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We study the scalar fields of the five-dimensionalN ¼ 2 hypermultiplets using themethod of symplectic

covariance developed in previouswork. For static spherically symmetric backgrounds, we show that exactly

two possibilities exist. One of them is a Bogomol’nyi-Prasad-Sommerfeld zero-brane carrying charge under

the hypermultiplets. We find an explicitly symplectic solution of the fields in this background and derive the

conditions required for a full spacetime understanding.
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I. INTRODUCTION

The study of N ¼ 2 supergravity theories in four as
well as five dimensions is a popular enterprise in the
literature. It is generally motivated by these theories’ pos-
sible roles in understanding the string-theoretic origins of
entropy, duality symmetries, the AdS/CFT correspon-
dence, as well as the structure of the underlying special
holonomy manifolds; in our case a Calabi-Yau (CY)
3-fold. Classifications of solutions and almost solutions
(i.e. constructions with constraints) exist in abundance, (for
example [1–8] and references within). It should however
be noted that the vast majority of such studies focus on the
vector and/or tensor multiplet regimes. Comparatively,
little work is being done on the hypermultiplets sector.
This is due, in part, to the mathematical complexity in-
volved, since the hypermultiplets generally parametrize
quaternionic manifolds [9]. However, it was pointed out
some years ago that due to the so-called c-map, the hyper-
multiplets inD ¼ 5 for instance can be related to the much
better understood D ¼ 4 vector multiplets, and that the
methods of special geometry, developed for the latter, can
be applied to the former [10]. Based on this observation,
some hypermultiplet constructions in instanton and certain
two-brane backgrounds were found and studied (last ref-
erence and [11,12]). Despite this, explicit calculations
remain tedious even in the relatively simpler language of
special geometry (as compared to the original quaternionic
language). We argued in [13] that the well-known sym-
plectic structure of quaternionic and special Kähler mani-
folds can be used to construct hypermultiplet ‘‘solutions’’
based on covariance in symplectic space. These are full
solutions only in the symplectic sense, written in terms of
symplectic basis vectors and invariants. As far as being
spacetime solutions however, they are only partial, or
almost-solutions, in the sense that they depend on the
unknown explicit form of the underlying Calabi-Yau. In
fact, we have also argued that the reverse can be true:
constraint equations derived from these solutions may
eventually lead to an understanding of the submanifold

itself. The symplectic structure of special geometry is, of
course, a known property and is well understood (e.g.
[14]). Our contribution was simply to use it to recast the
theory into a symplectic form that greatly reduces the work
needed as well as provide a technique by which to construct
solutions. Previously, we have only shown the application of
this to results thatwere already known in the literature, found
by the methods of special geometry [10,11]. In the current
work, we apply the symplectic method to show that, under
certain constraints of maximal symmetry (spherically sym-
metric backgrounds, etc.), there exist D ¼ 5 Bogomol’nyi-
Prasad-Sommerfeld (BPS) zero-brane solutions coupled to
the most general form of the N ¼ 2 hypermultiplets. We
find some explicit spacetime solutions to the hyperscalars
and derive constraints on the complex structuremoduli of the
underlying Calabi-Yau that may be used in future work for a
deeper understanding.
The paper is organized as follows: In Sec. II we review

the form of ungauged N ¼ 2 supergravity theory in five
dimensions using the symplectic formulation. In Sec. III
we analyze the Einstein equation and the BPS conditions to
show that for a general spherically symmetric static
p-brane background only two possibilities of p exist.
Finally in Sec. IV we look at the case p ¼ 0 in some detail.

II. D¼ 5 N ¼ 2 SUPERGRAVITY
WITH HYPERMULTIPLETS

The dimensional reduction of D ¼ 11 supergravity the-
ory over a Calabi-Yau 3-fold M with nontrivial complex
structure moduli yields an N ¼ 2 supergravity theory in
D ¼ 5 with a set of scalar fields and their supersymmetric
partners all together known as the hypermultiplets (see [15]
for a review and additional references). It should be noted
that the other matter sector in the theory, the vector mul-
tiplets, trivially decouples from the hypermultiplets and
can be simply set to zero, as we do here. The hypermultip-
lets are partially comprised of the universal hypermultiplet

ða; �; �0; ~�0Þ, so called because it appears irrespective of
the detailed structure of the Calabi-Yau. The field a is
known as the universal axion, and is magnetically dual to
a three-form gauge field and the dilaton � is proportional*moataz.emam@cortland.edu
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to the natural logarithm of the volume of M. The rest of

the hypermultiplets are (zi, z
�i, �i, ~�i: i ¼ 1; . . . ; h2;1),

where the z’s are identified with the complex structure
moduli of M, and h2;1 is the Hodge number determining

the dimensions of themanifold of theCalabi-Yau’s complex
structure moduli, MC. The ‘‘bar’’ over an index denotes

complex conjugation. The fields (�I, ~�I: I ¼ 0; . . . ; h2;1) are
known as the axions and arise as a result of the D ¼ 11
Chern-Simons term. The supersymmetric partners known
as the hyperini complete the hypermultiplets.

The theory has a very rich structure that arises from the
intricate topology of M. Of particular interest to us is its

symplectic covariance. Particularly, the axions ð�I; ~�IÞ can
be defined as components of the symplectic vector

j�i ¼ �I

�~�I

 !
; (1)

such that the symplectic scalar product is defined by, for
example,

h�jd�i ¼ �Id~�I � ~�Id�
I; (2)

where d is the spacetime exterior derivative (d ¼ dxM@M:
M ¼ 0; . . . ; 4). A ‘‘rotation’’ in symplectic space is defined
by the matrix element

h@M�j�j@M�i ? 1 ¼ hd�j�^ j ? d�i
¼ 2hd�jVi^h �Vj ? d�i

þ 2Gi �jhd�jU �ji^hUij ? d�i
� ihd� ĵ ? d�i; (3)

where ? is the D ¼ 5 Hodge duality operator, and Gi �j is a

special Kähler metric on MC. The symplectic basis vec-
tors jVi, jUii and their complex conjugates are defined by

jVi ¼ eK=2
ZI

FI

 !
; j �Vi ¼ eK=2

�ZI

�FI

 !
; (4)

where K is the Kähler potential on MC, ðZ; FÞ are the
periods of the Calabi-Yau’s holomorphic volume form, and

jUii ¼ jriVi ¼
��������
�
@i þ 1

2
ð@iKÞ

�
V

�

jU�ii ¼ jr�i
�Vi ¼

��������
�
@�i þ

1

2
ð@�iKÞ

�
�V

�
;

(5)

where the derivatives are with respect to the moduli ðzi; z�iÞ.
These vectors satisfy the following conditions:

h �VjVi ¼ i

jri
�Vi ¼ jr�iVi ¼ 0

hUijUji ¼ hU�ijU �ji ¼ 0

h �VjUii ¼ hVjU�ii ¼ hVjUii ¼ h �VjU�ii ¼ 0;

jr �jUii ¼ Gi �jjVi; jriU �ji ¼ Gi �jj �Vi;
Gi �j ¼ ð@i@ �jKÞ ¼ �ihUijU �ji:

(6)

The origin of these identities lies in special Kähler
geometry. In our previous work [13], we derived the
following useful formulas:

dGi �j¼Gk �j�
k
ridz

rþGi �k�
�k
�r �j
dz �r

dGi �j¼�Gp �j�i
rpdz

r�Gi �p�
�j
�r �pdz

�r

jdVi¼dzijUii� iP jVi
jd �Vi¼dz

�ijU�iiþ iP j �Vi
jdUii¼Gi �jdz

�jjViþ�r
ikdz

kjUriþGj�lCijkdz
kjU�li� iP jUii

jdU�ii¼Gj�idz
jj �Viþ��r

�i �k
dz

�kjU�riþGl �jC�i �j �kdz
�kjUliþ iP jU�ii

�¼2jVih �Vjþ2Gi �jjU �jihUij� i

��1¼�2jVih �Vj�2Gi �jjU �jihUijþ i

@i�¼2jUiih �Vjþ2j �VihUijþ2Gj�rGk �pCijkjU�rihU �pj; (7)

where

P ¼ Im½ð@iKÞdzi�: (8)

The quantities Cijk are the components of the totally

symmetric tensor that appears in the curvature tensor of
MC. In this language, the bosonic part of the action is

S5 ¼
Z
5

�
R ? 1� 1

2
d� ^ ?d��Gi �jdz

i ^ ?dz
�j

þ e�hd�j�^ j ? d�i

� 1

2
e2�½daþ h�jd�i� ^ ?½daþ h�jd�i�

�
: (9)

The variation of the action yields the following field

equations for �, ðzi; z�iÞ, j�i and a, respectively:

ð��Þ ? 1þ e�hd�j�^ j ? d�i
� e2�½daþ h�jd�i� ^ ?½daþ h�jd�i� ¼ 0 (10)

ð�ziÞ? 1þ �i
jkdz

j ^ ?dzk þ 1

2
e�Gi �j@ �jhd�j�^ j ? d�i ¼ 0

ð�z�iÞ? 1þ �
�i
�j �k
dz

�j ^ ?dz
�k þ 1

2
e�G

�ij@jhd�j�^ j? d�i ¼ 0

(11)

dyfe�j�d�i � e2�½daþ h�jd�i�j�ig ¼ 0 (12)
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dy½e2�daþ e2�h�jd�i� ¼ 0; (13)

where dy is the D ¼ 5 adjoint exterior derivative, � is the
Laplace-de Rham operator and �i

jk is a connection onMC.

The full action is symmetric under the following super-
symmetry (SUSY) transformations:

��c
1 ¼ D�1 þ 1

4
fie�½daþ h�jd�i� � Yg�1

� e�=2h �Vjd�i�2
��c

2 ¼ D�2 � 1

4
fie�½daþ h�jd�i� � Yg�2

þ e�=2hVjd�i�1 (14)

���
0
1 ¼ e�=2hVj@M�i�M�1

�
�
1

2
ð@M�Þ � i

2
e�½ð@MaÞ þ h�j@M�i�

�
�M�2

���
0
2 ¼ e�=2h �Vj@M�i�M�2

þ
�
1

2
ð@M�Þ þ i

2
e�½ð@MaÞ þ h�j@M�i�

�
�M�1

(15)

���
î
1 ¼ e�=2eîjhUjj@M�i�M�1 � eî �jð@Mz �jÞ�M�2

���
î
2 ¼ e�=2eî

�jhU �jj@M�i�M�2 þ eîjð@MzjÞ�M�1;
(16)

where ðc 1; c 2Þ are the two gravitini and ð�I
1; �

I
2Þ are the

hyperini. The quantity Y is defined by

Y ¼ �ZINIJdZ
J � ZINIJd �ZJ

�ZINIJZ
J

; (17)

where NIJ ¼ Imð@IFJÞ. The e’s are the beins of the
special Kähler metric Gi �j, the �’s are the five-dimensional

N ¼ 2 SUSY spinors and the �’s are the usual Dirac
matrices. Finally, the covariant derivative D is given by

D ¼ dxM
�
@M þ 1

4
!M

M̂ N̂�M̂ N̂

�
(18)

as usual, where the !’s are the spin connections and the
hatted indices are frame indices in a flat tangent space.

III. BRANE ANALYSIS

The most general spherically symmetric p-branes in
D¼5 can be represented by the following ðPoincareÞpþ1 �
SOð4� pÞ metric:

ds2 ¼ e2C��abdx
adxb þ e2B����dx

�dx�; (19)

where B and C are constants, the directions a, b ¼
0; 1; . . . ; p define the brane’s world volume while
�, � ¼ ðpþ 1Þ; . . . ; 4 are those transverse to the brane.
The dilaton is assumed purely radial in the �, � directions.
It turns out that the constant C is constrained to vanish by
both the Einstein equations and the SUSY condition1

�c ¼ 0. Looking ahead, this can be easily seen by consid-
ering the b components of �c ¼ 0 and noting that all terms
but one vanish because of the fields’ independence of xb:

@b�1 þ C

2
ð@��Þ�b

��1 þ 1

4
fie�½@baþ h�j@b�i� � Ybg�1

� e�=2h �Vj@b�i�2 ¼ 0 leading to

C

2
ð@��Þ�b

��1 ¼ 0: (20)

We then set C ¼ 0 from the start and are left only with
the task of specifying B and the allowed values of p. Based
on this metric, the Ricci tensor breaks up into

Rab ¼ 0

R�� ¼ �Bð2� pÞð@�@��Þ
� B����

	
ð@	@
�ÞB2ð2� pÞð@��Þð@��Þ
� B2ð2� pÞg��ð@	�Þð@	�Þ (21)

leading to the Einstein tensor

Gab ¼ Bð3� pÞ�abg
��ð@�@��Þ

þ 1

2
B2ð2� pÞð3� pÞ�abð@	�Þð@	�Þ

G�� ¼ �Bð2� pÞð@�@��Þ þ Bð2� pÞ����
	
ð@	@
�Þ

þ 1

2
B2ð1� pÞð2� pÞg��ð@	�Þð@	�Þ

þ B2ð2� pÞð@��Þð@��Þ: (22)

Variation of the matter part of the action with respect to
the metric yields the stress tensor

Tab¼1

4
�abð@	�Þð@	�Þþ1

2
�abGi �jð@	ziÞð@	z �jÞ�

1

2
�abe

�h@	�j�j@	�iþ1

4
�abe

2�½ð@	aÞþh�j@	�i�½ð@	aÞþh�j@	�i�

T��¼�1

2
ð@��Þð@��Þþ1

4
e2B����ð@	�Þð@	�Þ�Gi �jð@�ziÞð@�z �jÞþ

1

2
e2B����Gi �jð@	ziÞð@	z �jÞþe�h@��j�j@��i

�1

2
eð2Bþ1Þ����h@	�j�j@	�i�1

2
e2�½ð@�aÞþh�j@��i�½ð@�aÞþh�j@��i�

þ1

4
e2ð1þBÞ����½ð@	aÞþh�j@	�i�½ð@	aÞþh�j@	�i�: (23)

1This is no surprise, since �c ¼ 0 automatically satisfies GMN ¼ TMN [16].

ZERO-BRANES AND THE SYMPLECTIC HYPERMULTIPLETS PHYSICAL REVIEW D 86, 045016 (2012)

045016-3



The universal axion’s field equation (13) implies a solution
of the form

daþ h�jd�i ¼ 	e�2�dH; (24)

where H is an arbitrary function satisfying �H ¼ 0, and
	 2 R. Similarly, the axion’s field equation (12) leads to

e�j�d�i � 	dHj�i ¼ 
jdKi
where j�Ki ¼ 0 and 
 2 R: (25)

Since we are only interested in bosonic solutions, we
consider the vanishing of the supersymmetric variations
(15) and (16), which may be rewritten in matrix form as
follows:

e�=2hVj@M�i�M � 1
2 ½ð@M�Þ � i	e��ð@MHÞ��M

1
2 ½ð@N�Þ þ i	e��ð@NHÞ��N e�=2h �Vj@N�i�N

2
4

3
5 �1

�2

 !
¼ 0 (26)

e�=2eîjhUjj@M�i�M �eî �jð@Mz �jÞ�M

eĵkð@NzkÞ�N e�=2eĵ
�khU �kj@M�i�N

2
4

3
5 �1

�2

 !
¼ 0: (27)

Thevanishing of the determinants gives theBPS conditions:

d� ^ ?d�þ 	2e�2�dH ^ ?dH

þ 4e�hVjd�i ^ h �Vj ? d�i ¼ 0

Gi �jdz
i ^ ?dz

�j þ e�Gi �jhUijd�i ^ hU �jj ? d�i ¼ 0: (28)

Using this with (3) we find

e�hd�j�^ j ? d�i ¼ 1

2
d� ^ ?d�þ 1

2
	2e�2�dH ^ ?dH

þ 2Gi �jdz
i ^ ?dz

�j; (29)

where we have used

hd� ĵ ? d�i ¼ 0; (30)

as required by the reality of the axions. The dilaton’s
equation (10) then becomes

ð��Þ ? 1þ 1

2
d� ^ ?d� ¼ 1

2
	2e�2�dH ^ ?dH

� 2Gi �jdz
i ^ ?dz

�j: (31)

Finally, the components of the Einstein equations reduce to

1

2
Bð3� pÞ½Bð2� pÞ � 1�d� ^ ?d�þ

�
1

2
� 2Bð3� pÞ

�
Gi �jdz

i ^ ?dz
�j

¼ � 1

2
Bð3� pÞ	2e�2�dH ^ ?dH

1

2
Bð2� pÞð2Bþ 1Þd� ^ ?d�þ ½2Bð2� pÞ � 1�Gi �jdz

i ^ ?dz
�j

¼ 1

2
Bð2� pÞ	2e�2�dH ^ ?dH

1

2
Bð2� pÞ½Bð1� pÞ � 1�d� ^ ?d�þ

�
1

2
� 2Bð2� pÞ

�
Gi �jdz

i ^ ?dz
�j

¼ � 1

2
Bð2� pÞ	2e�2�dH ^ ?dH: (32)

It can be easily shown that the equations in (32) cannot be
simultaneously satisfied for the case 	 ¼ 0. They either
lead to an imaginary B or to trivial solutions with constant
complex structure moduli. On the other hand, the case of
nonvanishing 	 leads to exactly two nontrivial solutions.
These are p ¼ 0, 1. In what follows, we study only the
zero-brane case, deferring the study of the one-branes to
future work.

IV. THE FIELDS

For p ¼ 0, Eqs. (29), (31), and (32) are identically
satisfied for any value of the constant B if

Gi �jdz
i^?dz

�j ¼ 6B2d�^?d�

ð24B2� 4Bþ 1Þd�^?d�¼	2e�2�dH^?dH

e�hd�j�^j?d�i ¼ ð24B2� 2Bþ 1Þd�^?d�

�e2B� ¼ 0: (33)

The last equation of (33) implies the simple ansatz
e2B� ¼ H, which leads to B ¼ 1=2 and 	2 ¼ 5. Hence,
the dilaton is fully specified in terms of H:

� ¼ lnH; (34)

while the universal axion is, so far
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da ¼ �	dH�1 � h�jd�i: (35)

To find an expression for the axions, we look again at the
vanishing of the hyperini transformations (15) and (16) and
make the simplifying assumption �1 ¼ ��2. This leads to

hVjd�i ¼ 1

2
ð1� i	Þe�ð�=2Þd�

h �Vjd�i ¼ 1

2
ð1þ i	Þe�ð�=2Þd�

hUijd�i ¼ e�ð�=2ÞGi �jdz
�j

hU �jjd�i ¼ e�ð�=2ÞGi �jdz
i:

(36)

These are the symplectic components of the full vector:

jd�i ¼ 1

2
ð	� iÞe�ð�=2Þd�jVi þ 1

2
ð	þ iÞe�ð�=2Þd�j �Vi

þ ie�ð�=2ÞdzijUii � ie�ð�=2Þdz �jjU �ji
¼ e�ð�=2ÞRe½ð	� iÞjVid�þ 2ijUiidzi�: (37)

Clearly, the reality condition jd�i ¼ jd�i as well as the
Bianchi identity on the axions are trivially satisfied. One
can now substitute (37) in (25) to get

j�id� ¼ 1

	
j�d�i � 


	
e��jdKi

¼ 1

	
e�ð�=2ÞRe½ð1þ i	ÞjVid��

þ 2

	
e�ð�=2ÞRe½jUiidzi� � 


	
e��jdKi: (38)

The remaining field equations (11) are slightly simpli-
fied as a consequence of the third result of (33). They
reduce to

ð�ziÞ ? 1þ �i
jkdz

j ^ ?dzk ¼ 0; (39)

and similarly for its complex conjugate counterpart. These
cannot, however, be explicitly solved without knowledge
of a metric on MC. However, one can conjecture several
constructions. For instance, a direct dependence on d� can
be assumed:

dzi ¼ meA�fid�; (40)

where m and A are arbitrary constants. Equation (39) im-
poses the following constraint on the unknown functions fi:

dfi þmeA��i
jkf

jfkd�þ ðA� 1Þfid� ¼ 0 (41)

which may further be simplified by the choice m ¼ A ¼ 1
yielding the condition

dfi þ �i
jkf

jfkde� ¼ 0: (42)

Adopting this ansatz, Eq. (38) can now be rewritten as

j�i ¼ 1

	
e�ð�=2ÞRe½ð1þ i	ÞjVi� þ 2

	
eð�=2ÞRe½fijUii�;

where, without loss of generality, we have chosen 
 ¼ 0.
The first equation in (33) leads to the additional constraint:

Gi �jf
if

�j ¼ 3

2m2
e�2A� ¼ 3

2
e�2�: (43)

Using these results, we find

h�jd�i ¼ � 7

2	
dH�1 leading to da

¼
�
7� 2	2

2	

�
dH�1

and a ¼ c�
�
2	2 � 7

2	

�
1

H
; (44)

where c is an arbitrary integration constant related to the
asymptotic value of a. Finally, solving the SUSY condition
�c ¼ 0 gives the following form for the spinors:

�1 ¼ en�þ��̂;

where n ¼ 1

2

�
�1þ i	

�
�1� 1

2

��

ð@��Þ ¼ 1

4
½Y� � ð@��Þ"���;

(45)

and �̂ is a constant spinor. We have used

!	

̂ �̂ ¼ 1

2
ð�
̂

	��̂� � �
̂���̂
	Þð@��Þ

D� ¼ @� þ 1

4
ð@��Þ��

�;
(46)

as well as the Dirac matrices’ projection conditions2:

��̂ �̂�s ¼ bs"�̂ �̂�s;

s ¼ ð1; 2Þ; bs ¼ �c

��
��s ¼ bs"�

��s;

���s ¼ �bs"�
����s:

(47)

If we now solve the Laplace equation �H ¼ 0 to find

HðrÞ ¼ 1þ q

r2
where q 2 R; (48)

and r is the usual radial coordinate in 4-D space, then
the zero-brane coupled to the hypermultiplets can be
represented by

2The Einstein summation convention is not used over the
index s.
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ds2 ¼ �dt2 þ
�
1þ q

r2

�
ðdr2 þ r2d�2

3Þ

�ðrÞ ¼ ln

�
1þ q

r2

�
a ¼ a1 � 3q

2
ffiffiffi
5

p ðr2 þ qÞ
dzi ¼ �2qfi

dr

r3
such that dfi � 2q�i

jkf
jfk

dr

r3
¼ 0 and Gi �jf

if
�j ¼ 3r4

2ðr2 þ qÞ2

j�i ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðr2 þ qÞp Re½ð1� i

ffiffiffi
5

p ÞjVi� þ 2

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ qÞ

5

s
Re½fijUii�

jd�i ¼ �2qRe

� ð� ffiffiffi
5

p � iÞ
ðr2 þ qÞð3=2Þ jVi þ

2i

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ q

p fijUii
�
dr;

(49)

where d�2
3 is the unit S3 metric. The equations in (49)

represent a full symplectic solution, but only a partial
spacetime one. The entire construction is based on the
choice that the dilaton and the universal axion are indepen-
dent of themoduli, and that the entire moduli dependence is
carried exclusively by the axions, while the moduli them-
selves are dependent on an unknown symplectic scalar fi.
The condition dfi � 2q�i

jkf
jfk dr

r3
¼ 0 is interesting.While

there are no guarantees that there exists a CY submanifold
that satisfies it, or even themore general (41), wemay argue
that it is in fact a compact version of the more complicated
attractor equations found in other solutions and as such is at
least as possible to satisfy as they are.

The quantity q is a coupling constant relating the behavior
of the fields to each other and to gravity. Since the metric is
asymptotically flat, the Arnowitt-Deser-Misner (ADM) mass
of the brane is easily calculable and is clearly proportional to
q. Since the value of q can be either positive or negative, we
note the following: For positive values of q the solution is
entirely smooth between the central singularity and infinity.
While for the case of negative q, a curvature singularity exists

at r ¼ ffiffiffiffiffiffijqjp
. As such the negative q result has two singular-

ities—one at r ¼ 0 and the other constituting an S3 surface

with radius r ¼ ffiffiffiffiffiffijqjp
. In both cases the singularities are

naked; no horizons exist.

V. CONCLUSION

The primary objective of this work was to apply the
methods developed in our earlier paper [13] and construct

D ¼ 5 hypermultiplet fields in a specific spacetime
background, simply by exploiting the symplectic symme-
try of the theory and finding solutions that are based on
symplectic invariants and vectors. In so doing, we have
also shown that only two (Poincaré)pþ 1� SOð4� pÞ
backgrounds are allowed (within the symmetries
assumed). Focusing on one of these possibilities, we
constructed a zero-brane coupled to the hypermultiplet
fields of N ¼ 2 supergravity. The metric and fields are
well behaved in the far field region and are dependent
on the Arnowitt-Deser-Misner mass of the brane. We
found explicit expressions for the metric, dilaton and
the universal axion. On the other hand the axions are
dependent on spacetime-unspecified symplectic basis
vectors and the moduli are proportional to an unknown
set of functions fi, satisfying specific conditions, which
we also derived. What we have then is a complete
symplectic solution, but a partial spacetime one.
Clearly, a full solution hinges on the values of fi, i.e.
on solving the aforementioned constraints, or equiva-
lently on solving (39). This is unlikely to be possible
without a full understanding of the structure of the CY
submanifold. In reverse, however, further study of these
functions may provide clues to the underlying manifold.
Although we have focused on the p ¼ 0 solution, the
setup investigated here also admits a p ¼ 1 configura-
tion. We plan to continue in this direction and study the
possible constraints on the moduli (similar to fi) that
should arise.
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