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We propose a measure of order in the context of nonequilibrium field theory and argue that this

measure, which we call relative configurational entropy (RCE), may be used to quantify the emergence of

coherent low-entropy configurations, such as time-dependent or time-independent topological and non-

topological spatially extended structures. As an illustration, we investigate the nonequilibrium dynamics

of spontaneous symmetry breaking in three spatial dimensions. In particular, we focus on a model where a

real scalar field, prepared initially in a symmetric thermal state, is quenched to a broken-symmetric state.

For a certain range of initial temperatures, spatially localized, long-lived structures known as oscillons

emerge in synchrony and remain until the field reaches equilibrium again. We show that the RCE

correlates with the number density of oscillons, thus offering a quantitative measure of the emergence of

nonperturbative spatiotemporal patterns that can be generalized to a variety of physical systems.

DOI: 10.1103/PhysRevD.86.045004 PACS numbers: 11.27.+d, 05.70.Ce, 89.70.Cf

I. INTRODUCTION

Spatially localized solutions to partial differential equa-
tions [1] play a central role in many current models of
particle physics [2] and condensed matter physics [3].
Some of the most studied of these solutions are topological
and nontopological defects that may appear during sponta-
neous symmetry breaking [4]. As is well known, topologi-
cal defects owe their stability to the nontrivial topology of
the vacuum manifold [5], while nontopological defects
owe theirs to the conservation of a global charge [6]. In
both cases, solutions involve one or more interacting fields
and are either time independent or have a simple harmonic
time dependence � exp½i!t�, as is the case of Q-balls [7]
and other nontopological solutions [8].

Another class of localized energy solutions, known
as oscillons, exhibit nontrivial time dependence [9,10].
During the past decade or so [11], oscillons were shown
to exist in models with a single self-interacting scalar field
in dimensions d � 6 [12] and in many models with gauge
fields, Abelian [13] and non-Abelian [14,15], including
the Standard Model [16]. They can be exceedingly long-
lived, self-supported by their nontrivial interactions due to
feedback from parametric resonance [15,17]. Oscillons can
also play an important role in cosmology, as reported in
recent work [18–20].

Both topological and nontopological defects and oscil-
lons can be thought of as attractors in field configuration
space [21]: given that certain dynamical constraints are
satisfied, for a broad range of initial conditions the system
will evolve toward these solutions. This is not necessarily
surprising, since these configurations are solutions to the
equations of motion. Semiclassically, we expect them to
dominate the path integral.

We may, however, ask whether there is another way to
quantify the existence of nontrivial spatially localized
solutions in field configuration space. Can we think of
spatially coherent field configurations as ordered states
in an informational sense, in analogy with the Shannon
entropy of information theory [22,23]? That is, given the
set of field modes that are allowed by the constraints of the
model (i.e. initial and boundary conditions), do they carry a
special informational signature that can be quantified?
To this end, we recently proposed a measure of config-

urational entropy, based on the Fourier transform �ðkÞ of
square-integrable, bound functions �ðxÞ [24]. Leaving the
details for Sec. III, here it suffices to say that with this
configurational entropy, we can establish a correlation
between the energy of a localized field configuration and
its associated configurational entropy. In particular, we can
show that departures from the solution of the equation of
motion will have correspondingly larger relative configura-
tional entropies.
In the present work, we take this approach one step

further, applying it to nonequilibrium fields. Our recent
treatment of Ref. [24] was for static solutions to the field
equations, such as 1d kinks and 3d bounces. Here, we will
add time dependence, computing the relative configura-
tional entropy during spontaneous symmetry breaking in
the context of a 3d scalar field model. ‘‘Relative’’ refers to
a comparison between the entropy of the field at some time
and the entropy of the initial state, which we take to
be a thermal state at temperature T. We will compute the
change in relative configurational entropy as the field is
tossed out of equilibrium during the symmetry breaking
process. Previous work has shown how, for certain types
of quench, oscillons naturally emerge during symmetry
breaking [15,17]. Our results show quantitatively that the
emergence of these localized coherent structures coincide
with the largest departures from equilibrium and that they
carry the most information content, in the sense defined in
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Sec. III. We are thus proposing a measure of order in field
configuration space. Furthermore, we are able to establish
a direct correlation between the emergence of ordered
spatiotemporal structures, in effect the number density of
such structures, and the relative configurational entropy.

The work is organized as follows. In Sec. II we describe
the model and its lattice implementation. In Sec. III we
define the relative configurational entropy (RCE) and ap-
ply it to spontaneous symmetry breaking. We describe how
the RCE provides a measure of ordering in the system as
compared to the maximally disordered initial thermal state
and how this order correlates with the existence of spatially
coherent structures. In Sec. IV we present our conclusions
and plans for future work. In the Appendix, we provide
some technical details of the lattice implementation.

II. THE MODEL

We consider a (3þ 1)-dimensional scalar field theory
with Lagrangian density

L ¼ 1
2ð@��Þ2 � Vð�Þ; (1)

and the tree level potential given by

Vð�Þ ¼ m2

2
�2 � �

3
�3 þ �

8
�4; (2)

where the parameters m, �, � are positive definite
and temperature independent. We use ℏ ¼ c ¼ kB ¼ 1

and rescaled variables �0 ¼ �
ffiffiffiffi
�

p
=m, x0� ¼ x�m, �0 ¼

�=ðm ffiffiffiffi
�

p Þ to write the potential as Vð�Þ ¼ ðm4=�ÞVð�0Þ,
with

Vð�0Þ ¼ �02

2
� �0 �

03

3
þ�04

8
: (3)

We henceforth drop the primes and work with the rescaled
variables. In this work we only consider the values � ¼ 0
and � ¼ 3=2. The first case corresponds to a potential with
a single minimum at � ¼ 0 and the second describes a
double-well potential with degenerate minima at � ¼ 0
and � ¼ 2. For � ¼ 0 the potential is Z2 symmetric. For
any other value of � this symmetry is broken.

In the context of 2d [17] and 3d [15] models, it has been
shown that when quenching a thermalized field from the
symmetric to the double-well potential (here, from � ¼ 0
to � ¼ 3=2), large-amplitude fluctuations about the vac-
uum state give rise to oscillon formation as the system
evolves towards thermal equilibrium in the new potential.
In other words, coherent, spatially extended configurations
develop spontaneously when an initially featureless system
is tossed out of equilibrium. The mechanism behind this
process is well understood: coherent oscillations of the
field’s zero mode parametrically amplify higher k modes
and the resulting energy transfer triggers the formation of
oscillons [15,17]. This remains true when the expansion of
the universe is incorporated into the dynamics [18,19]. In

Fig. 1 we show the coherent oscillations of the field’s zero
mode, h�iðtÞ ¼ ð1=VÞR�ðt;xÞdV, for T ¼ 0:25. Note the
approximate (nonlinear) oscillation period of P � 8:5.
We note that we could have investigated the traditional
symmetry-breaking mechanism with a double-well sym-
metric about � ¼ 0. In this case, the Z2 symmetry
breaking would lead to spinodal decomposition and the
formation of domain walls.

A. Lattice implementation

We simulate the formation of oscillons using a cubic
lattice with N3 ¼ 2563 points, periodic boundary condi-
tions, lattice spacing dx ¼ 0:5 and time step dt ¼ 0:01. We
prepare the initial thermal state using standard Langevin
dynamics [25],

€�þ � _��r2� ¼ � @V

@�
þ �; (4)

where Vð�Þ is the rescaled potential in Eq. (3) with � ¼ 0
and � is a Markovian noise with two-point correlation
function obeying the fluctuation-dissipation relation

h�ðx; tÞ�ðx0; t0Þi ¼ 2�T�ðx� x0Þ�ðt� t0Þ; (5)

where T is the temperature parameter characterizing the
initial state and we take � ¼ 1. The system was evolved
until thermalization was achieved, indicated by the onset of
equipartition with every mode having average kinetic en-
ergy T=2, after which the potential was quenched from
� ¼ 0 to � ¼ 3=2 and the field’s coupling to the heat bath
was removed (� ! 0). So, after the quench the dynamics is
conservative. The evolution of the field was done using a
symplectic velocity Verlet algorithm and the Laplacian
was discretized with a second-order accurate, fourth-order
isotropic stencil using all 26 neighbors of a 3� 3� 3 cube

FIG. 1 (color online). Evolution of the field’s zero mode
(volume-averaged field) after the quench. The initial temperature
was set to T ¼ 0:25. Note the damping of the amplitude as
energy is transferred to higher k modes.
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around a point [26]. We have checked that our results
showed no particular dependence on the choice of box
size, lattice spacing and time step.

B. Hartree approximation and oscillon emergence

Thermal fluctuations in � will change the potential
Vð�Þ which, to leading order in perturbation theory, can
be approximated by the homogeneous Hartree approxima-
tion [27]. Since the Hartree approximation assumes that the
fluctuations of the field remain Gaussian throughout its
evolution, it works well just before and after the quench
for all temperatures. For low temperatures, it remains valid
at all times. We can thus derive the Hartree potential by
writing the field as � ¼ ��þ �� and then averaging over
all fluctuations �� to get VH ¼ hVð ��þ ��Þi. Under the
Hartree assumptions we have h��i ¼ 0 and h��2i ¼ �,
where h��2i is the mean square variance of the field and is
proportional to the temperature parameter T. Suppressing
the bar, the Hartree potential becomes

VHð�Þ ¼ ����þ
�
1þ 3

2
�

�
�2

2
� �

�3

3
þ�4

8
: (6)

When thermal equilibrium is reached through the cou-
pling to the heat bath, the field modes in momentum
space satisfy

hj�eqðkÞj2i ¼ T

k2 þm2
H

; (7)

with the Hartree mass given bym2
H ¼ V00

Hð0Þ ¼ ð1þ 3
2�Þ.

On the lattice, Eq. (7) has to be adjusted for lattice
effects due to the � dependence on the discretization and
the inherent UV cutoff on the lattice. For the lattice UV
cutoff 	=dx, � can be analytically obtained in terms of the
temperature T as [15]

� ¼ 3T

4	dx
: (8)

The continuous dispersion relation !2 ¼ k2 þm2
H has to

be modified to take into account the field dependence on
the discretization scheme. For the isotropic discretization
we use here, the radially averaged dispersion relation will
be given by !2 ¼ k2eff þm2

H, with [28]

k2eff ¼� c4
dx2

� 2

	dx2

Z 	=2

0
cos


Z 	=2

0
½2c3½cos½kcos�cos
dx�þ cos½k sin�cos
dx�þ cos½k sin
dx��

þ 4c2½cos½kcos�cos
dx�cos½k sin�cos
dx�þ cos½kcos�cos
dx�cos½ksin
dx�
þ cos½k sin�cos
dx�cos½k sin
dx��þ 8c1 cos½kcos�cos
dx�cos½k sin�cos
dx�cos½k sin
dx��d�d
; (9)

and c1 ¼ 1=30, c2 ¼ 1=10, c3 ¼ 7=15, c4 ¼ �64=15
being the discretization coefficients of the Laplacian.
With these lattice effects taken into account, the two-point
correlation function at equilibrium becomes

hj�latt
eq ðkÞj2i ¼ T

k2eff þ 1þ 9T=ð8	dxÞ : (10)

In the left part of Fig. 2 we show the radially averaged
two-point correlation function for the field � after it
reaches thermal equilibrium at temperature T ¼ 0:25.
Squares denote the data from the numerical simulation,
and the black solid line is the theoretically predicted spec-
trum hj�latt

eq ðkÞj2i, adjusted for lattice effects. The averaging
for low k modes is less accurate because, on the lattice,
there are fewer modes to compute the average of the power
spectrum. As k gets larger, there are more modes with
the same value of k and the agreement with the theoreti-
cally predicted spectrum is evident. On the right we plot
the equilibrium spectrum (squares) and the spectrum at
t ¼ 44 m�1 (diamonds) after the quench. Modes with
k & 1:5 m have been parametrically amplified, whereas
modes with k * 1:5 m have remained in thermal equilib-
rium. The low k, out-of-equilibrium modes that are para-
metrically amplified after the quench are the ones responsible
for oscillon formation. Oscillons emerge synchronously

after the quench as the system is tossed out of equilibrium,
and then slowly disappear as the field evolves towards
its new equilibrium state [15,17]. A visualization of the
process can be seen at [29]. In Fig. 3, we show a snapshot
of the field at t ¼ 44 m�1 after a thermal Wiener filter
has been applied to remove the high k modes still in
equilibrium, with oscillons appearing as localized spikes
in the field.
The Hartree potential can be used to describe some of

the relevant time scales. From Fig. 1, we note that the
oscillations of the zero mode are displaced from � ¼ 0,
the tree-level minimum, as can be seen from taking the first
derivative of Eq. (6). In order to obtain the typical oscil-
lation frequency about the vacuum, we must use this value
of h�i in the second derivative of VHð�Þ. For T ¼ 0:25 and

dx ¼ 0:5 we obtain ðV 00
HÞ1=2 ¼ !� 0:68, giving an oscil-

lating period of P � 9:2, which is very close to what is
seen in Fig. 1. This is the typical period of the oscillation
driving the formation of oscillons.

III. INFORMATION CONTENT OF COHERENT
FIELD CONFIGURATIONS

Reverting back to Fig. 2, we observe a marked differ-
ence in the two-point correlation function of field modes
between the equilibrium (left) and nonequilibrium phases
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(right). In particular, as we emphasized before, low k
modes with k & 1:5 m are greatly amplified when the field
is away from equilibrium [15]. In this section, we propose a
measure to quantify this nonequilibrium amplification of
low k modes. We further show that this measure, having a
natural interpretation as an entropy in field configuration
space, correlates with the number of coherent field con-
figurations (oscillons, in the case studied here) that emerge
as the system is tossed out of equilibrium. Thus, we pro-
pose that our entropic measure can be used to quantify the
emergence of complexity in field theory, if by complexity
we understand the appearance of spatially localized coher-
ent field configurations, in contrast with the structureless
(disorganized) thermal state.

Following our recent work [24], we define the modal
fraction of a field �ðx; tÞ in Fourier space at time t as

fðk; tÞ ¼ j�ðk; tÞj2R j�ðk; tÞj2d3k : (11)

Equivalently, in equilibrium we have

gðkÞ ¼ j�eqðkÞj2R j�eqðkÞj2d3k
; (12)

with j�eqðkÞj2 given by Eq. (7). Note that with this

definition, gðkÞ depends on the temperature T only through
the Hartree mass correction term �. In the lattice imple-
mentation, gðkÞ is computed with j�latt

eq ðkÞj2 as defined in

Eq. (10). The linear dependence on the temperature is
canceled by our choice of normalization, which gives the
modal fraction units of m�3. Next, we define the dimen-
sionless relative configurational entropy (RCE) of the
power spectra as

FIG. 3 (color online). Snapshot of the field � at t ¼ 44 m�1

after the system is quenched from a single to a symmetric
double well. The simulation size shown here is L3 ¼ 1283. The
field was initially thermalized at T ¼ 0:25. Oscillons (spatial
ordering) appear as spikes about the zero mode of the field.
Three isosurfaces are shown at � ¼ 0:5, 1.3, 1.6 in purple,
cyan, and red, respectively. In black and white, darker regions
correspond to larger values of the field. As the system evolves
towards its new equilibrium, the spatiotemporal ordering is
gradually lost and oscillons subsequently disappear. A full
visualization of the process can be seen at [29], where it is
also clear that for early times oscillons emerge in synchrony
(time ordering).

FIG. 2 (color online). Radially averaged two-point correlation functions for the field � at T ¼ 0:25. On the left, we show the
simulation data at equilibrium and the analytical approximation hj�latt

eq ðkÞj2i (solid line) of Eq. (10). On the right, the same data is

plotted along with the two-point correlation function data at time 44 m�1 after the quench (diamonds). Modes with k & 1:5 m get
significantly amplified while the rest remain in thermal equilibrium throughout the simulation.
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SfðtÞ ¼
Z

Sfðk; tÞd3k; (13)

where the relative configurational entropy density Sfðk; tÞ
is given by

Sfðk; tÞ ¼ fðk; tÞ lnfðk; tÞ
gðkÞ : (14)

Our definition of the RCE is a field-theory version
of the Kullback-Leibler divergence (KLd) commonly
used in information theory to compare two probability
distributions P and Q of a discrete random variable:
DKL ¼ P

Pi lnðPi=QiÞ [30]. In information theory, the
KLd gives a measure of the expected number of extra
bits required to code samples from P using a code based
on Q. Usually, P represents the ‘‘true’’ data or a precisely
computed distribution, while Q represents a theory, model,
or approximation of P.

By comparing the modal fraction of the field’s Fourier
transform at time twith that of the thermal state, we obtain
a measure of the amplification of the low k modes respon-
sible for oscillon formation, a ‘‘distance’’ in Fourier con-
figuration space from the thermal state. (In principle, other
mode expansions could be used, although, as we argued
in Ref. [24], for localized fields the Fourier transform
is the most natural.) Modes that remain in equilibrium
throughout the evolution of the field (here, roughly for
jkj> 1:5 m) have fðk; tÞ ¼ gðkÞ and Sfðk; tÞ ¼ 0, and

thus do not contribute to the RCE. The larger the modal
fraction fðk; tÞ, the larger its associated relative entropy
density Sfðk; tÞ.

The RCE thus provides a clear measure of the departure
from equilibrium. Furthermore, it peaks where the field
is most organized into coherent spatial structures. This is
consistent with the notion that the farther a system is from
equilibrium, the farther it is from satisfying equipartition.
In effect, since the thermal state has maximum entropy and
hence no information (all modes have the same average
energy—as equipartition determines) the RCE gives a
measure of information in field configuration space: peaks
in the RCE correspond to peaks in information-rich coher-
ent structures. In the case here of a scalar field with an
attractive self-interaction, the attractor point of its dynam-
ics, the oscillon, is the farthest that it can be from equipar-
tition. This explains why the RCE peaks when oscillons are
present, with the amplitude of the peaks correlating directly
with the number of oscillons, as we will see below.
In Fig. 4 we plot the RCE density (left) and RCE (right)

as a function of time for the same simulation with
T ¼ 0:25 of Figs. 2 and 3. Since the field starts in thermal
equilibrium, the RCE density, Sfðjkj; tÞ, is zero everywhere
initially. After the quench, energy is transferred to low-k
modes and spikes in Sfðjkj; tÞ begin to appear. These are

clearly seen after integrating over the kmodes, as shown in
the plot of the RCE on the right.
Note that the oscillating period of the RCE coincides

with that of the field’s zero mode (cf. Fig. 1). For the
fiducial value of T ¼ 0:25 used here, we estimated at the
end of Sec. II B the period to be approximately P � 9:2.
Oscillons emerge and breathe with this same period for as
long as the field oscillates with large enough amplitude.
Some new ones appear as time advances, as it is clear from
the peak at t ’ 44, but always with the same oscillating

FIG. 4 (color online). Relative entropy density Sfðjkj; tÞ and relative entropy SfðtÞ as a function of time for a simulation of initial
temperature T ¼ 0:25. Initially the relative entropy is zero, corresponding to the time just after the quench when the system is still in
equilibrium. As parametric resonance takes place, spikes in the low k part of the relative entropy density emerge, signaling the
formation of oscillons. The amplitude of the spikes correlate with the number of oscillons formed, as explained below. As the system
evolves back to equilibrium, the oscillons disappear and the relative configurational entropy goes back to zero. The wave vector
magnitude k has units of m and time has units of m�1.
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frequency, in a clear illustration of spatiotemporal synchro-
nous emergence. Even if an isolated oscillon may have a
lifetime of order �� 7000, here they will disappear in a
much shorter time scale as the field approaches equilibrium.
We refer the reader to Ref. [17] for details. Conceivably, if
the driving oscillation of the zeromode could be maintained,
oscillons would also remain in the system.

In order to substantiate the claim that the RCE gives a
quantitative measure of the emergence of spatiotemporal
structure in the system, in Fig. 5 we plot both SfðtÞ and the

number density of oscillons noscðtÞ ¼ NoscðtÞ=V. Here,
NoscðtÞ is the number of oscillons in the lattice, which is
computed after aWiener filter is applied to the field. Oscillons
are identified as spikes with amplitude �ðx; y; z; tÞ>
�aveðtÞ þ 0:5, with �ave the volume-averaged field, or zero
mode. This criterion was confirmed by visually correlating
the oscillon count with snapshots of the filtered field.

It is quite clear that the spikes in SfðtÞ coincide with the

synchronous emergence of oscillons, and that the higher
the amplitude of SfðtÞ the larger the number density of

oscillons present. (An advantage of defining the relative
entropy to be dimensionless is that it can be consistently
used for similar simulations in lattices of different size.
When the simulation size is increased while working with
the same initial temperature, the power spectrum will look
the same but the number of oscillons formed will be
proportionally larger. Therefore, our definition of the rela-
tive entropy is a consistent measure of the number density
of oscillons formed).

As an illustration, the highest peak in the two-point
correlation function, shown in the right-side plot of

Fig. 2, appears at time t ¼ 44 m�1. The isosurface snap-
shot of Fig. 3 shows the richness of spatial structure in the
field at that time. This is also the time when the highest
peak in the RCE appears, and corresponds to the maximum
in the number density of oscillons, as is clear from
Fig. 5. Eventually, as the system evolves towards its final
equilibrium state, the relative entropy goes slowly back to
zero, signaling the disappearance of coherent structures in
the field.
For low temperatures, the Hartree approximation is valid

for all times and Eq. (10) describes well the equilibrium
spectrum. For larger temperatures (T * 0:30), the Hartree
approximation breaks down and we cannot use Eq. (10) as
descriptive of the equilibrium state of the system. Although
it will still be a good base for studying the emergence of
structure in the field, it should be used with care.
To verify that the correspondence between the RCE and

the number density of oscillons holds for the temperature
range where oscillons appear in the system, we extract the
maxima of the RCE and the corresponding oscillon num-
ber density at that time for a range of initial temperatures
0:10 � T � 0:29. (For example, for T ¼ 0:25 this would
be at t ¼ 44 m�1 in the simulation displayed in Fig. 5.) For
each value of T we perform an ensemble average over 15
simulations and plot the results in Fig. 6. The vertical axis
on the left displays the ensemble-averaged maximum value
of the RCE, Smax, with the data shown in circles, while the
right vertical axis displays the corresponding ensemble-
averaged oscillon number density nosc with the data depicted
by diamonds. The error bars show the standard deviation of
the ensemble. For low temperatures 0:10 � T � 0:15, the

FIG. 5 (color online). Relative configurational entropy SfðtÞ
(continuous line) and number density of oscillons noscðtÞ (dashed
line) as a function of time for a simulation of initial temperature
T ¼ 0:25. Initially, both the relative entropy and the number
density of oscillons are zero, since the system starts in equilib-
rium. After the quench, a clear correlation is seen between the
spikes in SfðtÞ and the maxima of nosc. The wave vector

magnitude jkj has units of m and time has units of m�1.

FIG. 6 (color online). Ensemble-averaged values of the max-
ima of the RCE and of the oscillon number density for a range of
different initial temperatures. For low temperatures T & 0:15, no
oscillon formation is possible and the RCE is zero. As the
temperature increases, the maxima of the RCE increase in
amplitude at the same rate as the maxima of the oscillon number
density. For temperatures T � 0:28–0:29 the rates begin to
diverge as the Hartree approximation is no longer valid.
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fluctuations on the field do not have large enough amplitude
to lead to oscillon formation and the RCE is zero. As the
temperature increases, parametric amplification of the
oscillon-related k modes triggers the formation of oscil-
lons. The relationship between the RCE and the number
density of oscillons is evident: higher temperature leads to
both higher RCE and larger oscillon number density. For
temperatures T � 0:28–0:29 we begin to see a discrepancy
between the two values, the reason being that the Hartree
approximation starts to diverge from the true equilibrium
spectrum. (For reference, symmetry restoration occurs
roughly at T � 0:32.) We note that the results of Fig. 6
are independent of the simulation volume.

IV CONCLUSION AND DISCUSSIONS

We investigated the nonequilibrium dynamics of symme-
try breaking in the context of a 3d real scalar fieldmodel with
a double-well potential. Preparing the system in a parity-
invariant initial thermal state, we break theZ2 symmetry by
adding a cubic term to the potential. As a result, coherent
spatiotemporal structures emerge, an ensemble of long-lived
oscillons. We proposed a measure to quantify the emergence
of spatiotemporal order, which essentially counts the modes
out of equilibrium. This measure, which we called relative
configurational entropy following our previous work of
Ref. [24], provides an accurate description both of the de-
parture from equilibrium and of the emergence of coherent
structures in the field. ‘‘Relative’’ here refers to computing an
entropic distance in field configuration space from a baseline
which we took to be the thermal state. This way, we are able
to provide the informational content of nonequilibrium field
structures, in particular of coherent states that emerge during
spontaneous symmetry breaking. We could just as easily
have studied the information content of domain-wall forma-
tion had we used a different initial state centered at the
maximum of the double-well potential.

Themeasurewe proposed here should be generalizable to
many different contexts. For example, it should be possible
to apply it to models with gauge fields, or in nonrelativistic
applications of interest to condensedmatter physics, such as
Ginzburg-Landau models of superfluids and superconduc-
tors. Furthermore, a similar measure should also be of
interest in cosmological contexts where topological and
nontopological structures appear due to symmetry breaking
driven by the cosmic expansion. Finally, it would be inter-
esting to see if such ideas could be extended to compute the
relative configurational entropy of metric spaces, thus pro-
viding a possible measure of gravitational entropy. Work
along these lines is currently in progress.
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APPENDIX: ANALYTICAL ESTIMATE OF THE
MODAL FRACTION NORMALIZATION AT

EQUILIBRIUM

The normalization of the modal fraction at equilibrium
in Eq. (11) can be computed analytically. This will provide
an estimate of how important lattice effects are for differ-
ent lattice parameters. We assume spherical symmetry in
momentum space and impose a UV cutoff� to perform the
integral

Z
j�an

eqðkÞj2d3k ¼
Z �

0

T

k2 þm2
H

4	k2dk

¼ 4	T

�
��mHtan

�1 �

mH

�
; (A1)

where T is the temperature and mH is the Hartree mass.
The value of the UV cutoff � is chosen appropriately to
describe the discretization employed in the numerical

calculations. Here, we pick the value � ¼ ffiffiffi
3

p
	=dx which

corresponds to the largest wave vector represented in a
cubic lattice of lattice spacing dx. Geometrically, this
choice makes the integration volume of Eq. (A1) to be
the smallest sphere that fully covers the cubic lattice in
momentum space.
We evaluate Eq. (A1) for T ¼ 0:25 and several choices

of lattice spacing dx. The results are shown in Table I.
For large values of dx, the analytical approximation is in
good agreement with the numerical calculation; but as the
lattice spacing is decreased, the two values begin to
diverge. To see why the analytical approximation under-
estimates the value of the integral, note that k2 grows faster
than the numerically calculated k2eff of Eq. (9) and this

becomes increasingly more noticeable for smaller lattice
spacings and hence larger volumes of integration. This
further justifies our incorporation of lattice correction
effects in the dispersion relation in Eq. (10), as the dis-
crepancy is of the order of 10% for dx ¼ 0:5 used through-
out this paper.

TABLE I. Comparison between the numerical and analytical
values of the modal fraction normalization at equilibrium for
different values of lattice spacing. The analytical approximation
given by Eq. (A1) works well as long as the lattice spacing is not
very small. For smaller values of dx, the lattice effects on the
dispersion relation calculated in Eq. (9) have to be taken into
account. The lattice spacing dx is given in units of m�1 and the
normalization factors have units of [Tm].

dx
R j�latt

eq ðkÞj2d3k
R j�an

eqðkÞj2d3k
0.9 14.8874 14.3853

0.7 20.9985 19.6331

0.5 32.0204 29.1701

0.3 57.611 51.5837

0.1 184.715 164.262

INFORMATION CONTENT OF SPONTANEOUS SYMMETRY . . . PHYSICAL REVIEW D 86, 045004 (2012)

045004-7



[1] S. Scott, Nonlinear Science: Emergence and Dynamics of
Coherent Structures (Oxford University Press, Oxford,
UK, 2003).

[2] R. Rajamaran, Solitons and Instantons (North-Holland,
Amsterdam, 1987).

[3] D.R. Nelson, Defects and Geometry in Condensed Matter
Physics (CambridgeUniversity Press, Cambridge,UK, 2005).

[4] M. E. Peskin and D.V. Schroeder, An Introduction to
Quantum Field Theory (Addison-Wesley, Reading, MA,
1995).

[5] T.W. B. Kibble, J. Phys. A 9, 1387 (1976); A. Vilenkin and
E. P. S. Shellard, Cosmic Strings and Other Topological
Defects (Cambridge University Press, Cambridge, UK,
1994).

[6] T.D. Lee and Y. Pang, Phys. Rep. 221, 251 (1992).
[7] S. Coleman, Nucl. Phys. B262, 263 (1985); B269, 744(E)

(1986).
[8] R. Friedberg, T. D. Lee, and A. Sirlin, Phys. Rev. D 13,

2739 (1976).
[9] I. L. Bogolyubsky and V.G. Makhankov, JETP Lett. 24, 12

(1976).
[10] M. Gleiser, Phys. Rev. D 49, 2978 (1994); E. J. Copeland,

M. Gleiser, and H. R. Muller, Phys. Rev. D 52, 1920
(1995).

[11] M. Hindmarsh and P. Salmi, Phys. Rev. D 74, 105005
(2006); G. Fodor, P. Forgacs, P. Grandclement, and
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Forgács, Z. Horváth, and Á. Lukács, Phys. Rev. D 78,
025003 (2008); G. Fodor, P. Forgács, Z. Horváth, and M.
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