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The degrees of freedom of any interacting quantum field theory are entangled in momentum

space. Thus, in the vacuum state, the infrared degrees of freedom are described by a density matrix

with an entanglement entropy. We derive a relation between this density matrix and the Wilsonian

effective action obtained by integrating out degrees of freedom with spatial momentum above some

scale. We argue that the entanglement entropy of and mutual information between subsets of field

theoretic degrees of freedom at different momentum scales are natural observables in quantum field

theory and demonstrate how to compute these in perturbation theory. The results may be understood

heuristically based on the scale dependence of the coupling strength and number of degrees of

freedom. We measure the rate at which entanglement between degrees of freedom declines as their

scales separate and suggest that this decay is related to the property of decoupling in quantum field

theory.
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I. INTRODUCTION

A quintessential property which distinguishes quantum
mechanics from classical mechanics is the entanglement of
otherwise distinct degrees of freedom. When certain de-
grees of freedom are entangled with the rest of a quantum
system, it is not possible to describe them by a pure state.
Rather, the most complete description of a subsystem A at a
particular time is via the reduced density matrix obtained
by tracing over the degrees of freedom in the complement,
�A ¼ tr �Aðj�ih�jÞ, where j�i is the state of the entire
system. The entropy constructed from the reduced density
matrix, Sð�AÞ ¼ �trð�A logð�AÞÞ, quantifies the amount of
entanglement between A and its complement. The entan-
glement entropies corresponding to reduced density matri-
ces for diverse subsets of degrees of freedom provide a rich
characterization of the quantum state for systems with
many degrees of freedom.1

In physical systems, we typically only have access to a
subset of the degrees of freedom, namely the low-energy or
long-wavelength modes which are directly accessible to
experiments. In an interacting theory, it will generally be
true that these degrees of freedom are entangled with the
inaccessible high-energy degrees of freedom. Thus, the
long-wavelength modes will be described by a density
matrix. A more familiar description of low-energy degrees
of freedom is due to Wilson [2]—one carries out the
complete path integral over the inaccessible degrees of
freedom, arriving at an effective action capturing the dy-
namics of the remaining system. Here, we will index the
degrees of freedom by their spatial momenta and consider

integrating out modes of high spatial frequency. We show
that the resultingWilsonian prescription is compatible with
the description in terms of a density matrix: given a
Wilsonian effective action (defined more precisely below),
we can canonically associate the corresponding density
matrix via Eq. (5) below.
For continuous physical systems described by interact-

ing quantum field theories, understanding the variation
with scale of the Wilsonian effective action SWð�Þ pro-
vides key insights into the nature of the quantum field
theories, revealing a striking insensitivity of the low-
energy physics to the details of the ultraviolet description.
Correspondingly, it is natural to consider the variation with
scale of the density matrix �ð�Þ for the degrees of freedom
with momentum j ~pj<� and the associated entanglement
entropy Sð�Þ. To make our considerations concrete, we
derive a formula for this low-energy entanglement entropy
in perturbative quantum field theory, and apply it to scalar
field theories with �n potentials in various dimensions.
The scale dependence of the entropy Sð�Þ in such theories
can be understood in terms of the variation of the coupling
and number of degrees of freedom with scale.
To study entanglement between scales in greater detail,

we can consider the entanglement entropy associated with
any subset of the allowed momenta, or the mutual infor-
mation between any two subsets of the allowed momenta,
for example, between individual modes with momenta ~p
and ~q. These measures characterize the extent of entangle-
ment between specific scales in field theory, and we com-
pute the rate at which this entanglement declines as the
scales separate. This falloff may give an alternative char-
acterization of the property of decoupling in quantum field
theories. In theories which do not enjoy the property of
decoupling, e.g., noncommutative gauge theories [3] and

1For a basic review of density matrices, entanglement entropy,
and related concepts, see, e.g., Ref. [1].
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theories of gravity, the entanglement between degrees of
freedom at different scales may play an especially impor-
tant role.

Entanglement entropy in quantum field theory has been
considered previously, but almost all previous work has
focused on entanglement between degrees of freedom
associated with spatial regions (e.g., Refs. [4,5]). The
notion of a density matrix for low-momentum modes or
entanglement between different momentum modes has
appeared earlier in the context of cosmology and con-
densed matter physics (e.g., Refs. [6–8]), but there is little
overlap with the present work.

II. THE LOW-ENERGY DENSITY MATRIX

A quantum system with many degrees of freedom has a
Hilbert space of the formH ¼ H 1 �H 2 � � � � . Given a
subset of these degrees of freedom (A, with complement
�A), we can write H ¼ H A �H �A where H A is the
tensor product of Hilbert spaces for the degrees of freedom
in A. If � is the density matrix for the full system (which
may be in a pure state), a reduced density matrix for A is
defined by tracing over �A: �A ¼ tr �Að�Þ (or, given compo-
nents in a specific basis, �A

mn ¼ P
N�mN;nN). Expectation

values of operators which act only on A can be computed
as trð�ðOA � 1ÞÞ ¼ trAð�AOAÞ. If A is entangled with
its complement, �A will have a finite entropy: S ¼
�trAð�A log�AÞ> 0.

In this construction, the Hilbert space can be decom-
posed into a tensor product in any convenient way. For
example, the Hilbert space for two identical oscillators
could be decomposed either as a product of the Hilbert
spaces for the individual oscillators, or as a product of the
Hilbert spaces of even and odd normal modes. A reduced
density matrix could be computed in either case—good
choices of decomposition are dictated by the structure of
the interactions and restrictions on which degrees of free-
dom are accessible to measurements.

In quantum field theories, locality makes it natural to
associate independent degrees of freedom with disjoint
spatial domains. Hence, given a spatial region A (and
complement �A), one can decompose the Hilbert space as
H ¼ H A �H �A and trace over �A to derive the reduced
density matrix of A. But since the Hamiltonians of free
field theories are diagonalized by modes of fixed momen-
tum, it is in many ways more natural to use the Fock space
decomposition, H ¼ � ~pH ~p, where H ~p is the Hilbert

space of modes of momentum ~p.2 While this decomposi-
tion is motivated by considering the case of free field
theory, it applies equally well once we turn on interactions,

and is indeed the standard setting for computations in
perturbative quantum field theory.3

In free field theory, the vacuum state is a tensor product
of the Fock space vacuum states for each independent field
mode—there is no entanglement between the field modes
at different momenta. But in an interacting theory, the full
vacuum state will be a superposition of Fock basis states—
hence the modes of different momenta will generally be
entangled. In this case, the reduced density matrix corre-
sponding to a subset of the degrees of freedom (A) will
necessarily have a finite entropy, indicating that A is effec-
tively in a mixed state if the rest of system is traced over.
Now, one is most often interested in the physics of the
‘‘infrared’’ degrees of freedom which are accessible to
experiment, i.e., the degrees of freedom with momenta
below some scale �. The present discussion shows that
tracing over the ultraviolet, i.e., degrees of freedom with
momenta above �, should lead to an infrared effective
description in terms of a low-momentum density matrix
corresponding to a mixed state with finite entropy.

Relation between low-energy density matrix
and low-energy effective action

The standard way of studying the low-energy theory is
through the Wilsonian effective action. How is this quan-
tity related to the low-energy density matrix? To begin,
consider a bare action S� defined with a cutoff jpj � �.
Associated to this, we have a Hamiltonian H�, which will
have some ground state j�0

�i and corresponding density

matrix �0
� ¼ j�0

�ih�0
�j. This density matrix can bewritten

as a Euclidean path integral by taking the T ! 0 limit of
the finite temperature density matrix

h�̂yj�T
�j�yi ¼ 1

Z
h�̂yje��H� j�yi

¼ 1

Z

Z �ð�¼�=2Þ¼�̂y

�ð�¼��=2Þ¼�y

D�ð�Þe�SE
� ; (1)

where f�yg is a basis of field configurations indexed by y,

� ¼ 1=T is the inverse temperature, SE� is the Euclidean

action, and Z is the partition sum which normalizes the
path integral.
Given a subset of degrees of freedom A (with comple-

ment �A) and the tensor product structure of the Hilbert
space, we can split the parameter y which indexes the basis
states as y ¼ ða; �aÞ, and pick a basis with �y ¼ �a �� �a.

2Here, it is clearest to define the field theory as a limit of a
theory on finite volume so that the tensor product is over a
discrete set of allowed momenta. For a general field theory, the
factors would be labeled by field type and spin/polarization in
addition to momentum.

3There is a formal sense in which turning on interactions takes
one out of the original Hilbert space. However, by placing a
cutoff at some energy scale much higher than any scale of
interest, the Hilbert space structure of the interacting theory
will be the same as that of the free theory, and a density matrix
for low-momentum modes can be precisely defined.
Furthermore, as we will see later, various observables related
to the spectrum of the density matrix have a well-defined limit as
we take the cutoff to infinity.
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To define a reduced density matrix for A by tracing over �A,
we write

h�̂aj�T
Aj�ai ¼

Z
D�0

�ah�̂a�
0
�aj�T

�j�a�
0
�ai

¼ 1

Z

Z �Að�=2Þ¼�̂a

�Að��=2Þ¼�a

D�Að�ÞD� �Að�Þe�SE :

(2)

In the last expression, the fields � �A are periodic in the
range ½��=2; �=2�, which is implied after substituting
Eq. (1) into the trace in the middle expression.

Now, define a conventional thermal effective action for
the subsystem A:

e�STW ð�AÞ ¼
Z
��=2����=2

D� �Að�Þe�SEð�A;� �AÞ: (3)

In terms of this, the density matrix for A is

h�̂aj�T
Aj�ai ¼ 1

Z

Z �Að�=2Þ¼�̂a

�Að��=2Þ¼�a

D�Að�Þe�STW ð�AÞ

¼ 1

Z

Z �Að�¼0þÞ¼�̂a

�Að�¼0�Þ¼�a

D�Að�Þe�STW ð�AÞ: (4)

In the last expression, we translated time to put the dis-
continuity in the integral at � ¼ 0�, and the fields are taken
to be periodic at � ¼ ��=2. The reduced density matrix
for A in the ground state j�0

�i for the entire system is

extracted by taking � ! 1.
We now specialize to the case where A is the subset of

degrees of freedom with spatial momenta jpj<� for any
scale � which is lower than the ultraviolet cutoff �.
The reduced density matrix �jpj<� obtained by tracing

over the degrees of freedom with momenta in the range
�< jpj � � is thus given by

h�̂jpj<�j�jpj<�j ~�jpj<�i ¼ 1

Z

Z �jpj<�ð�¼0þÞ¼�̂jpj<�

�jpj<�ð�¼0�Þ¼ ~�jpj<�

D�jpj<�e
�SW ð�jpj<�Þ; (5)

where now (having taken � ! 1,) SW is a Wilsonian
effective action obtained by integrating out the degrees of
freedom with large spatial momenta4:

e�SW ð�jpj<�Þ ¼
Z

D�jpj>�ð�Þe�SEð�jpj<�;�jpj>�Þ: (6)

Equation (5) is our final result for the low-energy density
matrix. In particular, if O is an observable built out of the
low-momentum modes at � ¼ 0, it follows from Eq. (5)
that

tr ðÔ�Þ ¼ 1

Z

Z
½d�jpj<��Oe�SW ð�jpj<�Þ; (7)

so the standard calculation using the effective action is
equivalent to a calculation using the density matrix. Of

course, the full Wilsonian effective action contains more
information than the density matrix associated with the
vacuum state of the field theory. The former is a functional
of time-dependent field configurations, while the latter
depends only on a pair of time-independent field
configurations.
The description of low-energy degrees of freedom via a

density matrix may seem unfamiliar, and one may ask why
we cannot simply associate a pure vacuum state to the low-
energy degrees of freedom based on the effective action.
The reason is that SW will typically contain terms with
higher time derivatives, and there is no way to associate to
SW a HamiltonianH� expressed exclusively in terms of the

low-momentum variables and their conjugate momenta.
Thus, there is no canonical way to associate a pure state
of the low-momentum part of the Hilbert space to the full
ground state of the theory. As we have seen, the object
which can be canonically associated to a Wilsonian effec-
tive action for these low-momentum degrees of freedom is
a density matrix.

III. MEASURES OF ENTANGLEMENT

What observables quantify the amount of entanglement
between the degrees of freedom in different ranges of
momenta? In this section, we begin by discussing such
quantities in generality and conclude by constructing per-
turbative expressions for such observables in weakly
coupled field theories.
First, for any density matrix �, the von Neumann

entropy

Sð�Þ ¼ �trð� logð�ÞÞ (8)

4In relativistic quantum field theories, it is perhaps more
common to define a Wilsonian effective action by performing
the Euclidean path integral over all field variables �ðp�Þ with
jp�p�j>�. This is convenient, since it leads to an effective
action which is manifestly Lorentz-invariant. However, the re-
maining variables in the path integral correspond to a restricted
set of frequencies for each field mode �ð ~pÞ. Hence, this
Wilsonian action does not represent the full effective action
for a particular subset of degrees of freedom, but rather the
action for a restricted set of configurations of a subset of degrees
of freedom. In our case, while the path integral is still Euclidean,
we are integrating out all modes with spatial momenta j ~pj>�
and leaving all modes with j ~pj � �, regardless of frequency.
The result is an effective action which describes all possible
configurations of a subset of degrees of freedom for the theory,
the field modes with j ~pj � �. This type of Wilsonian action is
more commonly discussed in field theories without Lorentz
invariance, such as those describing condensed matter systems
(see, e.g., Ref. [9]).
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measures the classical uncertainty associated with the
mixed state described by �. When � represents a micro-
canonical or canonical ensemble, the von Neumann en-
tropy gives the thermodynamic entropy. When � is the
reduced density matrix describing a subsystem A of a
quantum system which is in a pure state, S quantifies the
entanglement between A and its complement ( �A). In this
case, the entanglement entropy of A is equal to that of �A, a
fact which follows from a stronger result that the spectrum
of eigenvalues of �A matches the spectrum of eigenvalues
of � �A.

When the Hilbert space for the theory can be decom-
posed into a tensor product with three or more factors, the
quantum entanglement and classical correlations between
pairs of these subsystems are jointly quantified by the
mutual information. For instance, if the Hilbert space is
of the form H ¼ H A �H B �H C � � � � , the mutual
information between A and B is defined as

IðA; BÞ ¼ SðAÞ þ SðBÞ � SðA [ BÞ; (9)

where SðXÞ is the von Neumann entropy of the reduced
density matrix of subsystem X. Mutual information is al-
ways greater than or equal to zero, with equality if and only
if the density matrix for the AB subsystem is a tensor
product of the reduced density matrices for subsystems A
and B. In other words, mutual information is zero if and
only if there is neither any entanglement nor any classical
correlation between the two subsystems.5 Mutual informa-
tion provides an upper bound on all correlators between the
two regions: for any bounded operatorsOA andOB, acting
only on the subsystems A and B, we have [10]

IðA; BÞ � ðhOAOBi � hOAihOBiÞ2
2jOAj2jOBj2

: (10)

If the Hilbert space consists of three factors H ¼
H A �H B �H C and the complete system is in a pure
state, it follows from the definitions that

IðA [ B;CÞ ¼ IðA;CÞ þ IðB;CÞ: (11)

But if A, B, and C together comprise only a part of the
system, another interesting observable is the tripartite
information which quantifies the extent to which the mu-
tual information between A [ B and C is determined by the
pairwise mutual informations IðA; BÞ and IðB;CÞ:

IðA; B; CÞ ¼ IðA [ B;CÞ � IðA;CÞ � IðB;CÞ: (12)

In general, this quantity can be positive, negative, or zero.
For a pure state of the full system, IðA; B; CÞ is symmetric

between the four subsystems A,B, C, and A [ B [ C.

A. Entanglement observables in perturbation theory

For weakly coupled quantum field theories, we can use
perturbation theory methods to calculate the entanglement
observables described in the previous section. To begin, it
is useful to derive a set of perturbative results which apply
more broadly.
Consider a general quantum system whose Hilbert

space may be decomposed into a tensor product H ¼
H A �H B, and start with a Hamiltonian of the form

H ¼ HA � 1þ 1 �HB: (13)

Denote the energy eigenstates of HA by jni and the energy
eigenstates of HB by jNi, with energies En and ~EN, re-
spectively. Before adding interactions, the ground state is

j0; 0i 	 j0i � j0i: (14)

Now, perturb the Hamiltonian by an interaction �HAB,
where � is a small parameter. The perturbed ground state
may be written (before normalization) as

j�i ¼ j0; 0i þ X
n�0

Anjn; 0i þ
X
N�0

BNj0; Ni

þ X
n;N�0

Cn;Njn; Ni; (15)

where A,B, and C are coefficients starting at order � which
may be computed in perturbation theory. To normalize, we

should multiply by 1=N ð1=2Þ, whereN ¼ 1þP jAnj2 þP jBNj2 þ
P jCn;Nj2. Now, the density matrix correspond-

ing to the subsystem A is

�A ¼ 1

1þ jAj2 þ jBj2 þ jCj2
1þ jBj2 Ay þ BCy

Aþ CBy AAy þ CCy

 !
;

(16)

where the elements of this matrix correspond to
j0ih0j,j0ihnj,jmih0j,jmihnj terms, respectively. By a sym-
metry transformation � ! M�M�1, we can simplify the
form to

�̂ A ¼ 1� jCj2 0
0 CCy

� �
þOð�3Þ (17)

where we are using the fact that A, B, andC start at order �.
(See below for why this is possible.)
Up to corrections of order �3, the eigenvalues of this

matrix are �2ai and 1� �2
P

ai, where faig (normalized to
be of order �0) are the eigenvalues of the matrix CCy=�2.
Thus, the entanglement entropy is

5The systems A and B are said to be entangled if and only if
the density matrix for the AB subsystem cannot be written asP

ipi�
i
A � �i

B. Separable density matrices of this form represent
states which have no quantum entanglement, but may have
classical correlations. The mutual information for such a state
can be nonzero.
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SA ¼ �trð�A logð�AÞÞ

¼ �
�
1� �2

X
ai

�
log

�
1� �2

X
ai

�

�X
�2ai logð�2aiÞ

¼ ��2 logð�2ÞXai þ �2
X

aið1� logaiÞ þOð�3Þ:

(18)

Now, an explicit expression for the Cmatrix using standard
perturbation theory is

CnN ¼ �
hn; NjHABj0; 0i

E0 þ ~E0 � En � ~EN

þOð�2Þ: (19)

Using this, the leading term in the entanglement entropy
for small � is explicitly

SA¼��2 logð�2Þ X
n�0;N�0

jhn;NjHABj0;0ij2
ðE0þ ~E0�En� ~ENÞ2

þOð�2Þ:

(20)

Interestingly, the entanglement entropy is not analytic in �
at � ¼ 0. Also, the leading-order perturbative result (up to
order �2 terms which are not written explicitly) depends
only on matrix elements of the interaction Hamiltonian
between the vacuum and states with both subsystems ex-
cited. This follows since Eq. (15) can be written as

j�i ¼
�
j0i þ X

n�0

Anjni
�
�
�
j0i þ X

N�0

BNj0; Ni
�

þ X
n;N�0

ðCn;N � AnBNÞjni � jNi: (21)

In this expression, the entanglement would be zero without
the second term, and in this term, CnN starts at order �
while AnBN starts at order �2. The A and B coefficients do
appear in the order �3 contributions to the entanglement
entropy (see Appendix A).

Mutual information

By a similar calculation, starting from a pure state in a
theory with H ¼ H A �H B �H C, the leading contri-
bution to IðA; BÞ in perturbation theory is

IðA; BÞ ¼ ��2 logð�2Þ
�
2

X
NA�0;NB�0;NC¼0

þ X
NA�0;NB�0;NC�0

�

� jhNA;NB; NCjHintj0; 0ij2
ðE0 � ENi

Þ2 : (22)

Similarly, whenH ¼ H A �H B �H C �H D, at lead-
ing order in perturbation theory, the tripartite information
IðA; B;CÞ is

IðA; B; CÞ ¼ þ�2 logð�2ÞX
Ni�0

jhNA;NB; NC; NDjHintj0; 0ij2
ðE0 � ENi

Þ2

þOð�2Þ: (23)

While IðA; B; CÞ can in general be positive, negative, or
zero, we see that the leading perturbative result for
IðA; B; CÞ is always less than or equal to zero. This implies
that to leading order in perturbation theory,

IðA [ B;CÞ � IðA;CÞ þ IðB;CÞ: (24)

This result is not true for general systems.6 Note also that if
the matrix element of the interaction Hamiltonian between
the free vacuum and states with all four subsystems excited
is zero,7 then we will have

IðA [ B;CÞ ¼ IðA;CÞ þ IðB;CÞ (25)

to leading order in perturbation theory. In this case, the
leading order contribution to mutual information between
any two subsystems is completely determined from the
mutual information between any pair of minimal
subsystems.8

B. Entanglement observables in quantum field theory

For all of the observables discussed above, the essential
quantities we have to compute are the reduced density
matrices of the various subsystems. Given these quantities,
we can compute the associated von Neumann entropies and
mutual informations. In local quantum field theory, recent
discussions of entanglement have focused on the density
matrices associated with bounded spatial regions. These
are well-defined because (by locality) there are indepen-
dent degrees of freedom in disjoint spatial domains, so the
Hilbert space factorizes as required. The associated spatial
entanglement entropy is typically divergent, even in free
field theory, because in the continuum limit, any spatial
region contains an infinite number of degrees of freedom at
arbitrarily short wavelengths. These divergences require
regularization (e.g., by including an ultraviolet cutoff), and
some care is needed to extract finite regularization-
independent data [5].
Now, as discussed above, it is often more natural in

quantum field theory to organize degrees of freedom by
momentum (or wavelength). Corresponding to any
bounded subset of momenta in a field theory, there

6In particular, if A and B are completely uncorrelated, �AB ¼
�A � �B, the opposite inequality, IðA [ B;CÞ � IðA;CÞ þ
IðB;CÞ follows from strong subadditivity of entanglement
entropy.

7In field theory, this will be true for theories with only cubic
interaction terms.

8In field theory, such minimal subsystems will be the Hilbert
spaces associated with modes at a single momentum.
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are a finite number of degrees of freedom per unit
spatial volume.9 As a result, the entanglement entropy
associated with such a subset should be finite for a
finite volume system, increasing with the volume con-
sidered. For a translation-invariant state, we expect that
the momentum space entanglement entropy will be an
extensive quantity with a finite density S=V. We will
verify this below.

What observables can we compute? We can define the
entanglement entropy SðPÞ associated to any subset P of
the allowed momenta,10 the mutual information IðP;QÞ
between any two subsets of momenta, or the tripartite
entanglement IðP;Q; RÞ for any three subsets of momenta.
We will focus on

(i) Sð�Þ, the entanglement entropy between all degrees
of freedom with momenta above and below the
scale �.

(ii) Sð½�1; �2�Þ, the entanglement entropy for a shell of
momenta �1 � jpj � �2.

(iii) Sð ~pÞ, the entanglement entropy for a single mode
with momentum p.

(iv) Iðfjpj<�1g; fjpj>�2gÞ, the mutual information
between degrees of freedom with momenta below
a scale �1 and degrees of freedom above the
scale �2.

(v) Ið ~p; ~qÞ, the mutual information between modes with
momenta ~p and ~q.

These quantities probe the strength and extent of entangle-
ment in momentum space.

In free field theory, the Hamiltonian does not couple
degrees of freedom with different momenta, and thus all
these measures of entanglement in momentum space
should vanish. Adding a weak interaction term which
couples degrees of freedom with different momenta modi-
fies the ground state and should introduce a small amount
of entanglement between the various field modes. We can
characterize this entanglement in perturbative quantum
field theory by adapting the general results derived above.
For the calculation of entanglement entropy, the two sub-
systems correspond to two complementary subsets A and �A
of the allowed momenta. The eigenstates jn; Ni of the
unperturbed Hamiltonian are elements of the Fock space
basis jfnig; fNIgi, where ni and NI are occupation numbers
for particle states in the two subsets. The interaction
Hamiltonian takes the form

HI ¼
Z

ddxH IðxÞ

for some local Hamiltonian density H IðxÞ which is poly-
nomial in the fields and their derivatives. The matrix
elements

hfnig; fNIgjHIj0; 0i (26)

may be computed by expanding the interaction
Hamiltonian density in terms of creation and annihila-
tion operators. The sum in Eq. (20) is now over all
states with at least one particle having momentum in
the subset A and at least one particle having momentum
in the subset �A. The nonzero matrix elements (26) in
the sum involve states with at most k momenta, where
k is the number of fields in the interaction, and the
momenta must add to zero since translation-invariance
of the interaction Hamiltonian leads to a momentum-
conserving delta function.
The leading contribution (20) to the entanglement

entropy can be rewritten in terms of a projected two-
point correlator of the interaction Hamiltonian (see
Appendix B). Below, we will work directly with the
expression (20).

IV. SCALAR FIELD THEORY: ENTANGLEMENT
BETWEEN SCALES

To develop some concrete examples of the general
formalism, we will calculate momentum space entangle-
ment entropy in dþ 1-dimensional scalar theories with
action:

S ¼
Z

ddþ1x

�
1

2
ð@��Þ2 � 1

2
m2�2 � �

n!
�n

�
: (27)

For ease of formulation, we will first take the theory to
be defined in a box of size L with periodic boundary
conditions, and assume a UV cutoff at a scale �.
We will compute the entanglement entropy Sð�Þ of

degrees of freedom with momenta jpj<� with the high-
momentum modes. Denoting by pi and Pi the allowed
momenta below and above �, the Fock space basis ele-
ments are written as jfnpi

gi � jfnPi
gi. To use the general

formula (20) for the leading contribution to the entangle-
ment entropy, we need matrix elements of the interaction
Hamiltonian between the free vacuum and the states with
both low and high momenta excited. Recall that the fields
can be expanded in terms of creation and annihilation
operators as

�ðxÞ ¼ 1

Lðd=2Þ
X
p

1ffiffiffiffiffiffiffiffiffi
2!p

p ðape�ip�x þ aypeip�xÞ (28)

9For a field theory at finite volume, there will be a finite
number of degrees of freedom in a bounded range of momenta.
In the infinite volume limit, the set of allowed momenta becomes
continuous. While there are now an infinite number of degrees of
freedom with momenta in a finite region of momentum space,
the number per unit spatial volume remains finite.
10More generally, P could represent a subset of the allowed
single-particle states.
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where !p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

p
. The nonzero matrix elements for

the interaction Hamiltonian between the Fock space vac-
uum and states with n particles excited11 are

hp1 � � �pnjHIj0i ¼ 1

2ðn=2ÞLdððn=2Þ�1Þ
�p1þ...þpnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!1 � � �!n

p (29)

From Eq. (20), we then have

Sð�Þ¼��2 logð�2ÞX
fpig�

�p1þ...þpn

2nLdðn�2Þ!1 ���!nð!1þ . . .þ!nÞ2

þOð�2Þ (30)

where the sum is over distinct sets of spatial momenta such
that at least one momentum is below the scale � and at
least one momentum is above the scale �. More generally,
the entanglement entropy for the field modes with mo-
menta in some set A is given by the same formula with
the sum over distinct sets of momenta such that at least one
momentum is in a set A and at least one momentum is in �A.

It is straightforward to take the limit of infinite volume.
By the usual replacements

X
~p

!
�
L

2	

�
d Z

ddp � ~p !
�
2	

L

�
d
�dðpÞ;

we find that the entanglement entropy density Sð�Þ=V has
a well-defined limit:

Sð�Þ=Ld ¼ ��2 logð�2Þ 1

ð2	Þdðn�1Þ2n

�
Z
fpig�

Y
ddpi

�ðp1 þ . . .þ pnÞ
!1 � � �!nð!1 þ . . .þ!nÞ2

þOð�2Þ: (31)

Here, the integral is again over distinct sets of momenta
such that at least one momentum is below the scale �, and
at least one momentum is above the scale �.

In practice, it is often simplest to calculate the derivative
dS=d�, since the�-dependence comes only in the domain
of integration, and this domain for Sð�þ d�Þ is almost the
same as for Sð�Þ. In the difference

Sð�þ d�Þ � Sð�Þ;
the only contributions which do not cancel between the two
terms are a positive contribution in which one momentum

is in the range ½�;�þ d�� and all the other momenta have
magnitude larger than �, and a negative contribution in
which one momentum is in the range ½�;�þ d�� and all
the other momenta have magnitude smaller than �.

A. The �3 theory in 1þ 1 dimensions

The simplest example is the �3 theory in 1þ 1 dimen-
sions.12 From (31),

Sð�Þ=V¼��2 logð�2Þ 1

32	2

�
Z
fpig�

Y
dpi

�ðp1þp2þp3Þ
!1!2!3ð!1þ!2þ!3Þ2

þOð�2Þ

	��2 logð�2Þ 1

32	2
Ið�Þ:

Letting

Jðp1; p2; p3Þ ¼ 1

!1!2!3ð!1 þ!2 þ!3Þ2
; (32)

we find that

1

2

dI

d�
¼
Z 1

�
dpJð�;p;�p��Þ

�
Z 0

��=2
dpJð�;p;�p��Þ: (33)

Evaluating the right-hand side analytically for large and
small �, we find that13

Ið�Þ !
8<
:

�
m4

�
	� 8

ffiffi
3

p
27 	� 4

3

�
� 
 m

1
12�3

n
23
12 þ ln

�
�2

m2

�o
� � m

: (34)

As discussed further below, the linear behavior for small�
is related to the linear growth in the number of degrees of
freedom below scale �, while the falloff at large � is
related to fact that a �3 is relevant in 1þ 1 dimensions
so that the physics at large scales approaches that of the
free theory, for which there is no entanglement between
modes at different momenta.

Order �2 terms

Above, we computed the Oð�2 logð�2ÞÞ term in the
entanglement entropy which dominates at infinitesimal �.
At small, but finite �, the Oð�2Þ term in Eq. (18) could
compete with this. To calculate this term, we must deter-
mine the eigenvalues (and not just the trace) of the matrix
CCy=�2, where

11We are only interested in matrix elements between the
vacuum and states with at least one low-momentum particle
and at least one high-momentum particle. For �3 and �4 field
theory, the only such nonzero matrix elements have 3 and 4
particles excited, respectively. For �n theory with n > 4, matrix
elements with n� 2k � 3 particle states can also contribute, but
for these theories, we must also include �n�2k counterterms in
the action. For now, we focus on the case of �3 and �4 theory.

12We work with a massive �3 theory, so the theory is pertur-
batively stable. We can assume higher-order interaction terms
�2n which stabilize the theory nonperturbatively but do not
affect our leading-order perturbative calculations.
13To find Ið�Þ, we evaluate the expression for dI=d� and then
integrate with respect to �. The constant of integration is fixed
by requiring that the entanglement entropy vanish as � ! 0.
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Cfpig;fPig ¼ � �

Lð1=2Þ2ð3=2Þ
�P piþ

P
Pi

ðP!pi
þP

!Pi
Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiQ

!pi

Q
!Pi

q
(35)

and the sets fpig and fPig must have either one and two
elements or two and one elements. Thus, the matrix
M ¼ CCy=�2 has nonzero elements of the form Mp;q

and Mfp1;p2g;fq1;q2g. We have

Mp;q ¼ �p;q

1

8L

X
P;Q

�pþPþQ

!p!Q!Pð!p þ!Q þ!PÞ2
: (36)

Thus, for each p with jpj<�, we have one eigenvalue

ap ¼ 1

8L

X
jPj>�;jQj>�

�pþPþQ

!p!P!Qð!p þ!P þ!QÞ2
: (37)

The remaining block of the matrix M has entries

Mfp1;p2g;fq1;q2g ¼
��
p1þp2;q1þq2

8L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p1

!p2
!q1!q2

p
!p1þp2

ð!p1
þ!p2

þ!p1þp2
Þð!q1 þ!q2 þ!p1þp2

Þ ;

where �� indicates that we must have jp1 þ p2j>� for a nonzero result. To find the remaining eigenvalues, we putM in
block diagonal form, with one block for each P with jPj>�, where p1 þ p2 ¼ q1 þ q2 ¼ P. For the block labeled by P,
we can label the matrix entries by p1 and q1, with

Mp1;q1 ¼
1

8L

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p1

!P�p1
!q1!P�q1

p
!Pð!p1

þ!P�p1
þ!PÞð!q1 þ!P�q1 þ!PÞ ¼

Vðp1ÞVðq1Þ
8L

;

where

VðpÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!p!P�p!P

p ð!p þ!P�p þ!PÞ : (38)

A matrix of this form has only one nonzero eigenvalue,
equal to

aP ¼ 1

8L

X
jpj<�;jqj<�

�pþqþP

!p!q!Pð!p þ!q þ!PÞ2
: (39)

We have one such eigenvalue for each P with jPj>�.
Having found all the eigenvalues of CCy=�2, we can

use Eq. (18) to write an expression for Sð�Þ including the
order �2 term. Recall that Sð�Þ ¼ �2ð1� logð�2ÞÞP ai �
�2
P

ai logðaiÞ. Taking L ! 1,

X
ai=L ¼

Z dp1

2	
Iðp1Þ (40)

and

X
ai logðaiÞ=L ¼

Z dp1

2	
Iðp1Þ logðIðp1ÞÞ; (41)

where

Iðp1Þ ¼
Z
�
dp2dp3

16	

�ðp1 þ p2 þ p3Þ
!1!2!3ð!1 þ!2 þ!3Þ2

: (42)

Here, the asterisk indicates that p2 <p3, and that p2 and
p3 must have magnitude less than � if p1 has magnitude
greater than �, while p2 and p3 must have magnitude
greater than � if p1 has magnitude less than �.

We have plotted the two leading contributions (41)
and (40) in Fig. 1. We see that the two terms have a
qualitatively similar behavior. In detail, the term (41)

falls off slightly more slowly for large �, behaving as
1=�3log2ð�2=m2Þ compared with 1=�3 logð�2=m2Þ for
Eq. (40). Thus, for fixed � and sufficiently large � (of
order m=�), the Oð�2Þ term will be larger than the
Oð�2 logð�2ÞÞ term, although the qualitative behavior is
similar. In this work, our focus is on the physics in the
limit of small �, so in the remainder of the discussion,
we will concentrate Oð�2 logð�2ÞÞ terms which dominate
as long as we stay below the parametrically large ener-
gies of order 1=� relative to the mass.

B. The �3 theory in higher dimensions

In general dimensions, the entanglement entropy for the
modes below scale � in the �3 field theory is given by

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1 2 3 4 5

FIG. 1. Leading contributions to Sð�Þ for �3 theory in 1þ 1
dimensions. Full result for Sð�Þ is proportional to
�2ðlogð1=�2Þ þ 1Þ times bottom function plus �2 times top
function.
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Sð�Þ=Ld ¼ ��2 logð�2Þ 1

8ð2	Þ2d
Z
fpig�

ddp1d
dp2d

dp3

�ðp1 þ p2 þ p3Þ
!1!2!3ð!1 þ!2 þ!3Þ2

þOð�2Þ

	 ��2 logð�2Þ 1

8ð2	Þ2d Idð�Þ: (43)

It is more convenient to compute

1

!d�1�
d�1

dId
d�

¼
�Z

B
�
Z
A

�
d2pJðð�; 0Þ; ~p;�ð�; 0Þ � ~pÞ (44)

where J is defined in Eq. (32), and A and B are the regions shown in Fig. 2(a) (symmetric between the vertical axis shown
and the directions not depicted in the case d > 2). Here, !d ¼ 2	ðdþ1Þ=2=�ððdþ 1Þ=2Þ is the volume of the unit d-sphere.

Explicitly, we have

1

!d�1�
d�1

dI

d�
¼ �

Z 0

�ð�=2Þ
dpx

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�ðpxþ�Þ2

p

0
dpT!d�2p

d�2
T Jðpx; pTÞ þ

Z �

�ð�=2Þ
dpx

Z 1ffiffiffiffiffiffiffiffiffiffiffi
�2�p2

x

p dpT!d�2p
d�2
T Jðpx; pTÞ

þ
Z 1

�
dpx

Z 1

0
dpT!d�2p

d�2
T Jðpx; pTÞ (45)

where

Jðpx; pTÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

T þm2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�þ pxÞ2 þ p2
T þm2

q

� 1

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þm2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

T þm2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�þ pxÞ2 þ p2

T þm2
q

Þ2
:

We find that in 2þ 1 dimensions, the entanglement en-
tropy decreases with � as

I2ð�Þ ! 2	

3�
(46)

when � � m, while in 3þ 1 dimensions, we have

I3ð�Þ ! 2	2ðlnð4Þ � 1Þ�
for � � m. We interpret the 3þ 1-dimensional result as
saying that in this case, the �3 growth in the number of

degrees of freedom below scale � overwhelms the 1=�
falloff of the effective dimensionless coupling. These
expressions are exact (and finite) as m ! 0. For 4þ 1
dimensions and higher, Eq. (45) diverges—we will discuss
this divergence below.

C. �4 theory

Finally, consider the �4 field theory in 1þ 1 dimen-
sions. From Eq. (31),

0
A

B

µυ

mu

0.07

0.05

9

0.03

7
−0.01

0.1

0.09

0.08

0.06

10

0.04

0.02

8

0.01

0.0
6543210

(A) (B)

FIG. 2 (color online). (A) Integration regions for �3 theory in 2þ 1 dimensions. (B) The function FðxÞ appearing in the
entanglement entropy for �4 theory in 1þ 1 dimensions.
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Sð�Þ=V ¼ ��2 logð�2Þ 1

16ð2	Þ3
Z
fpig�

Y
ddpi

�ðp1 þ � � � þ p4Þ
!1 � � �!4ð!1 þ � � � þ!4Þ2

þOð�2Þ 	 ��2 logð�2Þ 1

16ð2	Þ3 Ið�Þ:

Thus, we study Ið�Þ ¼ R
fpig� dp1dp2dp3dp4�ðp1 þ p2 þ p3 þ p4ÞJðp1; p2; p3; p4Þ, where Jðp1; p2; p3; p4Þ�1 ¼

!1!2!3!4ð!1 þ!2 þ!3 þ!4Þ2. It is again more convenient to evaluate

1

2

dI

d�
¼
�Z 1

�
dp1

Z p1

�
dp2 þ

Z 1

�
dp1

Z ��

�ðp1þ�=2Þ
dp2

�
Jðp1; p2; �;�p1 � p2 ��Þ

�
Z �ð�=3Þ

��
dp1

Z �ðp1þ�=2Þ

p1

dp2Jðp1; p2; �;�p1 � p2 ��Þ

	 1

m4
Fð�=mÞ:

A numerical integration determines F, giving the final
result

Sð�Þ=V ¼ ��2 logð�2Þ 1

384	3

1

m3

Z �=m

0
dxFðxÞ: (47)

The function FðxÞ is plotted in Fig. 2(b). By analyzing
(analytically) the behavior of F for large and small x, we
find that the entropy Sð�Þ behaves as �=m4 for small �
and as

S 1

�3
ln2ð�=mÞ

for large �. As for the �3 theory, the decay at large � is
related to the fact that the�4 theory in 1þ 1 dimensions is
free in the UV.

The leading perturbative contribution to the entangle-
ment entropy Sð�Þ of �4 theory can be similarly evaluated
in 2þ 1 dimensions. The integrals there are more difficult
to evaluate numerically, but are convergent. For 3þ 1 and
higher dimensions, the integral expression for the leading
contribution to Sð�Þ in the�4 theory has a UV divergence,
which we discuss further below.

D. General remarks

Massless limits: We found above that in two and higher
space dimensions, the entanglement entropy Sð�Þ has a
finite limit as we take the mass to zero. However, in 1þ 1
dimensions, the results for both �3 theory and �4 theory
diverge in the massless limit. These divergences suggest
that Sð�Þ is not an ‘‘infrared-safe’’ quantity for a massless
scalar theory in 1þ 1 dimensions. However, the ratio
Sð�Þ=Sð�0Þ has a finite limit if we hold � and �0 fixed
as we take m to zero. The result is

Sð�Þ=Sð�0Þ ¼ ð�0=�Þ3: (48)

Thus, while it may not be sensible to talk about Sð�Þ
directly for m ¼ 0 and infinite volume, the ratio for differ-
ent scales appears to be well-defined even in 1þ 1
dimensions.

General understanding of large � behavior: The results
above agree with the following heuristic derivation of the

power-law behavior of Sð�Þ for large �. The behavior is
influenced by two significant effects. First, the number of
degrees of freedom per unit volume below a momentum
scale � grows like �d. All else being equal, we expect S
to scale like the number of degrees of freedom (for
example, it is extensive). However, the interactions in a
general field theory depend on the scale, and this scale
dependence also contributes to the behavior of Sð�Þ. The
dimensionless effective coupling for a �n interaction at

scale � behaves as 1=�dþ1�nðd�1Þ=2. Since S goes like
�2 (plus logarithmic corrections), we can estimate that
Sð�Þ should behave as

S�d �
�

1

�dþ1�nðd�1Þ=2

�
2 ¼ 1

�dþ2�nðd�1Þ

up to possible logarithmic corrections. This is consistent
with our results. At a technical level, this scaling arises in
the integrals for entanglement entropy from two sources:
(a) the measure factors (i.e., the density of modes) and
(b) the energy denominators in the interaction terms. These
are the same ingredients which affect the scaling of physi-
cal observables during renormalization.
Divergences: In various specific cases considered above,

we found that the leading perturbative contribution to
Sð�Þ=V is finite in the limit where the IR and UV cutoffs
are removed. However, for the �3 theory in 4þ 1 and
higher dimensions or the �4 theory in 3þ 1 and higher
dimensions, the integral expressions for the leading per-
turbative contribution to Sð�Þ diverge. The divergence is
associated with the sum over states in Eq. (20), or in the
sum or integral over the momenta in Eq. (30) or (31),
respectively. The leading divergence comes from the sum
over states where one momentum has magnitude less than
�, while the rest have magnitudes greater than �. The
divergence is proportional to a power (or logarithm) of the
UV cutoff �.
Of course, ultraviolet divergences are commonplace

in quantum field theory. Typically, they are associated
with integrals over momenta which appear beyond the
leading order in perturbative calculations, and are dealt
with by expressing the results in terms of renormalized
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(physical) parameters rather than bare parameters.
However, here the divergences appear in leading-order
perturbative results. Since the bare and renormalized
parameters are the same at leading order in perturbation
theory, the divergences will not be eliminated by ex-
pressing the results in terms of renormalized
parameters.14

Such divergences in leading-order expressions indicate
a breakdown of perturbation theory for the specific
quantity which is diverging. To see this, note first that
similar divergences appear even in fermionic theories,
for example, fermions in 1þ 1 dimensions with a ð �c c Þ2
interaction (see Appendix C for details). Furthermore,
the divergence is present even at finite volume, since it is
associated with the infinite number of high-momentum
modes which are still present with an IR regulator. But
for a theory of fermionic fields at finite volume, the
Hilbert space associated with degrees of freedom with
momentum below a scale � is finite-dimensional. In this
case, there is an upper bound Sð�Þ< logðNÞ, where N is
the dimension of the Hilbert space. Now, consider the
theory with a UV cutoff �. The leading perturbative
expression for Sð�Þ will be finite for any finite �. But
since this expression diverges as � is taken to infinity,
there will be some finite � above which this leading
contribution to Sð�Þ is larger than the bound logðNÞ.
Here, � is still finite, so Sð�Þ is clearly well-defined,
and the correct result for Sð�Þ must certainly be less
than logðNÞ, so the only possibility is that the leading
perturbative expression is not a good approximation to
the correct result.

Our conclusion should not be particularly surprising:
regardless of how small the coupling parameter of a
theory is, there will always be quantities which cannot
be computed in perturbation theory. Here, the break-
down of perturbation theory seems to be associated
with computing the entanglement entropy between a
finite set of modes with the infinite set of degrees of
freedom above scale �. We will see below that in cases
where perturbation theory breaks down for this quantity,
it is still possible to perturbatively calculate less inclu-
sive quantities, such as the mutual information between
degrees of freedom associated with two finite regions of
momentum space. In cases where no divergence appears
at leading order, the finite leading-order perturbative
result should be reliable so long as subsequent terms
in the perturbative expansion (after renormalization) are
small compared to the leading terms.

V. THE EXTENT OF ENTANGLEMENT
BETWEEN SCALES

So far, we have considered the entanglement between
modes in a field theory above and below some scale �. In
this section, we ask about the entanglement entropy asso-
ciated with a single mode of the field theory, or the mutual
information between two individual modes. A version of
the former observable has been considered previously in
the condensed matter literature (see, e.g., Ref. [7]). We can
also consider the entanglement entropies of bounded re-
gions of momentum space. These sorts of observables are
useful for two reasons: (a) they can be finite even when the
entanglement entropy for the low-energy density matrix
diverges, and (b) they are a much more sensitive and clear
probe of the extent of entanglement since they do not sum
over the entire tower of UV modes.

A. An aggregate measure of the
range of entanglement

The quantity Sð�Þ measures entanglement between the
complete set of degrees of freedom below the scale � and
the complete set of degrees of freedom above the scale �.
Is this entanglement largely between modes just above and
below the scale �, or is the entanglement ‘‘long-range’’ in
momentum space?
One way to address this question is to consider

the entanglement entropy for the annular region �1 �
jpj � �2 in momentum space. If the entanglement is
short-range, then for �2 � �1, the entanglement entropy
Sð½�1; �2�Þ 	 Sð�1 � jpj � �2Þ should be dominated by
entanglement between modes just above and below the
scales �1 and �2. In addition, these separate contributions
to the entanglement entropy should be well-measured by
Sð�2Þ and Sð�1Þ. Thus, for short-range entanglement, we
would expect

Sð½�1; �2�Þ � Sð�1Þ þ Sð�2Þ �2 � �1: (49)

Alternatively, consider the mutual information between the
degrees of freedom with jpj � �2 and jpj � �1:

Ið�1; �2Þ ¼ Sð�1Þ þ Sð�2Þ � Sð½�1; �2�Þ: (50)

For short-range momentum space entanglement, we expect
Eq. (49). Hence, when �2 � �1, we expect that
Ið�1; �2Þ � 0. The rate of falloff of Ið�2; �1Þ as �2=�1

increases from 1 is a characterization of the extent of
entanglement.
In �4 theory, the infinite volume expression for

Ið�1; �2Þ is [using Eq. (22)]

14We do expect the standard divergences to appear in higher-
order perturbative corrections, even for quantities whose
leading-order result is finite. These divergences should be cured
in the usual way by expressing results in terms of physical
parameters, or by using renormalized perturbation theory with
the appropriate counterterms.
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Sð½�1; �2�Þ=V ¼ ��2 logð�2Þ 1

24

Z
�

Y
i

ddpi

2ð2	Þd
ð2	Þd�ðp1 þ p2 þ p3 þ p4Þ

ð!1 þ!2 þ!3 þ!4Þ2!1!2!3!4

þOð�2Þ (51)

where the asterisk indicates that we integrate over mo-
menta such that at least one jpj is in the range ½�1; �2�
and at least one jpj is not in this range. For simplicity, we
specialize to d ¼ 1 and take the mass m ¼ 1. It is simplest
to first evaluate the quantity

d2S

d�1d�2

: (52)

We can see that the only contribution to this will be from
regions of the integral abovewhere one momentum is at�1

and another momentum is at �2.
This is equal to the integral abovewith p1 ¼ ��2, p2 ¼

��1 and the remaining jpjs either both inside or both
outside the interval ½�1; �2�. The distinct choices of mo-
menta satisfying these constraints are

p1 ¼ �2 p2 ¼ �1 p3 2 ð�1;�2�2 ��1� [
�
�2�1 ��2;� 1

2
ð�1 þ�2Þ

	

p1 ¼ �2 p2 ¼ ��1 p3 2 ð�1;�2�2 þ�1� [
�
��1;

1

2
ð�1 ��2Þ

	

or momenta obtained from these via pi ! �pi, where in all cases, p4 is determined by the delta function constraint. Thus,
we have

1

V

d2S

d�1d�2

¼ ��2 logð�2Þ 1

12

1

16ð2	Þ3
�Z �2�2��1

�1
dpJð�2; �1; p;�p��1 ��2Þ

þ
Z �ð1=2Þð�1þ�2Þ

�2�1��2

dpJð�2; �1; p;�p��1 ��2Þ þ
Z �2�2þ�1

�1
dpJð�2;��1; p;�pþ�1 ��2Þ

þ
Z ð1=2Þð�1��2Þ

��1

dpJð�2;��1; p;�pþ�1 ��2Þ
�

where

Jðp1; p2; p3; p4Þ ¼ 1

ð!1 þ!2 þ!3 þ!4Þ2!1!2!3!4

:

To determine Sð�1; �2Þ from this expression, we can use
Sð�;�Þ ¼ 0, Sð0; �Þ ¼ Sð�Þ, and @S

@�2
ð0; �Þ ¼ dS

d� ð�Þ.
From these, we have

@S

@�2

ð�1; �2Þ ¼
Z �1

0
d ~�1

d2S

d�1d�2

ð ~�1; �2Þ þ dS

d�
ð�2Þ
(53)

and

Sð�1; �2Þ ¼
Z �2

�1

d ~�2

dS

d�2

ð�1; ~�2Þ

¼
Z �2

�1

d ~�2

Z �1

0
d ~�1

d2S

d�1d�2

ð ~�1; ~�2Þ

þ
Z �2

�1

d ~�2

dS

d�
ð ~�2Þ: (54)

Here, Sð�Þ is the quantity which we evaluated in previous
sections.

To investigate whether the entropy Sð�1; �2Þ is domi-
nated by entanglement between degrees of freedom close

to�1 and�2, we can vary�2 and ask whether the variation
of Sð�1; �2Þ is well-approximated by the variation of
Sð�2Þ (these variations would be equal if Sð�1; �2Þ ¼
Sð�1Þ þ Sð�2Þ). From Eq. (53), the difference between
the variations is equal to the first term on the right-hand
side, so we ask whether this term is small compared
with the other term. In Fig. 3, we plot the ratio of these
terms as a function of � ¼ ð�2 ��1Þ=m. The ration
declines as 1= ln� increases and approaches a finite value
as ð�2 ��1Þ=m ! 0.
The slow rate of decline is surprising given that the

�4 theory in 1þ 1 dimensions enjoys the property of
decoupling. Note, however, that the quantity we are
computing integrates over all of the UV modes. Thus,
it is an aggregate measure of entanglement. A more
refined way to ask about the range of entanglement in
momentum space is to consider the mutual information
between individual modes at two different momenta p
and q as we do below. We will see that this mutual
information falls off as a power law with jqj when
jqj � jpj.
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B. Single-mode entanglement

In this section, we calculate the entanglement entropy for a single mode with momentum ~p. This measures the
entanglement between a single mode and the rest of the field theory. The leading result for a �n scalar field theory
follows immediately from Eq. (30):

Sð ~pÞ ¼ ��2 logð�2Þ X
fp2;...;png

�pþp2þ���þpn

2nLdðn�2Þ!p!2 � � �!nð!p þ � � � þ!nÞ2
þOð�2Þ (55)

where the sum is over all distinct sets of (n� 1) momenta.15 In the infinite volume limit, this gives

Sð ~pÞ ¼ ��2 logð�2Þ 1

2nð2	Þdðn�2Þ
Z
fp2;...;png

Yn
i¼2

ddpi

�dðpþ p2 þ � � � þ pnÞ
!p!2 � � �!nð!p þ � � � þ!nÞ2

þOð�2Þ 	 s1ðj ~pjÞ:

By rotational invariance, the result is a function only of jpj.
All explicit factors of the volume have canceled out with-
out dividing by volume on the left side.

A natural interpretation of this finite quantity is that it
gives the entanglement entropy density for degrees of free-
dom in an infinitesimal range ddp around the momentum
~p. The number of modes in the box ddp is proportional to
spatial volume, so if the entanglement entropy for one
mode has no explicit volume dependence, the entangle-
ment entropy for the set of modes in the box should be
proportional to volume. This entropy is also proportional to
the momentum space volume ddp (if this is infinitesimal),
so the entanglement entropy associated with an infinitesi-
mal volume ddx in position space and volume ddp in
momentum space takes the form

dSð ~pÞ ¼ ddxddp

ð2	Þd s1ðj ~pjÞ: (56)

It is interesting that the phase-space volume appears natu-
rally here.16

As an explicit example, we have plotted s1ðpÞ for �3

theory in two, three and four spacetime dimensions in
Fig. 4. In the figure, the entropies are normalized by their
value at p ¼ 0. For 1þ 1, 2þ 1 and 3þ 1 dimensions, the
entanglement entropy decreases like 1=p4, 1=p3 and 1=p2,
respectively. Thus, we see that in this case, the entangle-
ment of a single modewith the rest of the theory declines as
power law of the momentum, even though we found above
that the integrated entanglement between modes above and
below scales �2 and �1 only declines logarithmically. The
slow decay in the latter case is arising from the sum over
modes.

C. Mutual information between individual modes

It is also interesting to investigate the mutual informa-
tion between two specific field theory momenta. In the
large volume limit, the natural quantity to consider is the
mutual information between degrees of freedom in an
infinitesimal range ddp around some momentum p and
degrees of freedom in an infinitesimal range ddq around
some momentum q. Starting from the basic formula (22),
only contributions from the second term in curly brackets
survive the large volume limit. These involve matrix ele-
ments between the vacuum state and states where one
particle is excited in each of the regions ddp and ddq,
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FIG. 3. Ratio of first and second terms in Eq. (53) vs � ¼ ð�2 ��1Þ=m for (A) �1 ¼ 1 and (B) �1 ¼ 4. This is a measure of the
range of entanglement in �4 theory in 1þ 1 dimensions. We have taken the mass to be m ¼ 1.

15For ~p ¼ 0, we have the further restriction that not all mo-
menta are zero.
16Note that while this entropy is spatially extensive, it is not
extensive in momentum space. That is, it is not true that
SðRÞ=V ¼ R

R d
dpfðpÞ.
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and the remaining particles lie outside these regions. The
resulting mutual information is proportional to ddp and
ddq and to spatial volume, so we have

Ið ~p; ~qÞ=V ¼ ddpddqIð ~p; ~qÞ: (57)

For �n scalar field theory in dþ 1 dimensions, the
leading contribution to I is

Ið ~p; ~qÞ ¼ ��2 logð�2Þ 1

2nð2	Þdðn�1Þ
Z
fp3;...;png

Yn
i¼3

ddpi

� �dðpþ qþ p3 þ � � � þ pnÞ
!p!q!3 � � �!nð!p þ � � � þ!nÞ2

þOð�2Þ

(58)

where the integral is over distinct sets of n� 2 momenta.
For �3 theory, this is

I ð ~p; ~qÞ ¼ ��2 logð�2Þ 1

8ð2	Þ2d

� 1

!p!q!pþqð!p þ!q þ!pþqÞ2
þOð�2Þ:

(59)

Thus, the mutual information is enhanced when ~p, ~q or
( ~pþ ~q) are near zero, and for fixed p, the mutual infor-
mation falls off as 1=jqj4 for large q. While this expression
gives the formal leading-order result in any number of
dimensions, wewill see below that it should only be trusted
as an accurate approximation to the exact result for d � 4
space dimensions.

D. Convergence and validity of
leading-order expressions

As for the entanglement entropy Sð�Þ considered in the
previous section, the integrals in the leading-order contri-
butions to the mutual information and entanglement en-
tropy of single modes can contain UV divergences. As we
argued in Sec. IVD, such divergences indicate a break-
down of perturbation theory for the quantity in question. In
this subsection, we classify the scalar field theories for
which the perturbative calculation of single-mode quanti-
ties s1ðpÞ and Iðp; qÞ give sensible results.
We begin with the expression (58) for the single mode

mutual information of �n scalar field theory in dþ 1
spacetime dimensions. Naively, this will converge (i.e.,
there are enough powers of momenta being integrated
over in the denominator) if

d < 1þ 3

n� 3
: (60)

Thus, we have convergence in any dimension for n ¼ 3 for
d � 3 for n ¼ 4, for d � 2 for n ¼ 5 and only for d ¼ 1
for any higher n.
Since higher-order interactions (i.e., interactions with

more powers of the field) are more likely to lead to diver-
gences, we should be concerned that such higher-order
interactions generated in the quantum effective action
will produce divergences at higher orders in perturbation
theory. In �3 theory, we get an effective �n vertex at order
�n from a one loop diagram. As a function of the external
momenta, this scales like 1=p2n�d�1 as these momenta are
taken large. The contribution to Iðp; qÞ from such a vertex
will naively be convergent if

d < 5þ 3

n� 1
: (61)

This is satisfied for any n so long as d � 5, but leads to a
divergence in 6 and higher space dimensions. Thus, it
appears that Iðp; qÞ can be computed in perturbation theory
for�3 theory in d � 5 (the same dimensions for which the
theory is renormalizible).
For�4 theory, the effective action contains effective�2n

interactions coming from one-loop diagrams at order �n.
These scale with external momenta like 1=p2n�d�1. The
contribution to Iðp; qÞ from such a vertex will naively be
convergent if

d < 3þ 1

2n� 1
;

which is satisfied for any n as long as d � 3. Thus, it
appears that Iðp; qÞ is a well-defined quantity for�4 theory
in d � 3 (again, the same dimensions for which the theory
is renormalizible).
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FIG. 4. Single-mode entanglement entropy vs magnitude of
mode momentum for �3 field theory in 1þ 1 (bottom), 2þ 1
(middle) and 3þ 1 (top) dimensions. The entropies are normal-
ized by their values at p ¼ 0.
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An almost identical analysis shows that the mutual
information between degrees of freedom in any two finite
regions of momentum space converges whenever Iðp; qÞ
converges. Note that it would be incorrect to suppose from
the considerations above that the leading order Iðp; qÞ is
necessarily well-defined for every renormalizable theory.
For example, according to Eq. (61), the leading order
Iðp; qÞ diverges for the renormalizible �6 theory in 3
dimensions.

We can also ask when the entanglement of a single mode
(or a finite region of momentum space) with the rest of the
field theory is well-defined. For �n theory, we find con-
vergence for

d < 1þ 3

n� 2
: (62)

This result extends to entanglement entropy of any finite
region of momentum space. A summary of these results is
shown in Table I.

VI. COMMENTS

We have obtained a number of results for the scaling of
entanglement entropies and mutual informations with the
upper bound on a momentum interval. At a technical level,
these results all follow from the density of modes (mea-
sure) in the integrals over momenta, and the energy de-
nominators in the interactions. These are the same
ingredients which lead to the decoupling property of local
quantum field theories. Indeed, decoupling is usually
understood simply as the power-law suppression of
higher-dimension operators in a low-energy effective the-
ory. This suppression means that high-momentum degrees
of freedom have weak effects on the dynamics of low-
momentum degrees of freedom other than renormalizing
the interaction strengths and wave functions. Our study of
entanglement between degrees of freedom with different
momenta, and the resulting entanglement entropies and
mutual informations, refines this understanding of the in-
fluence between momentum scales.

In more detail, ‘‘decoupling’’ between UVand IR phys-
ics implies that starting from a generic action S�ðgIÞ at

scale �, which depends on an infinite number of parame-
ters gI, the Wilsonian effective action at a much lower
scale�will be very close to some action S

�
WðgiÞ in a family

parameterized by a small number of physical parameters
gi. In other words, the operation of integrating out degrees
of freedom to successively lower scales results in a flow in
the space of effective actions which converges to a low-
dimensional subspace at scales� 
 �. Now, according to
Eq. (5), our effective action S�W at scale � completely
determines the reduced density matrix �ð�Þ for the degrees
of freedom with jpj<�. Thus, we conclude that for the
ground state of a generic field theory defined at scale�, the
reduced density matrix for the degrees of freedom below
some much lower scale�will be very close to some family
of density matrices �ð�; giÞ which depend on a small
number of physical parameters gi. Consequently, knowing
the state of the low-momentum degrees of freedom tells us
relatively little about the details of the state at much higher
scales.
The paucity of information about UV physics contained

in the low-momentum density matrix should be reflected in
some of the measures of quantum information we have
discussed. Specifically, it seems likely that there is a con-
nection between the decoupling behavior of field theories
and the power-law falloff in mutual information observed
in Sec. V. It would be interesting to make this connection
precise.
Relation to AdS/CFT: In the context of gauge-theory/

gravity duality (the AdS/CFT correspondence) [11], there
is now evidence that certain measures of entanglement in
quantum field theory carry geometrical information about
the dual spacetime. For field theories with a weakly curved
dual-gravity description, Ryu and Takayanagi have pro-
posed [12] that the entanglement entropy for a spatial
region A is proportional to the area of the minimal surface
~A in the bulk space whose boundary coincides with the
boundary of A,

SðAÞ ¼ Areað ~AÞ
4GN

:

While the proposal has not yet been proven, it has passed a
variety of checks (see, e.g., Refs. [13–16]).
Given the holographic interpretation of position-space

entanglement entropy, it is natural to ask whether the
momentum-space quantities considered in this paper
have some simple dual geometrical interpretation for field
theories with gravity duals. As an example, the quantity
Sð�Þ measures the entanglement between degrees of
freedom above and below the scale �. Since energy/
momentum scale in holographic field theories corresponds
to radial position in the dual geometry, we might guess that
Sð�Þ=V is related to the area (per unit field theory volume)
of a surface separating the IR region r < rð�Þ of the dual
geometry from the UV region r > rð�Þ. For the dual

TABLE I. Spatial dimensions where momentum space mutual
information and entanglement entropy converge. The results
apply for any bounded regions A and B in momentum space.

Theory

Dimensions

where IðA; BÞ converges
Dimensions

where SðAÞ converges
�3 d � 5 d � 3
�4 d � 3 d � 2
�5 d � 2 d ¼ 1
�n�6 d ¼ 1 d ¼ 1
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geometry to a translation-invariant field theory state, this
area function is a well-defined observable.17 However, we
currently have no way to check whether this or some
similar observable corresponds to momentum-space entan-
glement entropy, since we cannot calculate this entropy for
any strongly coupled field theory with a gravity dual.18

Relation to DMRG and MERA: Here, we have explored
various aspects of entanglement in quantum field theory
and the connection to renormalization theory. In the con-
densed matter literature, the ideas of entanglement and
renormalization have come together previously in various
schemes for approximating the ground state of many-body
systems [19,20]. While the focus and details of that work
are rather different from the present discussion, it may be
useful to briefly review those ideas here.

Consider a quantum many-body system described by
some lattice of degrees of freedom, for which the Hilbert
space decomposes as a tensor product of Hilbert spaces for
the individual sites. The dimension of the full Hilbert space
is dN where d is the dimension of the individual Hilbert
spaces and N is the number of sites. A general state (and in
particular, the exact ground state of the system for a
given Hamiltonian) can be represented exactly by a tensor
Ti1���iN which gives the coefficient of the basis state
ji1i � � � � � jiNi.

A general numerical determination of the ground state is
impractical due to the large number dN of independent
coefficients. For certain systems, usually in 1þ 1 dimen-
sions, an efficient variational approach to approximating
the ground state is to consider tensors T which can be
decomposed into contractions of lower-rank tensors. For
example, the ‘‘matrix product state’’ decomposition corre-
sponds to

Ti1���iN ¼ ðM1Þi1a1a2ðM2Þi2a2a3 � � � ðMNÞiNaNa1 :

In practice, one uses this decomposition as a variational
ansatz, varying the individual matrices Mi to arrive at the
best approximation to the ground state. If the dimension of
the matrices Mi is large enough, any tensor T can be
represented in this way, so the variational method gives
an exact result. However, for a wide class of systems, it has
been found that the ground state can be well-approximated
by matrices of much lower dimension. In this case, the
matrix product ansatz represents a truncation of the Hilbert
space to a subspace of lower dimension, and in cases where

it is effective, the true ground state is close to the ground
state in this subspace.
It turns out that the success of this method is related to

the entanglement properties of the ground state. The opti-
mal method of truncating to a lower-dimensional Hilbert
space is to retain as much of the entanglement entropy for
the various subsystems (blocks of sites) as possible.19 The
procedure works most efficiently (i.e., for smallest matri-
ces M) when there is limited entanglement between the
subsystems corresponding to blocks of sites. For systems
with a highly entangled ground state, the method is much
less efficient.
Another approach which is more successful in cases

with long-range entanglement is the ‘‘multiscale entangle-
ment renormalization ansatz’’ (MERA) [20]. In this ap-
proach, the tensor T is represented by an iterative
procedure. The tensor is first written in terms of a ‘‘disen-
tangled’’ tensor ~T using unitary matrices U:

T
i1���i2N
ðnÞ ¼ ðUðnÞ

1 Þi1i2j1j2
� � � ðUðnÞ

N Þi2N�1i2N
j2N�1j2N

~T
j1���j2N
ðnÞ ;

and then ~T is represented in terms of a lower rank tensor
using ‘‘projectors’’ P:

~T j1���j2N
ðnÞ ¼ ðPðnÞ

1 Þj1j2I1
� � � ðPðnÞ

N Þj2N�1j2N
IN

TI1���IN
ðnþ1Þ :

The latter step can be understood as a ‘‘coarse graining’’ of
the system, though the dimension of the index space I is
not necessarily the same as that of the original index
space i. The original tensor Tð1Þ is thus represented by

the individual matrices ðUðnÞ
i Þij

i0j0 and ðPðnÞ
i ÞijI which are the

variational parameters used to approximate the ground
state.
The introduction of the U matrices is motivated by the

observation that coarse graining works most efficiently
when there is little entanglement between the adjacent
blocks. The unitary matrices U can remove short-range
entanglement between adjacent blocks before coarse grain-
ing. In this way, the matricesUðnÞ encode the entanglement

between sites at the nth level, which corresponds in the
original picture to blocks of 2n sites. Thus, in the MERA
representation of a ground state, the unitary matrices U
encode entanglement at different scales. This information
is certainly related to the scale-dependent entanglement
entropies considered in this paper, though the MERA en-
tanglements would seem to be more closely related to
position space entanglement. Also, the original MERA
applies only to discrete systems, though an extension to

17If the spatial part of the dual metric is dr2 þ fðrÞdx2, the area
of the surface at radius rð�Þ per unit field theory volume is
proportional to a power of fðrð�ÞÞ.
18Sð�Þ will probably not always correspond in a simple way the
specific area observable mentioned, since that area would be
well-defined even for gravity duals of 0þ 1-dimensional field
theories, for which there is no way to divide up the degrees of
freedom by spatial momentum, and therefore no way to define
Sð�Þ. Of course such low-dimensional gauge/gravity dualities
(e.g., AdS2=CFT1 also have many other special features [17,18]).

19This idea arose first in the ‘‘density matrix renormalization
group’’ (DMRG) [19], an iterative renormalization procedure on
the state of the system which truncates the Hilbert space in each
step while retaining as much entanglement entropy as possible.
The DMRG is now understood to give results equivalent to this
matrix product state variational method.
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continuum quantum field theories has been recently pro-
posed in Ref. [21]. An interesting connection between
MERA and the AdS/CFT proposal above has been given
in Ref. [22].
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APPENDIX A: ENTANGLEMENT
ENTROPYAT Oð�3Þ

The calculations in Sec. III A can be extended to give an
expression for the Oð�3Þ terms in the perturbative calcu-
lation of entanglement entropy for a general system. We
find that after a similarity transformation, the density ma-
trix (16) can be written as

�̂ A ¼ 1� jCj2 þ AyCBy þ BCyA 0
0 CCy � ABCy � CByAy

� �
þOð�4Þ: (A1)

The eigenvalues of this matrix (up to corrections of order
�4) include the top-left element of the matrix, and the
eigenvalues of the lower-right matrix. At leading order,
the lower-right matrix isC1C

y
1 whereC1 is the order � term

in C. We defined the eigenvalues of this matrix to be ai.
Finding the eigenvalues of the lower-right matrix after the

higher-order terms are added is a problem formally equiva-
lent to ordinary time-independent perturbation theory in
quantum mechanics, so we can express the result in terms
of the eigenvalues and eigenvectors of C1C

y
1 .

Using this approach, the result for the entanglement
entropy up to order �3 is

Sð�Þ ¼ �2ð� logð�2Þ þ 1ÞtrðC1C
y
1 Þ � �2

X
i

ai logðaiÞ þ �3ð� logð�2ÞÞtrðC1C
y
2 þ C2C

y
1 � A1B1C

y
1 � C1B

y
1A

y
1 Þ

� �3
X
i

logðaiÞhvijC1C
y
2 þ C2C

y
1 � A1B1C

y
1 � C1B

y
1A

y
1 jvii

where ai and vi are the eigenvalues and eigenvectors of the matrix C1C
y
1 and the subscripts indicate the order in

perturbation theory.

APPENDIX B: MOMENTUM-SPACE ENTANGLEMENTAND CORRELATORS

Starting with the general expression (20) for the leading-order perturbative contribution to entanglement entropy, we can
now specialize to the case of quantum field theory. We find that

SðPÞ ¼ ��2 logð�2Þ X
n�0;N�0

jhn;NjHABj0; 0ij2
ðE0 þ ~E0 � En � ~ENÞ2

þOð�2Þ

¼ ��2 logð�2Þ X
n�0;N�0

Z 1

0
d��h0; 0jHIjn;NieðE0;0�En;NÞ�hn; NjHIj0; 0i þOð�2Þ

¼ ��2 logð�2Þ X
n�0;N�0

Z 1

0
d��h0; 0jeH0�HIe

�H0�jn; Nihn;NjHIj0; 0i þOð�2Þ

¼ ��2 logð�2Þ
Z 1

0
d��h0; 0jeH0�HIe

�H0��AHIj0; 0i þOð�2Þ ¼ ��2 logð�2Þ
Z 1

0
d��hHIð�i�Þ�AHIð0Þi þOð�2Þ

¼ ��2 logð�2Þ
Z 1

0
d��

Z
d3xd3yhH Ið�i�; xÞ�AH Ið0; yÞi þOð�2Þ

¼ �V�2 logð�2Þ
Z 1

0
d��

Z
d3xhH Ið�i�; xÞ�AH Ið0; 0Þi þOð�2Þ:

Here, we use the standard definition of time-dependent operators in the ‘‘interaction picture’’:

MOMENTUM-SPACE ENTANGLEMENT AND . . . PHYSICAL REVIEW D 86, 045014 (2012)

045014-17



HIðtÞ 	 eiH0tHIe
�iH0t:

The operator� projects to intermediate states with at least
one particle having momentum in the subset P and at least
one particle having momentum in the complementary sub-
set of momenta.

The factor of volume in the last line comes from the y
integral in the previous line, which is trivial since the
correlator in that line can depend only on the combination
x� y. The entropy per unit volume SðPÞ=V will have a
finite limit, so that SðPÞ is an extensive quantity.

APPENDIX C: ENTANGLEMENT ENTROPY IN A
FERMIONIC SYSTEM

Here, we calculate the entanglement entropy in a fermi-
onic theory with a ð �c c Þ2 interaction. Consider for defi-
niteness the renormalizable theory in 1þ 1 dimensions.
The fermion fields are expanded as

c ðxÞ ¼X
p

1

Lð1=2Þ
1ffiffiffiffiffiffiffiffiffi
2!p

p ðapuðpÞe�ipx þ bypvðpÞeipxÞ:

(C1)

As a straightforward application of Eq. (20), the entangle-
ment entropy is

S� ¼ ��2 logð�2ÞX
t

X�
p

jhfp; tg1; . . . ; fp; tg4jð �c c Þ2j0ij2
ð!1 þ!2 þ!3 þ!4Þ2

þOð�2Þ; (C2)

where t indicates the type of fermion (i.e., particle or
antiparticle). The star indicates that the sum over momenta
is restricted to the set where at least one momentum is
above and at least one momentum is below the scale �.
Substituting the expansion (C1) into Eq. (C2),

S� ¼��2 logð�2Þ 6 �4
24L2

X�
p

�P
i
pi

ðPi!pi
Þ2Qi!pi

�j �uðp1Þvðp2Þ �uðp3Þvðp4Þ� �uðp1Þvðp4Þ �uðp3Þvðp2Þj2;
(C3)

where 6 is the number of ways or choosing 2 particles and 2
antiparticles. Using 1þ 1-dimensional spinor and gamma
matrix identities, and passing to the infinite volume limit,
we are left with

S�=L ¼ ��2 logð�2Þ 6

ð2	Þ3
Z �

dp1 . . . dp4�

�X
i

pi

�

� ðp1 � p3 �m2Þðp2 � p4 �m2Þ
ðPi !pi

Þ2Qi !pi

:

In the region where three momenta are taken to be large,
this integral diverges linearly.
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