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We describe a systematic way of the generalization, to models with nonlinear duality, of the

space-time covariant and duality-invariant formulation of duality-symmetric theories in which the

covariance of the action is ensured by the presence of a single auxiliary scalar field. It is shown

that the duality-symmetric action should be invariant under the two local symmetries characteristic of

this approach, which impose constraints on the form of the action similar to those of Gaillard and

Zumino and in the noncovariant formalism. We show that the (twisted) self-duality condition obtained

from this action upon integrating its equations of motion can always be recast in a manifestly covariant

form which is independent of the auxiliary scalar and thus corresponds to the conventional on-shell

duality-symmetric covariant description of the same model. Supersymmetrization of this construction

is briefly discussed.
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I. INTRODUCTION

Duality invariance is an important symmetry that arises
in many models of physical interest. A classical example is
electrodynamics without sources in D ¼ 4 dimensions
where the Uð1Þ duality group mixes the field strength of
the electric field with its Hodge dual identified with the
field strength of the (locally defined) magnetic field.
Another well known example is the SLð2; RÞ duality sym-
metry of D ¼ 10 IIB supergravity.

Duality symmetries have been observed and the corre-
sponding duality groups have been completely classified in
D ¼ 1; 2; . . . ; 9 supergravity models obtained by toroidal
compactifications of D ¼ 11 supergravity. An important
case is the toroidal compactification of D ¼ 11 supergrav-
ity on seven tori that leads to the celebrated D ¼ 4, N ¼ 8
supergravity with E7ð7Þ duality group [1–3].

Astonishingly, explicit calculations [4–9] have proven
that N ¼ 8, D ¼ 4 supergravity is finite at the perturbative
level up to three and even four loops. These wonderful
results have revived a great interest in this theory in regards
to an old question of its finiteness [10–14]. Since super-
symmetry alone is not sufficient to explain these results, it
has been natural to assume that the E7ð7Þ duality symmetry

controls remarkable cancellations of divergent contribu-
tions to the supergravity amplitudes and, perhaps, ensures
the possible finiteness of the theory [15,16]. At the pertur-
bative level, this symmetry is a global continuous symme-
try, though it is broken to a discrete subgroup E7ð7ÞðZÞ by
nonperturbative stringy effects.

An explanation of the three-loop finiteness has been
suggested in [17,18] by showing that the only possible
supersymmetric candidate for the counterterm at three

loops violates E7ð7Þ. The same argument holds for the

candidate counterterms at five and six loops [19,20].1

The arguments in [19,20], as well as in [21–24], suggest
that the first divergent E7ð7Þ invariant counterterm can

appear at seven loops.
Such a state of affairs leads one to assume that if N ¼ 8,

D ¼ 4 supergravity is perturbatively finite, the reason
should be found beyond supersymmetry and E7ð7Þ duality.
However, in our opinion, before accepting this conclusion
once and for all, more study on the compatibility of maxi-
mal supersymmetry with E7ð7Þ duality is needed. In other

words, one should demonstrate whether the counterterms
which may appear at higher loops are consistent from this
point of view. An analogous issue has recently shown up in
N ¼ 4, D ¼ 4 supergravity whose four-point amplitudes
have been found to be free of divergences at three loops
[25,26] in spite of the fact that supersymmetry admits at
this order duality-invariant quantum counterterms [24].
If the classical N ¼ 4 and N ¼ 8 supergravities do not

allow for quantum deformations consistent with supersym-
metry and duality invariance, then, as argued in [15,16,27],
this may be the reason for the finiteness of these theories (at
least at the corresponding loops).
In practice, one should understand (i) how the possible

counterterms (and their descendants) deform original lin-
ear duality relations between ‘‘electric’’ and ‘‘magnetic’’
field strengths and (ii) whether this deformation is compat-
ible with supersymmetry. The first problem has been ad-
dressed in [28] and further developed in [29,30], where
simpler examples of duality-invariant gauge theories with
higher-order (Born-Infeld-like) and higher-derivative terms

1At four loops there seem to be no supersymmetric
counterterms.
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have been studied (see also [31] for a related recent analysis
at the quantum level). The second (supersymmetry) prob-
lem has been recently considered in [29,32] in the case
of nonlinear generalizations of N ¼ 1, 2 D ¼ 4 supersym-
metric Abelian gauge theories with Uð1Þ as the duality
group, following earlier results of [33–41] based on the
superfield formalism. To these results one should add
the known examples of component nonlinear duality-
symmetric (Born-Infeld-type) Abelian gauge theories
with 16 supersymmetries, namely, theN ¼ 4,D ¼ 4 super-
symmetric Abelian Born-Infeld theory on the worldvolume
of theD3-brane [42] and the 6dworldvolume theory of the
M5-brane [43–47].

When studying duality invariance of a theory one faces a
well known problem that this symmetry usually directly
manifests itself only on the mass shell, while the conven-
tional Lagrangians are not invariant under the duality trans-
formations. The reason is that only electric fields enter the
Lagrangian, while their magnetic duals do not. Instead, in
order to guarantee the duality invariance of the field equa-
tions, the duality variation of the Lagrangian should satisfy
a consistency requirement, the Gaillard-Zumino condition
[48]. This approach has been used in [28–30].

To lift the duality invariance to the level of the
action, the electric and magnetic fields should enter the
Lagrangian on an equal footing, while the duality relation
between them should arise on the mass shell as a conse-
quence of equations of motion that follow from the
Lagrangian. The latter guarantees that the number of the
physical degrees of freedom remains intact. One way to do
this is to renounce the manifest space-time covariance of
the action in favor of duality symmetry [49–52]. Note,
however, that in such a formulation space-time (diffeo-
morphism or Lorentz) invariance is still present but is real-
ized in a nonconventional way. Using this noncovariant
formulation,Hillmann [53] has obtained the duality invariant
action ofN ¼ 8,D ¼ 4 supergravity, andBossard et al. [54]
have proved that the E7ð7Þ symmetry is anomaly free in the

perturbatively quantized theory. In [28] it has been suggested
how one can reconstruct a nonlinear duality-invariant action
starting from a duality-invariant counterterm.

There is, however, a possibility of keeping manifest both
the duality and space-time symmetries in the action. This
requires the introduction of auxiliary fields into the
Lagrangian (see [55] for a brief recent overview of differ-
ent covariant formulations). The most economic way
(dubbed the PST approach) is to introduce a single auxil-
iary scalar field [56]. In this formulation, in addition to the
conventional gauge symmetry, the action is invariant under
two extra local symmetries. One of them can be used to
gauge away the auxiliary scalar and reduce the action to a
nonmanifestly Lorentz invariant form of the noncovariant
approach. Another symmetry implies that some of the
components of the gauge fields enter the action only under
a total derivative and ensures the appearance of the duality

relation as the general solution of the gauge field equations
of motion.
The covariant PST approach unifies different noncovar-

iant formulations [57,58] and has proven to be extremely
useful, in particular, for the construction of the action of the
M5-brane in D ¼ 11 supergravity [44], which is an ex-
ample of a nonlinear self-dual (2,0) 6d gauge theory with
16 supersymmetries. So we hope that it may also be useful
for making further progress in pursuing the issue of the
E7ð7Þ and supersymmetry invariance of the N ¼ 8, D ¼ 4

supergravity effective action and the corresponding issue
in less supersymmetric supergravities.
The problem is to explicitly identify the possible diver-

gent counterterms in N ¼ 8, D ¼ 4 supergravity and to
show how to write a consistent nonlinear supersymmetric
effective action, if any, that arises from a given counterterm
and respects E7ð7Þ duality symmetry.

As a preliminary study, the purpose of this paper is to
solve the problem considered in [28] in the framework of
the covariant approach, namely, to have a general recipe
for constructing space-time covariant actions with manifest
duality symmetry at the nonlinear level. Such a construc-
tion will include in the general framework the nonlinear
action for the M5-brane [44,45] and the corresponding
on-shell covariant description of the M5-brane in the
superembedding approach [43,46], as well as the mani-
festly duality-symmetric Lagrangian formulation of the
Born-Infeld action for the D3-brane [59,60]. In this setting
wewill also clarify how the (twisted) self-duality condition
obtained from the manifestly duality-symmetric action
upon integrating its equations of motion can always be
recast in a manifestly covariant form which is independent
of the auxiliary scalar and thus corresponds to the conven-
tional on-shell duality-symmetric covariant description of
the same model.
This should set a stage for further analysis of the com-

patibility of supersymmetry with various possible nonlin-
ear deformations of a given duality symmetric theory, in
particular, in the cases of extended supersymmetries and
supergravities for which superfield methods are not appli-
cable off the mass shell and/or have not yet been developed
enough to include higher-order corrections even on the
mass shell.
The paper is organized as follows. In Sec. II, to introduce

our notation, we review the covariant approach to theories
with a linear self-duality condition. In Sec. III we extend
the approach to nonlinear systems. This is done by starting
with a nonlinear action which is invariant, by construction,
under a local symmetry mentioned above, i.e. in such
a way that some components of the gauge fields enter
the action under a total derivative only. The action is

constructed as a series of local field functionals IðkÞ,
k ¼ 0; 1; . . . , where Ið0Þ is the term in the action which is
quadratic in the field strengths. Then one imposes the
condition that the action is invariant also under the local
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symmetry which ensures the auxiliary nature of the PST
scalar aðxÞ. This imposes a constraint on the local func-

tional I ¼ P
IðkÞ that, given Ið1Þ, allows one to apply an

iterative procedure to determine IðkÞ. In Sec. IV we derive
the relation between the twisted self-duality condition

obtained from the action in terms of the functionals IðkÞ,
that contain the auxiliary scalar aðxÞ, and a manifestly
covariant nonlinear twisted self-duality condition which
only involves the gauge field strengths (and derivatives
thereof) and no auxiliary scalar. Section V contains our
conclusions and includes a nonexhaustive discussion of the
compatibility between supersymmetry and duality.

II. PST FORMULATION OF A LINEAR
DUALITY-SYMMETRIC THEORY IN D ¼ 4

Consider a system of N Abelian vector fields in D ¼ 4
described by the 1-forms ArðxÞ (r ¼ 1; . . . ; N) with the
field strengths Fr ¼ dAr. Call A�r their magnetic duals
with field strengths F �r ¼ dA�r :¼ �� 2�S

�Fr , where S is an

action constructed of the electric field strengths Fr and � is
the Hodge map.2 For instance in the case of the Maxwell
action S0 ¼ �R

d4x 1
4F��F

�� we have

F �r
�� ¼ ð�FrÞ�� ¼ 1

2
�����F

r��;

Fr
�� ¼ �ð�F �rÞ�� ¼ � 1

2
�����F

�r��:

(1)

Now let us define Ai � ðAr; A�rÞ and Fi � ðFr; F �rÞ,
(i ¼ 1; . . . . . . 2N). The duality group G � Spð2N;RÞ acts
linearly on Ai (and Fi). The vector fields Ar can be coupled
to gravity (or supergravity) and to a set of scalars, �, and
fermions, c .

In the presence of scalars and fermions the definition of
the field strengths Fi can be generalized as follows

Fi ¼ dAi þ Ci (2)

where C½�; c �i are 2-forms. In supersymmetric theories
such a redefinition is useful since it allows one to make the
field strengths transform covariantly under supersymmetry.

The scalars parametrize the coset G=H, where H is the
maximal compact subgroup of G, and the fermions belong
to some representation of H. The scalars � are described
by the ‘‘bridges’’ V ð�Þqi where the index q spans a repre-
sentation ofH whose (real) dimension is equal to that of G
labeled by i. One can defineV iq :¼ ðV q

i Þ� and its inverse
V ip such thatV iqV ip ¼ �p

q . Then the scalars allow us to

define an invertible metric in G given by

Gij ¼ V q
iV jq þ c:c: (3)

SinceG is a subgroup of Spð2N;RÞ one can define a matrix
�ij ¼ ��ji with the only nonvanishing elements given
by�r�r ¼ ���rr ¼ �r�r and in a similar way one can define
�ij so that �ij�jk ¼ ��i

k. �
ij and �ij can be used to

rise and lower the indices i; j . . . Then one can define the
complex structure

Jij ¼ Gik�kj ¼ �ikGkj (4)

such that JikJ
k
j ¼ ��i

j and finally one defines the ‘‘star

operation’’ as

� ¼ Jij�
so that

� � ¼ 1:

With the use of the star operation the duality relations
between the electric and magnetic fields, Eq. (1), take the
form of the linear twisted self-duality condition on the field
strength of Ai ¼ ðAr; A�rÞ.

Fi ¼ ð�FÞi: (5)

Note that, acting on (5) with the differential d one gets the
field equations of the vector fields. In addition, the con-
straint (5) implies that only half of the fields Ai, e.g. Ar, are
independent, which ensures the correct number of the
degrees of freedom of the theory.
Since Ai transform linearly under the duality symmetry

G the duality constraint (5) and, hence, the equations of
motion are duality invariant. However, the conventional
action constructed with a half number of the fields Ai is not
duality invariant. Instead, the duality symmetry manifests
itself through the Gaillard-Zumino condition [48] which
should be satisfied by the duality variation of the action.
For studying properties of the duality-symmetric theory

it is useful to have an action that yields (5) as a (conse-
quence of) field equations. However, since Eq. (5) is of the
first order in derivatives, while usually the bosonic field
equations are of the second order, constructing the duality-
symmetric action turns out to be not a straightforward
procedure.
One possibility is to renounce the requirement of mani-

fest Lorentz invariance by splitting the D ¼ 4 Lorentz-
vector indices of the fields Ai

�. There are several ways of

splitting the components of the D ¼ 4 vector, namely

2We have denoted the Hodge map by � instead of the con-
ventional �, since we shall use the latter for denoting the twisted-
duality conjugation. In our conventions, a p-form �ðpÞ in D
dimensions is defined, in the vielbein basis, as

�ðpÞ ¼ 1

p!
ea1 . . . eap�ap ...a1

and its Hodge dual is

��ðpÞ ¼ 1

ðD� pÞ! e
a1 . . . eaD�p�

b1...bp
aD�p ...a1�bp ...b1 ;

so that, in D ¼ 4 space-time with Minkowski signature,
�� ¼ �1. The external differential d acts on the differential
forms from the left.
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4 ¼ ð4� nÞ þ n (where n ¼ 1, 2, 3). Each splitting results
in a different noncovariant duality-symmetric action that
produces Eq. (5) (see [55,61–63] for more details). In the
original construction of [50], which is closely related to the
Hamiltonian description of the theory, the time-component
Ai
0 of the vectors A

i
� ½� ¼ ð0; mÞ� gets separated from their

spacial components and does not appear in the action.
Though this breaks the manifest Lorentz invariance, the
action is invariant under a modified space-time symmetry
which reduces to the conventional Lorentz symmetry on
the mass shell [51,52,56].

A manifestly Lorentz-covariant formulation of the
duality-symmetric action that yields (5) as a field equation
can be constructed following the approach proposed in
[56,64]. In this approach, in addition to the physical fields
Ai
�, the action contains an auxiliary scalar field aðxÞ. It

enters the action through the 1-form vðxÞ3

v ¼ daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�a@

�a
p (6)

so that v�v
� ¼ 1 and

viv þ ivv ¼ 1; (7)

where iv is the contraction with the vector v�@� acting

from the left, i.e.

iv�ðpÞ ¼ iv

�
1

p!
ebea1 . . . eap�1�ap�1...a1b

�

¼ 1

ðp� 1Þ! e
a1 . . . eap�1�ap�1...a1bv

b: (8)

Acting on any p-form Xi
ðpÞ that transforms as a vector of

the group G, one has the identities4

iv� ¼ �v; v� ¼ �iv (9)

so that

viv� ¼ �ivv; ivv� ¼ �viv: (10)

Using these identities one can decompose Fi as follows

Fi ¼ ðviv þ ivvÞFi ¼ vivF
i þ �viv � Fi

¼ vivðF� �FÞi þ ð1þ �Þðviv � FÞi: (11)

In what follows we shall also use the following formulas
for the variations �v and �iv (acting on a p-form) with
respect to �a:

�v ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�a@

�a
p ivvðd�aÞ (12)

�iv ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�a@

�a
p � ivvðd�aÞ � : (13)

The covariant action S0 can be written in various equiva-
lent ways, e.g.

S0¼1

8

Z
�ij½Fi �Fj�ðvivðFi��FiÞÞ�ðvivðFj��FjÞÞ�;

(14)

where for simplicity we have considered, for the moment,
the case with Ci ¼ 0 [see Eq. (2)]. The general case will be
considered later.
Using (11), as well as the identities (9) and (10), Eq. (14)

can be rewritten as

S0 ¼ 1

4

Z
�ij½vivFi � ðviv �FjÞ � ðviv �FiÞ � ðviv �FjÞ�

(15)

or

S0 ¼ 1

4

Z
�ij½vivðFi � �FiÞFj�: (16)

Equation (15) can also be rewritten as

S0 ¼ � 1

4

Z
d4x

ffiffiffi
g

p
Gij½ðivFiÞ�ðiv � FjÞ�

� ðiv � FiÞ�ðiv � FjÞ��; (17)

where g��ðxÞ is the metric of the 4D space-time which for

generality we consider to be curved.
An important property of the action S0 is that the ivA

i

component of the gauge field enters this action only under
the total derivative. Indeed, ivA

i enters only the termR
�ijðvivFiÞFj of (16) and the corresponding contribution

is the total derivative, which is assumed to vanish at infinity

Z
�ijvivðdðvivAiÞFjÞ ¼ �

Z
�ijdad

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p ivA

i

�
Fj

¼ �
Z

dð�ijvivA
iFjÞ ¼ 0:

The independence of S0 from ivA
i is analogous to

the absence of the components Ai
0 in the action of the

noncovariant formulation. It implies that the action is
invariant under the following local transformations of the
gauge fields

�IA
i ¼ da�i; �Ia ¼ 0; (18)

where �iðxÞ are scalar gauge parameters.
Another symmetry of the action ensures that the field

aðxÞ is a pure gauge. It acts only on aðxÞ and the duality
symmetric gauge fields and leaves invariant other fields of
the theory (scalars, fermions, metric etc.)

�IIa ¼ ’ðxÞ; �IIA
i ¼ � 1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p ivðFi � �FiÞ’ðxÞ;

(19)

3The signature of our metric is ð1;�1;�1;�1Þ.
4For notational simplicity, sometimes in expressions like ð�XÞi

we shall drop the parentheses and write �Xi.
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where ’ðxÞ is a local gauge parameter. It is important to
note that the �II variation of Ai is proportional to the self-
duality constraint, which as we shall see is a consequence
of the field equation (20), so that it vanishes on shell. The
consequence of this fact is that on the mass shell the theory
becomes manifestly Lorentz covariant without any need
for the auxiliary field.

The field equations of Ai are

d½vivðFi � �FiÞ� ¼ 0 (20)

and the equation of motion of aðxÞ is

d

�
�ij

1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p vivðFi � �FiÞivðFj � �FjÞ
�
¼ 0: (21)

It can be obtained using Eqs. (12) and (13).
One can check that Eq. (21) is identically satisfied if

Eq. (20) holds. This reflects the fact that aðxÞ is the
auxiliary field. The general solution of (20) is

vivðFi � �FiÞ ¼ dðdaXiÞÞ ¼ �dadXi (22)

where XiðxÞ are arbitrary functions.5 On the other hand,
under (finite) transformations of the symmetry (18),

�I½vivðFi � �FiÞ� ¼ �dad�i (23)

so that a transformation with the parameter �i ¼ �Xi

allows us to eliminate Xi from the right-hand side of (22)
and get

vivðFi � �FiÞ ¼ 0: (24)

Moreover, since ð1� �ÞFi is anti-self-dual, this equation
also implies

ivvðFi � �FiÞ ¼ 0: (25)

In view of (7), Eqs. (24) and (25) are equivalent to the
twisted self-duality constraint (5).

We have thus shown that the twisted self-duality relation
follows from the covariant action as the solution of its
equations of motion. Using the local symmetry (19) we
can gauge fix the auxiliary field aðxÞ to be

aðxÞ ¼ n�x
�; v� ¼ n�ffiffiffiffiffiffiffiffiffiffiffi

n�n
�

p (26)

where n� is a constant vector.6 Depending on whether this

vector is timelike or spacelike, one reduces the PST action

to different noncovariant formulations. For instance, when
n� ¼ �0

�, one recovers the noncovariant formulation of

[50–52]. The nonconventional off-shell space-time invari-
ance of the latter is explained by the necessity to keep
intact the gauge condition (26) under the Lorentz trans-
formations, which is achieved by adding to the Lorentz
variation of the gauge field �LA� the compensating gauge

transformation (19)

�A ¼ �LAþ 1ffiffiffiffiffiffiffiffiffiffiffiffi
n�n

�p inðFi � �FiÞn�L�
�x

� (27)

where L�
� are the infinitesimal parameters of the Lorentz

transformation. Note that on the mass shell, i.e. when the
twisted self-duality condition (24) is satisfied, the variation
(27) becomes the conventional Lorentz transformation of
the gauge field.
Up to now we have considered only the case where

Ci ¼ 0 in (2). The general case can be easily recovered
by adding the Wess-Zumino term in the r.h.s. of (14)
[and (15) and (16)]

� 1

2

Z
�ijdA

iCj:

III. PST ACTION WITH NONLINEAR
DUALITY IN D ¼ 4

In the previous section we considered the case in which
the magnetic field strengths F �r are related to the electric
ones Fr by the linear Hodge duality, or equivalently in
which the field strengths Fi ¼ ðFr; F �rÞ satisfy the linear
self-duality constraint (5). This is the case in which the
conventional action S0½Fr� is quadratic in Fr. If in addition

to S0 an action S ¼ S0 þ Ŝ contains terms Ŝ of higher order
in Fr and/or derivatives of Fr, the relation between F �r

and Fr, i.e.

� F �r
�� ¼ ��r

r

�S

�ðFrÞ��

becomes nonlinear in Fr and/or contains derivatives of Fr.
In this case the linear self-duality constraint (5) is replaced
by a nonlinear (deformed) twisted self-duality condition
that in general can be expressed as follows:

Fi � �

�
�W½F�
�F

�
i ¼ �

�
F� �

�W½F�
�F

�
i
;

�
�W½F�
�F

�
i � Gij 1

2
dx�dx�

�W½F�
�ðFjÞ�� ; (28)

whereW½F� is a local functional of Fi and their derivatives
(as well as of other fields) which is invariant under the
transformations of the duality groupG and � is a parameter
of dimension l2 which plays the role of a coupling constant
characterizing a nonlinear deformation of the Maxwell-
like theory for which � ¼ 0. The functional W½F� is, in
general, a series in � and F [29]

5Strictly speaking this is true only locally. In topologically
nontrivial backgrounds vivðFi � �FiÞ may be closed but not an
exact 1-form.

6Note that, though the gauge aðxÞ ¼ 0 is not directly admis-
sible, since the action (14) contains

ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p
in the denominator,

on can nevertheless reach this gauge by handling a singularity in
the action in such a way that the ratio @�a@

�a=@�a@
�a remains

finite. This can be achieved by first imposing the gauge fixing
condition aðxÞ ¼ �x�n� and then sending the parameter � to 0.
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W½F� ¼ X1
0

�kWðkÞ½F�: (29)

The order k of � is associated with the dimension of

terms in WðkÞ in such a way that �W has the dimension
l�4. Duality-invariant counterterms of a quantum theory
are examples of sources of the nonlinearly deformed
self-duality condition. Simple counterterm deformations
considered in [28] are

W½F� � C2ð@FÞ2; W½F� � ðFÞ4;
where C is the 4d Weyl tensor.

In this section we would like to extend the PSTapproach
to the generic nonlinear case. As we have seen in the
previous section, the self-duality condition which is
derived from the PST action contains the auxiliary field
aðxÞ [see Eq. (24)]. We have then shown that this relation
is equivalent to the conventional covariant twisted self-
duality condition (5) which does not contain aðxÞ. In the
nonlinear case we shall encounter and solve a similar
problem; namely in the next section we will demonstrate
how the covariant nonlinear twisted self-duality condition
(28) is related to the one which wewill now derive from the
nonlinear PST action.7

In the linear case one of the possible forms of the PST
action was given in Eq. (15) [or (17)]. Let us rewrite it as
follows:

S0 ¼ � 1

2

Z
d4x

ffiffiffi
g

p �
Gij

1

2
ðivFiÞ�ðiv � FjÞ� �Lð0Þ

�
;

(30)

where

L ð0Þ ¼ 1

2
Gijðiv � FiÞ�ðiv � FjÞ�: (31)

As was shown in the previous section, the action (30) is
invariant under the two local symmetries (18) and (19).
This suggests that we consider in the nonlinear case the
action

S ¼ � 1

2

Z
d4x

ffiffiffi
g

p �
Gij

1

2
ðivFiÞ�ðiv � FjÞ� �L

�
(32)

where now

L ¼ X1
0

�kLðkÞ: (33)

LðkÞ are local functions of ivð�FÞi (and, possibly, of their
derivatives and of the other fields of the theory), andLð0Þ is
defined in (31). We shall also denote

IðkÞ ¼
Z

d4xLðkÞ

and

I ¼ X1
0

�kIðkÞ:

Since L depends on �Fi only through their contraction
with v, i.e. iv � Fi, by construction the action (32) is
invariant under the symmetry (18). We should also find
the conditions under which this action is invariant under a
nonlinear generalization of the symmetry (19). To find the
form of this symmetry let us look at the equations of
motion of the vector fields AiðxÞ and the auxiliary field
aðxÞ. The vector field equations are

d

�
v

�
ðivFÞi �

�
�I

�ðiv � FÞ
�
i
��

¼ d

�
v

�
ðivð1� �ÞFÞi � �

�
�Î

�ðiv � FÞ
�
i
��

¼ 0; (34)

where

�Î ¼ I � Ið0Þ ¼ �
X1
k¼1

�k�1IðkÞ (35)

and �IðkÞ
�ðiv�FÞÞ are the 1-forms

�
�IðkÞ

�ðiv � FÞ
�
i ¼ dx�Gij �IðkÞ

�ðiv � FÞj� : (36)

Since IðkÞ (actually) depend on viv � Fi, one can write
�IðkÞ

�ðiv�FÞÞ ¼ iv
�IðkÞ

�ðviv�FÞÞ and present Eq. (34) in the form

d

�
vivð1� �ÞFi � �viv

�
�Î

�ðviv � FÞ
�
i
�
¼ 0; (37)

where �IðkÞ
�ðviv�FÞ denote the 2-forms defined as in (28).

As in the linear case, Eqs. (34) or (37) can be integrated
and with the use of the local symmetry (18) result in the
duality-like relations

v

�
ivF

i �
�

�I

�ðiv � FÞ
�
i
�

¼ viv

�
ð1� �ÞFi � �

�
�Î

�ðviv � FÞ
�
i
�
¼ 0: (38)

The aðxÞ-field equation of motion is obtained from the
action (32) using Eqs. (12) and (13) and has the form

7An example of the 6d counterpart of the condition (28) is the
nonlinearly self-dual field strength on the worldvolume of the
M5-brane in the superembedding formulation [43,46]. In [65] it
was shown that the covariant nonlinear self-duality condition,
which is a consequence of a superembedding constraint, is
related to a self-duality condition which follows from the
M5-brane action [44,45,47,66]. The latter either contains the
(derivatives of) the auxiliary field aðxÞ, or (upon its gauge fixing)
is not manifestly invariant under diffeomorphism (or Lorentz)
transformations.
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d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijv

�
ððiv � FiÞðiv � FjÞ þ ðivFiÞðivFjÞÞ

� 2ðivFiÞ
�

�I

�ðiv � FÞ
�
j
��

¼ 0: (39)

Notice that whenL reduces toLð0Þ, at � ¼ 0, Eqs. (34) and
(39) reduce, respectively, to (20) and (21).

The form of the field equations (34), (38), and (39)
prompts us to consider that the nonlinear generalization
of the field variations under the second local symmetry
(19) should take the following form

�IIA
i ¼ � 1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p

�
ivF

i �
�

�I

�ðiv � FÞ
�
i
�
’ðxÞ;

�IIa ¼ ’ðxÞ: (40)

The variation of the action under (40) is

4�IIS ¼
Z

�IIad

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijv

�
ððiv � FiÞðiv � FjÞ

þ ðivFiÞðivFjÞÞ � 2ðivFiÞ
�

�I

�ðiv � FÞ
�
j
��

þ 2
Z

�ij�IIA
id

�
v

�
ivF

j �
�

�I

�ðiv � FÞ
�
j
��

:

(41)

For this variation to vanish, the following condition should
hold:

d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ij

�
vððiv � FiÞðiv � FjÞ þ ðivFiÞðivFjÞÞ

� 2vðivFiÞ
�

�I

�ðiv � FÞ
�
j
�

� v

�
ivF

i �
�

�I

�ðiv � FÞ
�
i
��

ivF
j �

�
�I

�ðiv � FÞ
�
j
��

¼ 0;

(42)

which can be simplified to

d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijv

�
ðiv � FiÞðiv � FjÞ

�
�

�I

�ðiv � FÞ
�
i
�

�I

�ðiv � FÞ
�
j
��

¼ 0: (43)

This equation is the fundamental consistency condition
which is necessary for the action (32) to be invariant under
the local variations (40). It ensures that aðxÞ is a pure gauge
degree of freedom. A similar condition has been found by
Bossard and Nicolai [28] in the noncovariant approach.
The latter is obtained from (43) upon gauge fixing
aðxÞ ¼ x0. This condition is clearly related to the space-
time invariance of the duality-symmetric construction and
to the Gaillard-Zumino condition [48].

Equation (43) is automatically satisfied at zero’s order in
�. At first order in � one has

d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijvðiv � FiÞ

�
�Ið1Þ

�ðiv � FÞ
�
j
�
¼ 0: (44)

If this condition is satisfied by a certain choice of Ið1Þ, the
consistency condition (43) imposes the constraint on the

possible form of Ið2Þ at order �2

d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijv

�
2ðiv � FiÞ

�
�Ið2Þ

�ðiv � FÞ
�
j

þ
�

�Ið1Þ

�ðiv � FÞ
�
i
�

�Ið1Þ

�ðiv � FÞ
�
j
��

¼ 0; (45)

on Ið3Þ at order �3 and so on. Solving these constraints one
can reconstruct I ¼ R

L order by order.
This iteration procedure, however, does not determine

I ¼ R
L unambiguously. Indeed, if at some order k,

there exists an action �IðkÞ ¼ R �LðkÞ that satisfies Eq. (44)

(with Ið1Þ replaced by �IðkÞ), writing IðkÞ þ ck �I
ðkÞ one can

carry out the same procedure for k0 > kwhich will result in
a consistent action that now depends on the arbitrary
constant ck. This arbitrariness repeats over and over for

any �Ik
0
that satisfies the condition (44).

Note that the invariance of the action under the gauge
transformations (40) implies conditions on the form of the
higher-order terms. Using the relations (10) one can rewrite
Eq. (38) as follows:

vivð1� �ÞFi ¼ �v

�
�Î

�ðiv � FÞ
�
i ) �ivvð1� �ÞFi

¼ � � v
�

�Î

�ðiv � FÞ
�
i ) ð1� �ÞFi

¼ �ð1� �Þv
�

�Î

�ðiv � FÞ
�
i

¼ �ð1� �Þviv
�

�Î

�ðviv � FÞ
�
i
: (46)

Since the left-hand side of (46) does not depend on v, its
right-hand side should also be v independent, which

imposes restrictions on the possible forms of Î. These
restrictions are controlled by the local symmetry (40)
and, hence, are a consequence of Eq. (43). Namely, the
symmetry (40) can be used to gauge fix v� to be a constant

vector as in (26). Then Eq. (46) implies that its right-hand
side must be Lorentz invariant on the mass shell, i.e. when
the duality condition (38) is satisfied. This should be
automatically so, since, as we have explained in the case
of the linear self-duality, the on-shell Lorentz transforma-
tion (27) of the gauge fields is the conventional one. If
such, the right-hand side of (46) must transform cova-
riantly under the Lorentz symmetry and, therefore, can
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only be constructed of the Lorentz-covariant combinations
of Fi (and their derivatives).

This observation allows us to relate the higher-order
terms in the action (32) to those of the nonlinear twisted
self-duality condition (28). Indeed, comparing Eq. (46)
with (28) we see that

ð1� �Þv �Î

�ðiv � FÞ ¼ ð1� �Þ�W½F�
�F

or

v
�Î

�ðiv � FÞ ¼ vivð1� �Þ�W½F�
�F

: (47)

Thus, knowing a higher-order deformation W½F� of the
original duality-symmetric theory, e.g. by quantum coun-
terterms, one can obtain the form of the corresponding
nonlinear contributions to the duality-symmetric action
and vice versa.

IV. RELATION BETWEEN THE TWO FORMS OF
THE NONLINEAR SELF-DUALITY CONDITION

In this section we shall demonstrate how to relate the
self-duality constraint (28) and the Eq. (38) obtained from

the action (32), i.e. between W½F� and Î½F�.
In general, duality-invariant W½F� depends on Fi and

�Fi or, equivalently, on

Fi� ¼ 1

2
ðF� �FÞi ¼ 1

2
ð1� �ÞFi;

so that W½F� ¼ W½Fþ; F�� and
�W½F�
�F

¼1

2
ð1��Þ�W½Fþ;F��

�Fþ
þ1

2
ð1þ�Þ�W½Fþ;F��

�F�
:

(48)

Substituting this equation into (28) we see that �W½Fþ;F��
�F�

does not contribute, and the self-duality constraint (28)
becomes

ð1� �Þ
�
Fi � �

�
�W½Fþ; F��

�Fþ

�
i
�
¼ 0: (49)

Modulo different notation and approach, Eq. (49) corre-
sponds to Eq. (4.2) of [29].

Comparing (49) with (47) we have

ð1� �Þv
�

�Î

�ðiv � FÞ
�
i ¼ ð1� �Þ�W½F�

�F

¼ ð1� �Þ
�
�W½Fþ; F��

�Fþ

�
i
:

To analyze the relation (47), let us introduce the identity
[see Eq. (11)]

Fi ¼ vivðFi � �FiÞ � �v

�
�Î

�ðiv � FÞ
�
i þ ð1þ �Þðviv � FiÞ

þ �v

�
�Î

�ðiv � FÞ
�
i
: (50)

Then on the mass shell (46) we have

Fi ¼ ð1þ �Þðviv � FiÞ þ �v

�
�Î

�ðiv � FÞ
�
i
; (51)

Fiþ ¼ ð1þ �Þviv � Fi þ �

2
ð1þ �Þv

�
�Î

�ðiv � FÞ
�
i
; (52)

and

Fi� ¼ �

2
ð1� �Þv

�
�Î

�ðiv � FÞ
�
i
;

which naturally coincides with (46). Equation (51) tells us
that, when the twisted self-duality relation holds, Fi

is a series in viv � Fi and �. Using this fact, one can
carry out the following iteration procedure to reconstruct

Î ¼ P1
k¼1 �

k�1IðkÞ from a given counterterm W½F� (29).
Possible nonvanishing terms WðkÞ, k 	 1, are responsible
for the arbitrariness in I, pointed out at the end of Sec. II.

Of course for consistency also these WðkÞ, on shell and at
� ¼ 0, must satisfy the condition (44).
At the zero order in �

ð1� �Þ�W½F�
�F

���������¼0
¼ ð1� �Þfð0Þ½viv � Fi�;

where fð0Þ is a known 2-form functional of ð1þ �Þviv � Fi.

This allows us, using (47), to reconstruct the first term Ið1Þ

of Î. Knowing Ið1Þ we expand �W½F�
�F to the first order in �

ð1� �Þ�W½F�
�F

¼ ð1� �Þ
�
fð0Þ½viv � F� þ �fð1Þ½viv � F�

þ �
�Wð1Þ½F�

�F

���������¼0

�
; (53)

where

fð1Þ½viv � F� ¼
�
v

�Ið1Þ

�ðiv � FÞ
�
��i


 �2Wð0Þ

�½ð1þ �Þviv � F���i�F

���������¼0

is a known 2-form functional of viv � F. Substituting

Eq. (53) into (47) one reconstructs the second term Ið2Þ of Î.
At the quadratic order in � the procedure for reconstruct-

ing Ið3Þ becomes much more complicated since the expan-

sion of �W½F�
�F will have terms containing

�
�Ið1Þ

�ðiv � FÞ
�
2
;

�Ið1Þ

�ðiv � FÞ
�2Wð1Þ½F�

�½ð1þ �Þviv � F��F
���������¼0

;

�Ið2Þ

�ðiv � FÞ and
�Wð2Þ½F�

�F

���������¼0
:

At the third and higher orders in � the complexity increases
even more.
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As a consistency check of the relations between IðkÞ and
W, one should verify that the action functional Î obtained
in this way satisfies the consistency condition (43) and
whether this may impose additional restrictions on a pos-
sible form of W. Let us recall that, in the action (32) this
condition ensures that aðxÞ is the completely auxiliary
(pure gauge) field and that on the mass shell the self-
duality condition can be brought to a space-time covariant
form in terms of a duality-invariant functionalW½F� which
does not depend on aðxÞ. To derive the constraint on W½F�
imposed by the consistency condition (43) note that on the
mass shell (38) the latter takes the following form:

d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijvððiv � FiÞðiv � FjÞ � ððivFiÞðivFjÞÞ

�

¼ d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijvivð1þ �ÞFiÞðivð1� �ÞFjÞ

�
¼ 0;

(54)

which in turn, in view of (28) and (48), reduces to

�d

�
1ffiffiffiffiffiffiffiffiffiffiffið@aÞ2p �ijvðivFþÞi

�
iv

�W

�Fþ

�
j
�
¼ 0: (55)

Though the statement that given any duality invariant
W½F� one can always reconstruct a corresponding duality-
symmetric action looks plausible we have not found the
generic proof that the constraint (55) is satisfied by any
choice of the duality invariantW½F�. We have checked the
validity of (55) for known examples ofW½F� which do not
contain terms with derivatives of F. When W½F� contains
derivatives of F, the analysis becomes technically much
more involved and we leave it for further study.

V. CONCLUSION

In this paper we have described, in a systematic way,
how to extend the covariant and duality- invariant PST
approach to models with nonlinear duality. It has been
shown that the duality-symmetric action should be invari-
ant under the two local symmetries (18) and (40) character-
istic of this approach, which require that the action is given
by Eq. (32) where the local functional I ¼ R

L depends on

the field strengths Fi only through viv � Fi and satisfies the
quadratic constraint (43). This constraint is related to the
Gaillard-Zumino constraint and, after a suitablegaugefixing,
coincides with the constraint found in [28], in the framework
of the noncovariant but duality-invariant approach.

In the models with nonlinear duality, gauge fields are
constrained by the deformed twisted self-duality condition,
Eq. (28). It means that there exists a self-dual 2-form
hi ¼ Fi � ð�W�FÞi such that hi ¼ �hi, where W½F; . . .� is a
covariant and duality-invariant local functional of Fi (and
the other fields). As a further result, in this paper we have
exploited the relation between the functionalW½F; . . .� and
the functional I that constitutes the PST action.

A possible application of the approach developed in this
paper is the study of the consistent counterterms in super-
symmetric duality-invariant models and in particular in
N ¼ 8, D ¼ 4 supergravity. This is relevant to the issue
of the finiteness of this theory. The question is whether
N ¼ 8 supersymmetry is preserved upon a certain non-
linear deformation of the classical theory. The authors of
[28] argued, on general grounds similar to those ensuring
the diffeomorphism invariance and the absence of corre-
sponding anomalies, that there might be no obstructions to
find a deformed theory which is supersymmetric. To give
more direct evidence for this argument, one should
show that the Gaillard-Zumino or similar conditions, like
Eq. (43), restricting the form of the action of the duality-
symmetric theory are compatible with (deformed) super-
symmetry transformations.
So far the compatibility of supersymmetry with non-

linear self-duality has been explicitly demonstrated only
for N ¼ 1, 2 [29,32–41] and N ¼ 4 [42] (D3-brane) Born-
Infeld-like deformations of Abelian gauge theories with
the duality group Uð1Þ, and in the case of the M5-brane
[44,45,67] which is the nonlinear (2,0) self-dual 6d gauge
theory with 16 supersymmetries (i.e. N ¼ 4, from the
D ¼ 4 perspective). However, supersymmetric examples
of nonlinear theories (including supergravities) with non-
Abelian duality groups of the E7 type have not been
given yet. It should be mentioned that consistent couplings
of external supersymmetric Born-Infeld-like models to
N ¼ 1 and 2 supergravities are known [68,69]; however,
an important issue which remains is whether nonlinear
deformations are possible for vector fields inside super-
gravity multiplets, in particular, inN ¼ 4, 8 supergravities.
At this point we would like to make a comment that

nonlinearities in field theories and, in particular, in super-
symmetric ones are often associated with spontaneous
symmetry and supersymmetry breaking. For instance, the
Born-Infeld structure is a manifestation of partial super-
symmetry breaking of a rigid extended supersymmetry
[34]. In this respect, Born-Infeld-like nonlinearities in
duality-symmetric effective action of N ¼ 8, D ¼ 4
supergravity, if they appear, should have a different nature
(e.g. stringy corrections), since there are no conventional
field theories with more than 32 supersymmetries whose
spontaneous breaking would result in a nonlinear general-
ization of N ¼ 8, D ¼ 4 supergravity. Restrictions on pos-
sible sources of the nonlinear deformation of the twisted
self-duality condition of N ¼ 8, D ¼ 4 supergravity im-
posed by supersymmetry and E7ð7Þ are discussed in [70].
There are two complementary approaches to deal

with supersymmetric extensions of the duality-symmetric
actions. The first is the standard approach, in which the
action depends only on the electric fields. In this approach
supersymmetry is manifest both at the linear level and in
the form of possible candidate counterterms, but the dual-
ity symmetry of the deformed action is not manifest and
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should be verified. Given a supersymmetric counterterm
constructed of the electric and magnetic fields in a duality-
invariant way, Ref. [28] has described an iterative proce-
dure further developed in [29] to construct a nonlinear
action for the electric fields only, that satisfies the nonlinear
Gaillard-Zumino condition and, hence, retains the duality
invariance. Since for the consistency with duality symme-
try the nonlinear deformation brings about an (infinite)
series of new higher-order terms, the supersymmetry of
the whole construction should be rechecked.

Other approaches deal with covariant or noncovariant
formulations in which duality symmetry is manifest. It is
clear that in these formulations supersymmetry is not
manifest since the number of vector fields is doubled and
only half of them should appear in the supersymmetry
transformations of the fermions. Since the noncovariant
formulation comes from a gauge fixing of the covariant
one, let us discuss the supersymmetry issue in the frame-
work of the covariant formulation. In models with linear
duality there is a simple recipe [52,56] for how to modify
the supersymmetric transformations of the fermions so that
the PST action is invariant under this modified supersym-
metry. In the supersymmetry variations of the fermions, the
recipe prescribes replacing the field strengths Fi with the
following 2-form:

Kq
0 ¼ ½Fi � vivðFi � �FiÞ�Vq

i ð�Þ
¼ ð1þ �Þviv � FiVq

i ð�Þ; (56)

where Vq
i ð�Þ is the G=H bridge scalar field matrix deter-

mined in (3). Notice that Ki
0 is self-dual, K

q
0 ¼ ð�K0Þq, and

that on the shell of the linear duality constraint Fi ¼ �Fi

the 2-formKq
0 coincides with F

iVq
i ð�Þ. The property ofKq

0

to be self-dual ensures that the supersymmetry transforma-
tions involve the right number of independent gauge fields.

For instance, in the simplest case of a Uð1Þ-duality
symmetric N ¼ 1 theory with no scalars (Vq

i ¼ �q
i ) and

one vector supermultiplet, duality-covariant N ¼ 1 super-
symmetry variations look as follows:

�Aq
� ¼ i �c	��

q; �c ¼ 1

8
K��q

0 	���
q; q ¼ 1; 2

(57)

where c ðxÞ is the Majorana spinor and

�q ¼ i"qs	5�
s ð"12 ¼ �"21 ¼ 1Þ (58)

is the self-dual parameter of the rigid N ¼ 1, D ¼ 4
supersymmetry. It is easy to see that when the duality
relation F2

�� ¼ � 1
2 "����F

1�� holds, the supersymmetry

transformations (57) reduce to the conventional ones relat-
ing A1 and c with the Majorana spinor parameter �1

�A1
� ¼ i �c	��

1;

�c ¼ 1

8
ðF1��	���

1 þ F2��	���
2Þ ¼ 1

4
F��1	���

1:

Let us also note that since the auxiliary field aðxÞ does not
have a superpartner, it should be invariant under the action
of supersymmetry �aðxÞ ¼ 0. This, however, does not
contradict the supersymmetry algebra, if one assumes
that the translation of aðxÞ produced by the commutator
of two supersymmetry transformations acting on aðxÞ is
compensated by the local symmetry (19) [71–74]

ð�1�2 � �2�1ÞaðxÞ ¼ 
�@�aðxÞ � ’ðxÞ ¼ 0:

Now the problem is how to extend the above prescrip-
tion to a nonlinear case. An obvious ansatz would be to
replace Kq

0 in (56) with

Kq ¼ Fq � viv

�
ð1� �ÞFq � �ð1� �Þ

�
�W½F�
�F

�
q
�

¼ ð1þ �Þviv
�
�Fq þ �

2
ð1� �Þ

�
�W½F�
�F

�
q
�

þ 1

2
�ð1� �Þ

�
�W½F�
�F

�
q
: (59)

Again, on the duality shell (28), Fq ¼ Kq but now Kq is
not self-dual. However, the anti-self-dual part of Kq does
not enter the supersymmetry transformation (57) of the
fermions, since its gamma contraction with the self-dual
supersymmetry parameter (58) vanishes.
One may expect that this ansatz is incomplete and, in

general, should also include terms of higher orders in
fermionic fields. This is implicitly indicated by the
analysis of rigid (2,0) supersymmetry transformations of
the worldvolume fields of the kappa-symmetry gauge-fixed
M5-brane carried out in [67]. We hope to address the
problem of supersymmetry in theories with nonlinear dual-
ity in a future work.
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