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Covariant actions for models with nonlinear twisted self-duality
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We describe a systematic way of the generalization, to models with nonlinear duality, of the
space-time covariant and duality-invariant formulation of duality-symmetric theories in which the
covariance of the action is ensured by the presence of a single auxiliary scalar field. It is shown
that the duality-symmetric action should be invariant under the two local symmetries characteristic of
this approach, which impose constraints on the form of the action similar to those of Gaillard and
Zumino and in the noncovariant formalism. We show that the (twisted) self-duality condition obtained
from this action upon integrating its equations of motion can always be recast in a manifestly covariant
form which is independent of the auxiliary scalar and thus corresponds to the conventional on-shell
duality-symmetric covariant description of the same model. Supersymmetrization of this construction

is briefly discussed.
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L. INTRODUCTION

Duality invariance is an important symmetry that arises
in many models of physical interest. A classical example is
electrodynamics without sources in D = 4 dimensions
where the U(1) duality group mixes the field strength of
the electric field with its Hodge dual identified with the
field strength of the (locally defined) magnetic field.
Another well known example is the SL(2, R) duality sym-
metry of D = 10 IIB supergravity.

Duality symmetries have been observed and the corre-
sponding duality groups have been completely classified in
D =1,2,...,9 supergravity models obtained by toroidal
compactifications of D = 11 supergravity. An important
case is the toroidal compactification of D = 11 supergrav-
ity on seven tori that leads to the celebrated D = 4, N = §
supergravity with Ey(;) duality group [1-3].

Astonishingly, explicit calculations [4-9] have proven
that N = 8, D = 4 supergravity is finite at the perturbative
level up to three and even four loops. These wonderful
results have revived a great interest in this theory in regards
to an old question of its finiteness [10—14]. Since super-
symmetry alone is not sufficient to explain these results, it
has been natural to assume that the £ duality symmetry
controls remarkable cancellations of divergent contribu-
tions to the supergravity amplitudes and, perhaps, ensures
the possible finiteness of the theory [15,16]. At the pertur-
bative level, this symmetry is a global continuous symme-
try, though it is broken to a discrete subgroup E;7)(Z) by
nonperturbative stringy effects.

An explanation of the three-loop finiteness has been
suggested in [17,18] by showing that the only possible
supersymmetric candidate for the counterterm at three

1550-7998/2012/86(4)/045013(11)

045013-1

PACS numbers: 04.65.+e

loops violates E;(;). The same argument holds for the
candidate counterterms at five and six loops [19,20].1

The arguments in [19,20], as well as in [21-24], suggest
that the first divergent E7 invariant counterterm can
appear at seven loops.

Such a state of affairs leads one to assume that if N = 8§,
D = 4 supergravity is perturbatively finite, the reason
should be found beyond supersymmetry and E7(; duality.
However, in our opinion, before accepting this conclusion
once and for all, more study on the compatibility of maxi-
mal supersymmetry with E;(;) duality is needed. In other
words, one should demonstrate whether the counterterms
which may appear at higher loops are consistent from this
point of view. An analogous issue has recently shown up in
N =4, D = 4 supergravity whose four-point amplitudes
have been found to be free of divergences at three loops
[25,26] in spite of the fact that supersymmetry admits at
this order duality-invariant quantum counterterms [24].

If the classical N = 4 and N = 8 supergravities do not
allow for quantum deformations consistent with supersym-
metry and duality invariance, then, as argued in [15,16,27],
this may be the reason for the finiteness of these theories (at
least at the corresponding loops).

In practice, one should understand (i) how the possible
counterterms (and their descendants) deform original lin-
ear duality relations between ‘“‘electric”” and ‘“magnetic”
field strengths and (ii) whether this deformation is compat-
ible with supersymmetry. The first problem has been ad-
dressed in [28] and further developed in [29,30], where
simpler examples of duality-invariant gauge theories with
higher-order (Born-Infeld-like) and higher-derivative terms

'At four loops there seem to be no supersymmetric
counterterms.
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have been studied (see also [31] for a related recent analysis
at the quantum level). The second (supersymmetry) prob-
lem has been recently considered in [29,32] in the case
of nonlinear generalizations of N = 1,2 D = 4 supersym-
metric Abelian gauge theories with U(1) as the duality
group, following earlier results of [33—41] based on the
superfield formalism. To these results one should add
the known examples of component nonlinear duality-
symmetric (Born-Infeld-type) Abelian gauge theories
with 16 supersymmetries, namely, the N = 4, D = 4 super-
symmetric Abelian Born-Infeld theory on the worldvolume
of the D3-brane [42] and the 6d worldvolume theory of the
M5-brane [43-47].

When studying duality invariance of a theory one faces a
well known problem that this symmetry usually directly
manifests itself only on the mass shell, while the conven-
tional Lagrangians are not invariant under the duality trans-
formations. The reason is that only electric fields enter the
Lagrangian, while their magnetic duals do not. Instead, in
order to guarantee the duality invariance of the field equa-
tions, the duality variation of the Lagrangian should satisfy
a consistency requirement, the Gaillard-Zumino condition
[48]. This approach has been used in [28-30].

To lift the duality invariance to the level of the
action, the electric and magnetic fields should enter the
Lagrangian on an equal footing, while the duality relation
between them should arise on the mass shell as a conse-
quence of equations of motion that follow from the
Lagrangian. The latter guarantees that the number of the
physical degrees of freedom remains intact. One way to do
this is to renounce the manifest space-time covariance of
the action in favor of duality symmetry [49-52]. Note,
however, that in such a formulation space-time (diffeo-
morphism or Lorentz) invariance is still present but is real-
ized in a nonconventional way. Using this noncovariant
formulation, Hillmann [53] has obtained the duality invariant
actionof N = 8, D = 4 supergravity, and Bossard et al. [54]
have proved that the E7(;y symmetry is anomaly free in the
perturbatively quantized theory. In [28] it has been suggested
how one can reconstruct a nonlinear duality-invariant action
starting from a duality-invariant counterterm.

There is, however, a possibility of keeping manifest both
the duality and space-time symmetries in the action. This
requires the introduction of auxiliary fields into the
Lagrangian (see [55] for a brief recent overview of differ-
ent covariant formulations). The most economic way
(dubbed the PST approach) is to introduce a single auxil-
iary scalar field [56]. In this formulation, in addition to the
conventional gauge symmetry, the action is invariant under
two extra local symmetries. One of them can be used to
gauge away the auxiliary scalar and reduce the action to a
nonmanifestly Lorentz invariant form of the noncovariant
approach. Another symmetry implies that some of the
components of the gauge fields enter the action only under
a total derivative and ensures the appearance of the duality
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relation as the general solution of the gauge field equations
of motion.

The covariant PST approach unifies different noncovar-
iant formulations [57,58] and has proven to be extremely
useful, in particular, for the construction of the action of the
MS5-brane in D = 11 supergravity [44], which is an ex-
ample of a nonlinear self-dual (2,0) 6d gauge theory with
16 supersymmetries. So we hope that it may also be useful
for making further progress in pursuing the issue of the
E;(7) and supersymmetry invariance of the N = 8, D = 4
supergravity effective action and the corresponding issue
in less supersymmetric supergravities.

The problem is to explicitly identify the possible diver-
gent counterterms in N = 8, D = 4 supergravity and to
show how to write a consistent nonlinear supersymmetric
effective action, if any, that arises from a given counterterm
and respects E7) duality symmetry.

As a preliminary study, the purpose of this paper is to
solve the problem considered in [28] in the framework of
the covariant approach, namely, to have a general recipe
for constructing space-time covariant actions with manifest
duality symmetry at the nonlinear level. Such a construc-
tion will include in the general framework the nonlinear
action for the MS5-brane [44,45] and the corresponding
on-shell covariant description of the MS5-brane in the
superembedding approach [43,46], as well as the mani-
festly duality-symmetric Lagrangian formulation of the
Born-Infeld action for the D3-brane [59,60]. In this setting
we will also clarify how the (twisted) self-duality condition
obtained from the manifestly duality-symmetric action
upon integrating its equations of motion can always be
recast in a manifestly covariant form which is independent
of the auxiliary scalar and thus corresponds to the conven-
tional on-shell duality-symmetric covariant description of
the same model.

This should set a stage for further analysis of the com-
patibility of supersymmetry with various possible nonlin-
ear deformations of a given duality symmetric theory, in
particular, in the cases of extended supersymmetries and
supergravities for which superfield methods are not appli-
cable off the mass shell and/or have not yet been developed
enough to include higher-order corrections even on the
mass shell.

The paper is organized as follows. In Sec. II, to introduce
our notation, we review the covariant approach to theories
with a linear self-duality condition. In Sec. III we extend
the approach to nonlinear systems. This is done by starting
with a nonlinear action which is invariant, by construction,
under a local symmetry mentioned above, i.e. in such
a way that some components of the gauge fields enter
the action under a total derivative only. The action is
constructed as a series of local field functionals I,
k=0,1,..., where I'9 is the term in the action which is
quadratic in the field strengths. Then one imposes the
condition that the action is invariant also under the local
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symmetry which ensures the auxiliary nature of the PST
scalar a(x). This imposes a constraint on the local func-
tional 7 = ¥ I that, given IV, allows one to apply an
iterative procedure to determine /¥, In Sec. IV we derive
the relation between the twisted self-duality condition
obtained from the action in terms of the functionals / <k>,
that contain the auxiliary scalar a(x), and a manifestly
covariant nonlinear twisted self-duality condition which
only involves the gauge field strengths (and derivatives
thereof) and no auxiliary scalar. Section V contains our
conclusions and includes a nonexhaustive discussion of the
compatibility between supersymmetry and duality.

II. PST FORMULATION OF A LINEAR
DUALITY-SYMMETRIC THEORY IN D =4

Consider a system of N Abelian vector fields in D = 4
described by the 1-forms A"(x) (r = 1,..., N) with the
field strengths F” = dA”. Call A" their magnetic duals
with field strengths F” = dA” := — & 223 where S is an
action constructed of the electric field strengths F” and e is
the Hodge map.2 For instance in the case of the Maxwell

action Sg = — [d*x1F,  F* we have

4% pv
F? — (.Fr) — 1 Frro
ny ny Ef,u,vpo' ’ (1)
F;rU/ = _(.F;),uv = _Ee,uupoF;p(r'

Now let us define A’ = (A”,A”) and F'= (F', F"),
i=1...... 2N). The duality group G C Sp(2N, R) acts
linearly on A’ (and F’). The vector fields A" can be coupled
to gravity (or supergravity) and to a set of scalars, ¢, and
fermions, .

In the presence of scalars and fermions the definition of
the field strengths F' can be generalized as follows

Fi=dA' + C )

where C[¢, ] are 2-forms. In supersymmetric theories
such a redefinition is useful since it allows one to make the
field strengths transform covariantly under supersymmetry.

2We have denoted the Hodge map by e instead of the con-
ventional *, since we shall use the latter for denoting the twisted-
duality conjugation. In our conventions, a p-form ¢, in D
dimensions is defined, in the vielbein basis, as

1
b = Ee“‘ by
and its Hodge dual is
1

by..b,
* by = D= el e €, 0 Db, by

so that, in D =4 space-time with Minkowski signature,

ee = —]. The external differential d acts on the differential

forms from the left.
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The scalars parametrize the coset G/H, where H is the
maximal compact subgroup of G, and the fermions belong
to some representation of H. The scalars ¢ are described
by the “bridges” V(¢)? where the index ¢ spans a repre-
sentation of H whose (real) dimension is equal to that of G
labeled by i. One can define V,-q = (V)" and its inverse
VP such that Viq Vir = 8. Then the scalars allow us to
define an invertible metric in G given by

Gj= ViV, +cc 3)

Since G is a subgroup of Sp(2N, R) one can define a matrix
Q% = —QJ" with the only nonvanishing elements given
by Q" = —Q™ = 87 and in a similar way one can define
Q;; so that QY7Q ;= —8;. QY and (;; can be used to
rise and lower the indices i, j... Then one can define the
complex structure

Ji=G*Qy; = Q*Gy; (4)
such that J*,J*; = — &' and finally one defines the “star
operation” as

¥ = J}o
so that
* ok = ]

With the use of the star operation the duality relations
between the electric and magnetic fields, Eq. (1), take the
form of the linear twisted self-duality condition on the field
strength of A’ = (A", AT).

Fi = (xF).. (5)

Note that, acting on (5) with the differential d one gets the
field equations of the vector fields. In addition, the con-
straint (5) implies that only half of the fields A%, e.g. A", are
independent, which ensures the correct number of the
degrees of freedom of the theory.

Since A’ transform linearly under the duality symmetry
G the duality constraint (5) and, hence, the equations of
motion are duality invariant. However, the conventional
action constructed with a half number of the fields A’ is not
duality invariant. Instead, the duality symmetry manifests
itself through the Gaillard-Zumino condition [48] which
should be satisfied by the duality variation of the action.

For studying properties of the duality-symmetric theory
it is useful to have an action that yields (5) as a (conse-
quence of) field equations. However, since Eq. (5) is of the
first order in derivatives, while usually the bosonic field
equations are of the second order, constructing the duality-
symmetric action turns out to be not a straightforward
procedure.

One possibility is to renounce the requirement of mani-
fest Lorentz invariance by splitting the D = 4 Lorentz-
vector indices of the fields AL. There are several ways of
splitting the components of the D = 4 vector, namely
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4 = (4 — n) + n(where n = 1, 2, 3). Each splitting results
in a different noncovariant duality-symmetric action that
produces Eq. (5) (see [55,61-63] for more details). In the
original construction of [50], which is closely related to the
Hamiltonian description of the theory, the time-component
Aj, of the vectors A%, [ = (0, m)] gets separated from their
spacial components and does not appear in the action.
Though this breaks the manifest Lorentz invariance, the
action is invariant under a modified space-time symmetry
which reduces to the conventional Lorentz symmetry on
the mass shell [51,52,56].

A manifestly Lorentz-covariant formulation of the
duality-symmetric action that yields (5) as a field equation
can be constructed following the approach proposed in
[56,64]. In this approach, in addition to the physical fields
Al,, the action contains an auxiliary scalar field a(x). It
enters the action through the 1-form v(x)?

da ©)
v=—
1/(’)Maa“a

so that v, v* = 1 and
vi, + i,v =1, (7)

where i, is the contraction with the vector v#9, acting
from the left, i.e.

. A
iy = 1U<Eebe“1 ---ea””‘l”a,,,,...alb)
1
=————¢
(p— 1!

Acting on any p-form Xfp) that transforms as a vector of

“evig, vt (8)

the group G, one has the identities”
* = %k, vk = *iv (9)
so that
Vi = *i,v, I, U% = *Vi,. (10)
Using these identities one can decompose F' as follows
Fi = (vi, + i,v)F' = vi,F' + *vi, * F'
= vi,(F — *F)" + (1 + *)(vi, * F)'. 1D

In what follows we shall also use the following formulas
for the variations év and i, (acting on a p-form) with
respect to da:

1
—i,v(dd 12
aﬂaaf‘al v(dda) (12)

Sv =

3The signature of our metric is (1, —1, —1, —1). '
“For notational simplicity, sometimes in expressions like (+X)’
we shall drop the parentheses and write *X'.
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Si, = * [, v(déa) *. (13)

8#a8“a

The covariant action S can be written in various equiva-
lent ways, e.g.

So=g [ QuLF* P/ = i (F =) i (F = 2}

(14)

where for simplicity we have considered, for the moment,
the case with C' = 0 [see Eq. (2)]. The general case will be
considered later.

Using (11), as well as the identities (9) and (10), Eq. (14)
can be rewritten as

1 . . . .
So= [ Qulviu P (vi, # ) = (wiy = ) * (v < F)]

15)
or
1 L o
SO = Z fﬂij[vlv(Fl - *FI)F]] (16)
Equation (15) can also be rewritten as
1 o .
So= 5 [ ¢ GEGLG,FY iy * P,
— (i, * F)*(i, * FJ)M], 17)

where g, (x) is the metric of the 4D space-time which for
generality we consider to be curved.

An important property of the action S is that the i,A’
component of the gauge field enters this action only under
the total derivative. Indeed, i,A’ enters only the term
JQ,;(vi, F))F/ of (16) and the corresponding contribution
is the total derivative, which is assumed to vanish at infinity

_[Qijviv(d(viuAi)Fj) = - fﬂijdad(\/(;T)zivAi)Fj

- [ d(Qiivi, ATFY) = 0,

The independence of S, from i,A’ is analogous to
the absence of the components A} in the action of the
noncovariant formulation. It implies that the action is
invariant under the following local transformations of the
gauge fields

8;A = da®,  8,a=0, (18)

where ®'(x) are scalar gauge parameters.

Another symmetry of the action ensures that the field
a(x) is a pure gauge. It acts only on a(x) and the duality
symmetric gauge fields and leaves invariant other fields of
the theory (scalars, fermions, metric etc.)

SyAl = — i (F' = *F)ep(x),

opa = ¢(x), @ )2
a

19)

045013-4



COVARIANT ACTIONS FOR MODELS WITH NONLINEAR ...

where ¢(x) is a local gauge parameter. It is important to
note that the §,; variation of A’ is proportional to the self-
duality constraint, which as we shall see is a consequence
of the field equation (20), so that it vanishes on shell. The
consequence of this fact is that on the mass shell the theory
becomes manifestly Lorentz covariant without any need
for the auxiliary field.
The field equations of A’ are

d[vi,(Fi — *F)] =0 (20)

and the equation of motion of a(x) is

d[ﬂij%viv(F" — wFi)i, (Fi — *Ff)] —0. @

V(da)

It can be obtained using Eqgs. (12) and (13).

One can check that Eq. (21) is identically satisfied if
Eq. (20) holds. This reflects the fact that a(x) is the
auxiliary field. The general solution of (20) is

vi,(F' — #F') = d(daX')) = —dadX' (22)

where X'(x) are arbitrary functions.” On the other hand,
under (finite) transformations of the symmetry (18),

8,[vi,(F' — F)] = —dad®’ (23)

so that a transformation with the parameter ®' = —X'
allows us to eliminate X’ from the right-hand side of (22)
and get

vi,(F! — #Fi) = 0. 24)

Moreover, since (1 — *)F' is anti-self-dual, this equation
also implies

i, v(Fi — #F) = 0. 25)

In view of (7), Egs. (24) and (25) are equivalent to the
twisted self-duality constraint (5).

We have thus shown that the twisted self-duality relation
follows from the covariant action as the solution of its
equations of motion. Using the local symmetry (19) we
can gauge fix the auxiliary field a(x) to be

Xy, = (26)

M /nVnV

where n,, is a constant vector.® Depending on whether this
vector is timelike or spacelike, one reduces the PST action

alx) =n

o

3Strictly speaking this is true only locally. In topologically
nontrivial backgrounds vi,(F' — *F') may be closed but not an
exact 1-form.

®Note that, though the gauge a(x) =0 is not directly admis-
sible, since the action (14) contains 4/(da)? in the denominator,
on can nevertheless reach this gauge by handling a singularity in
the action in such a way that the ratio 9 ,a0"a/d,a0” a remains
finite. This can be achieved by first imposing the gauge fixing
condition a(x) = ex*n, and then sending the parameter € to 0.
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to different noncovariant formulations. For instance, when
n, = 6%, one recovers the noncovariant formulation of
[50-52]. The nonconventional off-shell space-time invari-
ance of the latter is explained by the necessity to keep
intact the gauge condition (26) under the Lorentz trans-
formations, which is achieved by adding to the Lorentz
variation of the gauge field ;A , the compensating gauge
transformation (19)

1 . ‘
SA = 8, A+ —— i, (F' — «F)n,L* x*  (27)

where L*, are the infinitesimal parameters of the Lorentz
transformation. Note that on the mass shell, i.e. when the
twisted self-duality condition (24) is satisfied, the variation
(27) becomes the conventional Lorentz transformation of
the gauge field.

Up to now we have considered only the case where
C' = 0 in (2). The general case can be easily recovered
by adding the Wess-Zumino term in the r.h.s. of (14)
[and (15) and (16)]

1 o

III. PST ACTION WITH NONLINEAR
DUALITY IN D =4

In the previous section we considered the case in which
the magnetic field strengths F" are related to the electric
ones F" by the linear Hodge duality, or equivalently in
which the field strengths F' = (F’, F”) satisfy the linear
self-duality constraint (5). This is the case in which the
conventional action Sy[ F"] is quadratic in F". If in addition
to Spanaction § = S + S contains terms S of higher order
in F” and/or derivatives of F”, the relation between F’
and F7", i.e.

o FT, =61 _95
124 ra(Fr),u,V

becomes nonlinear in F” and/or contains derivatives of F".
In this case the linear self-duality constraint (5) is replaced
by a nonlinear (deformed) twisted self-duality condition
that in general can be expressed as follows:

i A(éW[F])i _ *<F . SW[F])I"

S5F S5F
SWIFIV _ 1 SWIF]
( SF ) = G S ditdr’ S i, (28)

where W[ F]is a local functional of F/ and their derivatives
(as well as of other fields) which is invariant under the
transformations of the duality group G and A is a parameter
of dimension /2 which plays the role of a coupling constant
characterizing a nonlinear deformation of the Maxwell-
like theory for which A = 0. The functional W[F] is, in
general, a series in A and F [29]
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W[F] = i AWR[F]. (29)
0

The order k of A is associated with the dimension of
terms in W% in such a way that AW has the dimension
[~*. Duality-invariant counterterms of a quantum theory
are examples of sources of the nonlinearly deformed
self-duality condition. Simple counterterm deformations
considered in [28] are
W[F]~ C*(aF)%, WLF] ~ (F)%,

where C is the 4d Weyl tensor.

In this section we would like to extend the PST approach
to the generic nonlinear case. As we have seen in the
previous section, the self-duality condition which is
derived from the PST action contains the auxiliary field
a(x) [see Eq. (24)]. We have then shown that this relation
is equivalent to the conventional covariant twisted self-
duality condition (5) which does not contain a(x). In the
nonlinear case we shall encounter and solve a similar
problem; namely in the next section we will demonstrate
how the covariant nonlinear twisted self-duality condition
(28) is related to the one which we will now derive from the
nonlinear PST action.”

In the linear case one of the possible forms of the PST
action was given in Eq. (15) [or (17)]. Let us rewrite it as
follows:

Sy = —% f d4x¢§[Gij%(ivFi)ﬂ(i,, *FI), — £<0>],
(30)

where
1 . Ny ;
£ 0) = EGl.j(lv k Fl)#(ly *k Fj),u, (31)

As was shown in the previous section, the action (30) is
invariant under the two local symmetries (18) and (19).
This suggests that we consider in the nonlinear case the
action

1 1, .. i
S = —5 fd4x\/§[Gij§(lyFl)M(lv * Fj)p, - ‘E:I (32)
where now

7 An example of the 6d counterpart of the condition (28) is the
nonlinearly self-dual field strength on the worldvolume of the
MS5-brane in the superembedding formulation [43,46]. In [65] it
was shown that the covariant nonlinear self-duality condition,
which is a consequence of a superembedding constraint, is
related to a self-duality condition which follows from the
M5-brane action [44,45,47,66]. The latter either contains the
(derivatives of) the auxiliary field a(x), or (upon its gauge fixing)
is not manifestly invariant under diffeomorphism (or Lorentz)
transformations.
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L= \L® (33)
0

L® are local functions of i,(*F)’ (and, possibly, of their
derivatives and of the other fields of the theory), and L) 4g
defined in (31). We shall also denote

% = [ dx LW
and

1= A,
%

Since L depends on *F' only through their contraction
with v, i.e. i, * F', by construction the action (32) is
invariant under the symmetry (18). We should also find
the conditions under which this action is invariant under a
nonlinear generalization of the symmetry (19). To find the
form of this symmetry let us look at the equations of
motion of the vector fields A’(x) and the auxiliary field
a(x). The vector field equations are

(0= Gan))]

- dl:v((iv(l — S)F)i — A(%))] —0, (4

where

M=1-10=xY p1/® (35)
k=1
and 6(?1—(:;)) are the 1-forms
SIM \i o 8IW
) =dxrG—— 36
(5(:; * F)) S, « Py 36)

Since I (actually) depend on wi, * F', one can write
sIv . 8IW
5(i,*F) — "V 8(vi,*F))

. VY

where 5(51.1—(21,) denote the 2-forms defined as in (28).
As in the linear case, Egs. (34) or (37) can be integrated
and with the use of the local symmetry (18) result in the

duality-like relations

(o~ (m))

= viv((l — %)F — A(#{km)l) =0. (38)

The a(x)-field equation of motion is obtained from the
action (32) using Eqgs. (12) and (13) and has the form

and present Eq. (34) in the form
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1 . N S iV
"{—W m,,-v[«zv # F)(i, * F) + (i, F)(i, F))

-~ 2(iUFf)( 5T o! ))j ]} =0. (39)

Notice that when £ reduces to £, at A = 0, Eqgs. (34) and
(39) reduce, respectively, to (20) and (21).

The form of the field equations (34), (38), and (39)
prompts us to consider that the nonlinear generalization
of the field variations under the second local symmetry
(19) should take the following form

511Ai =

Tl (o) oo
épa = @(x). (40)

The variation of the action under (40) is

48,8 = f 5,,ad{ﬁgﬁu[«iv ¥ F)(i, * F)
+ (i, )i, 7)) — 2(iva)( 50 b F))j]}

+ 2/Qij5nAid[“(ivFj Bl (ﬁ)l)]

(41)

For this variation to vanish, the following condition should
hold:

Q,;,»[v((iv # F)(iy, # F) + (i, F) (i, )

o
B

I (R A

(42)

which can be simplified to

Q, v((iv * F)(i, * F)

d[m . .
B (6(@5 I F>)l(é>‘(i:S I F))J)] 0@

This equation is the fundamental consistency condition
which is necessary for the action (32) to be invariant under
the local variations (40). It ensures that a(x) is a pure gauge
degree of freedom. A similar condition has been found by
Bossard and Nicolai [28] in the noncovariant approach.
The latter is obtained from (43) upon gauge fixing
a(x) = x°. This condition is clearly related to the space-
time invariance of the duality-symmetric construction and
to the Gaillard-Zumino condition [48].
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Equation (43) is automatically satisfied at zero’s order in
A. At first order in A one has

I P sem) 70 o

If this condition is satisfied by a certain choice of IV, the
consistency condition (43) imposes the constraint on the
possible form of I at order A2

d[ﬁ Q,-jv<2(i,, " F")( 5(51(:)F))j

! (a(ili)m)i(é(?f:)F))j)] =0 @

on I® at order A and so on. Solving these constraints one
can reconstruct / = [ L order by order.

This iteration procedure, however, does not determine
I = [ L unambiguously. Indeed, if at some order k,
there exists an action J¥) = f L™ that satisfies Eq. (44)
(with IV replaced by I®), writing I®¥ + ¢, I® one can
carry out the same procedure for k' > k which will result in
a consistent action that now depends on the arbitrary
constant c¢;. This arbitrariness repeats over and over for
any I¥ that satisfies the condition (44).

Note that the invariance of the action under the gauge
transformations (40) implies conditions on the form of the
higher-order terms. Using the relations (10) one can rewrite
Eq. (38) as follows:

~

o)

“ 2o (M ;) = 0=

= M- *)“< 5(, 31 F))i

. 8l i
= A1 =i (s ) (46)

vio(1 — #)Fi = )w( S —iw(l - #)F

Since the left-hand side of (46) does not depend on v, its
right-hand side should also be v independent, which
imposes restrictions on the possible forms of /. These
restrictions are controlled by the local symmetry (40)
and, hence, are a consequence of Eq. (43). Namely, the
symmetry (40) can be used to gauge fix v, to be a constant
vector as in (26). Then Eq. (46) implies that its right-hand
side must be Lorentz invariant on the mass shell, i.e. when
the duality condition (38) is satisfied. This should be
automatically so, since, as we have explained in the case
of the linear self-duality, the on-shell Lorentz transforma-
tion (27) of the gauge fields is the conventional one. If
such, the right-hand side of (46) must transform cova-
riantly under the Lorentz symmetry and, therefore, can
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only be constructed of the Lorentz-covariant combinations
of F' (and their derivatives).

This observation allows us to relate the higher-order
terms in the action (32) to those of the nonlinear twisted
self-duality condition (28). Indeed, comparing Eq. (46)
with (28) we see that

S

8f  _ . _ . OWIF]
A R T
s . OWLF]
Um = Ulv(l ) SF . (47)

Thus, knowing a higher-order deformation W[F] of the
original duality-symmetric theory, e.g. by quantum coun-
terterms, one can obtain the form of the corresponding
nonlinear contributions to the duality-symmetric action
and vice versa.

IV. RELATION BETWEEN THE TWO FORMS OF
THE NONLINEAR SELF-DUALITY CONDITION

In this section we shall demonstrate how to relate the
self-duality constraint (28) and the Eq. (38) obtained from
the action (32), i.e. between W[F] and I[F].

In general, duality-invariant W[F] depends on F' and
#F' or, equivalently, on

. 1 o1 .
Fiy = (Fx£=*F)'=—-(1 %I,
L= (PP = (1=

so that W[F] =
SW[F] _1

5F 5(1— *)

W[F*, F~]and
SWI[F,,F_]
oF,

+= (1 + % )75W[5F;7’F‘].
(48)

SWIF.,,F_]
SF

Substituting this equation into (28) we see that
does not contribute, and the self-duality constraint (28)

becomes
(1- *)(Fi - A(%J:I:])i) —0,

Modulo different notation and approach, Eq. (49) corre-
sponds to Eq. (4.2) of [29].
Comparing (49) with (47) we have

=01- *)(W[; PT+F])

(49)

(- ”’(5(: 61 F)

To analyze the relation (47), let us introduce the identity
[see Eq. (11)]

A

of i o
W) + (1 + #)(vi, * FY)

Fi = vi,(F' — *F'") — /\U(

+ /\U( e ol ))" (50)
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Then on the mass shell (46) we have

S

. A ol i
F' = (1 + *)(Uiv * Fl) + /\U(m) B (51)

. A 81 \i
Fio = (1 + %)vi,* F +5(1 + *)v(m), (52)

and

which naturally coincides with (46). Equation (51) tells us
that, when the twisted self-duality relation holds, F'
is a series in vi, * F' and A. Using this fact, one can
carry out the following iteration procedure to reconstruct
[=3%, A11® from a given counterterm W[F] (29).
Possible nonvanishing terms WW k=1, are responsible
for the arbitrariness in /, pointed out at the end of Sec. II.
Of course for consistency also these W), on shell and at
A = 0, must satisfy the condition (44).
At the zero order in A

SWIF]

= — % (0) |k i
S (1= )/ OLvi, * F),

A=0

(1 —%)

where f(© is a known 2-form functional of (1 + *)vi, * F'.
This allows us, using (47), to reconstruct the first term /()
of I. Knowing IV we expand ‘SW[F !to the first order in A

(1- ) ”;[f I_ - *)(f(o)[viu s F]+ AfO[vi, * F]
SWWI[F]
o ) 9
where
SIW mvi
D[,,; = -
folviy, = F] [”8<iU*F)]
2w

X -
S[(1 + #)vi, * FJ*" 6 F

is a known 2-form functional of wvi, * F. Substituting
Eq. (53) into (47) one reconstructs the second term / @ of J.

At the quadratic order in A the procedure for reconstruct-
ing I® becomes much more complicated since the expan-
sion of 5‘:;/—1[51 will have terms containing

SIV T2 SIM S*WW[F]
[W] © o 8(i, * F) 8[(1 + ®)vi, * FISF
81® SWI[F]
5G,«F) 0 T 8F  |axo

At the third and higher orders in A the complexity increases
even more.
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As a consistency check of the relations between I® and
W, one should verify that the action functional / obtained
in this way satisfies the consistency condition (43) and
whether this may impose additional restrictions on a pos-
sible form of W. Let us recall that, in the action (32) this
condition ensures that a(x) is the completely auxiliary
(pure gauge) field and that on the mass shell the self-
duality condition can be brought to a space-time covariant
form in terms of a duality-invariant functional W[ F] which
does not depend on a(x). To derive the constraint on W[F]
imposed by the consistency condition (43) note that on the
mass shell (38) the latter takes the following form:

! ox FOi o« F)) — ((0, F)(i, FI
d[mnﬁu«lu F)iy * P) = (G F)(i,F) |

1
b

Qi (1 + ) F) (i, (1 — *)Ff)] —0,

(54)

which in turn, in view of (28) and (48), reduces to

‘SW)j] =0. (59

Qijv(ivF+)i<iv E

e
V(9a)®

Though the statement that given any duality invariant
W[ F] one can always reconstruct a corresponding duality-
symmetric action looks plausible we have not found the
generic proof that the constraint (55) is satisfied by any
choice of the duality invariant W[ F]. We have checked the
validity of (55) for known examples of W[F] which do not
contain terms with derivatives of #. When W[F] contains
derivatives of F, the analysis becomes technically much
more involved and we leave it for further study.

V. CONCLUSION

In this paper we have described, in a systematic way,
how to extend the covariant and duality- invariant PST
approach to models with nonlinear duality. It has been
shown that the duality-symmetric action should be invari-
ant under the two local symmetries (18) and (40) character-
istic of this approach, which require that the action is given
by Eq. (32) where the local functional I = [ L depends on
the field strengths F' only through vi, * F' and satisfies the
quadratic constraint (43). This constraint is related to the
Gaillard-Zumino constraint and, after a suitable gauge fixing,
coincides with the constraint found in [28], in the framework
of the noncovariant but duality-invariant approach.

In the models with nonlinear duality, gauge fields are
constrained by the deformed twisted self-duality condition,
Eq. (28). It means that there exists a self-dual 2-form
hi = F' — (2%)" such that h’ = *h', where W[F,...]is a
covariant and duality-invariant local functional of F' (and
the other fields). As a further result, in this paper we have
exploited the relation between the functional W[F, ...] and
the functional I that constitutes the PST action.

PHYSICAL REVIEW D 86, 045013 (2012)

A possible application of the approach developed in this
paper is the study of the consistent counterterms in super-
symmetric duality-invariant models and in particular in
N =8, D = 4 supergravity. This is relevant to the issue
of the finiteness of this theory. The question is whether
N = 8 supersymmetry is preserved upon a certain non-
linear deformation of the classical theory. The authors of
[28] argued, on general grounds similar to those ensuring
the diffeomorphism invariance and the absence of corre-
sponding anomalies, that there might be no obstructions to
find a deformed theory which is supersymmetric. To give
more direct evidence for this argument, one should
show that the Gaillard-Zumino or similar conditions, like
Eq. (43), restricting the form of the action of the duality-
symmetric theory are compatible with (deformed) super-
symmetry transformations.

So far the compatibility of supersymmetry with non-
linear self-duality has been explicitly demonstrated only
for N =1,2[29,32-41] and N = 4 [42] (D3-brane) Born-
Infeld-like deformations of Abelian gauge theories with
the duality group U(1), and in the case of the M5-brane
[44,45,67] which is the nonlinear (2,0) self-dual 6d gauge
theory with 16 supersymmetries (i.e. N = 4, from the
D = 4 perspective). However, supersymmetric examples
of nonlinear theories (including supergravities) with non-
Abelian duality groups of the E; type have not been
given yet. It should be mentioned that consistent couplings
of external supersymmetric Born-Infeld-like models to
N =1 and 2 supergravities are known [68,69]; however,
an important issue which remains is whether nonlinear
deformations are possible for vector fields inside super-
gravity multiplets, in particular, in N = 4, 8 supergravities.

At this point we would like to make a comment that
nonlinearities in field theories and, in particular, in super-
symmetric ones are often associated with spontaneous
symmetry and supersymmetry breaking. For instance, the
Born-Infeld structure is a manifestation of partial super-
symmetry breaking of a rigid extended supersymmetry
[34]. In this respect, Born-Infeld-like nonlinearities in
duality-symmetric effective action of N=38, D=4
supergravity, if they appear, should have a different nature
(e.g. stringy corrections), since there are no conventional
field theories with more than 32 supersymmetries whose
spontaneous breaking would result in a nonlinear general-
ization of N = 8, D = 4 supergravity. Restrictions on pos-
sible sources of the nonlinear deformation of the twisted
self-duality condition of N = 8, D = 4 supergravity im-
posed by supersymmetry and E5(7) are discussed in [70].

There are two complementary approaches to deal
with supersymmetric extensions of the duality-symmetric
actions. The first is the standard approach, in which the
action depends only on the electric fields. In this approach
supersymmetry is manifest both at the linear level and in
the form of possible candidate counterterms, but the dual-
ity symmetry of the deformed action is not manifest and
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should be verified. Given a supersymmetric counterterm
constructed of the electric and magnetic fields in a duality-
invariant way, Ref. [28] has described an iterative proce-
dure further developed in [29] to construct a nonlinear
action for the electric fields only, that satisfies the nonlinear
Gaillard-Zumino condition and, hence, retains the duality
invariance. Since for the consistency with duality symme-
try the nonlinear deformation brings about an (infinite)
series of new higher-order terms, the supersymmetry of
the whole construction should be rechecked.

Other approaches deal with covariant or noncovariant
formulations in which duality symmetry is manifest. It is
clear that in these formulations supersymmetry is not
manifest since the number of vector fields is doubled and
only half of them should appear in the supersymmetry
transformations of the fermions. Since the noncovariant
formulation comes from a gauge fixing of the covariant
one, let us discuss the supersymmetry issue in the frame-
work of the covariant formulation. In models with linear
duality there is a simple recipe [52,56] for how to modify
the supersymmetric transformations of the fermions so that
the PST action is invariant under this modified supersym-
metry. In the supersymmetry variations of the fermions, the
recipe prescribes replacing the field strengths F' with the
following 2-form:

K§ = [F' = vi,(F' = «F)]V{(¢)
= (1 + =)vi, * F'V{(¢), (56)

where V{(¢) is the G/H bridge scalar field matrix deter-
mined in (3). Notice that K}, is self-dual, K{ = (¥K;)?, and
that on the shell of the linear duality constraint F! = %F!
the 2-form K¢ coincides with F'V{(¢). The property of K{
to be self-dual ensures that the supersymmetry transforma-
tions involve the right number of independent gauge fields.

For instance, in the simplest case of a U(1)-duality
symmetric N = 1 theory with no scalars (V! = §7) and
one vector supermultiplet, duality-covariant N = 1 super-
symmetry variations look as follows:

1

0A}, = i:Z/)/#eq, Sy = gK(’)”‘"yw,eq, g=12

(57)
where i/ (x) is the Majorana spinor and
€l = ig9ys€’ (e?=—-g?=1) (58)

is the self-dual parameter of the rigid N =1, D=4
supersymmetry. It is easy to see that when the duality
relation F%, = —1g,,,,F'?* holds, the supersymmetry
transformations (57) reduce to the conventional ones relat-
ing A' and ¢ with the Majorana spinor parameter €'

SAL = iy,é€,

1 1
Sy = g(FI’“’ywel + F2‘“’yw,e2 = ZF“”I‘yWel.
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Let us also note that since the auxiliary field a(x) does not
have a superpartner, it should be invariant under the action
of supersymmetry Sa(x) = 0. This, however, does not
contradict the supersymmetry algebra, if one assumes
that the translation of a(x) produced by the commutator
of two supersymmetry transformations acting on a(x) is
compensated by the local symmetry (19) [71-74]

(618, — 8,81)alx) = €*9,a(x) — @(x) = 0.

Now the problem is how to extend the above prescrip-
tion to a nonlinear case. An obvious ansatz would be to
replace K¢ in (56) with

K1 = Fi4 — viv[(l — #)F1 — \(1 — *)<BV;I[:F]>(I]
=+ *)vivl:*Fq N %(1 _ *)<6v;/I[TF])q:|
#5A0 = (52/;1:])41‘ (59)

Again, on the duality shell (28), F? = K9 but now K9 is
not self-dual. However, the anti-self-dual part of K9 does
not enter the supersymmetry transformation (57) of the
fermions, since its gamma contraction with the self-dual
supersymmetry parameter (58) vanishes.

One may expect that this ansatz is incomplete and, in
general, should also include terms of higher orders in
fermionic fields. This is implicitly indicated by the
analysis of rigid (2,0) supersymmetry transformations of
the worldvolume fields of the kappa-symmetry gauge-fixed
M5-brane carried out in [67]. We hope to address the
problem of supersymmetry in theories with nonlinear dual-
ity in a future work.
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