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We study resummed perturbative contributions due to a heavy top quark. These renormalon contribu-

tions are evaluated for fermion propagators. Results for the top-quark width are given. Estimates of

nonperturbative uncertainties are made on the � parameter using different schemes of dealing with the

Landau pole. For the physical top-quark mass the effects are negligible.
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I. INTRODUCTION

In the electroweak sector of the standard model (SM)
every particle acquires its mass through an interaction with
a scalar potential in a nontrivial vacuum. As a conse-
quence, all the masses are proportional to a common scale,

namelyG�1=2
F , which is fixed by low-energy measurements

such as the �-decay rate. In this situation the decoupling
theorem [1] does not hold, and thus there exist low-energy
observables in which the quantum effects induced by vir-
tual heavy particles do not vanish when the mass of these
particles goes to infinity.

Most prominent among the nondecoupling effects is the
� parameter [2], which provides a measure of the relative
strength of neutral and charged current interactions in four
fermion processes at zero momentum transfer. At tree level
� ¼ 1 due to a global accidental SUð2Þ symmetry, the so-
called custodial symmetry. � can receive radiative correc-
tions only by those sectors of the SM that break explicitly
the custodial symmetry, namely, the hypercharge and the
Yukawa couplings that give different masses to the com-
ponents of fermion doublets. In the latter case the contri-
bution to the � parameter is proportional to the mass
splitting; therefore the leading contribution comes from
the top-bottom doublet.

At one loop the � parameter has a quadratic dependence

on the top-quark mass, ��ð1Þ � GFm
2
t , and a logarithmic

dependence on the Higgs mass, ��ð1Þ � g02 logðmH

MW
Þ. Two-

loop corrections at the leading order, i.e. ��ð2Þ � G2
Fm

4
t ,

and at the next-to-leading order, i.e. ��ð2Þ � G2
Fm

2
t M

2
Z, in

the top-quark mass were computed in the limits mH ! 0
and mH � mt in Refs. [3,4] and for arbitrary Higgs mass
in Ref. [5]. It turned out that due to accidental cancella-
tions, the subleading corrections at two loops are larger
than the leading ones [6]. At three loops the computation of

the leading top-quark corrections, ��ð3Þ � G3
Fm

6
t , in the

massless Higgs limit, was carried out in Ref. [7]. The

complete dependence on the Higgs mass at three loops
was obtained in Ref. [8]. Numerically it was found that this
contribution to �� is quite large and provides a sizable
correction ( � 36%) to the leading electroweak correction
at two loops. However, the size of the three-loop correction
is only about 2% of the much larger two-loop subleading
electroweak correction. Moreover, the perturbative series
of the leading top-quark contributions to the � parameter
has alternating signs up to three loops.
This raises the issue of the convergence of the perturba-

tive expansion (it might be that this series is divergent, but
Borel summable) and calls for a better understanding of
higher order radiative corrections. It would be highly de-
sirable to have a simplified framework in which the leading
top-quark contributions to the � parameter can be com-
puted to all orders in perturbation theory and eventually
summed up. The actual calculation of the leading radiative
corrections in the top-quark mass is greatly simplified by
the observation that to obtain them it is enough to consider
the Lagrangian of the SM in the limit of vanishing gauge
coupling constants g, g0 ! 0 [4]. This gaugeless limit
provides an efficient way of reducing the number of
Feynman diagrams to be computed, and it has been used
in the two- and three-loop computations mentioned above.
In some recent papers [9,10] the effects of a finite top

width were resummed by using a SUðNFÞ �Uð1Þ electro-
weak model in the large NF limit [11,12]. In this paper we
will use another resummation procedure. In the model we
are going to study, the symmetry group is the one of the
SM, namely SUð2Þ �Uð1Þ, but instead of having three
generations of quarks and leptons we consider a large
number of copies (NG) of the third family of quarks. In
order to avoid the presence of chiral anomalies we have to
take into account an equal number of copies of the third
family of leptons; however, this will play no role in the
further calculations. All of the extra quark doublets contain
a massive particle, the top-quark with mass mt, and a
massless particle, the bottom quark, while both compo-
nents of the extra lepton doublets are taken to be massless.
Notice that this is not meant to be phenomenologically
relevant. Indeed, from LEP (Z ! ���) we know that there
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are only three generations of light neutrinos. We take the
approximation that the Cabibbo-Kobayashi-Maskawa ma-
trix is diagonal. The large NG limit is performed by keep-
ing y2t NG fixed, where yt is the top-Yukawa coupling. In
this limit only the graphs with a maximal number of
fermion loops contribute. This sort of sum is known as a
renormalon chain [13].

As we are working in the limit of a heavy top quark the
effects of the gauge couplings can be ignored, and we have
a resummed propagator in the Higgs and the Goldstone-
boson sector only. The resulting Dyson propagators con-
tain, in addition to the physical pole, a tachyon pole in the
Euclidean region, p2 ¼ ��2

T , which spoils causality and

makes the Wick-rotated Feynman integrals ill defined.
If one wants to use the resummed propagators in further

loop insertions, one has to find a way to treat this tachyon
pole. In this connection the introduction of an UV cutoff at
�<�T has been proposed in Ref. [14]. However, this
procedure breaks gauge invariance. We have adopted an-
other strategy that was used successfully in Ref. [15].
Assuming that the occurrence of the tachyon pole is not
due to the inconsistency of the theory under consideration,
but of the intermediary expansion technique used, it is
reasonable to simply subtract the tachyon-pole minimally
from the propagator, thereby restoring causality. This is
actually a rather old idea [16] that has been adapted in a
slightly modified form in QCD under the name of analytic
perturbation theory [17].

One should be careful in doing this because the tachyon
pole contributes to the Källén–Lehmann spectral function.
Further corrections might be needed in order to preserve
fundamental aspects of the theory. In analytic perturbation
theory, for instance, the tachyon subtraction was done at
the level of the effective charge. On the propagator level
this corresponds to subtracting the tachyon pole and adding
it back with the same strength at p2 ¼ 0. This is necessary
in order to preserve asymptotic freedom. Technically one
deals with a subtracted dispersion relation. In another
context [18], resummation inside the Higgs propagator,
the normalization of the spectral density was essential,
and one had to multiply the propagator with a constant
nonperturbative factor.

Unfortunately the addition of nonperturbative factors is
not unique, as was already mentioned in the earliest paper
[16]. Nonetheless, it is important to get some idea on the
size of possible nonperturbative effects. A theory that is
only defined in the perturbative approximation is, of
course, not satisfactory. This is also true for the standard
model. Ultimately, one will try to put the theory on the
lattice in order to go beyond perturbation theory. Since the
electroweak sector of the SM is not asymptotically free,
presumably cutoff effects stay present in the lattice pre-
dictions. The situation is complicated due to the presence
of fermion doubles on the lattice, which one cannot remove
as easily as in lattice QCD by moving their mass to infinity,

since they get their mass via the Higgs mechanism and
therefore become strongly coupled in this limit. In order to
compare with the continuum, the use of resummed propa-
gators is at the moment the only alternative, whereby the
uncertainty due to the nonperturbative effects should cor-
respond to the uncertainty in predictions due to the cutoff
effects on the lattice. It is to be remarked, however, that
even with mt ¼ 172 GeV perturbation theory is quite sat-
isfactory. As the Higgs boson is also presumably light,
from the practical point of view perturbation theory should
be good enough for the SM.
In this paper we calculate the contribution of the re-

summed propagators to the top- and bottom-quark propa-
gators. These contributions can then be used as input for
further calculations but are of interest by themselves. The
outline of the paper is as follows. In Sec. II we discuss the
resummed Higgs and would-be Goldstone-boson propaga-
tors. In Sec. III we discuss possible nonperturbative con-
tributions to the � parameter due to alternative treatments
of the tachyon. In Sec. IV we present results on the top
propagator, due to the insertions of resummed propagators
in a loop. Section V deals with the bottom propagator. In
Sec. VI we give conclusions and outlook. The appendices
contain the relevant part of the Lagrangian and the for-
mulas for the one-loop integrals.

II. ONE-LOOP SELF-ENERGIES AT THE LEADING
ORDER IN THE FLAVOR EXPANSION

In this section we shall give the expressions of the
on-shell renormalized one-loop self-energies of the scalar
particles (Higgs and would-be Goldstone bosons) at the
leading order in the flavor expansion. Moreover, the sub-
traction of tachyonic poles from the Dyson resummed
propagators will be presented. We perform the calculation
in the Landau gauge, in order to have massless unphysical
scalars, and we keep only two mass scales, namely, the
top-quark, mt, and the Higgs boson mass, mH.

A. Neutral would-be Goldstone boson

In this subsection we discuss the self-energy of the
neutral would-be Goldstone boson, �, at the leading order
in the large NG expansion. The two graphs contributing to
��ðp2Þ, which are enhanced by a factorNG, are depicted in

Fig. 1. The sum of these graphs is given by (for the notation
see Appendix B)

��ðp2Þ ¼ 2i
ffiffiffi
2

p
NcNGGFm

2
t p

2B0½p2; mt; mt�; (1)

where Nc is the number of colors, while NG is the number
of copies of the third generation. The on-shell renormal-
ized � self-energy, reads

�̂ �ðp2Þ ¼ ��ðp2Þ � �m2
� þ �Z�p

2; (2)

where the mass counterterm, �m2
�, and the wave function

renormalization constant, �Z�, are given by
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�m2
� ¼ ��ðp2 ¼ 0Þ ¼ 0;

�Z� ¼ ��0
�ðp2 ¼ 0Þ ¼ ��t

�
2

D� 4
þ log

�
m2

t

�2
B

�
þ 2

�
:

(3)

In the above equation we have introduced a shorthand

notation �t ¼
ffiffi
2

p
8�2 NcNGGFm

2
t . We remind the reader that

in the SM one has Nc ¼ 3, NG ¼ 1, and �t ¼ 0:0187.
The renormalized self-energy below the production

threshold, p2 < 4m2
t , reads

�̂�ðp2Þ ¼ �tp
2

2
42

ffiffiffiffiffiffiffiffiffiffiffi
���

q
arctan

0
@ 1ffiffiffiffiffiffiffiffiffiffiffi

���

q
1
A� 2

3
5;

�� ¼ 1� 4m2
t

p2
:

(4)

The expression for the on-shell renormalized � self-energy
above the production threshold is given by

�̂�ðp2Þ ¼ �tp
2

8><
>:

ffiffiffiffiffiffiffi
��

q
2

log

2
64
�
1þ

ffiffiffiffiffiffiffi
��

q �
p2 � 2m2

t�
1�

ffiffiffiffiffiffiffi
��

q �
p2 � 2m2

t

3
75

� 2� i�
ffiffiffiffiffiffiffi
��

q 9>=
>;: (5)

The behavior of the renormalized self-energy for large
momentum is

�̂�ðp2Þ¼�tp
2

�
log

�
�p2

m2
t

� i�

�
�2

�
; forp2�m2

t : (6)

The Dyson resummed propagator of the neutral would-
be Goldstone boson � at the leading order in the large NG

limit is given by

D̂ �ðp2Þ ¼ i

p2 � �̂�ðp2Þ þ i�
: (7)

Besides the real pole at p2 ¼ 0 corresponding to the neu-
tral would-be Goldstone boson, the exact � propagator in
Eq. (7) contains a tachyon pole. Its Euclidean position,
p2 ¼ ��2

T;�, can be obtained by solving numerically the

following equation:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

	2
T;�

s
log

2
64	2

T;� þ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4
T;� þ 4	2

T;�

q
	2
T;� þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4
T;� þ 4	2

T;�

q
3
75 ¼ 2

�t

þ 4;

	2
T;� ¼ �2

T;�

m2
t

:

(8)

A crude estimation of the position of the tachyonic pole
can be given by using the approximate expression in
Eq. (6) instead of the full one

�2
T;� ’ m2

t exp

�
1

�t

þ 2

�
: (9)

In Fig. 2 we show a comparison between the exact
position of the tachyon (divided by the top-quark mass)
and the approximated expression in the above equation.
The latter nicely reproduces the exact result for �t < 1,
while for bigger values of the coupling constant it starts
overestimating it.
The residuum at the tachyon pole, 
�, can be computed

exactly in terms of 	2
T;�,

1


�
¼ ��t þ 4�t þ 2

	2
T;� þ 4

: (10)

The opposite of the residuum, �
�, is plotted against �t

together with its approximation, �
� ¼ 1
�t
, in Fig. 3.

The spectral representation of the � propagator (7) is
given by

D̂�ðp2Þ ¼
Z þ1

�1
ds

i��ðsÞ
p2 � sþ i�

;

where ��ðsÞ ¼ �
�
TðsÞ þ �ðsÞ þ �

�
þðsÞ�ðs� 4m2

t Þ:
(11)

Notice that due to the tachyonic contribution to the spectral
function,

��
T ðsÞ ¼ 
��ðsþ�2

T;�Þ; (12)
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FIG. 2 (color online). Comparison between the exact result for
	T;� and its approximation.
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FIG. 1. SM enhanced contribution to the one-loop �
self-energy.
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the exact � propagator (7) does not satisfy the usual
Källen–Lehmann spectral representation. The other con-
tribution to the spectral function, which comes from the
positive part of the spectrum, is given by

��
þðsÞ

¼�t

s

ffiffiffiffiffiffiffi
��

q
�
1��t

� ffiffiffiffiffi
��

p
2 log

�
ð1þ ffiffiffiffiffi

��

p Þs�2m2
t

ð1� ffiffiffiffiffi
��

p Þs�2m2
t

�
�2

		
2þ�2�2

t��

:

(13)

The integral over the spectrum of �
�
þ is convergent, since

in the high-energy limit one has

�
�
þðsÞ ’

�t

s

1

½1� �t logð s
m2

t
Þ þ 2�t�2 þ �2�2

t

: (14)

Notice that this is not the case in perturbation theory.
Indeed, if one expands Eq. (13) in powers of �t, the
resulting spectral function at the leading perturbative order,

��
þðsÞ ¼

�t

s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t

s

s
þOð�tÞ2; (15)

is clearly not integrable over the positive part of the spec-
trum. Thus, the resummation provides a cutoff to the
theory.

By using the residue theorem, one can prove that the
integral over the whole spectrum of the spectral function,
��, vanishes,Z þ1

�1
ds��ðsÞ ¼ 
� þ 1þ

Z þ1

4m2
t

ds��
þðsÞ ¼ 0: (16)

The above result can also be checked with a careful nu-
merical integration.

Clearly, the removal of the tachyonic pole is necessary in
order to find an expression for the resummed � propagator

that respects causality and satisfies the Källen–Lehmann
representation. On the other hand, the contribution of the
tachyon pole is crucial in order to ensure the normalization
of the spectral function in Eq. (16). We propose to mini-
mally subtract the tachyonic pole

D̂MS
� ðp2Þ¼ i

p2��̂�ðp2Þþ i�
� i
�

p2þ�2
�;T

: (17)

Furthermore, one can impose the condition that the integral
over the physical, subtracted, spectral density be equal to
one. This amounts to rescaling the subtracted propagator
by a factor � 1


�
. We call this prescription the Akhoury

scheme in the following [18].
Another possibility is to perform a nonminimal subtrac-

tion of the tachyon (for a similar strategy in the context
of QCD see Refs. [19]). One can, for instance, subtract
the tachyonic pole and add its residuum to the pion pole
at p2 ¼ 0. This prescription will be called beyond-the-
minimal-subtraction (bMS) scheme,

D̂bMS
� ðp2Þ ¼ i

p2 � �̂�ðp2Þ þ i�
þ i
��

2
�;T

p2ðp2 þ�2
�;TÞ

: (18)

This solution has the property of removing the tachyon
without modifying the normalization of the spectral func-
tion. Indeed, one finds

D̂bMS
� ðp2Þ¼

Z þ1

0
ds

i�
�
bMSðsÞ

p2�sþ i�
;

where��
bMSðsÞ¼ ð1þ
�Þ�ðsÞþ��

þðsÞ�ðs�4m2
t Þ:

(19)

We remark that there are other nonminimal ways of re-
moving the tachyon. Another choice could be to impose
the validity of the tree-level relation, i.e. integral of the
spectral function equal to one. In the latter case the sub-
traction term is such that the resulting spectral function is
given by

��ðsÞ ¼ ð2þ 
�Þ�ðsÞ þ �
�
þðsÞ�ðs� 4m2

t Þ: (20)

However, due to the lack of a subsidiary principle, like
asymptotic freedom in QCD, we adopt, for the sake of
simplicity, the minimal subtraction prescription in our
computation of renormalon contribution to the top- and
bottom-quark propagators.

B. Charged would-be Goldstone boson

In this subsection we shall discuss the self-energy of the
charged would-be Goldstone boson,�, at the leading order
in the large NG expansion. The two graphs contributing to
��ðp2Þ, which are enhanced by a factorNG, are depicted in

Fig. 4. The sum of these graphs is given by (for the notation
see Appendix B)

 10
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FIG. 3 (color online). Comparison between the exact result for
�
� and its approximation.

D. BETTINELLI AND J. J. VAN DER BIJ PHYSICAL REVIEW D 86, 045018 (2012)

045018-4



��ðp2Þ ¼ 2i
ffiffiffi
2

p
NcNGGFm

2
t ½ðp2 �m2

t Þ
� B0½p2; mt; 0� þ A0½mt��: (21)

The on-shell renormalized � self-energy reads

�̂ �ðp2Þ ¼ ��ðp2Þ � �m2
� þ �Z�p

2; (22)

where the mass counterterm, �m2
�, and the wave function

renormalization constant, �Z�, are given by

�m2
�¼��ðp2¼0Þ¼0;

�Z�¼��0
�ðp2¼0Þ¼��t

�
2

D�4
þ log

�
m2

t

�2
B

�
þ3

2

�
:

(23)

The renormalized self-energy below the production thresh-
old, p2 <m2

t , reads

�̂�ðp2Þ ¼ �tp
2

�
�2

� log

� ���

1���

�
� �� � 1

2

�
;

�� ¼ 1�m2
t

p2
:

(24)

The expression for the on-shell renormalized� self-energy
above the production threshold is given by

�̂�ðp2Þ¼�tp
2

�
�2

� log

�
��

1���

�
����1

2
�i��2

�

�
: (25)

The behavior of the renormalized self-energy for large
momentum is

�̂�ðp2Þ ¼ �tp
2

�
log

�
� p2

m2
t

� i�

�
� 3

2

�
;

for p2 � m2
t :

(26)

The Dyson resummed propagator of the charged would-
be Goldstone boson � at the leading order in the large NG

limit is given by

D̂ �ðp2Þ ¼ i

p2 � �̂�ðp2Þ þ i�
: (27)

Besides the real pole at p2 ¼ 0 corresponding to the
charged would-be Goldstone boson, the exact � propaga-
tor in Eq. (27) contains a tachyon pole. Its Euclidean
position, p2 ¼ ��2

T;�, can be obtained by solving numeri-

cally the following equation:

�
1þ 1

	2
T;�

�
2
�
logð	2

T;� þ 1Þ � 	2
T;�

	2
T;� þ 1

�
¼ 1

�t

þ 1

2
;

	2
T;� ¼ �2

T;�

m2
t

:
(28)

A crude estimation of the position of the tachyonic pole
can be given by using the approximate expression in
Eq. (26) instead of the full one

�2
T;� ’ m2

t exp

�
1

�t

þ 3

2

�
: (29)

In Fig. 5 we show a comparison between the exact
position of the tachyon (divided by the top-quark mass)
and the approximated expression in the above equation.
The latter nicely reproduces the exact result for �t < 1,
while for bigger values of the coupling constant it starts
overestimating it.
The residuum at the tachyon pole, 
�, can be computed

exactly in terms of 	2
T;�

1


�
¼ ��t þ �t þ 2

	2
T;� þ 1

: (30)

The opposite of the residuum, �
�, is plotted against �t

together with its approximation, �
� ¼ 1
�t
in Fig. 6.

The spectral representation of the � propagator (27) is
given by

D̂�ðp2Þ ¼
Z þ1

�1
ds

i��ðsÞ
p2 � sþ i�

;

where ��ðsÞ ¼ ��
T ðsÞ þ �ðsÞ þ ��

þðsÞ�ðs�m2
t Þ:

(31)

Notice that due to the tachyonic contribution to the spectral
function,

��
T ðsÞ ¼ 
��ðsþ�2

T;�Þ; (32)

t

b

21

H

t

FIG. 4. SM enhanced contribution to the one-loop � self-
energy.
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FIG. 5 (color online). Comparison between the exact result for
	T;� and its approximation.
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the exact � propagator (27) does not satisfy the usual
Källen–Lehmann spectral representation. The other con-
tribution to the spectral function, which comes from the
positive part of the spectrum, is given by

��
þðsÞ

¼ �t

s

�2
�n

1� �t

h
�2

� log
�

��

1���

�
� �� � 1

2

io
2 þ �2�2

t�
4
�

:

(33)

The integral over the spectrum of ��
þ is convergent, since

in the high-energy limit one has

��
þðsÞ ’

�t

s

1

½1� �t logð s
m2

t
Þ þ 3

2�t�2 þ �2�2
t

: (34)

Notice that, again, this is not the case in perturbation
theory. By expanding the spectral function in Eq. (33) in
powers of �t, one gets a function,

��
þðsÞ ¼

�t

s

�
1�m2

t

s

�
2 þOð�2

t Þ; (35)

which is not integrable over the positive part of the
spectrum.

By using the residue theorem, one can prove that the
integral over the whole spectrum of �� vanishes

Z þ1

�1
ds��ðsÞ ¼ 
� þ 1þ

Z þ1

m2
t

ds��
þðsÞ ¼ 0: (36)

The above result has been confirmed by a careful numeri-
cal integration.
As in the neutral case we minimally subtract the

tachyonic pole

D̂MS
� ðp2Þ ¼ i

p2 � �̂�ðp2Þ þ i�
� i
�

p2 þ�2
�;T

: (37)

Normalizing the spectral density amounts to rescaling
the subtracted propagator by a factor � 1


�
.

In the case of the bMS scheme the tachyon-subtracted
propagator is given by

D̂bMS
� ðp2Þ ¼ i

p2 � �̂�ðp2Þ þ i�
þ i
��

2
�;T

p2ðp2 þ�2
�;TÞ

: (38)

Hereby one removes the tachyon, but keeps the spectral
density normalized. One finds

D̂bMS
� ðp2Þ ¼

Z þ1

0
ds

i��
bMSðsÞ

p2 � sþ i�
;

where ��
bMSðsÞ ¼ ð1þ 
�Þ�ðsÞ þ ��

þðsÞ�ðs�m2
t Þ:

(39)

C. Neutral Higgs boson

In this subsection we shall discuss the self-energy of the
neutral Higgs boson at the leading order in the large NG

expansion. We consider a finite, but not completely arbi-
trary Higgs mass, namelymH < 2mt. In this way the Higgs
boson cannot decay in t�t, and thus, it is stable at the leading
order in the large NG limit. The two graphs contributing to
�Hðp2Þ, which are enhanced by a factor NG, are depicted
in Fig. 7. The sum of these graphs is given by (for the
notation see Appendix B)

�Hðp2Þ ¼ 2i
ffiffiffi
2

p
NcNGGFm

2
t ½ðp2 � 4m2

t Þ
� B0½p2; mt; mt� þ 4A0½mt��: (40)

The on-shell renormalized Higgs self-energy reads

�̂Hðp2Þ¼�Hðp2Þ��m2
Hþ�ZHðp2�m2

HÞ; (41)

where the mass counterterm, �m2
H, and the wave function

renormalization constant, �ZH, are given by
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FIG. 6 (color online). Comparison between the exact result for
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� and its approximation.
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FIG. 7. SM enhanced contribution to the one-loop Higgs self-
energy.
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�m2
H ¼ �Hðp2 ¼ m2

HÞ

¼ �t

�
m2

H

�
2

D� 4
þ log

�
m2

t

�2
B

�
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p ��
þ 4m2

t

�
1� 2

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p ��	
;

�H ¼ 1� 4m2
t

m2
H

;

�ZH ¼ ��0
Hðp2 ¼ m2

HÞ ¼ ��t

�
2

D� 4
þ log

�
m2

t

�2
B

�
þ �H þ 2

�
1þ 2m2

t

m2
H

� ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p ��
:

(42)

In the limit of vanishing Higgs mass, mH ¼ 0, one finds

�m2
H ¼ �4�tm

2
t ;

�ZH ¼ ��t

�
2

D� 4
þ log

�
m2

t

�2
B

�
þ 8

3

�
:

(43)

It is interesting to notice that there is a finite Higgs mass renormalization even if one neglects mH. This effect comes from
the vacuum expectation value of the Higgs field.

The renormalized Higgs self-energy below the production threshold, i.e. for p2 < 4m2
t , reads

�̂Hðp2Þ ¼ �tp
2

8<
:2��

2
4 ffiffiffiffiffiffiffiffiffiffiffi

���

q
arctan

0
@ 1ffiffiffiffiffiffiffiffiffiffiffi

���

q
1
A� ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p �35

�
�
1�m2

H

p2

��
�H þ 4m2

t

m2
H

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p ��9=
;: (44)

The above expression simplifies a lot in the limit of vanishing Higgs mass

�̂Hðp2Þ¼�tp
2

2
42��

ffiffiffiffiffiffiffiffiffiffiffi
���

q
arctan

0
@ 1ffiffiffiffiffiffiffiffiffiffiffi

���

q
1
A�2���2

3

3
5: (45)

The expression for the on-shell renormalized Higgs self-energy above the production threshold is given by

�̂Hðp2Þ ¼ �tp
2

8><
>:��

8><
>:

ffiffiffiffiffiffiffi
��

q
2

log

2
64
�
1þ

ffiffiffiffiffiffiffi
��

q �
p2 � 2m2

t�
1�

ffiffiffiffiffiffiffi
��

q �
p2 � 2m2

t

3
5� 2

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p �
� i�

ffiffiffiffiffiffiffi
��

q 9>=
>;

�
�
1�m2

H

p2

��
�H þ 4m2

t

m2
H

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p ��9>=
>;: (46)

Also in this case, if we neglect the Higgs mass we obtain a simplified expression

�̂Hðp2Þ ¼ �tp
2

8><
>:
��

2

ffiffiffiffiffiffiffi
��

q
log

2
64
�
1þ

ffiffiffiffiffiffiffi
��

q �
p2 � 2m2

t�
1�

ffiffiffiffiffiffiffi
��

q �
p2 � 2m2

t

3
75� 2�� � 2

3
� i���

ffiffiffiffiffiffiffi
��

q 9>=
>;: (47)

The behavior of the renormalized self-energy for large momentum is

�̂Hðp2Þ ¼ �tp
2

�
log

�
� p2

m2
t

� i�

�
� 8

3

�
;

for p2 � m2
t ; m

2
H:

(48)

The Dyson resummed Higgs propagator at the leading order in the large NG limit is given by
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D̂ Hðp2Þ ¼ i

p2 �m2
H � �̂Hðp2Þ þ i�

: (49)

Besides the real pole at p2 ¼ m2
H corresponding to the Higgs particle, the exact Higgs propagator in Eq. (49) contains a

tachyon pole. Its Euclidean position, p2 ¼ ��2
T;H, can be obtained by solving numerically the following equation:

�
1þ 4

	2
T;H

�8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

	2
T;H

s
log

2
64	2

T;Hþ2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4
T;Hþ4	2

T;H

q
	2
T;Hþ2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4
T;Hþ4	2

T;H

q
3
75�4

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p �9>=
>;

¼
�
2þm2

H

m2
t

2

	2
T;H

��
1

�t

þ�Hþ4m2
t

m2
H

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p ��
;

	2
T;H¼�2

T;H

m2
t

: (50)

In the zero Higgs mass limit the above equation simplifies and reads

�
1þ 4

	2
T;H

�8><
>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

	2
T;H

s
log

2
64	2

T;H þ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4
T;H þ 4	2

T;H

q
	2
T;H þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	4
T;H þ 4	2

T;H

q
3
75� 4

9>=
>; ¼ 2

�t

þ 4

3
: (51)

The impact of a finite Higgs mass on the position of the
tachyon can be quite sizable. Indeed, it turns out that with a
finite Higgs mass,mH ¼ 125 GeV andmt ¼ 172 GeV as a
reference top mass, 	T;H is about 6%–8% smaller than the
same quantity with zero Higgs mass.

A crude estimation of the position of the tachyonic
pole can be given by using the approximate expression in
Eq. (48) instead of the full one

�2
T;H ¼ m2

t exp

�
1

�t

þ 8

3

�
: (52)

In Fig. 8 we show a comparison between the exact
position of the tachyon (divided by the top-quark mass)
both for a massless Higgs boson and for mH ¼ 125 GeV
and the approximated expression in the above equation.
The latter nicely reproduces the exact result for �t < 1,

while for bigger values of the coupling constant it starts
overestimating it.
The residuum at the tachyon pole, 
H, can be computed

exactly in terms of 	2
T;H and of the ratio m2

H=m
2
t ,

1


H

¼ 1�
�
1þm2

H

m2
t

1

	2
T;H

��
1þ �t � 6�t

	2
T;H þ 4

�
�
1

�t

þ �H þ 4m2
t

m2
H

ffiffiffiffiffiffiffiffiffiffiffiffi��H

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffi��H

p ��	
:

(53)

In the limit of vanishing Higgs mass the above equation
simplifies and reads

1


H

¼ ��t þ 4�t þ 6

	2
T;H þ 4

: (54)

In the above equation 	2
T;H is the solution of Eq. (51) and

not of the complete equation. We found that the impact of
a finite Higgs mass on the residuum at the tachyonic pole
is completely negligible. The opposite of the residuum,
�
H, is plotted against �t together with its approximation,
�
H ¼ 1

�t
in Fig. 9.

The spectral representation of the Higgs propagator (49)
is given by

D̂Hðp2Þ¼
Z þ1

�1
ds

i�HðsÞ
p2�sþ i�

;

where�HðsÞ¼�H
T ðsÞþ�ðs�m2

HÞþ�HþðsÞ�ðs�4m2
t Þ:

(55)

Notice that due to the tachyonic contribution to the spectral
function,

�H
T ðsÞ ¼ 
H�ðsþ�2

T;HÞ; (56)
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FIG. 8 (color online). Comparison between the exact result for
	T;H and its approximation.
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the exact Higgs propagator (49) does not satisfy the usual Källen–Lehmann spectral representation. The other contribution
to the spectral function, which comes from the positive part of the spectrum, is given by

�HþðsÞ ¼
�t

s

��

ffiffiffiffiffiffiffi
��

q
�
1� �t

�
��

2

ffiffiffiffiffiffiffi
��

q
log

�ð1þ ffiffiffiffiffi
��

p Þs�2m2
t

ð1� ffiffiffiffiffi
��

p Þs�2m2
t

�
� 2�� � 2

3

		
2 þ �2�2

t�
3
�

: (57)

The integral over the spectrum of �Hþ is convergent, since
in the high-energy limit one has

�HþðsÞ ’
�t

s

1

½1� �t logð s
m2

t
Þ þ 8

3�t�2 þ �2�2
t

: (58)

In the above equations we have reported the positive
part of the spectral function for a massless Higgs boson.
The complete expression of �Hþ for a generic Higgs
mass is rather cumbersome and can easily be obtained
from Eq. (46).

Notice that also for the Higgs boson the integral over the
spectrum is divergent order by order in perturbation theory.
Indeed, by expanding �Hþ in powers of �t, one finds, at the
leading order, a function,

�HþðsÞ ¼
�t

s

�
1� 4m2

t

s

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

t

s

s
þOð�2

t Þ; (59)

which is not integrable over the positive part of the
spectrum.

By using the residue theorem, one can prove that the
integral over the whole spectrum of �H vanishes (both for a
massless and a massive Higgs boson)

Z þ1

�1
ds�HðsÞ ¼ 
H þ 1þ

Z þ1

4m2
t

ds�HþðsÞ ¼ 0: (60)

The above result has been confirmed by a careful numeri-
cal integration.

We propose to minimally subtract the tachyonic pole

D̂MS
H ðp2Þ¼ i

p2�m2
H��̂Hðp2Þþ i�

� i
H

p2þ�2
H;T

: (61)

Normalizing the spectral density amounts to rescaling the
subtracted propagator by a factor � 1


H
.

According to the bMS scheme the tachyon-subtracted
propagator is given by

D̂bMS
H ðp2Þ ¼ i

p2 �m2
H � �̂Hðp2Þ þ i�

þ i
Hð�2
H;T þm2

HÞ
ðp2 �m2

HÞðp2 þ�2
H;TÞ

: (62)

Also here one removes the tachyon without modifying the
normalization of the spectral function. One finds

D̂bMS
H ðp2Þ ¼

Z þ1

0
ds

i�H
bMSðsÞ

p2 � sþ i�
;

where �H
bMSðsÞ ¼ ð1þ 
HÞ�ðs�m2

HÞ þ �HþðsÞ�ðs� 4m2
t Þ:

(63)

By using the nonminimal subtraction term in Eq. (62), one
subtracts the tachyonic pole and adds its residuum to the
Higgs pole at p2 ¼ m2

H.

III. PERTURBATIVE AND NONPERTURBATIVE
CONTRIBUTIONS TO THE � PARAMETER

The � parameter is usually defined as the ratio between
the neutral and charged current coupling constants at zero
momentum transfer

� ¼ JNCð0Þ
JCCð0Þ ¼

1

1� ��
: (64)

JCCð0Þ is given by the Fermi coupling constant, GF, deter-
mined from the �-decay rate, while JNCð0Þ can be mea-
sured in neutrino scattering on electrons or hadrons. Notice
that this definition of the � parameter is process dependent
since, in general, the radiative corrections depend on the
hypercharge of the particles involved in the scattering
process. However, the leading contributions in the top-
quark mass to �� are universal.

At tree level the � parameter is given by � ¼ M2
W

M2
Zc

2
W

¼ 1.

At the leading order in the top-quark mass, radiative cor-
rections to � can be obtained from the wave function
renormalization of the unphysical scalars. Let us consider
the kinetic terms of the scalar part of the SM Lagrangian.
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The UV divergences that show up in radiative corrections
can be reabsorbed by introducing suitable wave function
renormalization constants in the following way:

LKS ¼ Z�









@��
� þ i

gv

2
W�

�









2þZ�

2

�
@��þ gv

2cW
Z�

�
2

þ other terms: (65)

The renormalized masses of the gauge bosons are given by

MW ¼
ffiffiffiffiffiffiffi
Z�

q gv

2
; MZ¼

ffiffiffiffiffiffi
Z�

q gv

2cW
; thus�¼Z�

Z�

: (66)

The one-loop wave function renormalization constants
of the unphysical scalars have been computed in the pre-
vious section; see Eqs. (3) and (23). By using these results,
we immediately get the standard one-loop top contribution
to the � parameter

��p¼�t

2
þOð�2

t Þ¼
ffiffiffi
2

p
16�2

NcNGGFm
2
t þOðG2

Fm
4
t Þ: (67)

Our resummation and subsequent tachyonic subtraction
of the scalar propagators allows us to give an estimate of
the nonperturbative leading top-mass contribution to the �
parameter.

The residuum at the tachyon pole, 
, can be viewed as
the contribution from the continuous part of the spectrum
to the wave function renormalization constants; see
Eqs. (19), (39), and (65). Therefore, according to the
bMS scheme, one has

Z�¼ 1

1þ
�

; Z�¼ 1

1þ
�

)��c¼1�1þ
�

1þ
�

: (68)

It is worth noticing that the continuous contribution to ��
is always negative with this prescription. Moreover its
absolute value slowly increases with �t.

It is interesting to compare the bMS approach with the
Akhoury scheme. In this case we find, by normalizing the
spectral densities with a constant factor, the following
result:

Z�¼�
�; Z�¼�
�)��c¼1�
�


�

: (69)

In the Akhoury scheme the continuous contribution to ��
is positive, it grows with �t until it reaches its maximum
value, ��c ’ 0:038, for �t ’ 1, and eventually it starts
decreasing. We notice that the behavior in the two schemes
is quite different. This reflects the uncertainties in the
definition of resummation in improved perturbation theory.
The Akhoury scheme appears to be more in agreement
with the idea that the improvement of perturbation theory
through the summation of the renormalon chain should act
as a cutoff of the theory. The results of the bMS-like
calculation are hard to interpret physically. We notice
that the bMS scheme in this case is not as well motivated
as in QCD, where asymptotic freedom acts as an additional
guiding principle.

IV. TOP PROPAGATOR

In this section we discuss the one-loop self-energy
corrections to the top-quark propagator and their renor-
malization in the on-shell scheme. It turns out that all the
contributing graphs are of order Oð1Þ in the large NG

limit. We select a gauge invariant subset of self-energy
amplitudes by considering the limit of vanishing gauge
coupling constants, i.e. g, g0 ! 0. Indeed, in this approxi-
mation, which amounts to neglecting the vector boson
masses with respect to (w.r.t.) the Higgs boson and the
top-quark masses, one is left with the Feynman graphs
depicted in Fig. 10.
The contribution of graph 1 is given by (for the notation

see Appendix B)

i
ffiffiffi
2

p
GFm

2
t

�
ð6pþmtÞ

Z þ1

0
ds�H

phyðsÞB0½p2;
ffiffiffi
s

p
; mt�

� 6p
Z þ1

0
ds�H

phyðsÞB1½p2;
ffiffiffi
s

p
; mt�

�
; (70)

where �H
phyðsÞ ¼ �ðs�m2

HÞ þ �HþðsÞ�ðs� 4m2
t Þ is the

physical, subtracted spectral function. Therefore, one finds
a contribution from the Higgs pole, which is just the one-
loop amplitude, and a contribution from the continuous
part of the spectrum.
Some comments are in order. (i) Both the scalar and the

rank one tensor two-point functions in the above equation,
i.e. B0½p2;

ffiffiffi
s

p
; mt� and B1½p2;

ffiffiffi
s

p
; mt�, respectively, have a

physical threshold at p2 ¼ ð ffiffiffi
s

p þmtÞ2. Since the continu-
ous part of the spectrum starts at

ffiffiffi
s

p ¼ 2mt, the contribu-
tion of the latter to the self-energy contains an imaginary
part only for p2 > 9m2

t . (ii) The integral of the imaginary
part is convergent being over a compact domain, namely

4m2
t < s < ð ffiffiffiffiffiffi

p2
p �mtÞ2. (iii) The integral over the spec-

trum of the real part of the two-point functions in Eq. (70)
does not converge. In order to see this, we can limit
ourselves to the case p2 � ð ffiffiffi

s
p �mtÞ2, for the remaining

parts of the integrals, if any, are convergent being over a
compact domain. By using Eqs. (B10) and (B14), one can
show that at the leading order in the limit s � p2, m2

t ,
Eq. (70) readsffiffiffi

2
p
16�2

GFm
2
t

�
ð6pþmtÞ

Z þ1
ds�HþðsÞ

�
2

D�4
þ1þ log

�
s

�2
B

��

� 6p
2

Z þ1
ds�HþðsÞ

�
2

D�4
þ1

2
þ log

�
s

�2
B

��	
: (71)
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FIG. 10. Top-quark self-energy at one loop in the gaugeless
limit. The lines with a bubble denote a resummed scalar
propagator.
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Both integrals in the above equation are logarithmically
divergent.

The previous considerations suggest that the on-shell
renormalization of the top-quark self-energy, besides re-
moving the poles in D� 4, improves also the behavior of
the integrals over s. This is indeed the case. In fact, in the
limit where s � p2,m2

t , the subtracted two-point functions
go to zero as 1=s,

DB0½p2;
ffiffiffi
s

p
;mt�:¼B0½p2;

ffiffiffi
s

p
;mt��ReðB0½p2¼m2

t ;
ffiffiffi
s

p
;mt�Þ

¼m2
t �p2

2s
þO

�
1

s2

�
;

DB1½p2;
ffiffiffi
s

p
;mt�:¼B1½p2;

ffiffiffi
s

p
;mt��ReðB1½p2¼m2

t ;
ffiffiffi
s

p
;mt�Þ

¼m2
t �p2

3s
þO

�
1

s2

�
: (72)

This behavior entails that the integral over the positive part
of the spectrum of the subtracted functions in Eq. (72)
multiplied by �HþðsÞ is convergent and can be computed
numerically.

We now move to the contribution of the second graph
in Fig. 10,

i
ffiffiffi
2

p
GFm

2
t

�
ð6p�mtÞ

Z þ1

0
ds�

�
phyðsÞB0½p2;

ffiffiffi
s

p
; mt�

� 6p
Z þ1

0
ds��

phyðsÞB1½p2;
ffiffiffi
s

p
; mt�

�
; (73)

where �
�
phyðsÞ ¼ �ðsÞ þ �

�
þðsÞ�ðs� 4m2

t Þ is the physical,

subtracted spectral function. Thus, one finds a contribution
from the massless Goldstone pole, which is just the one-
loop amplitude, and a contribution from the continuous part
of the spectrum. The latter coincides, a part for the spectral
function and the sign of the mass term, with the continuous
contribution to the top-Higgs bubble in Eq. (70).

Finally, we report here the expression of the third graph
in Fig. 10 in the limit of vanishing bottom mass

2i
ffiffiffi
2

p
GFm

2
t 6p!þ

Z þ1

0
ds��

phyðsÞðB0½p2;
ffiffiffi
s

p
; 0�

� B1½p2;
ffiffiffi
s

p
; 0�Þ; (74)

where ��
phyðsÞ ¼ �ðsÞ þ ��

þðsÞ�ðs�m2
t Þ is the physical,

subtracted spectral function, while !þ ¼ 1þ5

2 is the posi-

tive chirality projector. Also in this case, one finds a con-
tribution from the massless Goldstone pole, which is just
the one-loop amplitude, and a contribution from the con-
tinuous part of the spectrum. Arguments similar to those
presented for the top-Higgs bubble allow us to conclude
that the continuous contribution to the self-energy coming
from the bottom-� bubble contains an imaginary part for
p2 >m2

t . The on-shell renormalization of the self-energy
amplitude in Eq. (74) guarantees the convergence of the
integral over the positive part of the spectrum. Indeed, in
the limit where s � p2, m2

t , one finds

2ðDB0½p2;
ffiffiffi
s

p
; 0� �DB1½p2;

ffiffiffi
s

p
; 0�Þ ¼ m2

t � p2

3s
þO

�
1

s2

�
:

(75)

It is convenient to parametrize the top-quark self-energy,

�̂tðpÞ, by means of momentum and mass form factors
according to the following definition:

�̂ tðpÞ ¼
ffiffiffi
2

p
16�2

GFm
2
t ½ða1lþðp2Þ þ acþðp2; �tÞÞ6p!þ

þ ða1l�ðp2Þ þ ac�ðp2; �tÞÞ6p!� þ ða1lmðp2Þ
þ acmðp2; �tÞÞmt�; (76)

where the coefficients aþ, a�, and am are given by

a1lþðp2Þ¼16�2

�i
ðDB0½p2;mH;mt��DB1½p2;mH;mt�þDB0½p2;0;mt��DB1½p2;0;mt�Þ

þ32�2

�i
ðDB0½p2;0;0��DB1½p2;0;0�Þ;

acþðp2;�tÞ¼16�2

�i

Z þ1

4m2
t

dsð�HþðsÞþ�
�
þðsÞÞðDB0½p2;

ffiffiffi
s

p
;mt��DB1½p2;

ffiffiffi
s

p
;mt�Þ

þ32�2

�i

Z þ1

m2
t

ds��
þðsÞðDB0½p2;

ffiffiffi
s

p
;0��DB1½p2;

ffiffiffi
s

p
;0�Þ;

a1l�ðp2Þ¼16�2

�i
ðDB0½p2;mH;mt��DB1½p2;mH;mt�þDB0½p2;0;mt��DB1½p2;0;mt�Þ;

ac�ðp2;�tÞ¼16�2

�i

Z þ1

4m2
t

dsð�HþðsÞþ��
þðsÞÞðDB0½p2;

ffiffiffi
s

p
;mt��DB1½p2;

ffiffiffi
s

p
;mt�Þ;

a1lmðp2Þ¼16�2

�i
ðDB0½p2;mH;mt��DB0½p2;0;mt�Þ;

acmðp2;�tÞ¼16�2

�i

Z þ1

4m2
t

dsð�HþðsÞ��
�
þðsÞÞDB0½p2;

ffiffiffi
s

p
;mt�: (77)
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In Fig. 11 (left panel) we plot the real (solid lines) and
imaginary (dashed lines) parts of the one-loop form factors

as functions of the external momentum,
ffiffiffiffiffiffi
p2

p
. The presence

of two thresholds at
ffiffiffiffiffiffi
p2

p ¼ mt ’ 170 GeV and
ffiffiffiffiffiffi
p2

p ¼
mt þmH ’ 300 GeV is clearly distinguishable. In the right
panel of the same figure we show the behavior of the real
(solid lines) and imaginary (dashed lines) parts of the con-
tinuous contribution to the mass form factor for different
values of the coupling constant �t. The real part of
acmðp2; �tÞ as a function of the external momentum has a
maximum that depends on �t, though it is always located

beyond the threshold at
ffiffiffiffiffiffi
p2

p ¼ 3mt ¼ 516 GeV. The im-
pact of the continuous part of the spectrum on the mass form
factor is negligible (< 5%) over the whole range of mo-
mentum considered. In Fig. 12 the continuous contribution
to the real (solid lines) and imaginary (dashed lines) parts of
the momentum form factors with negative (left panel) and
positive (right panel) chirality is plotted as a function of the

external momentum for different values of �t. It turns out
that in this case the continuous contribution to the momen-
tum form factors can be a sizable fraction (5%–10%) of the

corresponding one-loop contribution for
ffiffiffiffiffiffi
p2

p
> 500 GeV.

A detailed inspection shows that the effects of the continu-
ous part of the spectrum on all form factors grow with �t

until they reach their maximum for �t ’ 0:4 and then they
decrease. Finally, in Fig. 13 we present a comparison be-
tween the real (left panel) and the imaginary (right panel)
parts of the continuous contribution to the form factors
computed with a finite Higgs mass (solid lines), namely
mH ¼ 125 Gev, and in the approximation of vanishing
Higgs mass (dashed lines). A fixed value of the coupling
constant, �t ¼ 0:4, has been used to compute all the form
factors. One can see that the impact of a finite Higgs mass is
small (< 5%) on the momentum form factors, but can be

quite big (around 20%–25% for
ffiffiffiffiffiffi
p2

p
< 700 GeV and bigger

than 30% for
ffiffiffiffiffiffi
p2

p
> 800 GeV) on the mass form factor.

-6

-4

-2

 0

 2

 4

 6

 0  200  400  600  800  1000

E (GeV)

One-loop form factors: real and imaginary part

am

a-

a+

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  200  400  600  800  1000

E (GeV)

Mass form factor: different values of αt

am(1.0)

am(0.1)

am(0.4)

FIG. 11 (color online). Left panel: real (solid lines) and imaginary (dashed lines, same colors) parts of the one-loop form factors.
Right panel: real (solid lines) and imaginary (dashed lines) parts of the continuous contribution to the mass form factor for three
values of �t.
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FIG. 12 (color online). Left panel: real (solid lines) and imaginary (dashed lines, same colors) parts of the continuous contribution to
the momentum form factor with negative chirality for three values of �t. Right panel: same plot, but with positive chirality.
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Complex pole of the top propagator

In this subsection we compute the complex pole of the
Dyson resummed top propagator and extract from it the
width of the top quark. Moreover, the impact on this latter
quantity of the continuous part of the spectrum is estimated.

The Dyson resummed top propagator,

�tðpÞ ¼ i

6p�mt � �̂tðpÞ þ i�
; (78)

can be cast in the following form:

�tðpÞ ¼ i

Dðp2Þ
� 6p!þ
1� ~a�ðp2; �tÞ

þ 6p!�
1� ~aþðp2; �tÞ

þ mtð1þ ~amðp2; �tÞÞ
ð1� ~a�ðp2; �tÞÞð1� ~aþðp2; �tÞÞ

�
; (79)

where

Dðp2Þ¼p2�m2
t

ð1þ ~amðp2;�tÞÞ2
ð1� ~a�ðp2;�tÞÞð1� ~aþðp2;�tÞÞ

: (80)

The form factors appearing in the above equations are
given by the rescaled sum of the one-loop and the continu-
ous form factors given in Eq. (77), i.e.

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0  200  400  600  800  1000

E (GeV)

Real part of continous form factors: finite and zero Higgs mass

am(0.4)

a-(0.4)

a+(0.4)

-0.8

-0.6

-0.4

-0.2

 0

 0  200  400  600  800  1000

E (GeV)

Imaginary part of continous form factors: finite and zero Higgs mass

am(0.4)

a-(0.4)

a+(0.4)

FIG. 13 (color online). Left panel: real parts of the continuous contribution to the form factors computed with mH ¼ 125 GeV (solid
lines) and with mH ¼ 0 GeV (dashed lines). Right panel: same plot with the imaginary parts.

TABLE I. Top quark’s width expressed in GeV.

Mt �1l
t ðmH ¼ 125Þ �1lþcont

t ðmH ¼ 125Þ �1l
t ðmH ¼ 0Þ �1lþcont

t ðmH ¼ 0Þ
172 1.6666 1.6666 1.6670 1.6670

200 1.8286 1.8286 3.7368 3.7367

300 2.8969 2.9077 8.2406 8.2510

400 9.4270 9.4977 11.6188 11.6894

500 13.2124 13.4136 14.7659 14.9677

600 16.6049 16.9956 17.8448 18.2295

700 19.8499 20.5433 20.8998 21.5559

800 23.0236 24.1733 23.9460 25.0080

900 26.1581 27.9215 26.9893 28.6014

1000 29.2691 31.8017 30.0325 32.3400

1100 32.3649 35.8185 33.0767 36.2235

1200 35.4509 39.9722 36.1224 40.2493

1300 38.5300 44.2607 39.1699 44.4138

1400 41.6046 48.6807 42.2194 48.7126

1500 44.6758 53.2280 45.2707 53.1409

1600 47.7449 57.8979 48.3240 57.6941

1700 50.8124 62.6856 51.3791 62.3670

1800 53.8790 67.5863 54.4360 67.1549

1900 56.9449 72.5950 57.4945 72.0528

2000 60.0106 77.7069 60.5548 77.0560
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~aiðp2; �tÞ ¼
ffiffiffi
2

p
16�2

GFm
2
t ½a1li ðp2Þ þ aci ðp2; �tÞ�;

i ¼ þ;�; m:

The pole of the resummed propagator, s, which in
general is a complex quantity, can be obtained by solving
numerically the following equation:

s

m2
t
¼ ð1þ ~amðs; �tÞÞ2

ð1� ~a�ðs; �tÞÞð1� ~aþðs; �tÞÞ : (81)

We parametrize the complex pole s in the following way:

ffiffiffi
s

p ¼ Mt � i

2
�t; (82)

where Mt is the physical top mass and �t its width. In this
way, neglecting quadratic corrections in the width (narrow
width approximation), one finds s ¼ M2

t � iMt�t.
In Table I we show the width of the top quark, �t, as a

function of its physical mass,Mt. In particular, we compare
results obtained by taking into account one-loop corrections
to the top propagator only, with those where the contribution
coming from the continuous part of the spectrum has been
added. It turns out that the impact of nonperturbative cor-
rections on the top width is small (<7%) for Mt<1TeV,
but becomes quite sizable (>15%) for heavier masses,
typically above 1.5 TeV. Finally, our results show that the
presence of a light Higgs boson, with massmH ¼ 125 GeV,
affects the width of the top-quark significantly (> 10%)
only if the latter is light, Mt < 500 Gev.

V. BOTTOM PROPAGATOR

In this section we discuss the one-loop self-energy
corrections to the bottom-quark propagator and their re-
normalization in the on-shell scheme. It turns out that all
the contributing graphs are of order Oð1Þ in the large-NG

limit. We select a gauge invariant subset of self-energy

amplitudes by considering the limit where g, g0 ! 0. The
resulting graphs can be obtained from those depicted in
Fig. 10 by substituting a top propagator with a bottom one
and vice versa.
The contribution of graphs 1 and 2 to the bottom self-

energy, �bðpÞ, is proportional to GFm
2
b, and thus it can be

neglected. The expression of the third graph is given by

2i
ffiffiffi
2

p
GFm

2
t 6p!�

Z þ1

0
ds��

phyðsÞðB0½p2;
ffiffiffi
s

p
; mt�

� B1½p2;
ffiffiffi
s

p
; mt�Þ: (83)

In the above equation one finds a contribution from the
massless Goldstone pole, which is just the one-loop am-
plitude and a contribution from the continuous part of the
spectrum. The latter has a physical threshold, above which
an imaginary part shows up, at p2 ¼ 4m2

t due to the fact
that the continuous part of the spectrum starts at

ffiffiffi
s

p ¼ mt.
Moreover, the on-shell renormalization of the bottom self-
energy in Eq. (83) guarantees the convergence of the
integral over the positive part of the spectrum.
It is convenient to parametrize the bottom-quark self-

energy, �̂bðpÞ, by means of a momentum form factor
according to the following definition:

�̂bðpÞ ¼
ffiffiffi
2

p
16�2

GFm
2
t ðb1l�ðp2Þ þ bc�ðp2; �tÞÞ6p!�; (84)

where the coefficients are given by

b1l�ðp2Þ ¼ 32�2

�i
ðDB0½p2; 0; mt� �DB1½p2; 0; mt�Þ;

bc�ðp2; �tÞ ¼ 32�2

�i

Z þ1

m2
t

ds��
þðsÞðDB0½p2;

ffiffiffi
s

p
; mt�

�DB1½p2;
ffiffiffi
s

p
; mt�Þ: (85)

In the left panel of Fig. 14 we show the real (solid line)
and imaginary (dashed line) part of the one-loop
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FIG. 14 (color online). Left panel: real (solid line) and imaginary (dashed line) part of the one-loop form factor. Right panel: real
(solid lines) and imaginary (dashed lines, same colors) parts of the continuous contribution to the momentum form factor for three
values of �t.
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momentum form factor of the bottom propagator. In the
right panel of the same figure we plot the real (solid lines)
and imaginary (dashed lines) parts of the continuous con-
tribution to b� for three different values of �t. It turns out
that the impact of the continuous part of the spectrum
on the momentum form factor is not negligible, being

about 5%–10% of the one-loop contribution for
ffiffiffiffiffiffi
p2

p
>

500 GeV. Finally, also in the case of the bottom propagator
the effect of the continuous part of the spectrum on the
form factor reaches its maximum for �t ’ 0:4.

VI. CONCLUSION

The question whether the presence of a Landau pole, i.e.
a tachyon pole in the propagator, signifies the breakdown
of a theory or whether it is an artifact of perturbation theory
is a difficult question. It has been with us for 60 years and
one still cannot claim that the problem is solved. Within
QCD analytic perturbation theory appears to give funda-
mentally correct results; however, here one uses asymp-
totic freedom as an essential subsidiary principle. In this
paper we attempted to resum perturbation theory in a
similar method by at least first subtracting the tachyon
and subsequently calculate with the corrected propagator.
We showed that such calculations are feasible in the elec-
troweak sector. We focused on effects of a heavy top quark,
which simplifies the discussion considerably, since the
problems then appear in one place in the theory only and
can be studied in isolation. Also the heavy top effects are
the largest in the SM; however, perturbation theory is
surely sufficient for the physical top-quark mass.
Nonetheless the calculations are important for possible
effects of a (very unlikely) fourth family or effects from
fermion doubles, when one tries to take the continuum
limit of a lattice action.

Lacking the extra input from asymptotic freedom, one
needs new principles in order to constrain the uncertainties
coming from nonperturbative effects. Following a pre-
vious paper in Higgs physics, we introduced the Akhoury
scheme, which appears to give sensible results. The
scheme was motivated by principles from renormalization
theory like the normalization of the spectral density inte-
gral. An attempt to generalize analytic perturbation theory
gave quite different results that do not look very mean-
ingful. However, since rigorous principles constraining the
treatment of nonperturbative uncertainties are missing in
the electroweak case, we cannot come to a definite con-
clusion. It would be very useful if cutoff effects could be
studied in an entirely different nonperturbative scheme, for
instance, with a lattice Lagrangian. However, at the mo-
ment it appears unclear how one should put a chiral model
with a heavy top quark and a massless bottom quark on the
lattice. In particular, the fermion doubling problem will
complicate things here due to the lack of (perturbative)
decoupling of heavy fermion doubles.
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APPENDIX A: TREE-LEVEL LAGRANGIAN

For completeness we report here the Lagrangian that has
been used in the computations. We have adopted a Landau
gauge fixing in order to have massless would-be Goldstone
bosons. We omit the vertices with three and four gauge
fields, the ghost part of the Lagrangian, and all the fermion
fields except the top and bottom quarks since they do not
play a role in our computation. The bilinear part of the
Lagrangian is given by

Lbil ¼ Wþ
�g

��ðhþM2
WÞW�

� þ 1

2
Z�g

��ðhþM2
ZÞZ� þ 1

2
A�g

��hA� ��þh�� � 1

2
Hðhþm2

HÞH

� 1

2
�h�þ XNG

k¼1

½�tkði6@�mtÞtk þ �bki6@bk�; (A1)

where MW ¼ 1
2gv, MZ ¼ MW

cw
, mH ¼ 1ffiffi

2
p

ffiffiffiffi
	

p
v, and mt ¼ 1ffiffi

2
p ytv and A� is the photon field.

The trilinear part of the Lagrangian is given by

Ltri ¼ i

2
gWþ

� ½��ð@�H þ i@��Þ � ðH þ i�Þ@���� þ i

2
gW�

� ½ðH � i�Þ@��þ ��þð@�H � i@��Þ�

þ i

2
gZ�ð��@��þ ��þ@��� þ i�@�H � iH@��Þ þ 1

4
g2vHð2Wþ �W� þ Z2Þ

� 1

4
	vðH3 þH�2 þ 2H�þ��Þ þ 1ffiffiffi

2
p g

XNG

k¼1

ð�tkWþ!�bk þ �bkW
�!�tkÞ þ 1

2
g
XNG

k¼1

ð�tk 6Z!�tk � �bk 6Z!�bkÞ

þ yt
XNG

k¼1

ð�þ �tk!�bk þ�� �bk!þtkÞ � 1ffiffiffi
2

p yt
XNG

k¼1

ðH�tktk � i��tk5tkÞ: (A2)
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Finally the quadrilinear part of the Lagrangian is given by

Lquad ¼ 1

8
g2ð2Wþ �W� þ Z2Þð2�þ�� þH2 þ �2Þ

� 1

16
	½4ð�þ��Þ2 þH4 þ �4 þ 4�þ��H2

þ 4�þ���2 þ 2H2�2�: (A3)

We remark that in the above equations all the mass
parameters, the coupling constants, and the fields are
bare quantity, even though a subscript ‘‘0’’ has not been
added in order to avoid a cumbersome notation.

APPENDIX B: ONE-LOOP SCALAR INTEGRALS

We collect in this Appendix some useful formulas
that have been used in this work. We denote with �
the mass scale introduced with dimensional regulariza-
tion. Given the following definitions (with n a positive
integer):

AðnÞ
0 ½m�¼

Z dDq

ð2�ÞD
�ð4�DÞ

ðq2�m2þi�Þn ;

B0½p2;m;M�¼
Z dDq

ð2�ÞD
�ð4�DÞ

ðq2�m2þi�Þ½ðq�pÞ2�M2þi��;

(B1)

it is straightforward to derive the explicit expression for

the one-point functions AðnÞ
0 ,

Að1Þ
0 ½m��A0½m�¼ i

ð4�Þ2m
2

�
2

4�D
�1� log

�
m2

�2
B

��
;

Að2Þ
0 ½m�¼ i

ð4�Þ2
�

2

4�D
�2� log

�
m2

�2
B

��
;

AðnÞ
0 ½m�¼ ð�Þni

ð4�Þ2
1

ðn�2Þðn�1Þ
1

m2ðn�2Þ ; forn>2;

(B2)

where �2
B ¼ 4��2 expð2� EÞ.

Before dealing with the complete expression of the
scalar two-point function B0, we consider some special
cases. We start with the simplest case, the one with two
massless particle,

B0½p2; 0; 0� ¼ i

ð4�Þ2
�

2

4�D
� log

�
� p2

�2
B

� i�

��
: (B3)

The two-point function in the case of one massive particle
and one massless particle is given by

B0½p2; m; 0� ¼ i

ð4�Þ2
�

2

4�D
� log

�
m2

�2
B

�

�
�
1�m2

p2

�
log

�
1� p2

m2

��
: (B4)

The above expression is valid in the kinematical region
p2 <m2, while above the production threshold, p2 >m2,
we have

B0½p2; m; 0� ¼ i

ð4�Þ2
�

2

4�D
� log

�
m2

�2
B

�
�

�
1�m2

p2

�

� log

�
p2

m2
� 1

�
þ i�

�
1�m2

p2

��
: (B5)

By using Eq. (B4) it is easy to prove that

lim
p2!0

B0½p2;m;0�¼ 1

m2
A0½m�

¼ i

ð4�Þ2
�

2

4�D
�1� log

�
m2

�2
B

��
:

(B6)

The two-point function in the case of two massive
particles with equal mass below the production threshold,
p2 < 4m2, reads

B0½p2; m;m� ¼ i

ð4�Þ2
�

2

4�D
� log

�
m2

�2
B

�

� 2
ffiffiffiffiffiffiffiffi
��

p
arctan

�
1ffiffiffiffiffiffiffiffi��

p
��

; (B7)

where we have introduced the shorthand notation � ¼
1� 4m2

p2 . The two-point function with equal masses for

p2 > 4m2 is given by

B0½p2;m;m�¼ i

ð4�Þ2
�

2

4�D
� log

�
m2

�2
B

�

�1

2

ffiffiffiffi
�

p
log

�ð1þ ffiffiffiffi
�

p Þp2�2m2

ð1� ffiffiffiffi
�

p Þp2�2m2

�
þ i�

ffiffiffiffi
�

p 	
:

(B8)

By using Eq. (B7) it is easy to prove that

lim
p2!0

B0½p2;m;m�¼Að2Þ
0 ½m�

¼ i

ð4�Þ2
�

2

4�D
�2� log

�
m2

�2
B

��
:

(B9)

The two-point function in the general case of two differ-
ent masses reads

B0½p2; m;M� ¼ i

ð4�Þ2
�

2

4�D
� log

�
m2

�2
B

�

� p2 þM2 �m2

2p2
log

�
M2

m2

�

� 1

2

ffiffiffiffiffiffi
�2

p
log

�ð1þ ffiffiffiffiffiffi
�2

p Þp2 �m2 �M2

ð1� ffiffiffiffiffiffi
�2

p Þp2 �m2 �M2

�	
;

(B10)
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where we have introduced the shorthand notation �2 ¼ ð1� m2þM2

p2 Þ2 � 4 m2M2

ðp2Þ2 . The above expression is valid for

0<p2 � ðm�MÞ2; for p2 ¼ ðm�MÞ2, one has �2 ¼ 0. In the kinematical region ðm�MÞ2 < p2 < ðmþMÞ2, the
two-point function is given by

B0½p2; m;M� ¼ i

ð4�Þ2
�

2

4�D
� log

�
m2

�2
B

�
� p2 þM2 �m2

2p2
log

�
M2

m2

�

� ffiffiffiffiffiffiffiffiffiffi��2

p �
arctan

�
p2 þm2 �M2

p2
ffiffiffiffiffiffiffiffiffiffi��2

p �
þ arctan

�
p2 �m2 þM2

p2
ffiffiffiffiffiffiffiffiffiffi��2

p ��	
: (B11)

Finally, for p2 	 ðmþMÞ2, one has

B0½p2; m;M� ¼ i

ð4�Þ2
�

2

4�D
� log

�
m2

�2
B

�
� p2 þM2 �m2

2p2
log

�
M2

m2

�

� 1

2

ffiffiffiffiffiffi
�2

p
log

�ð1þ ffiffiffiffiffiffi
�2

p Þp2 �m2 �M2

ð1� ffiffiffiffiffiffi
�2

p Þp2 �m2 �M2

�
þ i�

ffiffiffiffiffiffi
�2

p 	
: (B12)

Tensor two-point integrals can be reduced to linear combinations of scalar one- and two-point functions. We consider
here the case of a rank one tensor,

B�½p2;m;M�¼
Z dDq

ð2�ÞD
�ð4�DÞq�

ðq2�m2þi�Þ½ðq�pÞ2�M2þi��
¼B1½p2;m;M�p�;

(B13)

where

B1½p2; m;M� ¼ p2 þm2 �M2

2p2
B0½p2; m;M� þ A0½M� � A0½m�

2p2
: (B14)
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