
Lorentz violation and the Higgs mechanism

Brett Altschul*

Department of Physics and Astronomy, University of South Carolina, Columbia, South Carolina 29208, USA
(Received 1 March 2012; published 2 August 2012)

We consider scalar quantum electrodynamics in the Higgs phase and in the presence of Lorentz

violation. Spontaneous breaking of the gauge symmetry gives rise to Lorentz-violating gauge field mass

terms. These may cause the longitudinal mode of the gauge field to propagate superluminally. The theory

may be quantized by the Faddeev-Popov procedure, although the Lagrangian for the ghost fields also

needs to be Lorentz violating.
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I. INTRODUCTION

Lorentz violation is currently a topic of significant in-
terest in particle physics and other areas. No particularly
strong evidence for a deviation from Lorentz invariance
has been found, but experimental Lorentz tests are con-
stantly being refined. The study of Lorentz symmetry
remains an active area of research, because if any violation
of Lorentz invariance were to be found, that would be a
discovery of premier importance.

Violations of Lorentz symmetry may be described in an
effective quantum field theory called the standard model
extension (SME). The SME contains translation-invariant
but Lorentz-violating corrections to the standard model.
These are parameterized by small tensor-valued back-
ground fields [1,2]. The most frequently considered
subset of the SME is the minimal SME, which contains
only gauge-invariant, superficially renormalizable forms of
Lorentz violation. The minimal SME has become the
standard framework used for parameterizing the results
of experimental Lorentz tests.

Recent searches for Lorentz violation have included
studies of matter-antimatter asymmetries for trapped
charged particles [3–5] and bound state systems [6,7],
measurements of muon properties [8,9], analyses of the
behavior of spin-polarized matter [10], frequency standard
comparisons [11–14], Michelson-Morley experiments with
cryogenic resonators [15–19], Doppler effect measure-
ments [20,21], measurements of neutral meson oscillations
[22–27], polarization measurements on the light from cos-
mological sources [28–31], high-energy astrophysical tests
[32–36], precision tests of gravity [37,38], and others. The
results of these experiments set constraints on the various
SME coefficients, and up-to-date information about most
of these constraints may be found in [39].

The one-loop renormalization of various sectors of the
minimal SME has been studied. This has included analyses
of Abelian [40], non-Abelian [41], and chiral [42] gauge
theories with spinor matter, as well as scalar field theories
with Yukawa interactions [43]. Notably absent from this

list is a full treatment of gauge theories with charged scalar
fields. Such theories play a crucially important role in the
standard model, but they are complicated by the possibility
of spontaneous gauge symmetry breaking.
This paper represents a first step towards the understand-

ing of Lorentz-violating scalar quantum electrodynamics
(SQED). The emphasis will be on theHiggsmechanism and
the way that it affects the quantization of the theory. The
Higgs mechanism is the most important mechanism for
endowing gauge bosonswithmass, because it has a straight-
forward generalization to non-Abelian gauge theories.
In Lorentz-invariant SQED, the mass term produced by

the Higgs mechanism resembles a Proca mass term.
However, if the dynamics of the scalar field responsible
for the gauge symmetry breaking are not Lorentz invariant,
it is possible to have mass terms with different structures.
Any Lorentz violation in the scalar sector will be trans-
ferred to the gauge sector when the Goldstone boson of the
spontaneously broken symmetry is ‘‘eaten’’ by the gauge
field—becoming the longitudinal component of the mas-
sive vector excitation. There have been some previous
discussions of spontaneous symmetry breaking in the con-
text of the full electroweak sector of the SME [2,44].
However, earlier work has not focused on how the
Lorentz violation affects the gauge boson mass terms or
the quantization of the theory. These will be our primary
objects of study. Since Lorentz violation is physically a
small effect, we shall generally only work to first order in
the SME coefficients.
This paper is organized as follows: In Sec. II, we

shall introduce the SQED Lagrange density with dimen-
sionless Lorentz-violating coefficients. After including the
effects of gauge symmetry breaking, we examine several
sectors of the theory, paying particular attention to the
structure of the gauge boson mass terms. Section III
discusses the quantization of the spontaneously broken
gauge theory, including the introduction of interacting
Faddeev-Popov ghosts. Section IV recasts these results
using a change of coordinates, which can be used to
move certain types of Lorentz violation from one sector
of the theory to another. Finally, Sec. V summarizes the
paper’s conclusions.*baltschu@physics.sc.edu
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II. LORENTZ-VIOLATING LAGRANGIANS

A. Lagrangian structure

The Lagrange density for our study of Lorentz-violating
SQED is

L ¼ � 1

4
F��F�� � 1

4
k����
F F��F��

þ ðg�� þ k��
� ÞðD��Þ�ðD��Þ

þ�2���� �

2
ð���Þ2: (1)

D� ¼ @� þ ieA� is the usual covariant derivative, and

Vð�Þ ¼ ��2���þ �
2 ð���Þ2 is the scalar potential.

The Lorentz violation enters through the coefficients kF
in the gauge sector and k� in the scalar sector. Both of
these background tensors are dimensionless.

There are potentially alsoCPT-odd operators in both the
scalar and vector sectors. However, the CPT-odd scalar
coefficients a

�
� are unobservable in a theory with only a

single species of charged matter; they can be eliminated by
a redefinition of the phase of the matter field. The gauge
coefficients k�AF are not so trivial; they generate birefrin-

gence in the gauge field propagation and may actually
destabilize the theory. However, this birefringence effect
is extremely tightly constrained; moreover, the kAF does
not interact with the Higgs mechanism in any particularly
interesting fashion, and so kAF will be neglected.

Any other Lorentz-violating terms constructed from
the gauge and scalar fields would need to possess at least
one of the following undesirable features [2]: explicit
spacetime dependence (with an accompanying violation
of energy-momentum conservation), nonrenormalizability
(leading to suppression at low energies), gauge noninvar-
iance (and nonconservation of the gauge charges), or non-
locality (threatening the unitarity of the theory). We shall
not consider such terms, and this ensures that the scalar
self-interaction term must take its usual, Lorentz-invariant
form.

kF has the symmetries of the Riemann tensor and a
vanishing double trace, but the structure of of k� is more
subtle. Reality of the action requires that k

��
� ¼

k
��
S þ ik

��
A , where k

��
S ¼ k

��
S is symmetric and traceless

in its Lorentz indices, while k
��
A ¼ �k

��
A is antisymmetric.

The discrete symmetries of kS are quite similar to those of
kF. In a Lorentz-violating theory, the three spatial reflec-
tions that together constitute P are generally inequivalent.
Components of the tensors kF and kS are odd under a
reversal of a specific space-time coordinate if that coordi-
nate appears as a Lorentz index an odd number of times.
Overall, a particular coefficient k

����
F acquires a sign

ð�1Þ�ð�1Þ�ð�1Þ�ð�1Þ� under either a P or T transforma-
tion, where ð�1Þ� ¼ 1 if �¼0 and ð�1Þ�¼�1 if � ¼ 1,
2, or 3. The transformation of k��

S is similarly associated

with the sign ð�1Þ�ð�1Þ�. Both kF and kS are even under
charge conjugation (C) and the combined operation CPT.

However, kA has a different symmetry structure. k
��
A

transforms as ð�1Þ�ð�1Þ� under P, but the additional
factor of i changes the transformation under C and T.
Under T it transforms as �ð�1Þ�ð�1Þ�, because T is
antilinear; kA is also odd under C. Through integration
by parts, the kA term in L is equivalent to
1
2 ek

��
A ���F��; since ��� is even under C, P, and T

separately, this shows that k��
A must have the same sym-

metries as F��. The fact that the kA term in a minimally

coupled but Lorentz-violatingL can bewritten in this form
means that any additional, nonminimal, dimension-four
couplings between the scalar and gauge fields are redun-
dant; their effects are already completely contained in kA.
This redundancy was not recognized in [44], which studied
ik

��
1 ½ðD��Þ�ðD��Þ � ðD��ÞðD��Þ�� and k

��
2 ���F��

forms of Lorentz violation separately.

B. Spontaneous Lorentz violation

The focus of this paper is primarily on spontaneous
gauge symmetry breaking. However, the Lorentz-violating
terms kF, kS, and kA could also arise from spontaneous
breaking of Lorentz symmetry. Spontaneous Lorentz
breaking has many advantageous features as a way of
introducing Lorentz violation into a theory. In particular,
theories with spontaneous Lorentz violation are consistent
with a pseudo-Riemannian geometric interpretation of
gravitation, while explicitly Lorentz-violating theories
generally are not.
The different Lorentz-violating coefficients might be

generated by different forms of Lorentz symmetry break-
ing. If a symmetric two-index tensor field X�� has
Lagrange density

L X ¼ KXð@�X��Þ � VXðX��X��Þ; (2)

with kinetic term KX and potential VX, Lorentz symmetry
will be broken if VXð�Þ has a minimum for either � > 0 or
� < 0 [45,46]. The Lorentz-violating vacuum expectation
value of X�� is x��, and if X�� is coupled to other fields,
x�� can generate either a kS or kF term. An interaction
Lagrange density gSX

��ðD��Þ�ðD��Þ produces a kS, and
gFX

��F��F
�
� a kF. If there is only a single Lorentz-

violating vacuum expectation value x��, the kS and kF
terms may still have different magnitudes, if the couplings
gS and gF differ.
The novel interactions above also include couplings of

� and A to the part of X�� that represents fluctuations
around the vacuum value x��. However, these interactions
do not affect any of this paper’s results concerning the
propagation modes of the gauge and Higgs fields.
Moreover, the interaction vertices involved are higher
dimensional and thus generically suppressed.
A kA term may also be generated if an antisymmetric

two-index field Y�� with Lagrange density

L Y ¼ KYð@�Y��Þ � VYðY��Y��Þ (3)
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gets a vacuum expectation y�� [47]. A coupling
igAY

��½ðD��Þ�ðD��Þ � ðD��ÞðD��Þ�� then produces

the kA term. (In fact, the antisymmetric y�� could also
generate a k��

S proportional to y��y��, if the theory in-

cludes higher-order couplings.)

C. Spontaneous gauge symmetry breaking

Whether the Lorentz violation derives from spontaneous
Lorentz symmetry breaking or some other mechanism is an
important question. However, the answer has little direct
bearing on the structure of the Higgs sector of Lorentz-
violating SQED. We shall now turn our attention to the
systematics of the Lorentz-violating Higgs mechanism.

Because of the ‘‘wrong sign’’ scalar mass term in Eq. (1),
there are static solutions to the field equations with nonzero
values of �. The Lorentz violation, which appears only in
the kinetic terms, does not affect these solutions, which are
derived from

�L
���

��������static
¼ �2�� �ð���Þ� ¼ 0: (4)

The static solutions �0 must satisfy j�0j ¼ �ffiffiffi
�

p � v. Such

solutions obviously break the Uð1Þ gauge invariance asso-
ciated with the gauge transformation

� ! �0 ¼ ei��; (5)

�� ! �0� ¼ e�i���; (6)

A� ! A0
� ¼ A� � 1

e
@��: (7)

However, it is possible to make�0 real by a gauge rotation
and then decompose the field into its vacuum expectation
value and excitations:

� ¼ vþ 1ffiffiffi
2

p ðhþ i’Þ; (8)

where h is the Higgs field and ’ represents the Goldstone
boson.
The original Lagrange density L may be expanded in

terms of these new variables, giving

L ¼ � 1

4
F��F�� � 1

4
k����
F F��F�� þ 1

2
ðg�� þ k��

� Þfð@�hÞð@�hÞ þ ð@�’Þð@�’Þ þ e2h2A�A� þ e2’2A�A�

þ 2
ffiffiffi
2

p
e2vhA�A� þ 2e2v2A�A� þ i½ð@�hÞð@�’Þ � ð@�’Þð@�hÞ� þ i

ffiffiffi
2

p
ev½ð@�hÞA� � A�ð@�hÞ�

þ ie½ð@�hÞðA�hÞ � ðA�hÞð@�hÞ� þ ie½ð@�’ÞðA�’Þ � ðA�’Þð@�’Þ� � e½ð@�hÞðA�’Þ þ ðA�’Þð@�hÞ�
þ ffiffiffi

2
p

ev½A�ð@�’Þ þ ð@�’ÞA�� þ e½ðA�hÞð@�’Þ þ ð@�’ÞðA�hÞ�g � Vðh; ’Þ: (9)

The expansion of the potential around v takes the standard form,

Vðh; ’Þ ¼ ��4

�
þ�2h2 þ�

ffiffiffiffi
�

2

s
hðh2 þ ’2Þ þ �

8
ðh2 þ ’2Þ2: (10)

The physical excitations of the theory are the (massive)
gauge field A and the Higgs h. Note that because h and A
are, respectively, even and odd under C, mixing between
propagation states of these fields must involve the C-odd
coefficient kA.

The Goldstone boson field ’ does not have physical
excitations. By working in the unitarity gauge, we may
choose the gauge parameter � so as to make� everywhere
real (at the classical level). This eliminates’ from external
states. However, quantum fluctuations in the ’ field cannot
be entirely eliminated, and the Goldstone boson field will
appear as a virtual intermediary in loop calculations; this is
actually crucial to the renormalizability and unitarity of
SQED.

D. Propagation and interactions

Propagation of physical fields is governed by the portion
L0

2 ¼ L2;Ah of L that is bilinear in just A and h. This is

L0
2 ¼ � 1

4
F��F�� � 1

4
k����
F F��F��

þ 1

2
ðg�� þ k

��
S Þð ffiffiffi

2
p

evÞ2A�A�

þ 1

2
ðg�� þ k��

S Þð@�hÞð@�hÞ

� 1

2
ð ffiffiffi

2
p

�Þ2h2 þ 1ffiffiffi
2

p evk
��
A hF��: (11)

To the extent that the longitudinal component of the mas-
sive gauge field A is really the Goldstone boson of the
broken symmetry, we should expect that the longitudinal A
should propagate like �. As we shall see at the end of this
section, the longitudinal part of A does indeed propagate
like � at high energies, although this phenomenon is not
evident from a naive inspection of the Lagrange density
[Eq. (11)].
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However, before addressing this point, we shall show
how the mass and kinetic parts of the full bilinear Lagrange
densityL2, which includes the Goldstone bosons, combine
to preserve the transversality of the gauge propagator. The
gauge part of L2,

L2;A ¼ � 1

4
F��F�� � 1

4
k
����
F F��F��

þ 1

2
ðg�� þ k��

S Þð ffiffiffi
2

p
evÞ2A�A�; (12)

is manifestly transverse, except for the term with the gauge

boson mass mA ¼ ffiffiffi
2

p
ev, which is certainly not. However,

there is also a vertex that mixes the gauge and Goldstone
boson propagators; it comes from

L 2;A’ ¼ L2;A þ 1

2
ðg�� þ k

��
S Þfð@�’Þð@�’Þ

þmA½A�ð@�’Þ þ ð@�’ÞA��g: (13)

To second order in mA and first order in kS, there are two
possible insertions from L2;A’ that contribute to the polar-

ization tensor i���ðqÞ. The first is the photon mass in-
sertion, which contributes im2

Aðg�� þ k��
S Þ. The second

insertion involves two A-’ vertices, with a ’ propagator
between them. This propagator is

D’ðqÞ ¼ i

q2

�
1� k	�S

q	q�

q2

�
; (14)

making the polarization tensor

i���ðqÞ¼ im2
Aðg��þk��

S Þþ½mAðg��þk��
S Þq��

�
�
i

q2

�
1�k	�S

q	q�

q2

��
½mAðg
�þk
�S Þð�q
Þ�

(15)

¼ im2
A

�
g�� � q�q�

q2
þ k

��
S � k

��
S

q�q
�

q2

� k
�S
q�q


q2
þ k	�S

q�q�q	q�

ðq2Þ2
�
: (16)

Although its structure is rather complicated, this tensor is
transverse, q��

�� ¼ 0. This is a key consistency condi-

tion for the theory; it ensures the conservation of the total
charge (including the charge present in the vacuum).

There are also terms in L2 that mix h with the other
fields. However, they are less important, for two separate
reasons. An insertion with an intermediate Higgs involves
a massive propagator; without a pole at q2 ¼ 0, this cannot
affect the pole structure of the gauge propagator. Moreover,
any mixing of hwith A or’ violatesC. Since kA is the only
source of C violation in the theory, any modification of the
A or ’ propagator by a virtual h insertion will necessarily
be second order in the Lorentz violation.

Special examples of Lorentz-violating mass terms of the
general form

M��A�A� ¼ 1

2
ðg�� þ k��

S Þm2
AA�A� (17)

have previously been studied. These mass terms were not
considered in the context of the Higgs mechanism, but the
earlier studies’ conclusions about photon propagation
remain valid even in the Higgs phase. Mass terms consid-
ered have included an isotropic but boost-invariance-
violating � 1

2m
2
	AjAj, as an alternative to the Proca mass

term [48,49]; or � e2

24�2 ðb2g�� þ 2b�b�Þ, which could be

generated by unusual radiative corrections [50]. (Note
however, that while the gauge boson mass in these situ-
ations is assumed to be small, the Lorentz-violating and
Lorentz-invariant parts of the mass term are of comparable
size.) Most recently, Lorentz-violating Stueckelberg mass
terms have also been considered [51]. The previous analy-
ses of these models have demonstrated an interesting inter-
play between Lorentz-violating mass terms and the kinetic
part of the gauge-sector Lagrangian. In the concrete ex-
amples that were considered in [48–50], there were only
two distinct eigenvalues in the mass-squared matrix M�

�.
If the eigenvalue 1

2m
2
0 corresponding to the timelike direc-

tion is smaller in magnitude than a spacelike eigenvalue
1
2m

2
1, there could be propagation with signal and group

velocities greater than 1 and as large as m1

m0
. However, this

superluminal propagation is limited to modes that are
approximately longitudinal.
This shows that the existence of a Lorentz-violating

mass term can have profound effects on the propagation
of gauge bosons, even when the bosons’ momenta are far
above the mass scale mA. The mass term (which might be
expected to be important only in the infrared) affects the
ultraviolet behavior of the theory through its influence on
the gauge. Requiring charge conservation forces A to obey
a gauge conditionM��@�A� ¼ 0. The relative sizes of the

elements of the mass matrix M�
� determine the required

gauge. However, the absolute magnitudes of the matrix
components are irrelevant; the gauge condition produced
by a mass matrix �M�

� is independent of � .
When a Lorentz-violating gauge field mass term arises

through the Higgs mechanism, there is a clear physical
mechanism underlying superluminal propagation. If the
timelike eigenvalue of k

�
S � is �0 and the largest spacelike

eigenvalue is �1 > �0, the free � field has a kinetic term

that supports propagation up to speeds of
ffiffiffiffi
�1

�0

q
. When the

Goldstone boson is eaten by the gauge field, this possibility
for superluminal propagation is transferred to the gauge
field, although the Lorentz-violating term that makes this
possible is part of the mass term in LA, rather than the
kinetic term.
In addition to the propagation governed by L2, there

are also interaction vertices in the theory. For tree-level cal-
culations, only those vertices involving A and h are needed.
These vertices are given by the interaction Lagrange density
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L0
I ¼

1

2
ðg�� þ k��

S Þe2ðh2 þ 2vhÞA�A�

� 1

2
ek��

A ½hð@�hÞA� � hð@�hÞA�� ��

ffiffiffiffi
�

2

s
h3 ��

8
h4:

(18)

This includes the usual Higgs self-interaction terms from�4

theory, as well as a seagull vertex (involving two Higgs and
two gauge fields) and a related three-particle vertex with one
of the Higgs fields replaced by the vacuum expectation value
v. The seagull and three-field vertices have their Lorentz
structures modified by kS in precisely the same way as the
gauge boson mass term.

The remaining terms in L0
2 and L0

I are the C-violating
terms involving kA. These can be expressed in terms of the
gauge field strength. The three-field interaction is equiva-
lent to 1

4 ek
��
A h2F��, and there is no Lorentz-invariant

analogue for such a term. Terms involving kS are similar
to Lorentz-invariant terms, in that they involve replacing
the Minkowski metric tensor g�� with an arbitrary sym-
metric k��

S . In contrast, there is no Lorentz-invariant, anti-

symmetric, two-index tensor to be contracted with F��, so
the k��

A F�� interactions have a uniquely Lorentz-violating

structure.

III. QUANTIZATION AND GHOST FIELDS

Calculation of quantum corrections for a theory with
spontaneously broken gauge symmetry requires the intro-
duction of a gauge-fixing term in the action (which leads
naturally to the inclusion of Faddeev-Popov ghosts). The
gauge-fixing term serves two purposes. It can eliminate the
zero modes in the gauge field action, which is necessary for
the derivation of a well-defined propagator; the gauge-
fixing term fulfills this function in all gauge theories,
whether or not they involve spontaneous symmetry break-
ing. However, when the gauge symmetry is broken, the
gauge-fixing function may also be chosen to remove any
terms that mix the gauge and Goldstone boson fields.

To quantize the gauge field according to the Faddeev-
Popov procedure [52], we begin with the gauge-invariant
functional integral for the theory and insert the identity, in
the form

1 ¼
Z

D�ðxÞ�½GðA0; h0; ’0Þ �!� det
�
�GðA0; h0; ’0Þ

��

�
;

(19)

where A0
� ¼ A� � 1

e @��, h0 ¼h��’, and ’0 ¼’þ
�ð ffiffiffi

2
p

vþhÞ are the infinitesimally gauge-transformed
fields from Eqs. (5)–(7). The gauge-fixing function
½GðA; h; ’Þ �!� is then integrated over a Gaussian distri-
bution of ! values. We take

G ¼ 1ffiffiffi
�

p ½ðg�� þ k��
G Þ@�A� �

ffiffiffi
2

p
�ev’�: (20)

The Lorentz-invariant terms in Eq. (20) are identical to
those in the gauge-fixing function for the R� gauge, and kG
is an (as yet undetermined) Lorentz-violating tensor coef-
ficient. It is not possible to include Lorentz violation in the
’ part of G without introducing higher derivatives into the
final ghost action.
The Faddeev-Popov procedure introduces two new sets

of terms into the Lagrange density. The first set is the result
of the integration over !,

�1

2
G2¼� 1

2�
½ðg��þk

��
G Þ@�A��2

� ffiffiffi
2

p
evðg��þk��

G Þð@�’ÞA���e2v2’2:

(21)

The Lorentz violation kG in the gauge-fixing function
should be chosen to eliminate the A-’ mixing term in
L2 � 1

2G
2. This requires k

��
G ¼ k

��
S , and the gauge part

of L2 becomes

L2;A� 1

2�
½ðg��þk

��
G Þ@�A��2

¼�1

4
F��F��� 1

2�
ð@�A�Þ2þ1

2
m2

AA
�A�

�1

4
k
����
F F��F���1

�
k
��
S ð@�A�Þð@�A�Þ

þ1

2
k
��
S m2

AA�A�: (22)

The Lorentz-violating kinetic terms can be recast as
�k����

� ð@�A�Þð@�A�Þ, where k����
� ¼1

4k
����
F þ1

�g
��k��S .

The ð@�A�Þ2 term combines with the Maxwell and Proca

terms to produce the usual propagator

D��
A ðqÞ ¼ �i

q2 �m2
A

�
g�� � ð1� �Þ q�q�

q2 � �m2
A

�
; (23)

and the Lorentz-violating terms may be treated as vertices.
The �-dependent part of the k� vertex is superficially

similar in structure to the kF part. However, while the kF
term only involves the physical degrees of freedom con-
tained in F��, the gauge-fixing part only involves purely
gauge degrees of freedom, since kG couples to the sym-
metric part of @�A�.

The other terms that the Faddeev-Popov procedure adds to
L come from the functional determinant in Eq. (19). Since

�G

��
¼ �G

�A�

�
1

e
@�

�
þ �G

�’
ðvþ hÞ (24)

¼ 1ffiffiffi
�

p
�
ðg�� þ k��

S Þ
�
� 1

e
@�@�

�
� �mAð

ffiffiffi
2

p
vþ hÞ

�
;

(25)

det½�G=���may be exponentiated as a part of the action by
introducing ghost fields c and �c with Lagrange density

LORENTZ VIOLATION AND THE HIGGS MECHANISM PHYSICAL REVIEW D 86, 045008 (2012)

045008-5



L c¼ðg��þk��
S Þð@� �cÞð@�cÞ��m2

A

�
1þ hffiffiffi

2
p

v

�
�cc: (26)

The (gauge-dependent) mass term for the Faddeev-Popov
ghosts is unaffected by the Lorentz violation; the interac-
tion vertex with the Higgs field is also unmodified.
However, the ghosts do acquire a modification to their
kinetic term, equivalent to the kS for the original scalar
field �. For each of the spinless fields (h, ’, and c), the
Lorentz violation may be treated as a vertex to be inserted
along propagation lines. Several loop diagrams involving
the kS in the ghost sector have already been evaluated [53].

IV. COORDINATE REDEFINITIONS

The appearance of the same Lorentz-violating coeffi-
cients kS in the Higgs, Goldstone boson, and ghost sectors
may be unsurprising, because of the structure of the kS
term. If kF vanishes in the original Lagrange density L,
then kS describes a mismatch between the natural coordi-
nates for describing the gauge and matter fields. Having
a vanishing kF means that the chosen coordinates are
natural for the gauge field. However, redefining coordi-
nates according to

x� ! x0� ¼ x� � 1

2
k�S �x

� (27)

will transform the Lorentz violation coefficients in L to

k��
� ! k0��

� ¼ ik��
A (28)

k
����
F !k

0����
F ¼k

����
F �1

2
ðg��k��S �g��k

��
S

�g��k��
S þg��k��

S Þ: (29)

If this transformation is made prior to the calculations,
many of the Lorentz-violating terms that could appear after
spontaneous symmetry breaking are actually absent. By
eliminating kS prior to quantization and spontaneous sym-
metry breaking, we can ensure that there is no Lorentz-
violating modification of the gauge field mass term, nor is
any Lorentz violation required in the ghost sector.

In fact, it is straightforward to see how a transformation
that eliminates kS from the kinetic term for � likewise
eliminates kS from the ghost kinetic term. Both terms have
the same basic scalar kinetic structure, and a transforma-
tion that carries ðg�� þ k

��
S Þ@�@� ! @�@� will have the

same effect in either sector. Accompanying the redefinition
of the coordinates in Eq. (27) must be a similar linear
reshuffling of the gauge fields; the transformed A0

� must

be exactly what enters in conjunction with @0� � @
@x0�

in the covariant derivative. So Eq. (27) simply takes
ðg�� þ k

��
S ÞA�A� ! A�A�.

Since it is possible to define away the kS Lorentz viola-
tion, we might be tempted to dismiss analyses that include
kS as entirely unnecessary. However, since the transforma-

tion that eliminates kS is a global redefinition of the coor-
dinates, it can only be used to eliminate this type of Lorentz
violation from a single sector. This is already evident from
the fact that removing kS from the matter sector introduces
it into the k0F of the gauge sector. Ultimately, physical
observables that depend on kS need to involve differences
between SME coefficients across different sectors. In pure
SQED, the only observable difference is k��

S � kF�
���.

If both the Lorentz violation and the mass are small
enough to be treated as perturbations, it is straightforward
to determine the dispersion relations for the gauge field
modes in the coordinate system with all Lorentz violation
moved into the gauge sector. For the transverse polariza-
tion states with wave vector ~q, the frequencies are [54]

q�0 ¼ j ~qj½1þ �ðq̂Þ � �ðq̂Þ� þ m2
A

2j ~qj ; (30)

where �ðq̂Þ ¼ � 1
2
~k��, and �2ðq̂Þ ¼ 1

2
~k�
~k�
 � �2ðq̂Þ,

with ~k�
 ¼ k
0��
�
F q̂�q̂� and q̂� ¼ ð1; ~q=j ~qjÞ. The result

in Eq. (30) simply represents the conventional dispersion
relation, plus the usual perturbations due to the k0F Lorentz
violation and the mass mA � j ~qj.
However, there is also a longitudinal polarization state,

whose energy is not affected by k0F at leading order,

q0 ¼ j ~qj þ m2
A

2j ~qj : (31)

The reason that k0F does not affect this dispersion relation is
that the presence of the mass term forces A to obey the
Lorenz gauge condition q�A� ¼ 0 (plus Lorentz-violating

corrections that may be neglected at this order). This
makes the k0F term in the equation of motion for the
longitudinal mode vanish identically. The lack of any
dependence on k0F might initially seem puzzling, but it is
actually quite natural. Since m2

A was treated as a perturba-
tion, Eq. (31) applies only in the high-energy regime, when
the momentum j ~qj is large compared with the Higgs mass
scale. In that regime, the longitudinal component of the
gauge field essentially becomes indistinguishable from the
uneaten Goldstone boson. The propagation of the longitu-
dinal mode should therefore be governed only by the
Lorentz-violating tensor k0S in the Higgs sector, and in

the transformed coordinates used to derive Eq. (31), k0S
vanishes.
Of course, these dispersion relations may be transformed

back into the original coordinates with nonzero kS simply
by inverting the coordinate redefinition [Eq. (27)], so
that q� ! q� � 1

2 k
�
S �q

�. The result for the longitudinal

mode is

q0 ¼ j ~qj
�
1� 1

2
k00S � 2k0Sjq̂j þ

1

2
kjS lq̂jq̂l

�
þ m2

A

2j ~qj : (32)

This exhibits exactly the same kind of potentially super-
luminal behavior for the longitudinal mode as was
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discussed in Sec. II D, with the limiting speed controlled by
the relative sizes of the spacelike and timelike eigenvalues
of k

�
S �.

This analysis also provides insight into another feature
of the non-Higgs mass models discussed in [50]. The
normal modes of propagation in the presence of the
Lorentz-violating mass term do not involve orthogonal
polarization vectors. This is related to the nonorthogonal
nature of the transformation [Eq. (27)]; a coordinate re-
definition that moves Lorentz violation from the gauge
field kinetic term to the mass term changes an orthogonal
basis of polarization states into a nonorthogonal one. In
fact, the transformation required to turn a Lorentz-invariant

Proca mass term into the term � e2

24�2 ðb2g�� þ 2b�b�Þ
from [50] would produce extremely skewed coordinates.
This is a reminder that, while the gauge boson mass
parameters in [48–50] may be small, the Lorentz violation
for the theories involved is, in a meaningful sense, quite
large—with the equivalent of kS being Oð1Þ.

V. CONCLUSION

The focus of this paper has been on SQED with Lorentz
violation. With a single scalar field � and a single gauge
field A, all possible forms of renormalizable, CPT-even
Lorentz violation are captured in the coefficients k� and
kF, with minimal coupling of the gauge and matter
fields through the covariant derivative D�. In standard

SQED, spontaneous breaking of the Uð1Þ gauge symmetry

makes the gauge boson massive. We have shown that
the Lorentz-violating theory includes an analogous mass
term, with a Lorentz-violating generalization of the Proca
form.
We have displayed the full Lagrange density for this

theory and for the first time introduced the Faddeev-Popov

ghosts that are a necessary part of the quantization proce-

dure. The effects of Lorentz violation on the ghosts has

already been studied for non-Abelian gauge theories [41],

but not for theories with a broken gauge symmetry.

Knowledge of the full Faddeev-Popov Lagrange density

will make it possible to perform Feynman diagram calcu-

lations in the present theory.
We have also shown how Lorentz violation in the

scalar and gauge sectors affects the propagation of the

physical gauge and Higgs modes. Even with a conventional

kinetic term � 1
4F

��F�� for the gauge field, it may be

possible for the longitudinal mode to propagate superlumi-

nally. This can happen because the longitudinal mode is

really an ‘‘eaten’’ Goldstone boson, whose behavior is

primarily governed by the structure of the scalar sector.
Quantum field theories involving gauge interactions

with charged scalar matter are important; in the standard

model, the Higgs sector is responsible for the existence of

particle masses. The full treatment of quantum corrections

in the SME is an interesting theoretical problem, and this

work presents an important step toward a complete under-

standing of the SME.
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