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The baby Skyrme model is a well-known nonlinear field theory supporting topological solitons in two

space dimensions. In the limit where the term quadratic in derivatives (the ‘‘sigma-model term’’) vanishes,

some additional structure emerges. The resulting (‘‘extreme’’ or ‘‘restricted’’ or ‘‘BPS’’) baby Skyrme

model has exact soliton solutions saturating a BPS bound which exists for this restricted model. Further,

the restricted model has infinitely many symmetries and infinitely many conservation laws. Here we

consider the gauged version of the restricted baby Skyrme model with gauge group U(1) and the usual

Maxwell term for the gauge field. We find that, again, there exists a BPS bound and BPS solutions

saturating this bound. We further find that the whole problem is essentially determined by a new kind of

superpotential equation. The BPS bound and the corresponding BPS solitons only may exist for potentials

such that the superpotential equation has a solution which exists globally, i.e., on the whole target space.

We also calculate soliton solutions both exactly and numerically, completely confirming our qualitative

analytical results.

DOI: 10.1103/PhysRevD.86.045010 PACS numbers: 11.30.Pb, 11.27.+d

I. INTRODUCTION

It is a notoriously difficult problem to derive the basic
physical properties of hadrons and nuclei from the under-
lying fundamental theory of strong interactions, i.e., quan-
tum chromodynamics (QCD). One important approach to
resolve this problem consists in the introduction of low-
energy effective field theories, where the fundamental
fields of QCD, which are the relevant degrees of freedom
at high energies, are replaced by some other degrees of
freedom which are supposed to describe strong interaction
physics at low energies more practically or more concisely.
The Skyrme model [1] is one well-known proposal for such
an effective field theory, where the basic degrees of free-
dom consist of a triplet of chiral fields (Skyrme fields)
which are related to the Goldstone bosons of chiral sym-
metry breaking in the underlying QCD. The nucleons and
nuclei, on the other hand, emerge as collective excitations
of the basic fields, i.e., topological soliton solutions (called
Skyrmions) which the theory supports. Further, the topo-
logical degree of the solitons is identified with the baryon
number. Quantization of the spin and isospin degrees of
freedom for the simplest solitons leads to predictions
for the physical properties of nucleons and light nuclei
which are in reasonable agreement with experiment; see,
e.g., [2–4] (for further, more recent results see, e.g., [5]).
These early successes have lead to an extensive numerical
study of soliton solutions, both for the standard Skyrme
model (consisting of a nonlinear sigma-model term qua-
dratic in first derivatives and a so-called Skyrme term
which is quartic in first derivatives) and for the standard
Skyrme model with an additional potential term (’’pion
mass term’’). As a result, solitons in the standard Skyrme

model for topological degree up to about 20 are now fairly
well understood [6–8].
Although the Skyrme model Lagrangian cannot be rig-

orously derived from QCD, the symmetries and anomalies
of QCD provide sufficient information to uniquely deter-
mine the coupling of the Skyrme field to electromagnetism
[9]. Concretely, the gauge field couples both to the topo-
logical (baryon) current and to the third component of the
isospin current. A first attempt to determine the electro-
magnetic contributions to the proton and neutron masses
within the Skyrme model perturbatively in the electromag-
netic field and within the Coulombic approximation has
been done in [10]. Unsurprisingly, the electrostatic energy
of the (charged) proton is larger than that of the (electri-
cally neutral) neutron. A correct calculation of the proton-
neutron mass difference most likely requires some amount
of explicit breaking of the isospin symmetry. A mainly
numerical analysis of the standard Skyrme model with the
electromagnetic field coupled to the third component of the
isospin has been performed in [11], and some further
results have been presented in [12].
To the best of our knowledge, the analysis of the fully

nonlinear coupled Skyrme-Maxwell system has not yet
been carried to the point where reliable descriptions of
the electromagnetic properties of nucleons and light nuclei
would be possible, despite the obvious physical interest of
such a description, most likely due to the tremendous
difficulty of this task. It is at this point where the study
of lower-dimensional models becomes useful or even in-
dispensable. The investigation of lower-dimensional field
theories is a well-established research field, both in order to
understand and solve difficult nonlinear problems, and
because of the growing appearance of interesting physical
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realizations of planar physical systems. The simplifications
which may be achieved in lower dimensions help to
achieve a better visualization of the system and often allow
one to avoid unessential technical complications, even
though one has to remain aware of potential oversimplifi-
cations. One good example is the problem of stability and
order reduction [via Bogomol’nyi-Prasad-Sommerfeld
(BPS) equations] of the nonlinear sigma and Skyrme mod-
els, which was considered in three dimensions by [13],
leading to the discovery of instanton solutions.

More specifically, there exists a (2þ 1)-dimensional
version of the Skyrme model which was originally intro-
duced in [14,15], and further investigated, e.g., in [16–18]
(for more recent results see, e.g., [19–22]). In this so-called
baby Skyrme model, the dimensions both of the base space
and of the target space are reduced by one, such that a
topological degree characterizing field configurations and
topological soliton solutions exist, again, in close analogy
to the full Skyrme model. This model has already found
some independent physical applications, e.g., in condensed
matter systems [23], or in brane cosmology where the
solitons of the model induce codimension two branes
[24]. The Lagrangians of the Skyrme and baby Skyrme
models are very similar, as well. In both models there exists
a nonlinear sigma-model type kinetic term and a Skyrme
term which is quartic in first derivatives. In addition, the
potential term is mandatory in the baby Skyrme model for
soliton solutions to exist, as a consequence of the Derrick
scaling argument. The baby Skyrme model, too, has a
natural coupling to the electromagnetic field. It turns out
that the resulting baby Skyrme-Maxwell system in one
lower dimension does allow for a nonlinear treatment
with a reasonable numerical effort. Indeed, soliton solu-
tions of the full coupled system have been calculated in
[25], and their electric and magnetic properties have been
studied, too. Further, it turns out that in the gauged system
the Skyrme term is not mandatory because the Maxwell
term shows the same scaling behavior, and the resulting
‘‘gauged nonlinear sigma model with a potential’’ obtained
by skipping the Skyrme term has soliton solutions, too; see
[26]. Both the gauged Skyrme model and the gauged non-
linear sigma model with potential have a BPS bound for the
energy in terms of the topological degree, but nontrivial
soliton solutions, in general, do not saturate this bound.
Still, the gauged nonlinear sigma model does have genuine
BPS soliton solutions for a specific choice of the potential
[26] (see Sec. II). Apparently, the progress in the under-
standing of these (2þ 1)-dimensional models is in part
related to the reduced number of dimensions and has not
yet provided us with all the necessary tools for a deeper
analysis of the full (3þ 1)-dimensional Skyrme-Maxwell
system. So one might wonder whether there exists some
further structure which is shared by the baby and the full
Skyrme theory and which might bring us closer to this final
goal. It is the purpose of the present article to give an

affirmative answer to this question, but before presenting
our proposal it is necessary to briefly review some recent
results on BPS submodels of the Skyrme and baby Skyrme
models.
The field space (or target space) of the baby Skyrme

model is given by the two-sphere S2. If we require that the
Lagrangian density for this field variable depends on the
fields and their first derivatives, is Poincaré invariant and at
most quadratic in time derivatives—in order to allow for a
standard Hamiltonian formulation—then the Lagrangian
of the baby Skyrme model is the most general possibility.
Specifically, the Skyrme term which is quartic in deriva-
tives and is, at the same time, the square of the topological
current density already has the highest possible power of
derivatives. The simplest submodel supporting topological
solitons is the scale-invariant nonlinear sigma model [13]
consisting only of the quadratic term, but otherwise both
the potential and the quartic Skyrme term are required to
maintain stability under Derrick scaling. The quadratic
(sigma-model) term, on the other hand, is not mandatory
from this point of view, and the restricted model containing
only the potential and the Skyrme term not only supports
solitons but, additionally, has some further structure. It was
first considered in [27] where the infinitely many base
space symmetries of the static energy functional were
found, and both exact static soliton solutions and exact
time-dependent topological Q-ball solutions were calcu-
lated. Then, in [28] it was found that this restricted baby
Skyrme model has both a BPS bound and BPS soliton
solutions saturating this bound. Further, it was demon-
strated that the model has infinitely many target space
Noether symmetries with their corresponding conservation
laws (it has, in fact, the zero curvature representation of
generalized integrability [29]). A more geometric interpre-
tation of the BPS bound and the corresponding BPS equa-
tions was given in [30].
If the same conditions as above are imposed for the S3

[or SU(2)] field space of the Skyrme model, then the most
general Lagrangian density consists of a potential term, the
quadratic nonlinear sigma-model term, the quartic Skyrme
term and a sextic term which is, at the same time, the
square of the topological current density. That is to say,
the quartic Skyrme term of the baby Skyrme model has two
possible generalizations which both are equally acceptable
from the point of view of the Derrick scaling argument.
The full generalized Skyrme model with all allowed terms
present has been considered and applied to nucleons and
nuclei (see, e.g., [31–33]), but a systematic search of higher
solitons, analogous to the case of the standard Skyrme
model, has not yet been performed to the best of our
knowledge. This generalized Skyrme model, again, has a
submodel (the ‘‘BPS Skyrme model’’) consisting of a
potential and the sextic term, which shows all the addi-
tional structure mentioned above [34,35]. The static energy
functional has the volume-preserving diffeomorphism on
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base space as symmetries, which is interesting from the
point of view of nuclear physics (nuclear liquid drop
model), because these are precisely the symmetries of an
incompressible liquid. Further, the BPS Skyrme model is
integrable in the sense of generalized integrability and has
an infinite number of target space Noether symmetries and
the corresponding conservation laws. Third, the BPS
Skyrme model has a BPS bound and soliton solutions
saturating this bound. This fact is of special importance
because it resolves one of the main problems in the appli-
cation of the Skyrme model to nuclear physics, namely, the
too large binding energies of nuclei which the standard
Skyrme model predicts. As a consequence of the BPS
property, classical soliton solutions in the BPS Skyrme
model have zero binding energies, and realistic small
values for the binding energies of nuclei may be achieved
both by quantum corrections and by small contributions of
additional terms in the Lagrangian [36,37].

In view of the existence and of the rich structure of
the integrable BPS Skyrme submodels described above,
both in 2þ 1 and in 3þ 1 dimensions, one rather obvious
question is whether these submodels may be gauged and
whether the resulting gauged BPS Skyrme models main-
tain the integrability, the BPS property, and the close
relationship between the (2þ 1)-dimensional and the
(3þ 1)-dimensional case. It is the purpose of the present
article to study the (2þ 1)-dimensional case and to dem-
onstrate that the resulting gauged BPS baby Skyrme
model in 2þ 1 dimensions still is integrable and has
both a BPS bound and BPS solitons which, in some cases,
may even be calculated exactly. An investigation of the
(3þ 1)-dimensional case, following the lines developed in
the present article, will be presented elsewhere.

The paper is organized as follows. In Sec. II, we intro-
duce the gauged baby Skyrme model and briefly recapitu-
late some known results. Then we restrict to the gauged
BPS baby Skyrme model which we want to investigate,
derive its Euler-Lagrange equations and discuss the bound-
ary value problem relevant for soliton solutions. In Sec. III,
we demonstrate that integrability still holds for the gauged
model. In Sec. IV, we derive the BPS property of the
gauged BPS baby Skyrme model. Concretely, we derive
the BPS bound in Sec. IVA, whereas in Sec. IVB we
demonstrate that the BPS equations imply the static
Euler-Lagrange equations. Section IVC is dedicated to
the issue of BPS soliton solutions. In Sec. V, we present
the numerical calculations of soliton solutions for several
potentials and coupling constants. The soliton energies
saturate the BPS bound in all cases. In Sec. VI, we present
exact BPS soliton solutions for some specific choices of the
potential. Finally, Sec. VII contains our conclusions. We
decided to give a rather detailed presentation of the model
and its properties in this article, because some of the
methods used and some of the results presented are quite
different from known ones (e.g., the BPS bound is

markedly different from all BPS bounds known to us),
and a detailed understanding of the new features of this
model and the new analytical methods will be indispens-
able both for the study of the analogous case in 3þ 1
dimensions and for its use in other contexts (e.g., to under-
stand whether the new type of BPS bound presented here
may be employed for other field theories).

II. THE GAUGED MODEL

The degrees of freedom of the ungauged baby Skyrme
model are described by a three-component vector of scalar

fields ~� ¼ ð�1; �2; �3Þwith unit length ~�
2 � �2

1 þ�2
2 þ

�2
3 ¼ 1. That is to say, its target space manifold is a two-

sphere S2. The Lagrangian of the (ungauged) standard
baby Skyrme model consists of three terms, namely, the
nonlinear sigma-model term L2 quadratic in derivatives,
the Skyrme term L4 (which is quartic in first deriva-
tives), and the potential term with Lagrangian density

L0 ¼ ��0Vð ~�Þ. Here, the potential Vð ~�Þ always is a
real, non-negative function of its arguments. Both L2

and L4 are invariant under the full group of target space

rotations SO(3) (i.e., rotations acting on ~�), whereas the
potential necessarily breaks part of this symmetry.
Throughout this paper, we shall be concerned only
with potentials which preserve a U(1) subgroup of this
target space symmetry and which, further, have a unique
vacuum (i.e., there is no spontaneous symmetry breaking).
Concretely, we assume that

V ¼ Vð ~n � ~�Þ; Vð1Þ ¼ 0; (1)

which implies that V is invariant with respect to rotations

about the axis ~n and that ~� ¼ ~n ¼ const is the (unique)
vacuum configuration. In concrete calculations we shall
always assume

~n ¼ ð0; 0; 1Þ ) V ¼ Vð�3Þ (2)

such that the vacuum value is �3 ¼ �3;vac ¼ 1, but in

more general expressions it will be useful to maintain the
general vacuum vector ~n. Finite energy field configurations
~�ðt; ~xÞ have to approach the vacuum configuration in the
limit of large j ~xj independent of the direction of ~x,

limj ~xj!1 ~�ðt; ~xÞ ¼ ~n for all times. This allows for the

one-point compactification of the physical base space R2

which makes it topologically equivalent to the two-sphere
S2. As a consequence, finite energy field configurations
may be interpreted as maps S2 ! S2 which are character-
ized by an integer winding number (or topological degree)

deg½ ~�� ¼ 1

4�

Z
d2x ~� � @1 ~�� @2 ~� ¼ k; k 2 Z:

(3)

Because of its integer-valuedness this winding number is
obviously conserved in time.
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A. The gauged baby Skyrme model

The presence of the unbroken subgroup U(1) opens the
possibility to gauge this subgroup by a U(1) gauge field
whose dynamics is governed by the usual Maxwell term.

The right coupling of the gauge field to the Skyrme field ~�
is achieved by replacing ordinary partial derivatives with
the covariant derivatives

D�
~� � @� ~�þ A� ~n� ~� (4)

as may be checked easily [25,26]. The resulting
Lagrangian density (i.e., the gauged baby Skyrme
model) is

L ¼ L2 þL4 þL0 þLM; (5)

where L2 is the gauged sigma-model term

L 2 ¼ �2

2
ðD�

~�Þ2; (6)

L4 is the Skyrme term

L 4 ¼ ��4

4
ðD�

~��D�
~�Þ2; (7)

and L0 is the potential

L 0 ¼ ��0Vð ~n � ~�Þ: (8)

Finally, LM is the usual Maxwell term

LM ¼ ��M

4
F2
��; F�� ¼ @�A� � @�A�: (9)

Here, all fields are defined on (2þ 1)-dimensional
Minkowski space, and we use the metric with signature
ðþ;�;�Þ. Further, the �k, k ¼ 0; 2; 4, M are non-negative
dimensionful coupling constants. Following [25], we now
introduce new coupling constants by extracting a common
energy scale E0 from all terms in the Lagrangian. The
resulting Lagrangian is

L ¼ E0

Z
d2x

�
�2

2
ðD�

~�Þ2 � �2

4
ðD�

~��D�
~�Þ2

��2Vð ~n � ~�Þ � 1

4g2
F2
��

�
: (10)

Here, E0 has the dimension of energy and sets the energy
scale of our model. In concrete calculations we shall al-
ways express energies in units of E0, which is equivalent to
setting E0 ¼ 1. � is a dimensionless constant which takes
the value � ¼ 1 in the original gauged baby Skyrme model
of [25] (for a nonzero �, � ¼ 1 can always be achieved by
an appropriate choice of the energy scale E0), whereas we
shall choose � ¼ 0 for the case of our restricted (or BPS)
gauged baby Skyrme model. Further, � has the dimension
of length, whereas � and g have the dimensions of inverse
length. g is, in fact, the electromagnetic coupling constant.

In this paper we are mainly interested in static (soliton)
solutions, so let us restrict to the static energy functional in

what follows. Further, it has been demonstrated already
in [25] that static finite energy solutions must have zero
electric field, at least for the spherically symmetric ansatz
considered there. We shall assume this in our paper; i.e., we
choose for the static gauge field

A�ð ~xÞ ¼ ð0; A1ð ~xÞ; A2ð ~xÞÞ; E1 ¼ E2 ¼ 0;

Bð ~xÞ ¼ @1A2 � @2A1;
(11)

where B is the magnetic field in 2þ 1 dimensions and the
electric field Ei is zero. Then the static energy functional
which defines our static variational problem is

E � EVð�; �;�; gÞ

¼ 1

2
E0

Z
d2x

�
�2ðDi

~�Þ2 þ �2ðD1
~��D2

~�Þ2

þ 2�2Vð ~n � ~�Þ þ 1

g2
B2

�
: (12)

B. Some known energy bounds

Before starting our calculations, it is useful to review
some known results. It is well-known that the ungauged
pure nonlinear sigma model with energy functional

Euð�; � ¼ 0; � ¼ 0Þ ¼ 1

2
E0�

2
Z

d2xð@i ~�Þ2 (13)

(here the subindex u stands for ‘‘ungauged,’’ i.e., zero
gauge field A� ¼ 0) has a topological lower energy bound
for static configurations [13]

Euð�; � ¼ 0; � ¼ 0Þ � 4�E0�
2j deg½ ~��j: (14)

Further, the pure nonlinear sigma model has the meromor-
phic functions as static solutions saturating this bound (i.e.,
BPS solutions; in fact, all static finite energy solutions are
BPS solutions). The same bound remains true for the full
ungauged baby Skyrme model,

EV
u ð�; �;�Þ � 4�E0�

2j deg½ ~��j; (15)

because of the obvious inequality EV
u ð�; �;�Þ �

Euð�; � ¼ 0; � ¼ 0Þ. Nontrivial solutions of the full baby
Skyrme model do not saturate this bound. There exists an
additional, more stringent bound for the full, ungauged
baby Skyrme model which derives from the fact that there
exists a second, independent bound for the baby Skyrme
model without the sigma-model term, i.e., for the BPS
baby Skyrme model EV

u ð� ¼ 0; �;�Þ (see Sec. IV).
Again, nontrivial soliton solutions of the full baby
Skyrme model in general do not saturate this bound.
For the gauged baby Skyrme model, there exist some

known BPS bounds, as well. First of all, for the gauged
model without the quartic Skyrme term (i.e., for � ¼ 0)
there exists a specific choice of potential and coupling
constants such that the resulting gauged nonlinear
sigma model with potential has both a BPS bound and
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BPS solutions saturating this bound [26]. The specific
potential is

Vsð ~n � ~�Þ ¼ 1

2
ð1� ~n � ~�Þ2; (16)

and the coupling constants must be chosen equal, � ¼ g
(in addition to � ¼ 0; further we set � ¼ 1 without loss of
generality). The resulting energy is

EVsð� ¼ 1; � ¼ 0; �; g ¼ �Þ
¼ EVsð� ¼ 1; � ¼ 0; � ¼ 1; g ¼ 1Þ
¼ 1

2
E0

Z
d2xððDi

~�Þ2 þ 2Vsð ~n � ~�Þ þ B2Þ;
(17)

where we transformed � and g ¼ � into � ¼ g ¼ 1 by a
variable transformation ~x ! �~x to dimensionless new var-
iables ~x. It was proved in [26] that this model obeys the
same BPS bound like the ungauged pure nonlinear sigma
model,

EVsð� ¼ 1; � ¼ 0; � ¼ 1; g ¼ 1Þ � 4�E0j deg½ ~��j;
(18)

and that there exist BPS solutions saturating the bound for

winding number j deg½ ~��j> 1. For j deg½ ~��j ¼ 1, on the
other hand, finite energy solutions do not exist.

The above BPS bound for the specific potential Vs may
be used, under certain conditions, to derive energy bounds
for other potentials. To show it, we first rewrite the energy
expression like

EVð� ¼ 1; � ¼ 0; �; gÞ

¼ E0

Z
d2x

�
ðDi

~�Þ2 þ 2
�2

g2
Vð ~n � ~�Þ þ B2

�
; (19)

where we transformed again to new dimensionless space

coordinates ~x ! g~x. If �2

g2
V may be bound by multiples

of Vs, i.e.,
�2

g2
V � cVVs, then the above energy may be

bound either by 4�E0j deg½ ~��j (if cV � 1) or by

4�E0cVj deg½ ~��j (if cV < 1). Let us choose the so-called
‘‘old baby Skyrme potential’’

Voð ~n � ~�Þ ¼ 1� ~n � ~� (20)

as an example. As a consequence of the inequality

Vo � 1� ~n � ~� � 1

2
ð1� ~n � ~�Þ2 � Vs; (21)

we find the following energy bound:

�

g
� 1: EVoð� ¼ 1; � ¼ 0; �; gÞ � 4�E0j deg½ ~��j;

�

g
< 1: EVoð� ¼ 1; � ¼ 0; �; gÞ � 4�E0

�2

g2
j deg½ ~��j:

(22)

In these models, however, soliton solutions will in general
not saturate the bound; i.e., they are not of the BPS type.
These bounds continue to hold for the full gauged

baby Skyrme model, i.e., for � � 0, as a consequence of
the obvious inequality EVð�¼1;�;�;gÞ�EVð�¼1;
�¼0;�;gÞ. For the old baby Skyrme model, e.g., we
have (see [25])

�

g
� 1: EVoð� ¼ 1; �; �; gÞ � 4�E0j deg½ ~��j;

�

g
< 1: EVoð� ¼ 1; �; �; gÞ � 4�E0

�2

g2
j deg½ ~��j:

(23)

Again, these bounds are not saturated for nontrivial soliton
solutions.

C. The gauged BPS model

Now we shall restrict to the case we finally want to
discuss in detail, i.e., to the case without the sigma-model
term, � ¼ 0, with Lagrangian density

L ¼ ��2

4
ðD�

~��D�
~�Þ2 ��2Vð ~n � ~�Þ � 1

4g2
F2
��:

(24)

The Euler-Lagrange (EL) equations are derived by varying
with respect to the fields and their derivatives, as usual. For

the Skyrme field ~� there exists a minor subtlety related to

the constraint ~�
2 ¼ 1. This constraint should in principle

be implemented by adding a Lagrange multiplier term

�ðxÞð1� ~�
2Þ to the Lagrangian density (we suppressed

this term for the sake of brevity). As a consequence, the

component of the EL equation in the direction of ~� is not
dynamical but serves, instead, just to determine the
Lagrange multiplier �ðxÞ. We may project on the dynami-
cal part of the EL equation by multiplying the full EL

equation with ~�� , which leads to

D�
~K� ¼ ��2 ~n� ~�V0: (25)

Further, the inhomogeneous Maxwell equation is

@�F
�� ¼ g2 ~n � ~K�

; (26)

where

~K � ¼ �2D�
~�½ ~� � ðD� ~��D� ~�Þ�: (27)

The corresponding energy functional is

E ¼ 1

2

Z
d2x

�
�2

2
ðD0

~��Di
~�Þ2 þ 1

g2
E2
i

þ �2ðD1
~��D2

~�Þ2 þ 2�2V þ 1

g2
B2

�
: (28)
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Next we assume ~n ¼ ð0; 0; 1Þ and the standard static ansatz

~�ðr; �Þ ¼
sinfðrÞ cosn�
sinfðrÞ sinn�

cosfðrÞ

0
BB@

1
CCA; A0 ¼ Ar ¼ 0;

A� ¼ naðrÞ;
(29)

then the electric field vanishes identically and B ¼ na0ðrÞ
r .

Further, this field configuration has winding number

deg½ ~�� ¼ n provided that f obeys the appropriate bound-
ary conditions; see below. The field equations can be
reduced to

1

r2
f00ð1þ aÞ2sin2fþ f0

r

��
2a0 � 1þ a

r

�
1þ a

r
sin2f

þ f0

r
ð1þ aÞ2 sinf cosf

�
þ �2

n2�2
sinfV 0 ¼ 0; (30)

a00 � a0

r
¼ �2g2ð1þ aÞsin2ff02; (31)

where now V ¼ Vð�3Þ ¼ VðcosfÞ and V 0 ¼ V�3
. Further,

we introduce the new variable

y ¼ r2

2
(32)

to arrive at the following system of autonomous second
order equations:

sinf

�
@y½fyð1þ aÞ2 sinf� þ �2

n2�2
V0
�
¼ 0; (33)

ayy ¼ �2g2ð1þ aÞsin2ff2y: (34)

With the help of the function

�3 ¼ cosf� 1�2h) h¼ 1

2
ð1� cosfÞ; hy ¼ 1

2
sinffy;

(35)

this may be further simplified to

sinf

�
@y½hyð1þ aÞ2� � �2

4n2�2
Vh

�
¼ 0; (36)

ayy ¼ �2g2ð1þ aÞ4h2y; (37)

where now V ¼ VðhÞ and Vh ¼ �2V0. This system of two
second order equations has, in general, four integration
constants, i.e., a four-dimensional solution manifold. We
shall see in a moment that, on the other hand, a soliton
solution imposes four boundary conditions; therefore, ge-
nerically we expect at most one soliton solution for this
spherically symmetric ansatz and for a given n and a given
potential. At y ¼ 0 (i.e., r ¼ 0), a soliton solution has to
obey the two conditions

hð0Þ ¼ 1 , fð0Þ ¼ �; að0Þ ¼ 0: (38)

The precise form of the further boundary conditions
depends on the way the fields approach their vacuum
values. If the soliton takes its vacuum value already at
a finite radius r ¼ r0 (i.e., y ¼ y0) and remains in the
vacuum for y � y0, it is said to be of the compacton
type [27,28,39–41]. In this case, the additional boundary
conditions are

ayðy ¼ y0Þ ¼ 0; hðy0Þ ¼ hyðy0Þ ¼ 0: (39)

Apparently these are three more conditions, but we intro-
duced the additional free constant y0 (the compacton ra-
dius), so these correspond to two more conditions, and the
total number of boundary conditions is four. Alternatively,
if the field h approaches the vacuum exponentially (like
exp-cy) or if the approach to the vacuum is powerlike (like
y�c) (here c is some positive real constant), then the fields
reach their vacuum values in the limit y ! 1, so the
boundary conditions for a soliton are

lim
y!1hðyÞ ¼ 0; lim

y!1ayðyÞ ¼ 0; (40)

whereas limy!1hyðyÞ ¼ 0 is not an independent condition

but, rather, a consequence of the asymptotic form of the
above field equations. Again, the total number of boundary
conditions is four.
We remark that in the ungauged model there is a simple

relation between the potential Vð�3Þ and the approach to
the vacuum, independent of the coupling constants. Indeed,
if V is less than of a fourth power in small fluctuations
about the vacuum, then a possible soliton solution of the
ungauged model must be of the compacton type; i.e., it
takes its vacuum value already at a finite radius r ¼ r0 (i.e.,
y ¼ y0) and remains in the vacuum for y � y0 [28].
Further, if the potential is exactly quartic in small fluctua-
tions, then the approach of a soliton to its vacuum value is
exponential, whereas if V goes to zero with a higher than
fourth power, then a soliton of the ungauged model ap-
proaches the vacuum in a powerlike way. Observe that h
itself is already quadratic in small fluctuations because

h¼ ð1=2Þð1��3Þ ¼ ð1=2Þð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2

1 ��2
2

q
Þ� ð1=4Þ�

ð�2
1 þ�2

2Þ. Therefore, a potential which is ‘‘quartic in
small fluctuations’’ means a potential which is ‘‘quadratic
in h’’ for small h. The ‘‘old’’ baby Skyrme potential (20),
e.g., is quadratic in small fluctuations, whereas the poten-
tial (16) is quartic. At this point the obvious question shows
up whether the simple relation between the potential and
the approach to the vacuum continues to hold in the gauged
model, or whether the approach to the vacuum will depend
both on the potential and on the values of the coupling
constants. For the specific case of the so-called old baby
Skyrme potential it is easy to see that the potential alone is
sufficient to determine the asymptotics; see the next sub-
section. For the general case it is more difficult to answer
this question, but we will find strong theoretical indications
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that still the potential alone is sufficient to determine the
asymptotic behavior; see Sec. VI.

D. The old baby Skyrme potential

Although we will consider different potentials, most of
our numerical calculations will be done for the old baby
Skyrme potential (20). One reason is that this is the case
considered in [25]. A further reason is related to the fact
that for the old baby Skyrme potential the system of second
order equations (36) and (37) has a simple first integral.
Indeed, for the old baby Skyrme potential these two equa-
tions read

sinf

�
@y½hyð1þ aÞ2� � �2

2n2�2

�
¼ 0; (41)

ayy ¼ �2g2ð1þ aÞ4h2y: (42)

The first equation is solved by

sinf ¼ 0 ) f ¼ 0 ) h ¼ 0 (43)

or by setting the expression in brackets equal to zero,
which can be easily integrated to give

hyð1þ aÞ2 ¼ �2

2n2�2
ðy� y0Þ: (44)

It already follows from this first integral that y0 is the
compacton radius and that the nontrivial solution of the
above equation for y � y0 must be joined with the vacuum
solution h ¼ 0 for y > y0 if we want to avoid a solution
which grows indefinitely for large y. Formally, this first
integral may be further integrated to give

hðyÞ ¼
Z

dy
�2

2n2�2

ðy� y0Þ
ð1þ aðyÞÞ2 þ �0: (45)

The magnetic function a can be obtained from Eq. (42),
where the baby Skyrmion profile function is expressed in
terms of a by (44). Then, we get

ð1þ aÞ3ayy ¼ �2g2
�
�2

n2�2

�
2ðy� y0Þ2 (46)

or

ð1þ aÞ3ayy ¼ 0 (47)

outside of the compact baby Skyrmion. It gives a trivial
solution outside the compacton

aðr � r0Þ ¼ aR ¼ const: (48)

This implies that also the magnetic field is confined inside
the compact baby Skyrmion. Hence, we still have genuinely
compact objects which interact only via contact interactions.
Obviously we may also construct multisoliton configura-
tions exactly as in the standard BPS baby Skyrme model.
The equation for a can be simplified by introducing bðyÞ ¼
1þ aðyÞ and � ¼ �2g2ð �2

n2�2Þ2. Further z ¼ �1=4ðy� y0Þ,
and then

b3bzz ¼ z2: (49)

Unfortunately, we were not able to find analytic solutions to
this equation, so some numerics is still required. Of course,
a solution of the magnetic equation should be inserted into
the first order equation (44), where we also have to imple-
ment the boundary conditions for a compacton solution.
Numerical solutions will be calculated and described in
detail in Sec. V.
We remark that the possibility to partially integrate the

static field equations already points towards the possible
existence of a BPS bound and BPS equations for the static
system. We shall see later, in Sec. IV, that this is indeed the
case; i.e., there exists a BPS bound, and soliton solutions
are, in fact, solutions to the related BPS equations. The
existence of such BPS solutions will, however, be related to
some nontrivial conditions for the potential which not all
potentials satisfy. As a consequence, there exist potentials
such that the ungauged model has BPS soliton solutions,
whereas the gauged model with the same potential does not
support soliton solutions, even for arbitrarily small elec-
tromagnetic coupling constant g.

III. INTEGRABILITY, SYMMETRIES AND
CONSERVATION LAWS

The ungauged model

L ¼ ��2

4
ð@� ~�� @� ~�Þ2 ��2Vð ~n � ~�Þ (50)

has an infinite number of target space symmetries with
their corresponding Noether currents and conservation
laws [28]. The model possesses, in fact, the zero curvature
representation of generalized integrability [29]. It is not
difficult to understand the geometric origin of these sym-
metries. The quartic Skyrme term alone is invariant under
the full group of area-preserving diffeomorphisms of the
target space S2, because it is just the square of the pullback
of the corresponding area two-form [28]. The potential is
only invariant under the subgroup which does not change

~n � ~� ¼ �3, i.e., under the Abelian subgroup [42]

�1 ! �0
1 ¼ cosfð�3Þ�1 � sinfð�3Þ�2;

�2 ! �0
2 ¼ sinfð�3Þ�1 þ cosfð�3Þ�2;

�3 ! �0
3 ¼ �3;

(51)

where fð�3Þ is an arbitrary function of its argument, which
makes the symmetry group still infinite dimensional. It
turns out that the gauged model maintains exactly the
same Abelian symmetry group and the corresponding
conserved currents.
Remark.—It might appear that in the gauged model the

above transformations are just a subset of the full group of
gauge transformations and, therefore, should not provide
conservation laws, because it is a well-known fact that
gauge transformations do not give rise to nontrivial
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conservation laws. This is, however, not true. The impor-
tant point is that the gauged model is separately invariant
under the above transformations (51) and under the trans-
formations

A� ! A0
� ¼ A� � @�gð�3Þ; (52)

whereas only the joint transformations (51) and (52) with
f ¼ g are gauge transformations. It follows that the trans-
formations (51) are genuine symmetry transformations
which give rise to conserved Noether currents and con-
served charges. As a consequence of the above argument,
the symmetry transformations (52) provide exactly (minus)
the same conserved charges.

For an explicit calculation of the conserved currents
using the methods of generalized integrability it is useful
to switch to the CP1 formulation of the gauged BPS baby
Skyrme model. The Lagrangian density reads

L ¼ �2 1

ð1þ juj2Þ4 ðD�uD�u
	 �D�u

	D�uÞ2

��2Vðuu	Þ þ 1

4g2
F2
��; (53)

where the complex scalar field u is related to the unit vector
~� via stereographic projection,

~� ¼ 1

1þ juj2 ðuþ �u;�iðu� �uÞ; juj2 � 1Þ; (54)

and the covariant derivatives are

D�u ¼ u� � ieA�u; D�u
	 ¼ u	� þ ieA�u

	: (55)

The currents resulting from generalized integrability read

j� ¼ iG0ðu	�	
� � u��Þ; (56)

where G ¼ Gðuu	Þ is an arbitrary function of its argument
and �� is the canonical momentum

�	
� ¼ @L

@u	�
¼ 4�2

ð1þ juj2Þ4 ðD�uD�u
	 �D�u

	D�uÞD�u;

(57)

�� ¼ @L
@u�

¼� 4�2

ð1þ juj2Þ4 ðD�uD�u
	 �D�u

	D�uÞD�u	:

(58)

The field equations are

D��
�¼�2 4u	

ð1þjuj2Þ5 ðD�uD�u
	�D�u

	D�uÞ2þ�2V0u	;

(59)

D��
	�¼�2 4u

ð1þjuj2Þ5 ðD�uD�u
	�D�u

	D�uÞ2þ�2V 0u:

(60)

Then,

@�j
� ¼ iG0ðu	��	� � u��

� þ u	@��	� � u@��
�Þ

þ iG00ðuu	� þ u	u�Þðu	�	
� � u��Þ: (61)

The first parenthesis is

� � � ¼ u	��	� � u��
� þ ieA�u

	�	� þ ieA�u�
�

��2V0uu	 þ�2V 0uu	þ (62)

þ �2 4uu	

ð1þ juj2Þ5 ðD�uD�u
	 �D�u

	D�uÞ2

� �2 4uu	

ð1þ juj2Þ5 ðD�uD�u
	 �D�u

	D�uÞ2 (63)

¼ D�u
	�	� �D�u�

� ¼ 4�2

ð1þ juj2Þ4
� ðD�uD�u

	 �D�u
	D�uÞ

� ðD�uD�u	 þD�uD�u	Þ ¼ 0 (64)

as we contract an antisymmetric tensor with a symmetric
one. Further, the second term leads to

� � � ¼ iG00ðuu	� þ u	u�Þ 4�2

ð1þ juj2Þ4 ðD
�uD�u	

�D�u	D�uÞðu	D�uþ uD�u
	Þ (65)

¼ iG00 4�2

ð1þ juj2Þ4 ðD
�uD�u	 �D�u	D�uÞ

� ðuu	� þ u	u�Þðuu	� þ u	u�Þ ¼ 0: (66)

Therefore, the current is conserved for arbitrary Gðuu	Þ,
and there exists an infinite number of conservation laws, as
announced.
The static energy functional of the ungauged model has

the group of area-preserving diffeomorphisms on base
space as an additional group of (non-Noether) symmetries.
Let us now demonstrate that this symmetry, too, is main-
tained in the gauged model. First of all, the Skyrme term of
the gauged model is obtained from the Skyrme term of the
ungauged model by simply replacing the partial derivatives
@j by covariant derivatives Dj. Further, @j and Dj have the

same behavior under coordinate transformations (both are
covectors), so the transformation of the Skyrme term under
general coordinate transformations (and, therefore, also
under the subgroup of area-preserving diffeomorphisms)
is the same for the gauged and the ungauged case. For the
potential, obviously nothing changes. The potential itself is
a scalar and is, therefore, invariant under general
coordinate transformations. The invariance of the static
energy functional under area-preserving diffeomorphisms
follows, therefore, from the same invariance of the area
two-form d2x. Finally, the gauged model contains the
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Maxwell term. But for a static, purely magnetic configu-
ration A� ¼ ð0; A1ð ~xÞ; A2ð ~xÞÞ, the Maxwell term is propor-

tional to B2, where B is the magnetic field and transforms
like a pseudoscalar under coordinate transformations on
the two-dimensional base space of static configurations.
It is, therefore, invariant under orientation-preserving dif-
feomorphisms and, consequently, under area-preserving
diffeomorphisms. We conclude that the static energy func-
tional of the gauged model, like the ungauged one, is
invariant under area-preserving base space diffeomor-
phisms and shows the same degeneracy among field con-
figurations with different shapes but the same area.

IV. THE BPS BOUND

The BPS bound of the ungauged model was first found
in [43] (as a contribution to an improved bound for the full
baby Skyrme model), whereas the BPS nature of the re-
stricted model was proved in [28] and in [30]. Here we
follow the geometric discussion of [30]. In a first step, we
want to briefly recall the BPS bound of the ungauged
model, because we will need this result later on. The static
energy functional of the ungauged model is

E ¼ 1

2
E0

Z
d2x½�2ð@1 ~�� @2 ~�Þ2 þ 2�2Vð� � ~nÞ� (67)

¼ 1

2
E0

Z
d2x½�2q2 þ 2�2Vð�3Þ�; (68)

where

q � ~� � @1 ~�� @2 ~� (69)

(i.e., q is 4� times the topological charge density). This
energy functional leads to the bound

E ¼ 1

2
E0

Z
d2xð�q
�

ffiffiffiffiffiffiffi
2V

p Þ2 � E0��
Z

d2xq
ffiffiffiffiffiffiffi
2V

p

� �E0��
Z

d2xq
ffiffiffiffiffiffiffi
2V

p
(70)

with equality if the BPS equation

�q
�
ffiffiffiffiffiffiffi
2V

p ¼ 0 (71)

is satisfied. It remains to show that the bound is, in fact,
topological (i.e., does not depend on the field configuration
~�). This follows from the following fact. As said already,

the Skyrme field ~� defines a map � from the one-point
compactified base space R2 to the target space S2,
�: R2 ! S2. Further, the two-form d2xq is just the pull-
back under this map of the area two-form � on the target
space S2, i.e.,

d2xq ¼ �	ð�Þ: (72)

It follows that
R
d2xq

ffiffiffiffiffiffiffi
2V

p
is just 4� (i.e., the area of the

two-sphere) times the average value of
ffiffiffiffiffiffiffi
2V

p
on target space

times the times ~� covers the target space while ~x covers the
base space once (i.e., the topological degree or winding
number), that is,Z

d2xq
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vð�3Þ

q
¼ 4� deg½ ~��h ffiffiffiffiffiffiffi

2V
p iS2 : (73)

Obviously, this expression does not depend on the field

configuration ~�ð ~xÞ. For a given potential Vð�3Þ, the aver-
age value h ffiffiffiffiffiffiffi

2V
p iS2 takes a fixed, given value, so this

expression only depends on the winding number deg½ ~��;
i.e., it is a topological quantity. The corresponding energy
bound reads

E � 4���E0j deg½ ~��h ffiffiffiffiffiffiffi
2V

p iS2 j: (74)

Further, there exist BPS soliton solutions which satisfy the
BPS equation (71) and, therefore, saturate this BPS bound;
see [28,30].

A. The BPS bound

The static energy functional of the gauged model is

E¼ 1

2
E0

Z
d2x

�
�2ðD1

~��D2
~�Þ2þ2�2Vð� � ~nÞþ 1

g2
B2

�
(75)

¼ 1

2
E0

Z
d2x

�
�2Q2 þ 2�2Vð�3Þ þ 1

g2
B2

�
; (76)

where

Q � ~� �D1
~��D2

~�: (77)

It further holds that

Q ¼ qþ �ijAi@jð ~n � ~�Þ: (78)

From now on we choose ~n ¼ ð0; 0; 1Þ, ~n � ~� ¼ �3.
Next we consider the following non-negative

expression:

1

2
E0

Z
d2x

�
�2ðQ� wð�3ÞÞ2 þ 1

g2
ðBþ bð�3ÞÞ2

�
; (79)

wherewð�3Þ and bð�3Þ are functions of�3 which we shall
determine below. The non-negative expression may be
written like

1

2
E0

Z
d2x

�
�2Q2 þ �2w2 þ 1

g2
b2 þ 1

g2
B2 � 2�2wq

� 2�2w�ijAi@j�3 þ 2
1

g2
�ijð@iAjÞb

�
; (80)

where we used B ¼ �ij@iAj. The last two terms combine

into a total derivative if we choose

bð�3Þ ¼ g2�2Wð�3Þ � g2�2
Z �3

�3;vac

dtwðtÞ: (81)
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Indeed, the last two terms now give

E0

Z
d2x�2�ij@jðAiWÞ; (82)

and this gives zero because by construction Wð�3 ¼
�3;vac ¼ 1Þ ¼ 0. The non-negative expression therefore

reads

1

2
E0

Z
d2x

�
�2Q2þ�2W 02þg2�4W2þ 1

g2
B2� 2�2W 0q

�
:

(83)

If we now require that W obeys

�2W 02 þ g2�4W2 ¼ 2�2V; (84)

then we get the BPS bound for the energy

E � E0�
2
Z

d2xqW 0 ¼ 4�jkjE0�
2hW 0iS2 ; (85)

where k ¼ deg½ ~�� is the winding number. There is a sign
ambiguity in the choice ofW, so we may always choose the
sign such that hW 0iS2 > 0.

We remark that Eq. (84) for Wð�3Þ is analogous to the
‘‘superpotential equation’’ which determines a superpoten-
tialWð�Þ in terms of a potential Vð�Þ for a real scalar field
� in the context of self-gravitating domain walls [44–49]
or scalar field inflation models [50–53]. There the super-
potential allows one to reduce the domain wall or cosmo-
logical equations to a first order form. Further, the relation
between potential and superpotential is completely equiva-
lent to the relation in the corresponding (dimensionally
reduced) supergravity theories, and the method is therefore
called ‘‘fake supergravity.’’ We shall find that in our case
the auxiliary function W allows a reduction to a first order
system, as well. The main difference is that in fake super-
gravity the two terms proportional to W2 and W02 enter
with different signs in the superpotential equation, whereas
they enter with the same sign in our Eq. (84), which implies
some qualitative differences in the solution space, as we
shall see in a moment (we remark that in the context of
extremal, supersymmetric black holes the superpotential
equation shows up, as well, and there both terms enter with
the same sign, as in our case; see, e.g., [49]). In view of
these similarities, we shall callW the ‘‘superpotential’’ and
Eq. (84) the superpotential equation in what follows.

The formal energy bound (85) only gives a genuine BPS
bound provided that either W 0 itself or at least hW 0iS2 are
uniquely determined. On the other hand, Eq. (84) is a first
order ordinary differential equation, so it seems that it
provides a one-parameter family of solutions W. It turns
out, however, that this is not true, and Eq. (84) only has one
unique solution. The reason is as follows. If we want to find
a local solution of Eq. (84) which is valid in the vicinity of
a point �3 ¼ c, where �1< c < 1, then, indeed, there
exists a one-parameter family of solutions. We may choose
the ‘‘initial value’’ WðcÞ from the interval

� �

g�2

ffiffiffiffiffiffiffiffiffiffiffiffi
2VðcÞp � WðcÞ � �

g�2

ffiffiffiffiffiffiffiffiffiffiffiffi
2VðcÞp

; (86)

and each choice produces one solution. The important
point is that we require a solution which exists in the whole
interval �1 � �3 � 1, specifically at the vacuum value
�3 ¼ 1 where the potential is zero, Vð1Þ ¼ 0. But for this
vacuum value, the ‘‘interval’’ of Eq. (86) collapses to the
pointWð1Þ ¼ 0, and this is the only allowed initial value at
�3 ¼ 1 for the differential equation (84). The solution is,
therefore, uniquely determined in the vicinity of the vac-
uum �3 ¼ 1. A different (and very important) question is
whether this unique solution can be extended to the whole
interval �3 2 ½�1; 1�, i.e., to the whole target space; see
Sec. IVC. Assuming this for the moment, we find for
hW 0iS2

4�hW 0iS2 ¼
Z
S2
d�W 0 ¼

Z 2�

0
d’

Z �

0
d	 sin	W 0ðcos	Þ

¼ 2�
Z 1

�1
dtW0ðtÞ ¼ 2�ðWð1Þ �Wð�1ÞÞ

¼ �2�Wð�1Þ (87)

and for the BPS bound

E � E0�
2
Z

d2xqW 0 ¼ 2�jkjE0�
2jWð�1Þj: (88)

B. The BPS equations

It still remains to prove that the two BPS equations
imply the static field equations. The BPS equations are

Q ¼ W 0; (89)

B ¼ �g2�2W; (90)

where we used the condition that the BPS equations hold if
and only if the non-negative expression (79) is zero, to-
gether with the expression (81) for bð�3Þ and w � W 0. On
the other hand, the static second order field equations are

�2�ijDi½ðDj
~�ÞQ� ¼ ��2V 0 ~n� ~�; (91)

@iF
ij ¼ g2�2 ~n �Dk ~�ð ~� �Dj ~��Dk

~�Þ: (92)

First we prove that the two BPS equations (89) and (90)
imply the inhomogeneous static Maxwell equation (92).

With ~n �Dk
~� ¼ @k�3 the Maxwell equation reads more

explicitly

@kB ¼ �g2�2@k�3Q: (93)

On the other hand, the partial derivative of the second BPS
equation is

@kB ¼ �g2�2W 0@k�3 ¼ �g2�2Q@k�3; (94)

where we used the first BPS equation in the last step. It is,
therefore, identical to the Maxwell equation.
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Finally we prove that the two BPS equations imply the
static field equation (91) for the Skyrme field. First we
observe that Eq. (91) may be reexpressed like

D2
~�@1Q�D1

~�@2Qþ ~n� ~�BQ ¼ ���2�2V 0 ~n� ~�:

(95)

Then we use the equations

�2V 0 ¼�2W 0W 00 þg2�4WW 0; @kQ¼W 00@kð ~n � ~�Þ
(96)

and the second BPS equation to arrive at

ðD2
~�@1ð ~n � ~�Þ �D1

~�@2ð ~n � ~�ÞÞW 00 � g2�2WW 0 ~n� ~�

¼ �ðW 0W 00 þ g2�2WW 0Þ ~n� ~� (97)

or at

D2
~�@1ð ~n � ~�Þ �D1

~�@2ð ~n � ~�Þ ¼ �W 0 ~n� ~�: (98)

Inserting for the covariant derivatives, this reads

@2 ~�@1ð ~n � ~�Þ � @1 ~�@2ð ~n � ~�Þ
¼ ~n� ~�½A1@2ð ~n � ~�Þ � A2@1ð ~n � ~�Þ �W 0�; (99)

and using a last time the BPS equation W 0 ¼ Q and the
expression (78) for Q we find that all terms containing the
gauge field Ak disappear and we are left with

@2 ~�@1ð ~n � ~�Þ � @1 ~�@2ð ~n � ~�Þ ¼ � ~n� ~�ð ~� � @1 ~�� @2 ~�Þ:
(100)

We still have to demonstrate that this equation is, in fact, an
identity. First, we observe that both sides in this equation

are perpendicular to ~� and to ~n; therefore, we may project
the only nontrivial equation by the scalar product with the

vector ~n� ~� which results in

ð ~n � ~�� @2 ~�@1ð ~n � ~�ÞÞ � ð ~n � ~�� @1 ~�@2ð ~n � ~�ÞÞ
¼ �ð1� ð ~n � ~�Þ2Þ ~� � @1 ~�� @2 ~�: (101)

Finally, we need the identity

~n � @1 ~�� @2 ~� ¼ ð ~n � ~�Þ ~� � @1 ~�� @2 ~�; (102)

which follows from the fact that @1 ~� and @2 ~� span a plane

perpendicular to ~� to arrive at

ð ~n � ~��@2 ~�@1ð ~n � ~�ÞÞ�ð ~n � ~��@1 ~�@2ð ~n � ~�ÞÞ
þ ~� �@1 ~��@2 ~��ð ~n � ~�Þ ~n �@1 ~��@2 ~�¼0: (103)

But this last equation is an identity as an immediate con-
sequence of the Schouten identity in three dimensions,


ab�cde � 
ac�deb þ 
ad�ebc � 
ae�bcd ¼ 0: (104)

Indeed, contracting the Schouten identity with
nanb�c@1�

d@2�
e we arrive at the above equation.

Therefore, both static field equations are consequences of
the BPS equations, which is what we wanted to prove.

C. BPS soliton solutions

1. General remarks

Equation (84) has one unique solution defined by the
initial conditionWð1Þ ¼ 0,W 0ð1Þ ¼ 0 at the vacuum value
�3 ¼ 1. If this initial condition can be integrated such that
the solution covers the whole interval �1 � �3 � 1, then
there exists a unique, well-defined BPS bound for this
model (i.e., for the corresponding potential with vacuum
at�3 ¼ 1 and for the corresponding choice of the coupling
constants �, � and g). It happens that for some potentials
(or coupling constants) Eq. (84) cannot be integrated for
the whole interval �1 � �3 � 1. In these cases, the BPS
bound derived in this section does not apply for that model.
We shall find both possibilities in the following.
Concretely, both for the old baby Skyrme potential Vo ¼
1��3 ¼ 2h and for the potential V2

o ¼ 2Vs ¼ 4h2 we
will find that a solution to Eq. (84) exists in the whole
interval �3 2 ½�1; 1�, i.e., h 2 ½0; 1�. For these potentials
we find that soliton solutions exist and are, in fact, solu-
tions to the BPS equations (89) and (90); that is, they
saturate the BPS bound (88). A global solution to Eq. (84)
seems to exist for the class of potentials Va ¼ ð2hÞa (we
found them by numerical integration for different values
of a), and we believe that BPS soliton solutions exist for
all values of a for which Eq. (84) has a global solution.
For the so-called ‘‘new’’ baby Skyrme potential

Vn ¼ 1

4
ð1��2

3Þ ¼ hð1� hÞ; (105)

on the other hand, Eq. (84) does not have a global
solution. Starting at h ¼ 0 with the initial condition
Wðh¼0Þ¼0 [and, of course,Whðh¼0Þ¼0], the numeri-
cal integration develops a singularity somewhere between
h ¼ 1=2 and h ¼ 1 (the precise position of the singularity
depends on the values of the coupling constants �, � and
g). Further, we are not able to find numerical soliton
solutions for the new baby Skyrme potential, neither
BPS nor non-BPS ones. These numerical findings, and
the analytical results described below (see Secs. IVC 2
and IVC 3), motivate the following conjectures.
Conjecture 1.—If a given restricted gauged baby

Skyrme model (i.e., with a given potential and fixed values
of the coupling constants �, � and g) has topological
soliton solutions at all, then these solutions are BPS
solutions, i.e., solutions of the two BPS equations (89) and
(90), where the superpotential W is the solution of the
superpotential equation (84) with boundary condition
Wð�3 ¼ 1Þ � Wðh ¼ 0Þ ¼ 0.
Corollary 1.—The global existence of the superpotential

[i.e., the existence of a solution to Eq. (84) in the whole
interval �3 2 ½�1; 1�, i.e., h 2 ½0; 1�] is a necessary con-
dition for the existence of soliton solutions.
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Conjecture 2.—The superpotential equation (84) and its
solution W completely determine the existence of soliton
solutions. More specifically, in the generic case solitons
exist if and only if the superpotential equation (84) has a
global solution on the whole interval h 2 ½0; 1� (i.e., on the
whole target space) and this solution obeys W 0 � 0 for
�1<�3 < 1 (i.e., Wh � 0 for 0< h< 1).

Remark.—By ‘‘generic’’ we mean that there might exist
exceptions, i.e., potentials where the corresponding super-
potential exists globally and obeys Wh ¼ 0 at some points
but, nevertheless, supports BPS solitons. If they exist at all,
these potentials will, however, be rare in the sense that they
require some fine-tuning of parameters; see the discussion
in the next subsection.

Conjecture 3.—Potentials which have one vacuum at
�3 ¼ 1 and are strictly monotonic in the open interval
�3 2 ð�1; 1Þ [i.e., potentials which have one vacuum at
h ¼ 0 and are strictly monotonic in the open interval
h 2 ð0; 1Þ] satisfy the conditions of Conjecture 2 and sup-
port, therefore, topological BPS solitons.

Remark.—We do not think that the conditions on poten-
tials in Conjecture 3 are necessary. That is to say, most
likely there exist potentials which do not satisfy these
conditions and still support BPS solitons.

A rigorous proof of these conjectures is probably quite
difficult and is certainly beyond the scope of the present
article.

2. The problem with Wh ¼ 0

We demanded in Conjecture 2 not only the global ex-
istence of the superpotential W but also the absence of
local extrema in the open interval 0< h< 1, so let us
explain the problems related to Wh ¼ 0. We restrict our
discussion to the spherically symmetric ansatz for the BPS
equations; i.e., we assume that if soliton solutions exist, at
all, then they should also exist in the spherically symmetric
subsector. We use the function h ¼ ð1=2Þð1��3Þ instead
of �3; then the superpotential equation for W is

�2

4
W2

h þ g2�4W2 ¼ 2�2VðhÞ; (106)

and the two BPS equations for the spherically symmetric
ansatz read

2nhyð1þ aÞ ¼ � 1

2
Wh; (107)

nay ¼ �g2�2W; (108)

where aðyÞ is the angular part of the gauge field and
y ¼ r2=2. Next we resolve Eq. (106) for Wh,

Wh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8
�2

�2
V � 4g2�2W2

s
; (109)

and calculate the derivative

Whh ¼ 4

Wh

�
�2

�2
Vh � g2�2WWh

�
: (110)

For Wh ¼ 0 this is nonsingular only provided that Vh ¼ 0.
IfWhh is singular at a point h ¼ hs where 0< hs < 1, then
the integration breaks down at this point and cannot be
extended further. The superpotential, therefore, does not
exist globally, and the corresponding theory does not sup-
port BPS solitons. Further, this is the generic case in the
sense that if the integration of the superpotential equation
produces Wh ¼ 0 for some value hs, then even for poten-
tials which obey Vh ¼ 0 for some values hi, generically hs
will not coincide with any of the hi, and some fine-tuning
of the parameters is required to make them coincide.
Specifically, if Vh � 0 in the whole open interval, then
Wh ¼ 0 automatically produces a singularity. We remark,
however, that numerically we found that for such potentials
Wh ¼ 0 never occurs, which motivated our Conjecture 3.
If Wh ¼ 0 occurs exactly at a point hs where Vh ¼ 0,

too, then the superpotential may exist globally (we shall
see an example in Sec. VI) but, still, this does not imply
that BPS solitons exist. If Wh, e.g., has exactly one zero
coinciding with one zero of Vh, then it follows from the
first BPS equation (107) that hy changes sign at the point

whereWh ¼ 0 and is, therefore, positive either near h ¼ 0
or near h ¼ 1. But this is incompatible with the restriction
h 2 ½0; 1� together with the boundary conditions hð0Þ ¼ 1,
hð1Þ ¼ 0. It might appear that we could avoid this con-
clusion by assuming that it is the function 1þ a which
changes sign atWh ¼ 0, but we shall see that this is impos-
sible because a satisfies the inequality aðyÞ>�1 8 y; see
Sec. IVC6. It follows that all W where Wh has an odd
number of zeros in the open interval 0< h< 1 are
forbidden.
This still leaves the possibility of globally existing

superpotentials with an even number of zeros ofWh which
support soliton solutions. At the moment we cannot ex-
clude this possibility, but if it exists, then it requires a large
amount of fine-tuning. The derivative of the potential, Vh,
must have at least the same number of zeros, and the
parameters of the potential must be fine-tuned such that
the positions of all the zeros of Wh coincide with the
positions of (some or all of) the zeros of Vh. This is the
fine-tuning mentioned in the remark after Conjecture 2.

3. The boundary value problem of BPS solitons

Each solution of the BPS equations [and of the super-
potential equation (106)] is a solution of the static field
equations. The converse, however, is not true in general.
This is especially easy to see for the radially symmetric
ansatz of (29). There, the reason is that each BPS equation
provides one integration constant and Eq. (106) provides
none; therefore, there is a total of two integration constants,
and the space of solutions is two-dimensional. The original
static field equations, on the other hand, provide four
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integration constants for the radially symmetric ansatz, so
their solution space is four-dimensional.

The important question is, of course, whether a soliton
solution can be a solution of the BPS equations. A simple
count of the boundary conditions which a topological
soliton has to obey in the radially symmetric case seems
to indicate that this is impossible, because a soliton solution
has to fulfill the four boundary conditions (38) and (39)
in the case of compactons [or (38) and (40) for
noncompact solitons], which requires four integration
constants.

What may still happen is that the conditionWðh¼0Þ¼0,
which uniquely fixes the solution of Eq. (106), implies, at
the same time, that the two boundary conditions at the
compacton boundary (for compact solitons) or in the limit
y ! 1 (for noncompact solitons) are automatically satis-
fied, so that only two more boundary conditions at the
center y ¼ 0 are left. In this case, the true soliton solution
could be a BPS solution in the general case. Now we shall
see that this is exactly what happens. We will explicitly
discuss the case of a compact soliton, but the noncompact
case is completely equivalent. Further, we shall restrict
our discussion to strictly monotonic potentials where
Vðh ¼ 0Þ, Vh > 0 for 0< h< 1 which requires Wh � 0
in the same interval.

It obviously follows from the first BPS equation (107)
that hy ¼ 0 ) Wh ¼ 0. Further, we know that the unique

solution of Eq. (106) obeys Wðh ¼ 0Þ ¼ Whðh ¼ 0Þ ¼ 0
at the vacuum value h ¼ 0. If h ¼ 0 is the only point where
Wh ¼ 0 is possible, then we can conclude that hy ¼ 0 )
h ¼ 0, which is exactly the first compacton boundary
condition. But we know already that Wh ¼ 0 is forbidden
in the open interval 0< h< 1; therefore, Wh ¼ 0 implies

either h ¼ 0; W ¼ 0 or h ¼ 1; W ¼ ð�=g�2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
2Vð1Þp

.
Further, we know that the condition Wð0Þ ¼ 0,

Whð0Þ ¼ 0 at h ¼ 0 always holds for the solution W of
the superpotential equation (106), because it is our bound-
ary condition for this unique solution. The condition

Whð1Þ ¼ 0, Wð1Þ ¼ ð�=g�2Þ ffiffiffiffiffiffiffiffiffiffiffiffi
2Vð1Þp

at h ¼ 1, on the
other hand, constitutes an additional boundary condition
for this unique solution and will, therefore, hold only for
exceptional, fine-tuned potentials. Specifically, it does not
hold for the concrete potentials which we consider in this
paper as may be checked easily by a numerical integration;
therefore, for these potentials we may conclude that hy ¼
0 ) h ¼ 0, which is exactly the first compacton boundary
condition.

Equation (106) together with the two BPS equations
(107) and (108), therefore, automatically imply the
first compacton boundary condition [9 y0 such that
hyðy0Þ ¼ hðy0Þ ¼ 0] in these cases. Further, hðy0Þ ¼ 0 )
Wðhðy0ÞÞ ¼ 0 and the second BPS equation (108) imply
the second compacton boundary condition ayðy0Þ ¼ 0.

Therefore, the two integration constants of the two BPS
equations will, in general, be sufficient to fulfill the two

remaining boundary conditions hð0Þ ¼ 1 and að0Þ ¼ 0.
The compacton solutions are, therefore, BPS solutions, at
least for the specific class of potentials considered in this
subsection. Our numerical calculations completely confirm
this result.

4. Small g expansion

We mentioned already that the specific potentials
Va�ha all seem to allow for a global solution to the
superpotential equation and, therefore, for a BPS bound.
We show the result of a numerical integration for the values
a ¼ 1, i.e., the old baby Skyrme potential, and for a ¼ 2,
i.e., for the potential Vs ¼ 2h2, in Figs. 1 and 2, respec-
tively. If a BPS bound exists, then in the limit of vanishing
electromagnetic coupling g the resulting BPS bound is just
the BPS bound of the ungauged BPS baby Skyrme model,
and there exists an exact expansion for Eq. (106) in g2. We
may, therefore, use this power series expansion to get exact
(instead of just numerical) values for the BPS bound.
Concretely, the power series expansion for W may be
found from Eq. (109), reexpressed as

Wh ¼ 2�

�

ffiffiffiffiffiffiffi
2V

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2�4

2�2

W2

V

s
(111)

by the following three-step process. (i) Solve the equation
iteratively for Wh, (ii) expand the second root in a power
series in g2 and (iii) integrate the resulting power series
with respect to h, respecting the boundary condition
Wðh ¼ 0Þ ¼ 0. Let us consider the class of potentials
V ¼ h2�, �> 0, as an example. Applying the procedure,
we easily find that up to first order in g2 the resulting
W reads

Wð1ÞðhÞ¼ 2
ffiffiffi
2

p
�

�ð�þ1Þh
�þ1

�
1� �2

ð�þ1Þð�þ3Þg
2h2

�
: (112)

Evaluating this expression at h ¼ 1 gives the BPS bound.
Here, the leading order g0 is the bound of the ungauged
model, and the leading correction for small g is of order g2

and negative. All these results, including the precise nu-
merical values, are confirmed by our numerical calcula-
tions. On the other hand, there does not seem to exist an
expansion of the superpotential equation for large g.
Numerically, we find that the BPS bound (and, therefore,
also the soliton energy) for large g behaves like g�1 in the
case of the old baby Skyrme potential; see Sec. V.

5. Potentials with two vacua

Here we want to show that for potentials with two vacua
BPS soliton solutions cannot exist. Concretely we shall
focus on potentials with their two vacua at h ¼ 0; 1,
although the generalization to other cases poses no diffi-
culty. One specific example is given by the new baby
Skyrme potential Vn ¼ hð1� hÞ, but the same arguments
apply for the general case. It is easy to understand why
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generically the superpotential equation does not have a
global solution. The problem is that, as the potential van-
ishes at the two points h ¼ 0 and h ¼ 1, the putative
solution would have to obey the two boundary conditions
Wð0Þ ¼ 0 andWð1Þ ¼ 0, but these are too many conditions
for a first order equation. We show the result of a numerical
integration for the new baby Skyrme potential in Fig. 3,
where the singularity is clearly visible. As already men-
tioned in Sec. IVC 1, for the new baby Skyrme potential
there do not seem to exist soliton solutions, at all. It is not
surprising that there are no BPS soliton solutions, because
we need the superpotential in the BPS equations, so if there
is no global superpotential solution, we do not expect true
(globally existing) BPS soliton solutions. On the other
hand, it is not so obvious why there are no soliton solu-
tions, at all (i.e., neither BPS nor non-BPS soliton solu-
tions), although we found some indications that all soliton
solutions are, in fact, BPS solutions (see the results of

Sec. IVC 3). The nonexistence of solitons is in some sense
surprising because the nongauged BPS baby Skyrme
model (i.e., the case g ¼ 0) with the new baby Skyrme
potential has a perfectly well-defined BPS bound and
soliton solutions saturating this bound. Nevertheless, both
the BPS bound and the soliton solutions cease to exist for
arbitrarily small but nonzero gauge coupling g. The reso-
lution of this puzzle resides, of course, in the superpotential
equation, which tells us that the superpotential W does not
have to satisfy any boundary condition in the nongauge
case with g strictly zero. On the other hand, for arbitrarily
small but nonzero g, W has to obey the two boundary
conditions Wðh ¼ 0Þ ¼ Wðh ¼ 1Þ ¼ 0, which is impos-
sible. It would be quite difficult to understand this result
(the nonexistence of a BPS bound and of solitons in the
gauged model) without the additional insight provided by
the superpotential equation.
The case of the new baby Skyrme potential where the

two boundary conditions Wðh ¼ 0Þ ¼ 0 and Wðh¼1Þ¼0
cannot be satisfied simultaneously corresponds to the ge-
neric case of two-vacua potentials. Still, there will exist
some fine-tuned potentials for which the two boundary
conditions can be satisfied (we shall see an explicit ex-
ample in Sec. VI). These are precisely the fine-tuned cases
where the extremum of V—which must exist because
V has two vacua—coincides with the extremum of
W—which must exist because W interpolates between
Wðh ¼ 0Þ ¼ 0 and Wðh ¼ 1Þ ¼ 0. It follows from the
general results of Sec. IVC 2 that also in these cases soliton
solutions do not exist. We conclude that BPS solitons
cannot exist for potentials with two vacua.

6. The magnetic flux

Here we want to demonstrate that the magnetic flux
of a spherically symmetric soliton can be expressed in
terms of the superpotential. Therefore, if we know the
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FIG. 2 (color online). Solution of the superpotential equation
(106) for the potential Vs ¼ 2h2, for the coupling constants
� ¼ 1, g ¼ 1 and �2 ¼ 1=2 (W 0 . . . dashed line). The solution
exists in the whole interval h 2 ½0; 1�.
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FIG. 1 (color online). Solution of the superpotential equation
(106) for the old baby Skyrme potential Vo ¼ 2h, for the
coupling constants � ¼ 1, g ¼ 1 and �2 ¼ 1=2 (W 0 . . . dashed
line). The solution exists in the whole interval h 2 ½0; 1�.
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FIG. 3 (color online). Solution of the superpotential equation
(106) for the new baby Skyrme potential Vn ¼ hð1� hÞ, for the
coupling constants � ¼ 1, g ¼ 1 and� ¼ 1 (W 0 . . . dashed line).
The solution develops a singularity at h� 0:9 and cannot be
extended to the whole interval h 2 ½0; 1�.
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superpotential, then we know the magnetic flux exactly. In
the course of the derivation we shall also find the inequality
aðyÞ>�1 8 y. The magnetic flux may be expressed in
terms of the asymptotic value of a like

� ¼
Z

rdrd’B ¼ 2�n
Z

dyay ¼ 2�naðy0Þ � 2�na1;

(113)

where y0 is finite for compactons and infinite for non-
compact solitons; further, n is the winding number of the
spherically symmetric ansatz. Dividing the second BPS
equation (108) by the first (107) we find

ay
1þ a

¼ 4g2�2hy
W

Wh

(114)

or

@y lnð1þ aÞ ¼ g2�2@yF; (115)

where

Fh � 4
W

Wh

) FðhÞ ¼ 4
Z h

0
dh0

Wðh0Þ
Whðh0Þ ; (116)

which leads to the y integral

lnCð1þ aÞ ¼ g2�2FðhðyÞÞ; (117)

where C is an integration constant. Here we assumed that
the potential is generic, i.e., that Wh ¼ 0 does not occur in
the interval 0< h � 1, which implies that Fh is finite in the
same interval. At the vacuum h ¼ 0, where Wh ¼ 0,
we assume that the potential behaves algebraically, i.e.,
V � h2� for some �> 0, and then Wh � h�, W � h�þ1

near h ¼ 0 and Fh is, in fact, zero at h ¼ 0. As a conse-
quence, F exists and is finite in the whole interval h 2
½0; 1�. For these generic potentials, it follows from the
above result that

aðyÞ>�1 8 y (118)

and that the limit a ! �1may be reached only in the limit
g� ! 1. The integration constant may be determined from
the boundary conditions hðy ¼ 0Þ ¼ 1, aðy ¼ 0Þ ¼ 0,

Fð1Þ ¼ 1

g2�2
lnC ) C ¼ eg

2�2Fð1Þ; (119)

which, together with hðy0Þ ¼ 0 and Fðh ¼ 0Þ ¼ 0, leads to
the asymptotic expression

a1 ¼ �1þ e�g2�2Fð1Þ; (120)

which may be inserted into the expression for the magnetic
flux. Specifically, in the limits of small and large electro-
magnetic coupling g we find for the magnetic flux

g small: ���2�ng2�2Fð1Þ; (121)

g large: ���2�n: (122)

Both the small and large g behaviors coincide with the
numerical findings for the full gauged baby Skyrme model
in [25], but here it is an exact result. We remark that this
result is completely confirmed by our numerical calcula-
tions, as well.

V. NUMERICAL SOLUTIONS

In this section we present the results of numerically
solving the static field equations within the spherically
symmetric ansatz (36) and (37). Concretely, we will
consider the two cases of the old baby Skyrme potential
Vo ¼ 2h and of the potential V2

o ¼ 2Vs ¼ 4h2.

A. The old baby Skyrme potential

The static field equations for the old baby Skyrme
potential with the spherically symmetric ansatz allow for
a first integral which leads to the following equations (see
Sec. II D; y ¼ r2=2):

hyð1þ aÞ2 ¼ �2

2n2�2
ðy� y0Þ; (123)

ð1þ aÞ3ayy ¼ �2g2
�
�2

n2�2

�
2ðy� y0Þ2; (124)

where y0 is the integration constant of the first integral.
Physically, y0 is interpreted as the (squared) compacton
radius. Further, the energy density is

� ¼ 2�2n2ð1þ aÞ2h2y þ 2�2hþ 1

2g2
n2a2y; (125)

and, taking into account the change of variable, dy ¼ rdr,
the static energy is (we choose the energy scale E0 ¼ 1)

E ¼
Z

dy�ðyÞ: (126)

Obviously, the static field equations depend on the topo-
logical charge n and on the coupling constants � and �
only via the combination (�=n�); therefore, we may fix
two of them and just vary the third one. Concretely we will
choose n ¼ 1 and � ¼ 1, where the second choice just
fixes our length scale. With this choice, � is a dimension-
less parameter (coupling constant), and different values of
� correspond to different theories.
Before performing the numerical calculations, it is use-

ful to do a power series expansion about the compacton
boundary. Inserting the expansion into the static field
equations we find in leading order

h ¼ �2

4n2�2ð1þ b0Þ2
ðy� y0Þ2 þOðg2ðy� y0Þ6Þ; (127)

a ¼ b0 þ g2�4

12n4�2ð1þ b0Þ3
ðy� y0Þ4 þOðg4ðy� y0Þ8Þ:

(128)
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Here, b0 is a free parameter (i.e., it remains undetermined
by the equations). If we perform a shooting from the
boundary, we have therefore the two free parameters y0
and b0 at our disposal which we may vary in order to satisfy
the two remaining boundary conditions hðy ¼ 0Þ ¼ 1 and
aðy ¼ 0Þ ¼ 0. We have performed the shooting from the
compacton boundary for the values�2 (�2 ¼ 0:1; 1; 10; 50)
with very similar results, so here we will only show the first
one,�2 ¼ 0:1. The main reason for this choice�2 ¼ 0:1 is
that this is the value chosen in Ref. [25]. We have also
chosen different values of the coupling constant g. Thus,
in Table I we show the parameter values and energies for the
solutions found for the values (g ¼ 0:001; 0:01; 0:1; 1; 2).
Further, we show the graphs of the solutions in Figs. 4–6 for
the values g ¼ 0:1; 1; 2. We do not display the figures
for g ¼ 0:001; 0:01 because they look exactly like Fig. 4
for g ¼ 0:1, with the only difference that the graph for the
gauge field a (and its derivative a0) has to be multiplied by
10�2 for g ¼ 0:01 and by 10�4 for g ¼ 0:001, because a is
proportional to g2 for small g to a high precision.

On the other hand, for large values of g shooting from
the boundary is problematic for the following reason. We
cannot start the shooting exactly at the compacton bound-
ary, because the fields take exactly their vacuum values at
the boundary, and the numerical integration would only
find the trivial vacuum solution and not the soliton. Instead,
we have to start the integration slightly inside the compac-
ton radius and use the above power series expansion for the
determination of the ‘‘initial’’ value (i.e., boundary value).
The problem is that this power series expansion in y� y0
is, at the same time, a power series expansion in g. It is
therefore reliable for small g but not for large g. The way
out is to perform a shooting from the center for large g. A
power series expansion in y about the center y ¼ 0 is again,
at the same time, a power series expansion in g. The
difference is that the fields do not take their vacuum values
at the center; therefore, we may start the shooting exactly
at the center. Inserting the power series expansion at the
center into the field equations, we get

hðyÞ � 1� �2y0
2n2�2

yþ � � � ; (129)

aðyÞ � b1yþ g2�4y20
2n2�2

y2 þ � � � ; (130)

so we have the free parameters b1 and y0 to satisfy the
two boundary conditions at the compacton boundary.

We show the solutions for g ¼ 5; 10 in Table II and in
Figs. 7 and 8.
Now let us briefly comment on the behavior of the

soliton energies as a function of the gauge coupling con-
stant g. We find numerically that the energies behave as
1=g for g � 1 whereas they are more or less constant
when g < 1, for all values of �2 studied. The behavior
for small g exactly reproduces the analytical result found in
Sec. IVC. On the other hand, we were not able to find an
analytic expression for the large g behavior to compare

TABLE I. Solutions of field equations for �2 ¼ 0:1 and low g.

g y0 b0 E Figure

0.001 6.325 �1:1361 � 10�6 5.2996 4

0.01 6.324 �0:134 � 10�3 5.2983 4

0.1 6.268 �0:0135 5.2794 4

1 2.397 �0:838 3.6760 5

2 0.810 �0:999 996 4 1.9711 6
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FIG. 4 (color online). Solutions for g ¼ 0:1.
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with. The behavior for different values of g for the constant
value �2 ¼ 0:1 is presented in Fig. 9. In addition, studying
the variation of the energy with � for a fixed
value of g, we find that it is proportional to � (see
Fig. 10, where g ¼ 0:1).

Another quantity of considerable physical interest is the
magnetic flux

� ¼
Z

rdrd’B ¼ 2�n
Z

dyay ¼ 2�naðy0Þ ¼ 2�nb0;

(131)

where in the case of the shooting from the boundary the
magnetic flux may be expressed directly in terms of the
free integration constant b0. We may infer from Table I that
the magnetic flux grows like g2 to a high precision for
small g, whereas it approaches the constant, ‘‘quantized’’
value�2�n for large g. That is to say, the behavior we find
for the magnetic flux reproduces exactly the analytical
results of Sec. IVC 6 and coincides with the one found in
[25] for the full gauged baby Skyrme model. The behavior
of the magnetic field itself, on the other hand, is different
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FIG. 5 (color online). Solutions for g ¼ 1.
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FIG. 6 (color online). Solutions for g ¼ 2.
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from the results of [25]. We find that, for large g, aðyÞ
changes almost exactly linearly from að0Þ ¼ 0 to aðy0Þ ’
�1. The magnetic field B ¼ nar=r ¼ nay is, therefore,

almost constant inside the compacton and rapidly

decreases to zero near the compacton boundary y ¼ y0
[we remark that the (almost constant) value of ay for large

g is too large to fit into Figs. 7 and 8; therefore, we rescaled
it by 1=10]. Further, the compacton radius squared y0
shrinks like g�1 for large g, so the compacton radius

r0 ¼
ffiffiffiffiffiffiffiffi
2y0

p
shrinks like g�1=2, and the (constant) magnetic

field inside the compacton grows like g. This should be
contrasted with the findings of [25], where they find a
magnetic field which is almost completely concentrated
in a tiny region about y ¼ 0, i.e., r ¼ 0 for large g.

TABLE II. Solutions of field equations for�2¼0:1 and high g.

g y0 b1 E Figure

5 0.317 �3:162 61 0.793 768 7

10 0.158 �6:333 07 0.397 260 8
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y

1.0

0.8

0.6

0.4

0.2

0.0
a, a' 10

0.00 0.05 0.10 0.15 0.20 0.25 0.30
y0.0

0.1

0.2

0.3

0.4

0.5

0.3 0.317
y0.37

0.4

FIG. 7 (color online). Solutions for g ¼ 5.
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FIG. 8 (color online). Solutions for g ¼ 10.
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B. Integrating the BPS equations

In a next step, we want to compare the energies and
solutions of the static field equations (123) and (124) with
the energies and solutions of the BPS and superpotential
equations, in order to confirm that the solitons are, indeed,
BPS solutions. In a first step, we compare the soliton
energies with the BPS bound, where for the BPS bound
we just have to determine Wðh ¼ 1Þ, i.e., Wð�3 ¼ �1Þ
numerically for the old baby Skyrme potential; see
Eq. (88). We have done this for different values of �2

with similar results, although, as before, here we only show
the case�2 ¼ 0:1. Then, in Table III we show the values of
the BPS energy, EB, for each value of g, comparing them to
the energies of our compacton solutions. In addition, in
Fig. 11 both energies are presented.

The values of the BPS energies and the energies of our
solutions agree with a precision of better than 5 � 10�4 in
all cases, and all numerical energies are slightly above the
BPS energies, as obviously must be true. We also remark

that the values of EB obtained for small g follow exactly
the analytical expression.
As a last step, we want to solve directly the two BPS

equations together with the superfield equation, both as a
consistency check of our numerical calculation and as a
demonstration of the BPS nature of the soliton solutions.
We transform the superfield equation into a first order
equation in the base space variable y by multiplying it by
h2y and by using the chain ruleWy ¼ Whhy and arrive at the

system of three first order equations

nh2yð1þ aÞ þ 1

4
Wy ¼ 0; (132)

nay þ g2�2W ¼ 0 (133)

(the two BPS equations), and

1

4
W2

y þ g2�2h2yW
2 � 4�2

�2
h2yh ¼ 0 (134)

(the superfield equation in base space), where y ¼ r2=2.
The boundary conditions we have to impose at the com-
pacton boundary are

Wðy0Þ ¼ 0; hðy0Þ ¼ 0; (135)

whereas

0.01 0.1 1 10
g

1

2

3

4

5

E

FIG. 9 (color online). Static energy as a function of g for
�2¼0:1. The continuous line shows the behavior 1=g for g�1.
We have found a similar behavior for the other values of �2.

1 2 3 4 5 6 7

20

40
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80

E0

FIG. 10 (color online). Static energy as a function of � for
g ¼ 0:1. The continuous line shows the behavior proportional to
�. We have found similar plots for the other values of g.

TABLE III. BPS bound and static soliton energies for
�2 ¼ 0:1.

g EB E

0.001 5.2984 5.2996

0.01 5.2982 5.2983

0.1 5.2783 5.2794

1 3.6744 3.6760

2 1.9705 1.9711

5 0.793 765 0.793 768

10 0.397 259 0.397 260

0.001 0.01 0.1 1 10
g

1

2

3

4

5

6
E

FIG. 11 (color online). Energy of static solutions (open circles)
compared to the BPS bound (continuous line).
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Wyðy0Þ ¼ 0; hyðy0Þ ¼ 0; ayðy0Þ ¼ 0 (136)

are then consequences of the above equations. We want to
solve these equations via shooting from the compacton
boundary. Doing the power series expansion of the func-
tions about the boundary y0 and imposing the correspond-
ing boundary conditions, we find

h ¼ �2

4n2�2ð1þ b0Þ2
ðy� y0Þ2 þ � � � ; (137)

a ¼ b0 þ g2�4

12n4�2ð1þ b0Þ3
ðy� y0Þ4 þ � � � ; (138)

W ¼ � �4

3n3�4ð1þ b0Þ3
ðy� y0Þ3 þ � � � : (139)

We conclude that the expansions for h and a are exactly
the same as above. This demonstrates that, in this case, we
will indeed get exactly the same soliton solutions as above.
The two free constants b0 and y0 are again used to imple-
ment the two remaining boundary conditions hð0Þ ¼ 1 and
að0Þ ¼ 0 at the center. As a final check, we solve the
system of Eqs. (132)–(134) numerically via shooting
from the boundary. In Fig 12 we present the solution for
the superpotential for the case �2 ¼ 0:1 with g ¼ 0:1 (the
graphs of h, a and the energy density are exactly like in
Fig. 4). The values of the constants we get for this solution
are basically the same as before. We find a similar situation
for other values of�2 and (low) g. As explained before, we
cannot use shooting from the boundary for high g because
of the problems with the expansion at the boundary.

C. The potential V ¼ 4h2

Here we want to briefly describe the numerical solution
for the potential

V ¼ ð1� ~n � ~�Þ2 ¼ 4h2: (140)

The system of static field equations for the spherically
symmetric ansatz is

@y½hyð1þ aÞ2� � 2�2

n2�2
h ¼ 0; (141)

ayy ¼ 4�2g2ð1þ aÞh2y; (142)

and the energy density reads

� ¼ 2�2n2ð1þ aÞ2h2y þ 4�2h2 þ 1

2g2
n2a2y: (143)

In this case the potential is quartic in small fluctuations
about the vacuum; therefore, we expect exponential-type
solutions, so we have to shoot from the center. Performing
an expansion about the center and imposing

hð0Þ ¼ 1; að0Þ ¼ 0; (144)

we get

hðyÞ � 1þ f1yþ
�
�2

n2�2
� b1f1

�
y2; (145)

aðyÞ � b1yþ 2g2�2f21y
2: (146)

Now we have the two free parameters f1 and b1 to satisfy
the two boundary conditions in the limit y ! 1. For the
numerical calculation we choose n ¼ 1, � ¼ 1, �2 ¼ 0:1
and g ¼ 0:1; 1; 2. Then we find soliton solutions for the
values shown in Table IV. On the other hand, solving
the superpotential equation (which has a global solution
in this case) numerically, we find the BPS bound EB ¼
2�jWðh ¼ 1Þj, which agrees with the soliton energies E
within the shown precision in all three cases; therefore, we
do not show them separately. Apparently, the numerical
convergence is even better for this potential. The result of
the numerical integration of the soliton solutions is shown
in Figs. 13–15. For g ¼ 0:1 and g ¼ 1 the exponential
approach to the vacuum is clearly visible. For g ¼ 2, on
the other hand, the approach to the vacuum seems to be
more like a compacton, and one wonders whether the
exponential approach continues to hold for large g. We
shall find in the next section that the approach is, in fact,
exponential, and the compactonlike appearance is due to a
very fast exponential decay for large g, essentially like

expð�eg
2�2

yÞ.
Finally, we briefly comment on the magnetic flux and

magnetic field for this case. Like in the case of the old baby
Skyrme potential (Sec. VA) and in Ref. [25], the magnetic
flux � ¼ 2�na1 grows like g2 in absolute value for small

1 2 3 4 5 6
y

1.0

0.5

0.0

0.5

1.0
W,W'

FIG. 12 (color online). Solutions for the superpotential of the
BPS system for �2 ¼ 0:1 and g ¼ 0:1 (W 0 . . . dashed line).

TABLE IV. Solutions of field equations for �2 ¼ 0:1 and
g ¼ 0:1; 1; 2.

g f1 b1 E að1Þ Figure

0.1 �0:444 98 �0:008 92 5.605 83 �0:009 940 13

1 �0:273 93 �0:707 4.434 40 �0:696 595 14

2 �0:117 166 �1:726 37 2.711 78 �0:997 63 15
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g and approaches the constant value �2�n in the limit of
large g, in accordance with the exact results of Sec. IVC 6.
Further, the magnetic field itself in the limit of large g
behaves like the one in Sec. VA; i.e., it is almost constant
in the core of the soliton and drops to zero quickly in a thin
shell of rapid exponential decay; see Fig. 15.

VI. EXACT SOLUTIONS

Here we want to show that for some fine-tuned choices
of potentials there exist exact solutions both for the

superpotential equation and for the corresponding BPS
equations. It is, in fact, easy to find exact solutions to the
superpotential equation. We just start with a given super-
potential and calculate the potential from the superpoten-
tial equation (106). The disadvantage of this method is that
it somewhat obscures the physical meaning of the coupling
constants, because the potential now depends on them. For
some fixed, given values of these constants, on the other
hand, this is a perfectly valid method to produce exact
solutions. Let us choose as a first example
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FIG. 13 (color online). Solutions for �2 ¼ 0:1 and g ¼ 0:1.
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FIG. 14 (color online). Solutions for �2 ¼ 0:1 and g ¼ 1.
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W ¼ 1

�2
hb; (147)

where b > 1, and then the potential is

VðhÞ ¼ 1

2�2�2
h2ðb�1Þ

�
b2

4
þ g2�2h2

�
: (148)

Besides being interesting in its own respect, this exact
solution may help us to better understand the numerical

solutions for potentials of the type V � h2� studied in the
previous section, for the following reason. For small g, the
first, g independent part of the potential (148) dominates
and, therefore, the solution W of the superpotential equa-
tion for the potential V � h2� may be approximated by
the exact solution (147). If we are interested only in the
asymptotic behavior, then the restriction to small g can be
lifted, because sufficiently close to the vacuum (i.e., for
sufficiently small h), the first term (proportional to b2) in
the potential (148) dominates even for large g. We shall see
below that for the potential (148) not only the superpoten-
tial is known, but also the spherically symmetric BPS
equations can be solved exactly. We can, therefore, use
the asymptotics of these exact solutions to determine ex-
actly the asymptotics of solitons for the potentials V � h2�,
and especially for the potential of Sec. VC.
Before doing so, let us briefly mention that by this

method we may also find global solutions for the super-
potential equation for two-vacua potentials. Indeed,
choosing, e.g., the superpotential

W ¼ 1

�2
h2ð1� hÞ2; (149)

we find the potential

V ¼ 1

2�2�2
h2ð1� hÞ2½ð1� 2hÞ2 þ g2�2h2ð1� hÞ2�;

(150)

where, as explained in Sec. IVC2, the extrema of V andW
coincide. It follows from the results of Sec. IVC 4 that,
still, BPS soliton solutions do not exist for this potential.
Besides, the existence of a global solution W for this two-
vacua potential V is the consequence of a fine-tuning of the
parameters of V.

A. Exact BPS solutions

We shall find several examples where for an exact ex-
pression for the superpotential the spherically symmetric
BPS equations

2nhyð1þ aÞ ¼ � 1

2
Wh; (151)

nay ¼ �g2�2W (152)

have exact solutions, too.

1. A first example

As a first example, we choose the superpotential
W ¼ 1

�2 h
2, with BPS equations

2nhyð1þ aÞ ¼ � 1

�2
h; (153)

nay ¼ �g2h2: (154)
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FIG. 15 (color online). Solutions for �2 ¼ 0:1 and g ¼ 2.
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Introducing p ¼ h2 we get

npyð1þ aÞ ¼ � p

�2
; (155)

nay ¼ �g2p: (156)

Inserting the second formula into the first one gives

pyð1þ aÞ ¼ ay

g2�2
) py ¼ 1

g2�2

ay
1þ a

¼ 1

g2�2
@y lnð1þ aÞ

(157)

and from (156)

py ¼ � n

g2
ayy: (158)

Then,

�nayy ¼ 1

�2
@y lnð1þaÞ)�n@yyð1þaÞ¼ 1

�2
@y lnð1þaÞ;

(159)

which leads to the first order equation

@yð1þ aÞ ¼ � 1

n�2
ln½Cð1þ aÞ�: (160)

It can be further integrated

1

C

Z dðCð1þ aÞÞ
ln½Cð1þ aÞ� ¼ � 1

n�2
ðy� BÞ; (161)

where B and C are integration constants. Thus finally

1

C
Li½Cð1þ aðyÞÞ� ¼ � 1

n�2
ðy� BÞ; (162)

where Li is the logarithmic integral function. The general
solution for the profile function h may be derived from
(156) and (160)

h2 ¼ 1

g2�2
ln½Cð1þ aÞ�: (163)

It remains to determine the integration constants from the
boundary conditions for a soliton solution. From hð0Þ ¼ 1,
að0Þ ¼ 0, and Eq. (163) we find

1 ¼ lnC

g2�2
) C ¼ eg

2�2
; (164)

whereas from að0Þ ¼ 0 and Eq. (162) we get

1

C
LiC ¼ B

n�2
) B ¼ n�2e�g2�2

Liðeg2�2Þ: (165)

In order to find whether the fields take their vacuum values
at a finite or infinite y0, we first insert the boundary
condition hðy0Þ ¼ 0 into Eq. (163) to conclude

Cð1þ aðy0ÞÞ ¼ 1 (166)

and then use this result in Eq. (162) to find

Li ½Cð1þ aðy0ÞÞ� ¼ Li½1� ¼ � C

n�2
ðy0 � BÞ: (167)

It is one of the properties of the logarithmic integral that
Li½1� ¼ �1,; therefore, we conclude that y0 ¼ 1. We
may also determine the asymptotic value of aðyÞ,

aðy ¼ 1Þ � a1 ¼ �1þ C�1 ¼ �1þ e�g2�2
; (168)

which implies a1 ��g2�2 þOðg4�4Þ for small g and
a1 ��1 for large g, exactly reproducing the numerical
findings of Sec. VC (we remind the reader that the
asymptotic behaviors of the exact solution of this section
and of the numerical one of Sec. VC are the same).
To summarize, the soliton solution reads

aðyÞ ¼ �1þ 1

C
Li�1

�
LiC� C

n�2
y

�
; (169)

h2ðyÞ ¼ 1

g2�2
ln

�
Li�1

�
LiC� C

n�2
y

��
(170)

with C given in (164). The approach to the vacuum may be
determined from the asymptotic behavior of the logarith-
mic integral near one,

Li ðxÞ � lnj1� xj; x ! 1:

Hence, at y ! 1 we have that Cð1þ aðyÞÞ ! 1 and
from (162)

1

C
lnj1� Cð1þ aðyÞÞj ¼ � y

n�2
; y ! 1: (171)

Thus,

aðyÞ �
�
�1þ 1

C

�
þ 1

C
e�ðCy=n�2Þ

� a1 þ e�g2�2
exp

�
� eg

2�2
y

n�2

�
;

(172)

hðyÞ � 1

g�
exp

�
� eg

2�2
y

2n�2

�
; (173)

where the last result comes from the second BPS equation
nay ¼ �g2h2. It follows that these solitons (as well as the

ones of Sec. VC) are exponentially localized, as was
announced already in Sec. VC.

2. More examples of BPS solutions

The BPS equations can, in fact, be solved for all poten-
tials (148), i.e., for all superpotentials (147). The BPS
equations are

2nhyð1þ aÞ ¼ � b

2�2
hb�1; (174)

nay ¼ �g2hb; (175)
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where, depending on the particular case, one has to take the
plus or minus sign. Repeating the previous computations
we get

h2 ¼ b

2

1

g2�2
ln½Cð1þ aÞ�; (176)

1

C

Z dðCð1þ aÞÞ
ðln½Cð1þ aÞ�Þb=2 ¼ � g2

n

�
b

2g2�2

�
b=2ðy� BÞ:

(177)

The boundary conditions at y ¼ 0 give

lnC ¼ 2

b
�2g2: (178)

The boundary condition at y ¼ y0 gives again the asymp-
totic value of the magnetic function aðy0Þ

Cð1þ aðy0ÞÞ ¼ 1 ) aðy0Þ ¼ e�ðð2=bÞ�2g2Þ � 1: (179)

In order to calculate y0 and B one has to compute the
integral, which strongly depends on the parameter b. For
example, for b ¼ 4 we get (we take the plus sign)

Li ½Cð1þ aÞ� � Cð1þ aÞ
ln½Cð1þ aÞ� ¼

g2

n

�
4

2g2�2

�
2ðy� BÞ:

(180)

The left-hand side function LiðxÞ � x
lnx is a function which

starts at zero value at the origin and then grows to infinity at
x ¼ 1. Hence, y0 ¼ 1; i.e., it is a noncompacton configu-
ration. Finally, as að0Þ ¼ 0 we get

LiC� C

lnC
¼ � 1

n

�
2

g�2

�
2
B (181)

or

B ¼ �n

�
g�2

2

�
2
�
Lieð1=2Þ�2g2 � 2eð1=2Þ�2g2

�2g2

�
: (182)

VII. CONCLUSIONS

In this article we investigated in depth the gauged
version of the BPS baby Skyrme model, i.e., the BPS
baby Skyrme-Maxwell system. We found that, like the
ungauged model, the gauged model still has infinitely
many symmetries, both Noether and non-Noether ones.
Further, it continues to have a BPS bound and to support
BPS soliton solutions saturating this bound. The BPS
bound is, however, quite different from other, known
BPS bounds. Known BPS bounds either bound the energy
(or Euclidean action) in terms of the topological degree
only [e.g., instantons, O(3) nonlinear sigma model] or
involve both the topological charge density and the poten-
tial of the theory (e.g., scalar field domain walls, or the
ungauged BPS baby Skyrme model). Here, on the other

hand, we find a BPS bound in terms of the topological
charge density and an auxiliary function which is related to
the potential via a first order differential equation. We
called the auxiliary function superpotential and its defining
differential equation superpotential equation due to their
similarity with the corresponding equation in supergravity,
as explained Sec. IVA. A further consequence of this new
type of BPS bound is that it is a rather nontrivial problem
whether for a given potential BPS soliton solutions exist, at
all. One necessary condition is the existence of the super-
potential on the whole target space [i.e., a global solution
of the superpotential equation (106)], but we found ex-
amples where BPS soliton solutions do not exist despite a
globally existing superpotential, so this condition is, in
general, not sufficient. Specifically, we found that for
potentials with more than one vacuum BPS solitons never
exist. The ungauged model with multivacua potentials, on
the other hand, supports both a BPS bound and BPS
solitons, so we find the interesting result that for systems
where the matter sector does not have a unique vacuum, the
inclusion of the electromagnetic interaction destabilizes
the ‘‘particles’’ (topological solitons) of the theory. For
models with monotonically growing potentials, instead,
we found both a nontrivial BPS bound and BPS soliton
solutions in all cases we considered, motivating the con-
jecture that this will always be true.
We studied rotationally symmetric solitons numerically

for some concrete potentials and found in all cases that the
soliton energies, indeed, saturate the corresponding BPS
bound. We also found that the soliton energies decrease
with increasing electromagnetic coupling (e.g., like g�1

for the old baby Skyrme potential; see Sec. VA). If the
superpotential is known exactly, we found that, at least in
some cases, the whole system of BPS equations can then be
solved exactly, providing us with analytic, explicit expres-
sions for the solitons; see Sec. VI. A further quantity which
can be calculated exactly once the superpotential is known
is the magnetic flux; see Sec. IVC6. Finally, we want to
point out that the BPS bounds we found for the gauged BPS
baby Skyrme models for different potentials provide, at the
same time, BPS bounds for the corresponding full gauged
baby Skyrme models which will, in many occasions, pro-
vide tighter bounds that the bounds already known (see our
discussion in Sec. II B).
The model has shown a surprisingly rich mathematical

structure and there remain many interesting open problems
which deserve further investigation. One first, obvious
issue is to better understand under which conditions BPS
soliton solutions will exist. That is to say, to find rigorous
mathematical answers to the following two questions:
(i) for which potentials VðhÞ the superpotential equation

(106) has global solutions in the whole interval h 2
½0; 1� (i.e., on the whole target space), and

(ii) which additional conditions the potentials have to
obey such that BPS soliton solutions exist.
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Another question of interest is whether the BPS property
of the model may be related to some further structure as,
e.g., supersymmetry, as is frequently the case. In this
respect, already the ungauged model involves a surprise.
Indeed, while it was found recently that the full baby
Skyrme model allows for a supersymmetric extension
[54], this supersymmetric extension is not possible for
the restricted (i.e., BPS) baby Skyrme model, which
indicates that the relation between BPS equations and
supersymmetry is more involved for field theories with
nonstandard kinetic terms.

From a more physical point of view, the most important
question is, of course, if and to which degree the structure
found in this model can be generalized to the Skyrme
model in 3þ 1 dimensions. A first important observation
is that, as was already discussed in the introduction, the
ungauged Skyrme model, too, has a submodel (the BPS
Skyrme model) sharing all the nontrivial features with the
BPS baby Skyrme model (integrability, BPS bound and
exact BPS solutions). In this sense, the hope to be able to
generalize some of the results of the present paper to 3þ 1
dimensions is well-founded. The gauged version of the
BPS Skyrme model will, nevertheless, most likely present
additional difficulties, where the most obvious one is re-
lated to the fact that the magnetic field is a pseudoscalar in
2þ 1 dimensions, whereas it is a pseudovector in 3þ 1
dimensions. A further question of interest will be whether
the gauged model in 3þ 1 dimensions maintains all the
symmetries of the ungauged model, as is the case in 2þ 1

dimensions. In any case, this problem shall be investigated
in future publications, where we hope that the detailed
analytical and numerical results developed in the present
article should be instrumental in the understanding and
investigation of the (3þ 1)-dimensional system.
Finally, another question of considerable interest is, in

our opinion, whether BPS bounds of the type found in the
present article can be applied in a more general context,
i.e., outside the field of Skyrme type models.
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Note added.—While finishing this paper we became
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derived in Sec. IVA was found using completely different
methods, extending previous results of the so-called
Bogomol’nyi decomposition for the ungauged model [56].
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