z 1

0

dk

k

�
1

eð2�j �E�kjÞ=� � 1
� 1

eð2�j �EþkjÞ=� � 1

�
: (29)

Equation (27) shows the modification to standard thermal
distribution in � space-time and we note that all the
correction terms are of the second order in a. Note that
in the limit a ! 0, we get the commutative result.

V. DISCUSSION

We have obtained the corrections to the transition rate of
the detector from ground state to an excited state as the
field makes a transition to an excited state in Eq. (27). The
a dependent terms show the deviation of the Unruh effect
due to � deformation of the space-time. In Eq. (27), the first
three a dependent terms have the same Bose-Einstein
distribution as in the commutative case but now multiplied
with a dependent weight factors. The remaining terms
show the deviation from the Bose-Einstein distribution
due to the � deformation. All the a dependent corrections
also have explicit dependence on the detector time �0. This
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shows that different observers (detectors) measure
different transition probabilities, showing the loss of
Lorentz invariance due to the � deformation. Since the
Bose-Einstein distribution is exactly the same as in the
commutative case, the corresponding temperature does not
get any modification due to the � deformation. In Eq. (27),
the a dependent terms do have explicit dependence
on �0. Thus as �0 changes, the transition rate T ð�0; E; aÞ
also changes with a periodicity decided by the periodic
functions through which the �0 dependence appear in
Eq. (27).

The poles given in Eq. (20) do not have smooth com-
mutative limit, but we have seen that they do not contribute
to the propagator in Eq. (18) (up to second order in a).
Thus, the propagator of the deformed Klein-Gordon equa-
tion has smooth a ! 0 limit.

From Eq. (19) it is clear that the first nonvanishing a
dependent correction to the poles contributing to p0 inte-
gration are of second order in a. This leads to the lowest
nonvanishing corrections in the propagator in Eq. (22) to
be of second order in a, and hence the modification of the
Unruh effect is in the second order in a. But with a different
choice of ’, say, ’ ¼ e�ap0 , it is easy to see that the first
nonvanishing corrections to the poles in Eq. (19) will be in
the first order in a itself. With ’ ¼ e�ap0 , we see that the
dispersion relation is the same as that considered in
Ref. [17], and it was shown there that if the coupling of
the detector with the scalar field is Hermitian, the correc-
tions to the first order in a obtained in Ref. [17] will not be
present.

Notice that the realization of noncommutative coordi-
nates in terms of commutative ones and their derivatives
given in Eqs. (6) and (7), facilitated the construction of the
�-Poincaré algebra defined in Eqs. (9) and (10). Since the
generators and Casimir of this algebra were in terms of
operators defined in the commutative space-time, the
�-deformed Klein-Gordon theory was constructed com-
pletely in the commutative space-time [7]. This allowed
us to define a Hermitian coupling between the detector and
the scalar field. This explains why there are no first order
(in a) corrections to the transition probability in Eq. (27).

Another interesting point to note is that the detector was
treated as in the commutative space-time. We have seen
that the nonrelativistic Hamiltonian with the present choice

of ’, viz. ’ ¼ e�ap0=2 do have a correction that is first
order in a [12]. If we include this correction to the

Hamiltonian in Eq. (23), then the corresponding energy
eigenvalues will also get first order a dependent correc-
tions. This will lead to a dependent modification to the
Bose-Einstein distribution appearing in the transition am-
plitude in Eq. (27).
Alternatively, the Unruh effect can be shown by calcu-

lating the Bogolyubov coefficients relating the creation and
annihilation operators associated with the quantized field
in the left and right Rindler wedges [15,16]. Since we have

seen that the �-deformed Klein-Gordon theory (with ’ ¼
e�ap0=2) analyzed here does not have any a dependent
correction up to the first order in a, the analysis in terms
of the Bogolyubov coefficients will be the same as that in
the commutative case (up to order a) [16]. As pointed
out above, if we treat the detector in terms of deformed
Hamiltonian, we will still get a dependent correction and
the energy eigenvalue E appearing in the distribution func-
tion would have a dependence. But more importantly,
notice that the approach using Bogolyubov coefficients
showing that the detector sees scalar particle in a thermal
bath uses the commutation relations between the creation
and annihilation operators of the quantized field. It was
shown that for the �-deformed scalar theory described by
Eq. (17), the associated creation and annihilation operator
obey a deformed oscillator algebra [7] with the choice

’ðap0Þ ¼ e�ap0=2. This twisted algebra was derived by
demanding consistency of the action of the �-Poincaré
algebra, which is a Hopf algebra, and statistics (flip opera-
tion) [7]. This deformed oscillator algebra can lead to a
dependent changes in the thermal distribution function
seen by the detector. These issues will be discussed
elsewhere.

VI. CONCLUSION

In this paper, we have analyzed the Unruh effect in the
�-Minkowski space-time, using the recently developed
�-deformed Klein-Gordon theory [7]. This deformed sca-
lar theory, which is invariant under the �-Poincaré algebra
defined in Eqs. (9) and (10), is written in terms of the
commutative fields and operators defined in the commuta-
tive space-time. This allowed us to model the interaction
between the field and detector as in the commutative space-
time without any modifications. It was shown that the first
nonvanishing corrections to the transition rate is of second
order in a.
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